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In this paper, the finite element discretization of non-classical continuum models with micro-inertia is
analysed. The focus is on micro-inertia extensions of the one-dimensional rod model, the beam bending
theories of Euler–Bernoulli and Rayleigh, and the two-dimensional membrane model. The performance of
a variety of mass matrices is assessed by comparing the natural frequencies and their modes with those
of the associated discrete systems, and it is demonstrated that the use of higher-order mass matrices
reduces errors and improves convergence rates. Furthermore, finite element sizes larger than the corre-
sponding physical length scale are shown to be sufficient to capture the natural frequencies, thus facili-
tating numerical models that are not only reliable but also computationally efficient.
� 2022 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is well known that matter presents internal microscopic
structures that can affect its dynamic behaviour. The influence of
these microstructural length scales on the macrostructural
response is commonly denominated as scale effect. Scale effects
may appear in nano- and micro-electromechanical systems [1],
such as robotics [2] and biosensing [3], as well as in inhomoge-
neous materials, composites or metamaterials [4–7]. This latter
type of materials has been used as lightweight structures, energy
absorption systems or vibration control systems [8,9] due to
improved static and dynamic performance of lattice-type materials
compared to their solid counterparts. Thus, the exploration these
materials is important and, by implication, the investigation of
scale effects in these materials is relevant.

One particular manifestation of scale effects is dispersive wave
propagation: perturbations with different wave lengths may prop-
agate through the solid with different velocities, as has been
pointed out in several experimental studies [10–13]. To simulate
this behaviour, discrete models can be used that include each
micro-structural element explicitly. However, such an approach
requires a significant computational effort due to the a large num-
ber of degrees of freedom.

Concerning the alternative strategy of using continuum models,
classical theories may fail in those involving high-frequency
ranges, where the influence of scale effects becomes more relevant.
For this reason, non-classical continuum models, capable of
capturing the scale effects with a lower computational cost than
discrete ones, have been pursued from the 1960s. Seminal works
include those by Mindlin [14], Eringen [15,16] and Krumhansl
[17,18], with more recent studies focussing on the implementation
of generalized continuum theories to solve problems concerning
beams [19,20], membranes [21] or plates [22], among others. In
order to relate the additional material parameters to the mechan-
ical and geometric properties of the underlying microstructure,
continualization methods may be applied to discrete lattice sys-
tems. Extensive information about the application of continualiza-
tion techniques to lattice systems can be found in the literature, for
different models such as rods [23–26], beam theories considering
bending [27–29] or bending with shear [30–33], membranes
[34–37] or plates [38,39].

The non-classical continuum models discussed above are able
to capture scale effects via the introduction of higher-order deriva-
tive terms in the governing equations (typically by additional
space or space–time derivatives of the relevant state variables),
which are accompanied by internal length scales (characteristic
length of the lattice system). A detailed discussion on the ability
to capture dispersive wave propagation through the addition of
micro-inertia and strain gradient terms in the continuum govern-
ing equations can be found in [40]. Nonetheless, the inclusion of
strain gradient terms leads to the need for extra boundary condi-
tions, the physical meaning of which remains a subject of debate
(but see the work of Froiio and coworkers [41,42] for an insightful
interpretation). Moreover, strain gradient terms often require addi-
tional continuity of the interpolants [43].
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For these reasons, non-classical continuum models with micro-
inertia only are pursued here. These models include additional
spatial gradients of the accelerations, leading to so-called micro-
inertia modifications of classical elasticity, and have been widely
studied in recent years [44–48]. These works provide different
microstructural derivations of the micro-inertia terms, revealing
the common feature that the additional higher-order derivatives
are accompanied by length scales related to the micro-structural
geometry, such as the distance between particles in lattices or
the size of the representative volume element in heterogeneous
materials. The ability of these types of models to capture scale
effects has been proven in several fields such as metamaterials
[49], composite structures [50] and carbon nanotubes [51]. In addi-
tion, these approaches present certain advantages in numerical
simulations, such as increasing the critical time step in condition-
ally stable time integration algorithms [52] and a straightforward
implementation into existing finite element codes, since the conti-
nuity requirements on the interpolants are typically not affected
by the inclusion of micro-inertia.

