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Abstract: Recently, the scientific community has placed great emphasis on the recognition of human
activity, especially in the area of health and care for the elderly. There are already practical applications
of activity recognition and unusual conditions that use body sensors such as wrist-worn devices or
neck pendants. These relatively simple devices may be prone to errors, might be uncomfortable to
wear, might be forgotten or not worn, and are unable to detect more subtle conditions such as incorrect
postures. Therefore, other proposed methods are based on the use of images and videos to carry out
human activity recognition, even in open spaces and with multiple people. However, the resulting
increase in the size and complexity involved when using image data requires the use of the most
recent advanced machine learning and deep learning techniques. This paper presents an approach
based on deep learning with attention to the recognition of activities from multiple frames. Feature
extraction is performed by estimating the pose of the human skeleton, and classification is performed
using a neural network based on Bidirectional Encoder Representation of Transformers (BERT). This
algorithm was trained with the UP-Fall public dataset, generating more balanced artificial data with
a Generative Adversarial Neural network (GAN), and evaluated with real data, outperforming the
results of other activity recognition methods using the same dataset.

Keywords: activity recognition; human skeleton; pose estimation; BERT; computer vision

1. Introduction

In recent years, the detection and recognition of human activities through machine
learning algorithms have become a field of significant interest to the scientific community.
As most human beings live in highly social environments, the interest arises because
such research can be used in applications such as personal security and safety, healthcare,
assistance to the elderly, sports, and so on.

Many of the approaches for the recognition of human activities presented in the
literature have proposed the use of body sensors such as gyroscopes, accelerometers,
barometers, life sign measuring devices, etc. These types of sensors are often integrated
into cell phones, necklaces, or smartwatches that can detect sudden changes in a person’s
movement when they fall or perform a certain movement [1]. The main disadvantage
of such approaches is that subjects must wear or place these devices on them. As such,
they can be uncomfortable and clearly do not scale up for their use in open spaces and
for multiple subjects [2]. More recent proposals that use video images from RGB cameras
to detect human activity free subjects from having to carry on-body devices and can be
extended to the analysis of human activity in public areas and involving interactions among
different people [3–6].
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In other recent cases, instead of using RGB images directly, they are used to extract
poses represented by a set of body joints and their interconnection (i.e., human skeleton
representation) [5,7–10], which are then used as features for further analysis. Such skeleton
representations have been found powerful to differentiate between different types of
activities such as walking, sitting, jumping, running, falling down, etc. Modern posture
extraction from RGB images is not limited to images with single individuals, which is an
important advantage compared to other works [4]. Indeed, we have used this approach
in a previous paper [11], which uses skeleton features with well-known machine learning
(ML) methods, demonstrating state-of-the-art performance for public reference datasets.
That work also presented tests with an LSTM (Long Short-Term Memory) recurrent neural
network that resulted in low performance due to the imbalanced dataset.

The use of deep learning applied to Human Activity Recognition has recently grown.
The most popular architectures are Convolutional Neural Networks (CNNs) for their ca-
pacity to learn special features from images [12] and Recurrent Neural Networks (RNNs)
which are able to learn long-term temporal patterns present in the data [13]. Yadav et al. [14]
present an activity recognition and fall detection network (ARFDNet) where the videos
are passed to a pose estimation network to extract skeleton features, which are processed
and inputted to a CNN followed by gated recurrent units (GRUs) to learn spatiotempo-
ral dynamics, obtaining an accuracy of 96.7%. Song et al. [15] propose a model using
different levels of attention with an LSTM to learn discriminative skeleton joints. The
work presented in [16] develops a hybrid model by incorporating CNN and LSTM for
activity recognition and tests it on a generated dataset, obtaining an accuracy of 90.89%,
which shows that the proposed model is suitable for human activity recognition appli-
cations. In [17], the visual attention mechanism is used and an end-to-end, two-stream,
attention-based LSTM architecture is proposed for action recognition in videos, which can
learn detailed spatiotemporal attention features and also can explicitly allocate content and
temporal-dependent attention to the output of each deep feature in the video sequence.
This method obtained an accuracy of 94.1% on UFC11, 96% on UFC sports, and 69.8%
on jHMDB datasets. Other works such as [18] propose a framework that employs deep
learning and swarm-intelligence-based optimization techniques with 3D skeleton data for
action classification; they extract features such as distance, distance velocity, angle, and
angle velocity on encoded images that were fed into a CNN model, which is a modified
version of Inception-ResNet, and were evaluated on public datasets achieving an accuracy
of 98.13% on UTD-MHAD, 90.67% on HDM05, and 85.45% on NTU RGB+D60. Finally, [19]
introduces a soft attention mechanism in Temporal Segment Networks (TSN), which im-
proves the ability to learn long-term information, enables the network to adaptively focus
on key features in space and time, and verify the effectiveness on their model in four
public datasets achieving an accuracy of 93.3% on UCF101, 67.9% on HMDB51, and 78.4%
on JHMDB.

