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ABSTRACT Breast cancer is the most common cancer in women worldwide. Screening programs and
imaging improvements have increased the detection of clinically occult non-palpable lesions requiring
preoperative localization. Wire guided localization (WGL) is the current standard of care for the excision of
non-palpable carcinomas during breast conserving surgery. Due to the current limitations of intraoperative
tumor localization approaches, the integration of multimodal imaging information may be especially
relevant in surgical planning. This research proposes a novel method for performing preoperative image-
to-surgical surface data alignment to determine the position of the tumor at the time of surgery and aid
preoperative planning. First, the volume of the breast in the surgical position is reconstructed and a set
of surface correspondences is defined. Then, the preoperative (prone) and intraoperative (supine) volumes
are co-registered using landmark driven non-rigid registration methods. We compared the performances of
diffeomorphic and Bspline based registration methods. Finally, our method was validated using clinical data
from 67 patients considering as target registration error (TRE) the distance between the estimated tumor
position and the reference surgical position. The proposed method achieved a TRE of 16.21 ± 8.18 mm
and it could potentially assist the surgery planning and guidance of breast cancer treatment in the clinical
practice.

INDEX TERMS Breast cancer, multimodal imaging, non-rigid registration, surgical planning.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kin Fong Lei .

I. INTRODUCTION
Breast cancer is the most common cancer among women
worldwide. In 2020, there were 2.3 million newly diagnosed
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FIGURE 1. Workflow of the proposed method for the registration of the preoperative image to the intraoperative surface to localize the
tumor in the surgical position. The proposed scheme combines the information from the preoperative volume obtained from a prone
MRI (Left) and the intraoperative surface obtained with an optical scanner (Right). Using the nipple as fiducial marker, first artificial
surface fiducials are generated and then used in the subsequent landmark driven non-rigid registration step. The proposed workflow
estimates the large volumetric transformation and localizes the tumor in the surgical position.

female breast cancer cases, representing almost one in four
of all cancers in women. This disease is the most frequently
diagnosed cancer in the vast majority of countries and is
also one of the leading causes of cancer death [1]. Screen-
ing programs and imaging improvements have increased the
detection of clinically occult non-palpable breast lesions that
require preoperative localization [2], [3]. In women with
non-palpable breast cancer, several randomized trials have
shown that breast conservative surgery (BCS) is the treatment
of choice [4]. The main challenge in the resection of non-
palpable tumors is to obtain appropriate surgical margins by
minimizing the resection of healthy breast tissue with good
aesthetic results. Currently, wire-guided localization (WGL)
is the most widely used method for locating non-palpable
breast lesions [5]. The limitations of WGL include techni-
cal complications such as wire transection and migration,
patient discomfort, and poor cosmetic outcome [6], [7], [8].
The female breast undergoes different deformations due to
external forces or changes in position during routine medical
imaging. Magnetic Resonance Imaging (MRI) acquisitions in
the prone position provide an accurate delineation of the size
and extent of the tumor and offer the highest sensitivity for
intraductal extension typical of invasive cancers. However,
while prone breast MRI is well suited for diagnosis, it is less
suitable for guiding BCS where the patient typically lies in
a supine position, with the arm extended. Therefore, breast
lesions undergo significant displacement between the preop-
erative image and the intraoperative positions. Methods using
biomechanical models for the prone to supine pose transfor-
mation have been suggested for use in image-guided breast
surgery [9], [11], [12], [13], [14]. However, the accuracy of

alignment of biomechanical models alone is limited due to the
lack of knowledge of the boundary constraints and loading
conditions, which can contribute to errors in the location of
lesions during clinical procedures. It is also important to note
that the validation of these methods has been limited to a few
cases.

Several groups have investigated the acquisition of an
additional preoperative MRI acquired in the supine position
[10], [15], [16], [17], [19] despite its disadvantages: longer
protocol, breathing artifacts, limited diagnostic information,
low contrast, cost, and the requirement, in any case, of a
registration step to the final surgical position.