In this work, our aim is to develop effective and efficient finite
element discretizations of continuum models with micro-inertia.
Firstly, we propose the use of higher-order mass matrices, defined
as linear combinations of the consistent mass matrix and the
lumped mass matrix or of the consistent mass matrix and the stiff-
ness matrix – to the best of the authors’ knowledge, this has not
been attempted for continuum models with micro-inertia. Sec-
ondly, we present formulations that allow the use of finite element
sizes larger than the corresponding physical length-scale (equiva-
lent to the characteristic length in a lattice system), thus reducing
the computational costs that would be required to solve the asso-
ciated discrete lattice system. To do this, we have studied a number
of models here, namely the axial rod model, the bending theories
of Euler–Bernoulli and Rayleigh, and the two-dimensional mem-
brane model, anticipating that the insights gained from these mod-
els can be extrapolated to more complex models and geometries.
Model performance is verified by comparing the numerical solu-
tions to available analytical solutions.

This paper is organised as follows. Firstly, the different contin-
uum elasticity theories with micro-inertia are presented in Sec-
tion 2, including analytical solutions for the natural frequencies
of several boundary conditions. Section 3 focuses on the spatial
discretization of the corresponding continuum models, where dif-
ferent mass matrices are constructed. Section 4 contains a series of
numerical tests and their results, with conclusions on their accu-
racy given in Section 5.

2. Elasticity theories with micro-inertia

Analytical solutions are derived for the natural frequencies of
rod, Euler–Bernoulli beam, Rayleigh beam and membrane models
equiped with micro-inertia. Although the number of boundary con-
ditions of micro-inertia theories is typically the same as for classi-
cal elasticity (which is considered an advantage compared to
higher-order strain gradient models), their format is still different
from those of classical elasticity. For this reason, the models in this
section will be given using variational principles, so that the con-
sistent boundary conditions emerge automatically.

2.1. One-dimensional rod model

The Lagrangian L of the rod model extended with micro-inertia
reads

L ¼
Z L
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where E and q are the Young’s modulus and the mass density, L is
the length of the rod, while u is the longitudinal displacement,
and x and t denote space and time, respectively. The additional iner-
tia term in Eq. (1) is accompanied by a length scale parameter ‘,
which is a representation of the characteristic length of the mate-
rial’s microstructure. Applying Hamilton’s Principle, the following
governing equation is obtained

E
@2u
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� q
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@t2

� ‘2
@4u

@x2@t2

 !
¼ 0 ð2Þ

together with the boundary conditions, assumed to be homoge-
neous, given by

u ¼ 0 or E
@u
@x

þ q‘2
@3u
@x@t2

¼ 0 ð3Þ

Note that the natural boundary condition of Eq. (3) differs from
the classical one unless ‘ ¼ 0: thus, the number of boundary condi-
tions is the same as for classical elasticity, but their mathematical
format has changed.

Analytical solutions for the natural frequencies xm and mode
shapes Um xð Þ can be found via separation of variables. For a rod
with two fixed ends the results are straightforwardly found as

xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=q
mp
L

� ��2 þ ‘2

s
and Um xð Þ ¼ Cm sin
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and for the fixed-free rod we obtain

xm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=q
2m�1ð Þp

2L
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2m� 1ð Þpx

2L
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; ð5Þ

where m 2 Nþ is the mode number and Cm is the amplitude.

2.2. One-dimensional beam models

The Euler–Bernoulli theory for thin beams is widely employed
in static problems. However, this theory shows unbounded propa-
gation velocity for short wavelengths, an anomaly that can be
avoided by Rayleigh theory [53]. Here, micro-inertia extensions
of both the Euler–Bernoulli and Rayleigh beam models will be
given first, after which these are used to calculate the natural fre-
quencies for a variety of boundary conditions.

2.2.1. Euler–Bernoulli beam theory
The Lagrangian of an Euler–Bernoulli beam, extended with

micro-inertia, can be written as

L¼
Z L
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where A and I are the cross-sectional area and the second moment of
area, and v is the transverse displacement variable. Note that Eq. (6)
includes two non-classical terms; in [28] it is shown how continuum
models with higher-order inertia can be derived via the continualiza-
tion of a lattice system, thereby linking the length scale parameters
of the obtained continuum to the geometry of the lattice.

Applying Hamilton’s Principle leads to a governing equation
written as
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with boundary conditions

v ¼ 0 or EI
@3v
@x3

� qA ‘2
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 !
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Again, the number of boundary conditions is the same as for the
classical Euler–Bernoulli theory.