A characteristic of public datasets such as UP-Fall [20] and UR-Fall is that both were
created by simulating controlled activities in laboratory conditions and the human activity
classes tend to be unbalanced, especially for activities such as falling down. It is well-known
that the performance of deep classification algorithms can deteriorate when the data are not
balanced—that is, when the available data are not evenly distributed among the different
classes. The traditional and best-known approach to mitigate this problem is to increase the
dataset by introducing instances corresponding to the classes with minority data, applying
geometric transformations to the original instances. For example, in images for this, such
transformation translates into rotations or reflections of the pixels. The main disadvantage
of this augmentation approach is that it can corrupt relevant orientation-related features.
In this sense, the inclusion of synthetic data generation algorithms based on deep learning
has had greater importance as an approach to reducing the lack of balance. Generative
Adversarial Neural Networks (GANs) have been proposed as a tool to artificially generate
realistic data [21–23].

The main contributions of the proposed work are as follows:



Sensors 2023, 23, 1400 3 of 15

• The use of novel deep neural networks such as BERT transformer networks for the
recognition of activities using data of skeleton poses extracted from video images. As
far as we know, our approach is the first activity recognition model that uses BERT
networks directly with numerical data instead of text. Our proposal suggests that it is
possible to use the characteristics of the pose (skeleton) of a person in video images
as if it were a sentence (text)—this is how BERT interprets it. The way in which we
approach this challenge is described in Section 3.2.

• The development of a direct comparison between the use of machine learning and
deep learning models for the recognition of activities using the same methodology
and the same dataset.

• The use of data augmentation of the activities corresponding to the unbalanced classes
demonstrating the hypothesis that it is possible to increase the performance of the
BERT model by increasing the data of the unbalanced classes of the UP-Fall set using
generative networks. The generation of these artificial data is achieved using GANs,
which lead to better activity recognition performance. Performance is then compared
with our previously published results for the UP-Fall dataset.

The paper is organized as follows. Section 2 presents the description of the UP-Fall
database. Section 3 introduces the activity recognition approach and describes Alpha-
Pose, the feature extraction method, the model to use, and the data augmentation system.
Section 4 shows the experimental results and the comparison with previous results. Finally,
Section 5 presents the conclusions and the proposed future work.

2. Datasets

The present work uses the UP-Fall dataset for the recognition of activities. The
experimental results are compared with the results obtained in [11] using the same dataset.

As described in Martínez-Villaseñor et al. [20]—for completeness, outlined also here—
UP-Fall includes 12 human activities of daily living performed by 17 subjects in a controlled
environment, each subject making three repetitions of each activity. The first five activities
correspond to fall activities, such as falling forward using hands, falling forward using
knees, falling backward, falling sideways, and falling sitting on a flat chair. The other seven
activities include more normal activities such as walking, standing, sitting, picking up an
object, jumping, lying down, and kneeling. The twelve activities are shown in Table 1.
UP-Fall has a total of 816 videos, of which 255 correspond to falls and 561 to daily activities.
The images are located at (https://sites.google.com/up.edu.mx/har-up/ accessed on
20 January 2023). The files are organized into 17 folders, one for each subject. Within each
folder, there are 11 sub-folders, one for each activity. Within these sub-folders, there are
three other sub-folders, one for each repetition. In each sub-folder, there is a CSV file that
points to a ZIP file with the recorded images. The complete dataset has 220, 660 samples
(100%), where 49,544 samples (22.45%) are labeled with fall activities and 171, 116 samples
(77.55%) are labeled with daily activities.