Prone to supine MRI registration based on pure intensity-
based algorithms is likely to fail because the initial overlap
is too small to guide the registration in the correct direc-
tion. For this reason, hybrid registration approaches based
on biomechanical models and intensity-based image regis-
tration techniques have been widely used to map motion
between diagnostic prone images and supine MRI [10],
[15], [16], [17]. Preoperative supine MRI rigidly registered
to an intraoperative optical scan to adjust the MRI to the
exact breast position in the operative room has also been
used for surgical guidance [19]. Although MRI-based supine
approaches can benefit from comparable imaging sensitivity
or a initial better alignment to the surgical presentation, is an
addition to clinical practice. Furthermore,recent studies have
shown that there is a significant deformation (including non-
rigid) between surgical position and supine magnetic res-
onance positioning that need to be accounted for through
image guidance [18]. Other groups proposed the use of the
intraoperative surface acquired with an optical scan and to
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deform the preoperative MRI derived volume to match the
surgical surface using finite element method (FEM) models
with boundary conditions relying on skin-attached or anatom-
ical markers [20], [21]. The patient surface extracted from a
preoperative computerized tomography (CT) image in supine
position has been proposed as a reference image in the sur-
gical position to guide surface-based registration algorithms
in conjunction with FEM-based biomechanical models [22],
[23].

This work presents a workflow for performing a prone
image-to-surgical physical data alignment strategy to deter-
mine the correspondence between the tumor identified in the
preoperative MRI and the final position of the tumor in the
surgical position. The developed method is based only on
the prone MRI volume and the surface of the patient in the
surgical orientation. The tumor localization error has been
evaluated using retrospective cases with preoperative prone
MRI and supine surface and tumor position extracted from
a CT image. The position of the tumor has been estimated
using a workflow based on non-rigid registration algorithms
driven by artificial landmarks. This approach has been tested
in 67 clinical cases, which is one of the largest study cohorts
ever reported in the literature for prone to supine breast image
registration.

II. METHOD
This work proposes a novel method for performing a volume-
to-surface registration for tumor localization in breast
surgery planning. The proposed workflow is explained in
Figure 1. Given the preoperative volume obtained from a
prone T2 SPAIR (SPectral Attenuated Inversion Recovery)
MRI (Fig. 1 Left) and the intraoperative surface obtained
with an optical scanner (Fig. 1 Right), the aim is to estimate
the large volumetric transformation and localize the tumor in
the surgical position. The proposed method involves a pre-
processing step to obtain an initial rigid alignment between
the volume and the surface and to generate artificial sur-
face fiducials for the subsequent landmark driven non-rigid
registration.

FIGURE 2. a) MRI and initial automatic breast segmentation (blue).
b) MRI, initial breast segmentation contour (blue) and internal volume
mask (yellow). c) Final breast volume segmentation (blue).

A. PREPROCESSING
The volume of the breast was obtained from the segmenta-
tion of the preoperative MRI. However, the preoperative MR
scan was a T2 SPAIR MRI obtained with a fat suppression
technique. This sequence is used in the breast diagnostic
imaging protocol for its capability to enhance suspicious

FIGURE 3. a) Surface of the patient in the surgical position and surface of
the cancer affected breast (red). b-d) Procedure to obtain the artificial
volume mask of the breast in the surgical position: b) the surgical surface
(red) is used as the outer boundary to define a volumetric mask enclosed
in a box of the same size as the surface; c-d) the artificial volume mask of
the breast in the surgical position (green) is obtained by subtracting the
internal volume mask (yellow).

FIGURE 4. Different sets of artificial surface fiducials: a) Nipple areola
b) Breast axes c) Laplacian surface d) Internal boundary.

lesions however, it is not the most accurate to differentiate
breast contours especially the interior boundary of the breast.
Therefore, we adopted a semi-automatic segmentation strat-
egy. First, an automatic segmentation step (including thresh-
olding and morphological filters) was applied, obtaining a
breast volume mask with a precise outer boundary. Then,
to correct the delineation of the inner boundary, we manually
segmented the internal boundary of the breast in 5 slices of the
volume andwe interpolated them to obtain an internal volume
mask. The latter was subtracted from the automatic segmen-
tation to obtain the final preoperative volume mask, as shown
in Figure 2c. The segmented preoperative volume and the
intraoperative surface are first translationally aligned in the
cranial-caudal direction assuming that the nipples in both
positions lie approximately at the same level. Furthermore, to
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FIGURE 5. Localization of corresponding boundary points of the breast
volume in the medial, lateral, lower and upper direction. a) 3D model of
the prone breast volume and boundary points (yellow). b) Axial slice of
the MRI with the prone breast mask (blue) and the mask of the
pendulous breast (yellow). c) 3D model of the artificial supine breast
volume (green), prone surface (red), and boundary points (yellow).
d) Axial slice of the MRI with artificial supine breast mask (green), supine
surface (red) and the mask of the supine volume corresponding to the
pendulous prone breast (yellow).