2.2.2. Rayleigh beam theory
The classical Rayleigh beam theory is similar to the classical

Euler–Bernoulli one but for the incorporation of the rotary inertia
of the cross-section. The Lagrangian of Rayleigh beam theory
extended with micro-inertia is written as

L ¼
Z L
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Note that Eq. (10) has been chosen following the same criteria
as that of the Euler–Bernoulli model, namely increasing the spatial
order of the classical kinetic energy up to the same order as the
classical potential one. Application of Hamilton’s Principle then
yields
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where the associated boundary conditions are found as
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2.2.3. Natural frequencies
Employing separation of variables according to v x; tð Þ ¼ V xð Þeixt

results in
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for Euler–Bernoulli theory with micro-inertia and

j ¼ q I þ A‘2
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for Rayleigh theory with micro-inertia. Hence, the general solution
of Eq. (14) reads

V xð Þ ¼ c1 cos wxð Þ þ c2 sin wxð Þ þ c3 cosh /xð Þ þ c4 sinh /xð Þ ð17Þ
where
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Furthermore, c1; c2; c3 and c4 are arbitrary constants that can be
obtained by imposing four boundary conditions as detailed in
Appendix A for a simply supported beam and for a cantilever beam.
Afterwards, natural frequencies can be obtained from the charac-
teristic equation of the homogeneous system.

2.3. Two-dimensional membrane model

Finally, the micro-inertia version of the two-dimensional mem-
brane model is studied. Assuming a rectangular domain with
dimensions Lx and Ly, the Lagrangian of this model is given by

L ¼
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where T is an in-plane tensile load, v is the out-of-plane displace-
ment and q is the mass per unit of area. Hence, applying Hamilton’s
Principle gives
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with the boundary conditions
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where nx and ny are the components of the normal vector of the
domain surface @S.

Separation of variables is applied through v x; y; tð Þ ¼
X xð ÞY yð Þeixt , so that
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from which it can be found that
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where the constants kx and ky are related through
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Thus, the following solutions for X xð Þ and Y yð Þ are found:

X xð Þ ¼ a1 cos kxxð Þ þ a2 sin kxxð Þ ð27Þ

Y yð Þ ¼ b1 cos kyy
� �þ b2 sin kyy

� �
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where a1; a2; b1 and b2 are constants to be determined via the
boundary conditions. The most common configuration for a mem-
brane is fixed along all edges. This leads to a1 ¼ b1 ¼ 0 together
with

kx ¼ mp
Lx

and ky ¼ np
Ly

ð29Þ
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with m;n 2 Nþ. Therefore, the natural frequency for mode m;nð Þ is
given through

xm;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T m2p2
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� �	 

vuuuuut ð30Þ

while the associated mode shape is expressed as

Vm;n x; yð Þ � X xð ÞY yð Þ ¼ Cm;n sin
mpx
Lx

� �
sin

npx
Ly

� �
ð31Þ
3. Spatial discretization aspects

The analytical solutions for the natural frequencies and mode
shapes given above will serve as reference solutions for the associ-
ated finite element solutions. After spatial discretization of the rel-
evant governing equations, the element equations can be written
generically in modal form as

�x2 MþM‘ð Þ þ K
� �

d ¼ 0 ð32Þ

where M and K are the standard mass and stiffness matrices, while
M‘ is the mass matrix associated with the micro-inertia terms.
Moreover, d contains the nodal degrees of freedom.

The matrices K and M‘ are typically given non-ambiguously for
each model and therefore cannot be modified. In that context, note
that it is not possible to lump M‘ without losing the micro-inertia
properties of the model. Hence, the systemmatrix as given above is
Fig. 1. Relative error versus eleme

4

not diagonal – but see [54,55] for a discussion of these issues and
solution strategies.

On the other hand, the classical mass matrix M can be con-
structed in different ways without affecting the overall mass prop-
erties of the model, thus allowing the systemmatrix to be modified
in order to maximise accuracy. In particular, the consistent mass
matrix assumes a distribution of the mass over the entire element
and makes use of the same shape functions as those employed to
develop the stiffness matrix, while a lumped mass matrix is
obtained by assuming that the total mass of the elements is dis-
tributed at the nodes. In addition, Hughes [56] demonstrated that,
for classical models, a linear combination of consistent and lumped
mass matrices may results in a more accurate numerical model.
This linear combination is denoted as the higher-order mass matrix
and defined via

MH ¼ aMC þ 1� að ÞML with 0 6 a 6 1 ð33Þ
where MC;ML and MH denote the consistent, lumped and higher-
order mass matrix, respectively. Furthermore, a is a constant that
can be set by the user.