Table 1. UP-FALL activities.

Label Activity

1 Falling forward using hands
2 Falling forward using knees
3 Falling backward
4 Falling sideways
5 Falling sitting in an empty chair
6 Walking
7 Standing
8 Sitting
9 Picking up an object
10 Jumping
11 Laying
12 Unknown activity

https://sites.google.com/up.edu.mx/har-up/
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3. Methodology

This work focuses on the recognition of human activities using only video data since,
in practical applications such as assisted living and public space monitoring, the use of
wearable devices and other sensor modalities is not realistic or convenient. The main
hypothesis is that the performance of the methodology provided in our previous work [11]
can be verified using articulated bodies (skeletons) extracted from the video, even when
modern deep learning techniques are used. Therefore, the goal is to implement an activity
recognition method using the UP-Fall dataset and the sliding window methodology de-
scribed in [11]. The results are obtained when using a Transformers BERT network. After
this, GAN networks are tested for data augmentation and the BERT model is re-evaluated
with more balanced data.

The method developed for this study is illustrated in Figure 1. It consists of data
collection; feature extraction using human skeleton estimation; skeleton filtering; creation
of sliding windows (each window with a size of 2 seconds and 3 frames per window); and
finally, a neural network classification for recognition activities. All steps are implemented
using Python 3.6.

BERT
Classification

model

TAB-GAN

Synthetic data 

generation

Feature selection

Feature extraction

Figure 1. Workflow for activity recognition.

3.1. Feature Selection and Extraction

As mentioned in Section 2, the UP-Fall dataset is used to carry out the experiments of
this work. This dataset is selected to make a more direct comparison with the work carried
out in Ramirez et al. [11]. Once all the UP-Fall images are downloaded, the skeletonization
is performed as explained below.

3.1.1. Skeleton Detection

AlphaPose is an open-access method for estimating the postures of multiple people [24],
available at (https://www.mvig.org/research/alphapose.html accessed on 20 January 2023).
It uses RGB images as input and performs posture detection with a pre-trained model (with
the COCO database), obtaining as output the positions (x, y) of 17 key points or joints with
coordinates (x, y), together with the detection confidence score of each one, forming a skeleton
with the posture of the person or persons of interest. For each person, there are 51(17 ∗ (2+ 1))
attributes per frame. Time sequences containing these skeleton attributes are generated in this
way for UP-Fall.

https://www.mvig.org/research/alphapose.html
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3.1.2. Sliding Windows

For a direct comparison with [11], sliding windows with the same characteristics
and the same dataset are used. Each window has a size of 2 seconds, with 36 frames for
each window, of which only 3 frames (the first, the middle, and the last) are selected to
reduce the size of each vector of features and to decrease processing time. Therefore, each
feature vector with length 153 (51 skeleton attributes * 3 frames) serves as input to the
classification model.

Activity recognition is performed using multi-class classifiers. Each sliding window
contains one of twelve UP-Fall activities. Of the 207, 497 sliding windows, 1473 (0.71%)
correspond to the activity of falling forward using hands; 1473 (0.71%) to falling forward
using knees; 1858 (0.90%) to falling backward; 1560 (0.75%) to falling sideways; 1863 (0.90%)
to falling sitting in an empty chair; 38,570 (18.59%) to walking; 51,573 (24.85%) to standing
up; 45,439 (21.90%) to sitting; 1456 (0.70%) to picking up an object; 22,067 (10.63%) to
jumping; 38,771 (18.69%) to laying; and 1394 (0.67%) to unknown activity.

3.2. Classification Model

This work seeks to improve the results of the best Machine Learning model (RF,
Random Forest) reported in [11] with the CAM (camera) modality and the sliding windows
methodology using skeletons. Therefore, a deep learning model is chosen to investigate
whether that methodology also works with more modern techniques.

Considering the poor results reported in [11] when using an LSTM network, it is
decided to test a transformers network with the hypothesis that activity recognition is
possible when using recurrent neural networks using the same methodology and the
same dataset.

Taking into account that the feature can be represented by one dimension, a Bidirec-
tional Encoder Representation of Transformers (BERT) is used to classify the activities.
BERT is a cutting-edge, attention-based natural language processing (NLP) technique [25]
created and published by Google in 2018. Bidirectional means that it looks at the left and
right context to understand a text. It can be used for prediction, answering questions,
language inference, and more. Here, BERT is used for activity classification using the
Hugging Face library of transformers. All tests are implemented using Pytorch.