account for different tilts of the thorax, the intermammary
space is aligned using a point based rigid registration algo-
rithm. In this procedure, it is assumed that the intermammary
cleft does not vary significantly between the two positions
because the overall movement of the breast is generally in
the posterior-lateral direction. After the initial alignment, the
information from the optical scanned surface and the internal
delineation of the breast volume in the prone position are
combined to obtain an artificial volume mask of the breast
in the surgical position, as shown in Figure 3d. The prone
breast volume mask and the computed surgical volume mask
are forced to have the same total volume.

B. ARTIFICIAL SURFACE FIDUCIALS GENERATION
To perform the landmark driven non-rigid registration
between the prone and artificial supine volumes, it is neces-
sary to define a set of surface correspondences to guide the
registration process.

The nipples are the only known markers available and can
be easily identified in the prone MRI and retrieved from the
texture map of the optical scanned intraoperative surface.
Taking the nipple position as reference, we have designed
different strategies to define the set of corresponding fiducials
points:
• Nipple Areola Fiducials Set: a set of radial points
that arise from the nipple and cover the nipple areola,
as shown in Figure 4a.

• Breast Axes Fiducials Set: a set of points representing
the horizontal and vertical axes of the breast, as shown
in Figure 4b.

• Laplacian Surface Fiducials Set: a set of dense points
that cover the entire surface. Their correspondence is
based on a Laplacian transformation guided by the
Breast Axes Fiducials Set [24] as shown in Figure 4c.

In order to define the Breast Axes Fiducials Set it was
necessary to find corresponding boundary points of the breast
volume in the medial, lateral, lower, and upper direction,
as shown in Figure 5. Given the prone breast volume and
the artificial supine volume masks, the main idea is to find
a subvolume corresponding to the pendulous portion of the
prone breast and the corresponding portion in the supine
position. The portion of the prone volume relating to the
pendulous breast is obtained by considering the part of the
volume anterior to the coronal plane passing through the cen-
ter of mass of the intermammary space. The corresponding
supine breast volume mask is obtained by first removing the
volume below an oblique plane passing through the medial
point identified for the prone breast and the extreme lower
point of the supine surface. Subsequently, the final match
of volume with respect to the pendulous breast is achieved
subtracting the required portion from the lateral part of the
breast following the posterior to anterior direction (coronal
plane).

The horizontal breast axes boundary points are found by
intersecting the breast surface, corresponding to the pendu-
lous breast portion, with an axial plane passing through the
nipple. While for defining the vertical breast axes boundary
points we considered the intersection between the breast
surface and a vertical plane passing through the normal at the
breast surface nipple point. To define the intermediate points
between the upper-lower and medial-lateral boundary points,
we first fixed the total number of points in the two directions
and then we used geodesic distance to find equidistant points
on the surface along those directions. Furthermore, we define
an Internal Boundary Fiducials Set, which consists of a
uniform set of points located on the internal surface of the
prone breast corresponding to the boundary surface of the
chest wall (Figure 4d).

C. NON-RIGID REGISTRATION
The main idea underlying this registration step is to smoothly
propagate the transformation associated with the surface data
onto all the positions in the breast domain in order to be
evaluated at any desired set of positions.

Free-form deformation models have been successfully
employed in non-rigid registration of medical images to
handle situations in which organs have large, nonlinear
deformations.

We adopted a landmark based version of the large defor-
mation diffeomorphic metric mapping (LDDMM) registra-
tion [25]. This framework is specifically designed to deal with
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a large amount of deformationwithout distorting the topology
of the object.

The LDDMM framework computes a transformation ϕ1
between the prone image (moving) IP and the supine image
(fixed) IS such that IS = IP ◦ ϕ−11 . The computed transfor-
mation ϕ is the end point of a flow of velocity fields given
by the ordinary differential equation vt (ϕt ) = ϕ′t , where ϕ0
is the identity transformation. We have adopted a symmetric
approach [26] where the optimal transformation is calculated
by integrating the vector field that is found by minimizing the
following equation.