A pertinent question arises in the context of the present paper:
is it possible to find optimal values for a in the context of elasticity the-
ories with micro-inertia? To answer this question, the mass and
stiffness matrices corresponding to the models studied in this work
are summarised below.
3.1. One-dimensional rod model

The consistent and lumped mass matrices for a rod element are
given by
nt size for a fixed–fixed rod.
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MC ¼ qh
1
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" #
and ML ¼ qh
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2 0
0 1

2

" #
ð34Þ

whereas the micro-inertia mass matrix and stiffness matrix read

M‘ ¼ q‘2

h
1 �1
�1 1

	 

and K ¼ E

h
1 �1
�1 1

	 

ð35Þ

where throughout h denotes the size of the finite element. As
shown in Eq. (33), the higher-order mass matrix of the rod model
can be obtained by combining both consistent and lumped mass
matrices. In Appendix B, it has been demonstrated that the most
accurate value of a in this case is a ¼ 0:5, which leads to

MH ¼ qh
5
12

1
12

1
12

5
12

" #
ð36Þ
3.2. One-dimensional beam models

Standard cubic Hermite shape functions have been used for
both beam theories studied in this paper.

3.2.1. Euler–Bernoulli beam theory
For an Euler–Bernoulli beam element, the consistent mass

matrix is given by

MC ¼ qAh
420

156 22h 54 �13h
22h 4h2 13h �3h2

54 13h 156 �22h
�13h �3h2 �22h 4h2

2
6664

3
7775 ð37Þ
Fig. 2. Relative error versus elem
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whereas the micro-inertia mass matrix reads

M‘ ¼qA‘2

30h

36 3h �36 3h

3h 4h2 �3h �h2

�36 �3h 36 �3h

3h �h2 �3h 4h2

2
66664

3
77775þ

qA‘4

h3

12 6h �12 6h

6h 4h2 �6h 2h2

�12 �6h 12 �6h

6h 2h2 �6h 4h2

2
66664

3
77775

ð38Þ
Furthermore, the stiffness matrix is written as

K ¼ EI

h3

12 6h �12 6h

6h 4h2 �6h 2h2

�12 �6h 12 �6h

6h 2h2 �6h 4h2

2
66664

3
77775 ð39Þ

The consistent mass matrix of Eq. (37) can be transformed into
the lumped mass matrix by different procedures – an in-depth
discussion can be found in [57]. Here, we will consider the
lumped mass matrix obtained from the nodal integration tech-
nique [58]:

ML ¼ qAh
2

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

2
66664

3
77775 ð40Þ

A straightforward expression for the higher-order mass matrix
can be obtained directly from Eq. (33). Assuming again a ¼ 0:5,
the following mass matrix is found and indicated with ‘‘higher-
order I” in this paper:
ent size for a fixed-free rod.



Fig. 3. Normalized mode shapes of a fixed–fixed rod with higher-order mass matrix.

Fig. 4. Relative error versus element size for a simply supported Euler–Bernoulli beam.
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MI
H ¼ qAh

840

366 22h 54 �13h

22h 4h2 13h �3h2

54 13h 366 �22h

�13h �3h2 �22h 4h2

2
66664

3
77775 ð41Þ

Alternatively, Hughes [56] proposed another higher-order mass
matrix for classical beam models, obtained via a linear combina-
tion of the consistent mass matrix and the stiffness matrix:

MII
H ¼ MC þ qAh4

720EI
K ¼ qAh

2520

978 153h 282 �57h
153h 38h2 57h �11h2

282 57h 978 �153h
�57h �11h2 �153h 38h2

2
6664

3
7775
ð42Þ

This higher-order mass matrix will be denoted as ‘‘higher-order
II” in the remainder of this work.