BERT is basically an Encoder stack of transformer architecture. A transformer archi-
tecture is an encoder–decoder network that uses self-attention on the encoder side and
attention on the decoder side. BERT has 12 layers in the Encoder stack. The BERT architec-
ture has large feedforward networks (768 hidden units). It contains 512 hidden units and
8 attention heads. BERT contains 110 M parameters.

BERT can take sentences as input. The [CLS] token always appears at the start of the
text and is specific to classification tasks. The [SEP] token always appears at the end. It
is also important to note that the maximum size of tokens that can be fed into the BERT
model is 512. If the tokens in a sequence are less than 512, padding is used to fill the unused
token slots with [PAD] tokens.

The BERT then passes the input to the above layers. Each layer applies self-attention,
passes the result through a feedforward network, and then hands off to the next encoder.
For the text classification task, we focus our attention on the embedding vector output from
the special [CLS] token. This means that we are going to use the embedding vector of size
768 from the [CLS] token as an input for the classifier, which will then output a vector of
the size of the number of classes in the classification task.

In order to convert the words into numerical representations, we first take the sentence
and tokenize it. After that, we convert the sentence from a list of strings into a list of
numerical indices (word embedding). Thus, the original word is split into smaller subwords
and characters. This is because the BERT vocabulary is fixed to a size of 30,000 tokens.

Finally, we need to convert our data to tensors (the input format for the model) and
call the BERT model. Thus, this trained vector can be used to perform different kind of
tasks such as classification.
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Having outlined how BERT works and what it expects at the input, we give way to
the novelty of our proposal. Taking into account that our feature vector, which has a size
of 153 skeleton features for each sliding window, is made up of numerical data and not of
words, our proposal is to eliminate the stage in which BERT tokenizes the sentence (text)
and immediately skip to the embedding stage (see Figure 2).

… …

BERT 
Model

BERT 
Tokenizer

“Have a nice new year”

Have a new yearnice

Have a new yearnice[CLS] [SEP] [PAD] …

Falling forward using hands
Falling forward using knees

…

…

Falling backwardClassifier

Figure 2. Illustration of the input and output of the BERT model.

BERT is trained with 30,000 natural language words; so, each word of the linear vector
will be represented by a number between 0 and 30,000. Taking that into account, we process
our 153 × 1 size features vector as if it were text; thus, all vector data are normalized so that
each numeric datum can only have an integer value between 0 and 30,000. Considering
that the features of the skeleton’s pose are presented as numerical data (x and y coordinates
in the image plane and a number indicating the score), each feature value maps one of the
30,000 BERT Tokens. To this end, we have used the Min–Max scaling algorithm, which is
summarized by the following equation:

Ftokenized = 30, 000 ∗ F − Fmin
Fmax − Fmin

(1)

where F is a feature’s value, and Fmin and Fmax are the minimum and maximum numeric
values of the entire dataset, respectively. Note that we only consider the integer part
of Ftokenized.

For this work, the hidden_states has four dimensions in the following order:

• The layer number (13 layers): 13 because the first element is the input embedding; the
rest are the outputs of each of BERT’s 12 layers.

• The batch number: 1 vector (for each sliding window).
• The word/token number (153 tokens in our vector).
• The hidden unit/feature number (768 features, BERT’s default).

Table 2 summarizes the hyperparameter settings for the classifier model. The proposed
approach uses a pre-trained BERT neural network, which is invoked with the BertModel
from _pretrained instruction of PyTorch without modifying any default parameters; these
parameters are as follows:
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• input_ids: typing.Optional[torch.Tensor] = None.
• attention_mask: typing.Optional[torch.Tensor] = None.
• token_type_ids: typing.Optional[torch.Tensor] = None.
• position_ids: typing.Optional[torch.Tensor] = None.
• head_mask: typing.Optional[torch.Tensor] = None.
• inputs_embeds: typing.Optional[torch.Tensor] = None.
• labels: typing.Optional[torch.Tensor] = None.
• next_sentence_label: typing.Optional[torch.Tensor ] = None.
• output_attentions: typing.Optional[bool] = None.
• output_hidden_states: typing.Optional[bool] = None.
• return_dict: typing.Optional[bool] = None.