3.2.2. Rayleigh beam model
A finite element derived from Rayleigh beam theory has a con-

sistent mass matrix consisting of two parts, related to translational
and rotary inertia, respectively:

MC ¼qAh
420

156 22h 54 �13h
22h 4h2 13h �3h2

54 13h 156 �22h
�13h �3h2 �22h 4h2

2
6664

3
7775þ qI

30h

36 3h �36 3h
3h 4h2 �3h �h2

�36 �3h 36 �3h
3h �h2 �3h 4h2

2
6664

3
7775

ð43Þ
The associated micro-inertia mass matrix similarly has two

contributions:
Fig. 5. Relative error versus element size f
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M‘ ¼qA‘2
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The element stiffness matrix of Rayleigh beam theory is

identical to that of Euler–Bernoulli beam theory, cf. Eq. (39). To
obtain a lumped mass matrix, nodal integration is used again,
which yields

ML ¼ qAh
2

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

2
66664

3
77775þ qIh

2

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

2
66664

3
77775 ð45Þ

Finally, following the same approach as for Euler–Bernoulli the-
ory, the following higher-order mass matrices are obtained:

MI
H ¼ qAh

840

366 22h 54 �13h

22h 4h2 13h �3h2

54 13h 366 �22h

�13h �3h2 �22h 4h2

2
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3
77775

þ qI
60h
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3h 19h2 �3h �h2
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2
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3
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ð46Þ

and
or a cantilever Euler–Bernoulli beam.



Fig. 6. Normalized mode shapes of a simply supported Euler–Bernoulli beam with higher-order II mass matrix.
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Fig. 7. Relative error versus element size for a simply supported Rayleigh beam.
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MII
H ¼ qAh

2520

978 153h 282 �57h
153h 38h2 57h �11h2

282 57h 978 �153h
�57h �11h2 �153h 38h2

2
6664

3
7775

þ qI
30h

36 3h �36 3h
3h 4h2 �3h �h2

�36 �3h 36 �3h
3h �h2 �3h 4h2

2
6664

3
7775

ð47Þ
3.3. Two-dimensional membrane model

Next, the finite element equations associated with Eq. (20) will
be developed. To this end, a weak form is formulated by multiply-
ing Eq. (20) with a weight function dv and integrating the result
over the domain X. Applying the divergence theorem yieldsR

X dvqv ttð ÞdXþ RX dvxTvx þ dvyTvy
� �

dX

þRX dvxq‘2vxtt þ dvyq‘2vytt
� �

dX

¼ R
@X dv Tvx � nx þ Tvy � ny

� �� �
dS

þR
@X dvq‘2 Tvxtt � nx þ Tvytt � ny

� �� �
dS

ð48Þ

The surface of the membrane X � LxLy. Thus, the following mass
and stiffness matrices are found

MC ¼ q
Z

X
NTNdX ð49Þ

M‘ ¼ q‘2
Z

X

@NT

@x
@N
@x

þ @NT

@y
@N
@y

 !
dX ð50Þ
Fig. 8. Relative error versus element si
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and

K ¼ T
Z

X

@NT

@x
@N
@x

þ @NT

@y
@N
@y

 !
dX ð51Þ

where N contains the shape functions. Note that the micro-inertia
mass matrix is a scalar multiple of the stiffness matrix.

The lumped mass matrix can be obtained straightforwardly
from the consistent mass matrix via the row-sum technique, e.g.
Two different higher-order mass matrices will be studied for the
membrane model, taking either a ¼ 1

2 or a ¼ 3
4 in Eq. (33); these will

be indicated as ‘‘higher-order I” and ‘‘higher-order II” mass matri-
ces, respectively.

4. Discussion of results

In this section, the natural frequencies obtained by the numer-
ical methods will be compared with those provided by the analyt-
ical solutions. Different vibration modes will be evaluated,
presenting the relative errors corresponding to each employed
mass matrix, as a function of the normalised element size
h � h=‘. The relative error � is defined in terms of the natural fre-
quency as

� ¼ xanalytical �xnumerical

 
xanalytical

� 100% ð52Þ

A double logarithmic scale is adopted in the associated Figures
in order to be able to verify whether the convergence rate, upon
mesh refinement, of the numerical solutions matches the theoret-
ical convergence rate.

As explained above, the continuum models with micro-inertia
are able to capture the scale effects through space–time cross
ze for a cantilever Rayleigh beam.



Fig. 9. Normalized mode shapes of a cantilever Rayleigh beam with higher-order II mass matrix.

Fig. 10. Relative error versus element size for a square membrane.

F. Gómez-Silva and H. Askes Computers and Structures 275 (2023) 106938

10



Fig. 11. Normalized mode shapes of modes (1;1) and (2;2) of a square membrane
with higher-order I mass matrix.
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derivatives that are accompanied by the length scale ‘, hence the
scale effects become less significant as ‘ tends to zero. Where nat-
ural frequencies are concerned, the relevance of the scale effects
depends on the ratio between ‘ and the wave length of the vibra-
tion mode. To study this systematically, a ratio of l ¼ L=‘ ¼ 10 has
been considered with L the length of the rod, length of the beam, or
the edge length of a square membrane. Considering this value for
l, the scale effects arise even for the lowest modes. The relevance
of scale effects for such a ratio can be observed in [26,28,36] for
rods, beams and membranes, respectively.

4.1. One-dimensional rod model

As an illustrative example, we consider here a rod with the fol-
lowing properties: L ¼ 2 m, E ¼ 70 GPa, q ¼ 3000 kg/m3 and
‘ ¼ 0:2 m. Figs. 1 and 2 show the relative errors of the natural fre-
quencies corresponding to the first four modes of the fixed–fixed
and fixed-free configurations, respectively. For both configurations,
and for all considered modes, the higher-order mass matrix leads
to (i) significantly lower errors and (ii) a higher convergence rate
than both the consistent mass matrix and the lumped mass matrix.
Note that with the higher-order mass matrix the natural frequen-
cies can be obtained with good accuracy using an element size of

twice the length scale (i.e. h ¼ 2), with the fourth mode presenting
an error lower than 4%, and even lower errors for the lower modes.
In Fig. 3 the mode shapes of the first four modes have been plotted,
comparing the numerical results of the higher-order mass matrix
with the analytical solution of Eq. (4). It is clear that higher modes
require smaller element sizes. Nevertheless, the first four modes
can be attained with considerable reliability taking h 6 1.

4.2. One-dimensional beam models

Next, the results obtained from both Euler–Bernoulli and Ray-
leigh beam models will be analysed. A beam with the following
properties is considered: L ¼ 2 m, E ¼ 70 GPa, q ¼ 3000 kg/m3,
A ¼ 0:1 m2, I ¼ 1=120 m4 and ‘ ¼ 0:2 m.

4.3. Euler–Bernoulli theory

Figs. 4 and 5 show the relative errors of the first four natural fre-
quencies for a simply supported and a cantilever Euler–Bernoulli
beam, respectively. It can be seen in Fig. 4 that, for the simply sup-
ported beam, all four mass matrices show similar convergence
rates whereby halving the element size leads to a roughly tenfold
decrease in relative error. For this particular example, there does
not seem to be much added value in using a higher-order mass
matrix – although it does not seem to be disadvantageous either.

Conversely, the results of the cantilever beam plotted in Fig. 5
show a signficant difference between the two higher-order mass
matrices. The convergence rate of the higher-order II mass matrix
is superior to those of the lumped mass matrix and the higher-
order I mass matrix, but also somewhat better than that of the con-
sistent mass matrix. Comparing these results with those of the
Rayleigh theory given in the next section, it seems that the results
of Fig. 4 are the outlier, not those of Fig. 5: the lumped mass matrix
and the higher-order I matrix appear to demonstrate superconver-
gent behaviour in Fig. 4 compared to all the other results with the
same matrices. However, considering the totality of the results, the
higher-order II matrix is clearly the preferred option.

Finally, note that when the higher-order II mass matrix is used,
the natural frequencies are obtained with high accuracy even with
an element size twice the magnitude of the physical length scale

(i.e. h ¼ 2) – cf. the fourth natural frequency exhibiting an error
less than 0:5% for both sets of support conditions. Fig. 6 shows
11
the mode shapes of the first four modes of a simply supported
beam, employing the higher-order II mass matrix. Similar to the

results of Fig. 3, relative element sizes h 6 1 are required to give
a reasonable approximation of the first four mode shapes – this
similarity is due to the fact that Eqns. (4) and (A.5) are formally
equivalent.
4.4. Rayleigh theory