In addition, it is set with the following options:

• self.drop = nn.Dropout(p = 0.1),
• self.out = nn.Linear(self.bert.config.hidden_size, n_classes),

where n_classes = 12.
Our previous work [11] mentioned that an LSTM resulted in low performance due

to the notable data imbalance between the 12 UP-Fall classes. That is why in this work it
is decided to investigate a data augmentation method to try to balance the classes and to
compare the performance between a BERT model with unbalanced data versus a BERT
model with balanced data.

Table 2. Hyperparameters configuration for the BERT model.

Model Hyperparameters

BERT

Epochs = 20
Learning Rate = 2 × 10−5

Batch size = 16
Optimizer = AdamW

3.3. Synthetic Data Generation

Generative adversarial networks (GANs) are composed of two deep neural networks:
the generator and the discriminator. The goal of the generator is to generate false (artificial)
instances that cannot be easily distinguished from true instances by the discriminator [26].
These two networks are trained simultaneously with adverse targets. The discriminator
tries to maximize its classification accuracy (by correctly identifying which images came
from the generator), while the generator tries to get the discriminator wrong. Recent
architectures such as StyleGAN are capable of producing images that are not far from
reality [27]. However, most datasets used in the industry are tabular in nature. In this
particular approach, the data available to train the model consist of instances composed
of vectors of 153 features (51 ∗ 3 frames); so, a generation system that is compatible with
this type of data is required. Tabular generative models allow the production of artificial
data with a distribution similar to the training data, taking into account that these data
correspond to a table where each row or instance is sampled independently and each
column can contain continuous or discrete values. While in the literature there are several
methods to perform this task [28,29], in this work, TABGAN [30] will be used since the
model is readily available as a library.

TABGAN contains a continuous data normalization phase in which a variational Gaus-
sian mixture model (VGM) is used to create a vector that encodes each of the continuous
instances. Further, the generative network includes a conditional vector, which forces the
generator to produce an instance of a specific category. The conditional vector contains all
the coded discrete columns with value 0, except the one that we want to satisfy with the
generated instance. The training is performed by sampling. In each iteration, a column is
randomly selected; from this column, a category is selected based on a probability function
built from the frequency of each category in that discrete column. Finally, this category
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is transformed into the conditional vector that is the input of the generator. This training
mode allows the generated distributions to match the distributions of the discrete variables
in the training data.

The 207,497 samples were obtained from the UP-Fall dataset, each containing 153 features,
with Table 3 showing the data distribution by class. The second and third columns show the
number of actual data per class and the equivalent percentage, respectively. It can be seen that
classes 6, 7, 8, 10, and 11 contain more than 94% of the data and that the rest of the classes each
contain less than 1% of the total. Consequently, models trained on these data may be limited
to mostly recognize the majority classes correctly. The fourth column shows the number of
artificially generated data for the minority classes, where the number of data is increased by
about 40%. It can be seen in the sixth column that the percentages of each class are more
similar than before; therefore, the dataset is now more balanced.

Table 3. Distribution of the dataset by class.

Class # True % Dataset # False Total % Dataset

1 1394 0.672 17,267 18,661 6.40
2 1473 0.710 6731 8204 2.81
3 1473 0.710 7533 9006 3.09
4 1858 0.895 16,759 18,617 6.39
5 1560 0.752 7747 9307 3.19
6 1863 0.898 14,784 16,647 5.71
7 38,570 18.588 0 38,570 13.23
8 51,573 24.855 0 51,573 17.69
9 45,439 21.899 0 45,439 15.58

10 1456 0.702 13,244 14,700 5.04
11 22,067 10.635 0 22,067 7.57
12 38,771 18.685 0 38,771 13.30

Figure 3 shows how the real data are correlated with the false ones. The mean is on the
left, the standard deviation is on the right, and the diagonal lines mean equality between
real and false data. Each point represents an instance, and it can be seen that they are
grouped at two extremes of the graphs. However, they are close to the diagonal line of
equality, so it can be said that the data generated are correct. For each feature, it can be seen
how similar the real data are to the generated data. Figure 4 shows the cumulative sum
of all real and synthetic or fake instances per feature. For clarity, only the first 8 features
of the 153 features are shown. It can be seen that characteristics 2 and 5 are the ones that
present the most complexity when generated due to their distribution. The graphs are not
identical but there are characteristics such as 1, 3, 4, 6, and 7 whose accumulated sums are
quite similar for the case of real and fake data.