Figs. 7 and 8 show the relative errors of the natural frequencies
corresponding to simply supported and cantilever Rayleigh beams,
respectively. The results are consistent (and in line with the results
for the Euler–Bernoulli cantilever beam): the higher-order II mass
matrix shows the best performance in terms of convergence rate
and in terms of absolute error the consistent mass matrix leads
to a similar convergence rate but a higher absolute error, whereas
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use of the higher-order I mass matrix and the lumped mass matrix
leads to slower convergence rates. Furthermore, the higher-order II
mass matrix captures all four natural frequencies within 1% error

with a relative element size h ¼ 2.
Finally, the mode shapes of the first four modes of the cantilever

beam are plotted in Fig. 9, employing the higher-order II mass
matrix of the Rayleigh model (the mode shapes of the simply sup-
ported beam are similar to those of the Euler–Bernoulli case and
thus not shown here). Yet again, a relative element size h 6 1 is
sufficient to capture the first three modes with acceptable
accuracy.
4.5. Two-dimensional membrane model

Finally, a square isotropic membrane is studied with properties
Lx ¼ Ly ¼ 2 m, E ¼ 70 GPa, q ¼ 1 kg/m3, T ¼ 1 N/m and ‘ ¼ 0:2 m,
while all edges are modelled to be fixed. The relative errors of the
natural frequencies corresponding to modes (m ¼ 1;n ¼ 1),
(m ¼ 1;n ¼ 2), (m ¼ 2; n ¼ 2) and (m ¼ 1;n ¼ 3) of this membrane
are shown in Fig. 10. As it can be observed, the results obtained
by employing the higher-order II mass matrix (considering
a ¼ 3=4) are those that present the lowest error, except in mode
(m ¼ 1;n ¼ 3), where those derived from the higher-order I mass
matrix (a ¼ 1=2) do so. Note that for mode (m ¼ 1;n ¼ 3), the con-
vergence curve corresponding to the higher-order II mass matrix
changes its slope considerably for h > 1. Notice also that, apart from
exhibiting much smaller errors, the higher-order II mass matrix
leads to a solution that converges faster than those of the rest for
modes (m ¼ 1;n ¼ 1) and (m ¼ 2;n ¼ 2), whereas in modes
(m ¼ 1;n ¼ 2) and (m ¼ 1;n ¼ 3) it is similar. Finally, it is observed

that, considering a relative element size h ¼ 2, the use of the higher-
order II mass matrix leads to results within 1% accuracy, where for
the higher-order I mass matrix this maximum error is 5%.

As an illustrative example, Fig. 11 shows the contour curves cor-
responding to the vibration shape of the considered membrane
with fixed edges for the modes (m ¼ 1;n ¼ 1) and (m ¼ 2;n ¼ 2),
employing the higher-order I mass matrix of the membrane model.

It can be seen that taking a relative element size h 6 1 leads to a
numerical model that accurately reproduces the behaviour given
by the analytical solution, which is consistent with the observa-
tions for the rod and beam models.
5. Conclusions

In this work, several continuummodels with micro-inertia have
been discretized by means of finite elements, thereby separating
the numerical length scale (i.e. the element size) from the physical
length scale (i.e. the constitutive parameter accompanying the
higher-order inertia terms). The main objective of this work has
been to obtain suitable solutions of these continuum models
through discrete matrix forms, considering element sizes larger
than the corresponding length scale, with the aim of reducing
the computational costs that would be needed to solve the equiv-
alent discrete lattice system. To achieve this objective, the use of
several mass matrices is proposed here for the first time in this
kind of models. The numerical results are compared to correspond-
ing analytical solutions. The vibration modes of micro-inertia
extensions of the classical one-dimensional axial rod model, the
beam bending theories of Euler–Bernoulli and Rayleigh, and the
two-dimensional membrane model have been studied.

The overriding conclusion is that the use of higher-order mass
matrices, which are a linear combination of the consistent mass
matrix and either the lumped mass matrix (rods, membranes) or
the stiffness matrix (beam theories) can significantly improve the
12
accuracy of the numerical models – both in terms of absolute error
and in terms of convergence rate (i.e. rate of error reduction upon
refinement of the finite element mesh). A secondary conclusion is
that the natural frequencies of the lower modes can be captured
accurately with element sizes that are up to twice as large as the
physical length scale – thus reducing the computational cost that
would be necessary to solve an equivalent discrete lattice system
accounting for scale effects. On the other hand, if the focus is on
capturing the mode shape, rather than the natural frequency, more
refined finite element meshes are required.

Data availability

No data was used for the research described in the article.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors acknowledge support from MCIN/
AEI/10.13039/501100011033 under Grants numbers PGC2018-
098218-B-I00 and PRE2019-088002. FEDER: A way to make Eur-
ope. ESF invests in your future.