Figure 3. Relationship between the distribution of real data and generated synthetic data: Mean
(left) and standard deviation (right).
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Figure 4. Cumulative sum of real data (blue) and synthetic data (orange) per feature for the first
8 features.

4. Experimental Results

For direct comparison, this paper uses the same performance metrics used in [11], i.e.,
accuracy, precision, sensitivity, specificity, and F1-Score.

To investigate the performance of the sliding window approach using skeleton features
and to check if performance can be improved using a BERT transformer network, the
experiments developed in this research are as outlined in Section 3.

4.1. BERT

The activity recognition method is evaluated using the multi-classifier model with the
sequences of the features extracted from the skeleton coordinates, obtained with AlphaPose,
for each sliding window in the dataset. The dataset contains 207,497 sliding windows, of
which 8227 correspond to fall activities and 199,270 to daily activities. Experiments were
performed using 70% of the data for training, 15% for validation, and the remaining 15%
for testing.

Table 4 shows the results obtained using BERT. It is observed that the performance of
the model notably exceeds the performance of the LSTM reported in [11] that delivered
an Accuracy = 81.14%, Precision = 27.76%, Recall = 31.82%, and F1-Score = 29.53%. On the
other hand, the transformers BERT network delivers Accuracy = 99.14%, Precision = 81.53%,
Recall = 80.60%, and F1-Score = 80.95%. Therefore, the hypothesis that activity recognition
is possible by means of recurrent neural networks trained with sliding windows of skeleton
sequences using UP-Fall is demonstrated. It is interesting to note that the machine learning
method (RF) presented by [11] (RF model) still delivers better performance with Accu-
racy = 99.91%, Precision = 97.73%, Recall = 95.60%, and F1-Score = 96.63%. It is possible
that, as mentioned in [11], the neural network is affected by class imbalance.
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Table 4. Performance (%) obtained by the BERT model of the activity recognition method using
UP-Fall.

Performance of the Proposed Method

Label 1 2 3 4 5 6 7 8 9 10 11 12 Average

Accuracy 99.44 99.44 99.27 99.64 99.44 98.82 97.59 99.90 99.57 98.33 98.32 99.95 99.14
Precision 58.06 59.62 62.20 83.66 68.27 97.21 93.98 99.75 69.62 95.65 94.65 95.63 81.53
Recall 60.00 57.94 66.45 67.87 64.15 96.44 96.42 99.81 76.37 88.78 96.37 96.57 80.60
Specificity 99.71 99.73 99.60 99.89 99.74 99.36 97.98 99.93 99.74 99.50 98.77 99.97 99.49
F1-Score 59.02 58.77 64.25 74.94 66.15 96.83 95.18 99.78 72.84 92.09 95.50 96.10 80.95
Support 210 214 307 249 265 5821 7678 6774 237 3415 5751 204 31,125

Figure 5 shows the confusion matrix when using BERT. It is possible to observe that
the classes that tend to have higher cases of confusion are the activities that have the least
number of data (less than 205) versus the activities that cover the largest number of the
dataset (more than 3000 data).

1 126 33 1 3 0 9 6 0 1 0 31 0

2 43 124 1 1 0 3 13 0 2 0 20 7

3 0 0 204 1 35 10 11 0 0 0 46 0

4 14 7 5 169 5 4 4 0 2 0 39 0

5 0 0 57 0 170 4 2 4 0 0 28 0

6 3 7 5 0 0 5614 27 0 2 24 137 2

7 10 8 14 11 17 52 7403 3 52 104 4 0

8 0 0 1 0 1 0 0 6761 9 0 2 0

9 0 1 0 0 0 2 44 7 181 1 1 0

10 0 0 0 0 0 34 341 0 5 3032 3 0

11 21 24 40 17 21 42 26 3 6 9 5542 0

20 0 4 0 0 0 1 0 0 0 0 2 197

1 2 3 4 5 6 7 8 9 10 11 20
Target Class

Confusion Matrix BERT

Ou
tp

ut
 C

la
ss

Figure 5. Confusion matrix for the recognition of activities with BERT.