Appendix A. Boundary conditions for the beam problem

A simply supported beam is solved from Eq. (17) with boundary
conditions V 0ð Þ ¼ 0;Vxx 0ð Þ ¼ 0;V Lð Þ ¼ 0 and Vxx Lð Þ ¼ 0, leading to

c1 þ c3 ¼ 0 ðA:1Þ

�c1w
2 þ c3/

2 ¼ 0 ðA:2Þ

c1 cos Lwð Þ þ c2 sin Lwð Þ þ c3 cosh L/ð Þ þ c4 sinh L/ð Þ ¼ 0 ðA:3Þ

�c1 w2 cos Lwð Þ� �� c2 w2 sin Lwð Þ� �þ c3 /2 cosh L/ð Þ� �
þc4 /2 cosh L/ð Þ� � ¼ 0

ðA:4Þ

After solving these equations, the mode shape is found to take
the format of

Vm xð Þ ¼ Cm sin
mpx
L

� �
ðA:5Þ

with m 2 Nþ.
Conversely, a cantilever beam is solved via boundary conditions

V 0ð Þ ¼ 0;Vx 0ð Þ ¼ 0;Vxx Lð Þ ¼ 0 and Vxxx Lð Þ þ jVx Lð Þ ¼ 0. This yields

c1 þ c3 ¼ 0 ðA:6Þ

c2wþ c4/ ¼ 0 ðA:7Þ

�c1 w2 cos Lwð Þ� �� c2 w2 sin Lwð Þ� �þ c3 /2 cosh L/ð Þ� �
þc4 /2 sinh L/ð Þ� � ¼ 0

ðA:8Þ

c1 w3 sin Lwð Þ � jw sin Lwð Þ� �� c2 w3 cos Lwð Þ � jw cos Lwð Þ� �
þc3 /3 sinh L/ð Þ þ j/ sinh L/ð Þ� �
þc4 /3 cosh L/ð Þ þ j/ cosh Lwð Þ� � ¼ 0

ðA:9Þ

which leads to a mode shape according to

Vm xð Þ ¼ Cm cos wmxð Þ � cosh /mxð Þð Þ½
� w2

m cos wmLð Þþ/2
m cosh /mLð Þ

w2
m sin wmLð Þþwm/m sinh /mLð Þ sin wmxð Þ � wm

/m
sinh /mxð Þ

� �i ðA:10Þ



Table B.1
Natural frequencies and optimal value for a for the rod problem.

Number of elements First eigenfrequency Optimal a

2 x ¼ ceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�a
24 L2þ‘2

p a ¼ 0:5683

3 x ¼ ceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�a
54 L2þ‘2

p a ¼ 0:5287

4 x ¼ ceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ3
ffiffi
2

p
�a

96 L2þ‘2
p a ¼ 0:5158

5 x ¼ ceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ3
ffiffi
5

p
�a

150 L2þ‘2
p a ¼ 0:5100

6 x ¼ ceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ6

ffiffi
3

p
�a

216 L2þ‘2
p a ¼ 0:5069
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Appendix B. Symbolic finite element results for the rod problem

For a limited number of finite elements, it is possible to solve
the rod problem symbolically. This has been carried out for the
fixed–fixed configuration for up to 6 equal-sized elements, and
the lowest eigenfrequency was computed. The results are sum-
marised in Table B.1 where ce ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
. Next, an optimal value for

the mass weighting constant a as defined in Eq. (33) has been com-
puted by matching the numerical result, given as a function of a, to
the analytical result of Eq. (4).

It is clear that the optimal value for a appears to converge to a
value of a ¼ 1

2. However, to verify the accuracy of this value a
Richardson extrapolation of the numerically obtained values for
a has been carried out based on

a hð Þ � a
� þA1hþ A2h

2 þ A3h
3 þ A4h

4 ðB:1Þ
where a hð Þ is a numerical approximation of the unknown exact
solution for a based on grid size h, while the various Ai are constants
that are to be determined. In our case, the grid size h equals the bar
length divided by the number of elements. This leads to a set of five
simultaneous equations with unknowns A1;A2;A3;A4 and an esti-
mate for the exact solution ~a. Carrying out this extrapolation results
in ~a � 0:5001. This is in agreement with the earlier observation that
a ¼ 1

2 appears to be the optimal value.
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