4.2. BERT+TABGAN

As mentioned earlier, and based on the results using the BERT network for activity
recognition, it is decided to use the synthetic data generated with a TABGAN network in
Section 3.3 for data augmentation with the aim of balancing the number of data per class in
the dataset of skeleton sequences.

Figure 6 shows the data distribution of the training data (70% of the entire dataset) of
the BERT model, as observed by classes 1, 2, 3, 4, 5, 9, and 20, which are very unbalanced
compared with classes 6, 7, 8, 10, and 11. Therefore, the TABGAN-augmented classes are
classes 1, 2, 3, 4, 5, 9, and 20 (as indicated in Table 3). Finally, the augmented data are added
to the training data; so, the data to train the BERT+TABGAN network are distributed as
illustrated in Figure 7.

Table 5 shows the results obtained when using BERT+TABGAN. As before, the best
model reported previously by us in [11] (RF model) continues to deliver better perfor-
mance (Table 6); however, the new model outperforms the other models reported in that
paper, such as SVM and MLP. The advantage of the proposal is that by using BERT and
BERT+GAN neural networks it is possible to increase the performance of the activity recog-
nition system compared with other promising machine learning models such as SVM and
MLP. In this work, the BERT network is designed with the parameters assigned by default
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in Python; however, it is possible that modifying these parameters and using BERT models
with more layers or testing other types of pre-trained transformers can further improve
performance and even exceed the performance of the RF model.
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Figure 6. Training data for the BERT model.
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Figure 7. Training data for the BERT+TABGAN model.

Table 5. Performance (%) obtained by the BERT+TABGAN model of the activity recognition system
using UP-Fall.

Performance of the Proposed Method

Label 1 2 3 4 5 6 7 8 9 10 11 12 Average

Accuracy 99.60 99.65 99.53 99.72 99.59 99.49 98.66 99.96 99.74 .99.25 98.80 99.98 99.50
Precision 69.33 80.11 75.96 84.68 78.75 98.86 97.22 99.94 91.01 96.17 95.97 99.50 88.96
Recall 74.29 65.89 77.20 79.92 71.32 98.42 97.36 99.87 72.57 97.01 97.60 98.04 85.79
Specificity 99.78 99.89 99.76 99.88 99.83 99.74 99.09 99.98 99.94 99.52 99.97 100 99.71
F1-Score 71.72 72.31 76.58 82.23 74.85 98.64 97.29 99.90 80.75 96.59 96.78 98.77 87.20
Support 210 214 307 249 265 5821 7678 6774 237 3415 5751 204 31125
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As shown in Table 6, the performance of the BERT+TABGAN model outperforms the
performance of the BERT network in all metrics. BERT+TABGAN outranks BERT by 0.36%
Accuracy, 7.43% Precision, 5.19% Recall, and 6.25% F1-Score. Therefore, the hypothesis
that it is possible to improve the performance of the activity recognition system with the
increase in data with TABGAN by means of recurrent neural networks trained with sliding
windows of skeleton sequences using UP-Fall is demonstrated.

Table 6. Comparison between our proposal and the activity recognition models implemented in [11]
for the UP-FALL dataset and sliding windows using skeletons.

Model RF SVM MLP BERT BERT
+GAN

in [11] in [11] in [11] Our Our

Accuracy 99.91 98.60 99.28 99.14 99.50
Precision 97.73 95.60 82.71 81.53 88.96
Recall 95.60 57.40 78.97 80.60 85.79
Specificity 99.95 99.14 99.58 99.49 99.71
F1-Score 96.63 62.87 79.89 80.95 87.20

Figure 8 shows the confusion matrix when using BERT+TABGAN. As with the BERT
network, fall activities are often confused with class 11 (lying down).

1 156 12 0 2 0 3 7 0 0 0 30 0

2 31 141 0 6 0 1 15 0 0 0 19 1

3 1 0 237 3 23 0 3 0 0 0 40 0

4 2 0 0 199 3 3 6 0 0 0 36 0

5 0 0 43 1 189 0 1 1 0 0 30 0

6 3 0 0 0 0 5729 14 0 1 6 68 0

7 12 6 17 8 9 18 7475 1 16 109 7 0

8 0 0 0 0 2 0 4 6765 0 1 2 0

9 0 0 0 0 0 3 57 2 172 0 3 0

10 0 0 0 0 0 3 98 0 0 3313 1 0

11 20 13 15 16 14 35 9 0 0 16 5613 0

20 0 4 0 0 0 0 0 0 0 0 0 200

1 2 3 4 5 6 7 8 9 10 11 20
Target Class

Confusion Matrix BERT + TABGAN
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Figure 8. Confusion matrix for activity recognition with BERT+TABGAN.

Finally, Figure 9 compares the confusion matrices of the BERT model with the
BERT+TABGAN model. With BERT+TABGAN, the recall of each class increases; so, the
system is better at predicting each class and reducing the confusion between them. Except
for class 9 (picking up an object), BERT+TABGAN better recognizes all activities.
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1 60% 16% 0% 1% 0% 4% 3% 0% 0% 0% 15% 0% 1 74% 6% 0% 1% 0% 1% 3% 0% 0% 0% 14% 0%

2 20% 58% 0% 0% 0% 1% 6% 0% 1% 0% 9% 3% 2 14% 66% 0% 3% 0% 0% 7% 0% 0% 0% 9% 0%

3 0% 0% 66% 0% 11% 3% 4% 0% 0% 0% 15% 0% 3 0% 0% 77% 1% 7% 0% 1% 0% 0% 0% 13% 0%

4 6% 3% 2% 68% 2% 2% 2% 0% 1% 0% 16% 0% 4 1% 0% 0% 80% 1% 1% 2% 0% 0% 0% 14% 0%

5 0% 0% 22% 0% 64% 2% 1% 2% 0% 0% 11% 0% 5 0% 0% 16% 0% 71% 0% 0% 0% 0% 0% 11% 0%

6 0% 0% 0% 0% 0% 96% 0% 0% 0% 0% 2% 0% 6 0% 0% 0% 0% 0% 98% 0% 0% 0% 0% 1% 0%
7 0% 0% 0% 0% 0% 1% 96% 0% 1% 1% 0% 0% 7 0% 0% 0% 0% 0% 0% 97% 0% 0% 1% 0% 0%

8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 8 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%

9 0% 0% 0% 0% 0% 1% 19% 3% 76% 0% 0% 0% 9 0% 0% 0% 0% 0% 1% 24% 1% 73% 0% 1% 0%

10 0% 0% 0% 0% 0% 1% 10% 0% 0% 89% 0% 0% 10 0% 0% 0% 0% 0% 0% 3% 0% 0% 97% 0% 0%

11 0% 0% 1% 0% 0% 1% 0% 0% 0% 0% 96% 0% 11 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 98% 0%

20 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 1% 97% 20 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 98%
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Figure 9. Confusion matrices for activity recognition using BERT (left) and BERT+TABGAN (right).
The best results are shown in red.

5. Conclusions

This paper presented an activity recognition approach using video data with a classifier
model based on transformers using human skeleton poses as inputs and tested using the
public dataset UP-Fall to provide a direct comparison with previous work reported in [11].
The presented BERT model outperforms the results obtained by the LSTM, SVM, and
MLP models.

The proposed method demonstrated that data augmentation using GAN to generate
synthetic data improved model performance since a balanced database adds generalization
capability to the classifier. Using an optimization method, it is possible to find the propor-
tion of artificial data that allows obtaining the best performance for the BERT classifier.

Although Table 6 shows that the [11] RF model is still better than our TABGAN,
it is important to highlight some advantages of our model over the models delivered in
previous works. Thanks to the use of GAN networks combined with BERT, it is possible
to use datasets for the recognition of activities, even when the classes are unbalanced or
when the amount of data is scarce. On the other hand, the use of BERT networks in vision
applications opens up many possibilities, such as combining the use of words and skeletons
with the pose information of a person in an image to create new images or videos from
only a sentence or to tell stories from images.

Future work is expected to validate with other pre-trained models based on transform-
ers and different GAN architectures to increase detection rates and verify the proposed
methodology’s operation with other datasets of multiple people in open spaces.
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