E(v) =
1
2σI

Sim(IP ◦ ϕ−1, IS )+
1
2σI

Sim(IP, IS ◦ ϕ)

+

∫ 1

0
‖v(t)‖2Vdt + β‖tr(∇v)‖

2
+ ES (1)

where σI represents the image noise variance, Sim(A,B) the
similarity measure between the images and the norms are
taken in the spaces of square integrable functions L2 and
allowed fields V. Then, by enforcing a certain smoothness
on V, ϕt is guaranteed to lie in the space of diffeomor-
phisms. In practice, smoothness is promoted by an operator
L = (α1 + id)γ with 1 the Laplacian and α and γ con-
trolling the level and properties of smoothness respectively.
The fourth term of (1) penalizes the divergence of the veloc-
ity field and induces better Jacobians. The term ES in (1)
represents a symmetric spring energy formulation [27] that
penalizes the distance between the landmarks in the prone
and supine images and is calculated as following.

ES =
w
2

S∑
i=1

‖ϕ(xiP)− xiS‖2

+
w
2

S∑
i=1

‖xiP − ϕ−1(xiS )‖2 (2)

where S is the number of landmarks, w are weighting factors
and xiP and xiS are the landmark positions in the prone and
supine images.

We adopted as similarity measure the sum of squared dif-
ferences (SSD), and the registration algorithm was optimized
by Polak-Ribière conjugate gradient conjugate gradient
methods.

The performance of LDDMM was compared with a land-
mark driven Bspline registration [28], [29]. The optimization
criterion is the one proposed by [28] and is composed of three
different terms, a data term based on a similarity measure,
a regularization term, and a spring term. Given a deformation
function g, the cost function can be written as follows.

E = Sim(IP ◦ g, IS )+ α
∫∫∫

‖∇2g(x)‖2dx

+w
S∑
i=1

‖g(xiP)− xiS‖2 (3)

where Sim(A,B) is the similarity measure between the
images, α is a parameter to weight the smoothness, S is the

TABLE 1. Patients and tumor characteristics.

number of landmarks,w are weighting factors and xiP and xiS

are the landmark positions in the prone and supine images.
The similarity measure was also SSD and the registration
algorithm was optimized by a gradient descent method,
embedded in a multi-resolution scheme.

Once the non-rigid registration is performed, the original
preoperative breast volume mask is transformed using the
deformation field to obtain the final deformed breast mask in
the supine position and the estimated position of the tumor.

III. EXPERIMENTS AND RESULTS
A. DATA
We collected 72 retrospective cases of breast cancer from the
GregorioMarañónGeneral University Hospital (HGUGM) in
Madrid after ethical committee approval. Each case included
a preoperative T2 SPAIR MRI and a Subtraction MRI in the
prone position, acquired several weeks before breast conserv-
ing surgery, and a CT image in the supine position used to
simulate the intraoperative surface and in which the tumor in
the supine position can be located for evaluation purposes.
It is important to note that the acquisition of a CT image
does not belong to the standard preoperative protocol, but is
often required for cancer staging purposes. Two cases were
excluded from the collection of cases, as the breasts in the
MRI were in contact with the MR coil array. As a result,
the deformation of the breast is caused not only by gravity,
but also by the coil’s holding force. One case was excluded
because there was no clearly identifiable cancer lesion in
the CT image. Other two cases were excluded because the
breast in the CT images was cropped in the axial plane and
could not be used to extract the surface in the supine position.
Therefore, a total of 67 image sets (both MRI and CT) were
used in this study. Table 1 reports the range and average
value of a set of descriptive variables of the dataset including
breast volume, tumor extension, and total tumor displacement
from the prone to supine position of the samples. The dataset
covers a wide range of breast volume (BV): 19 cases were
small (S) size breasts (BV ≤ 1600.0 cm3), 23 cases were
medium (M) size breasts ( 1600.0 < BV < 2000.0 cm3 ) and
25 cases were large (L) size breasts (BV ≥ 2000.0 cm3).
Figure 6 shows some visual examples of prone to supine
tumor displacement. The proposed method was implemented
and tested with a workstation with an Intel(R) Core(TM)
i7-11700K @3.60 GHz 32 GB RAM and an Intel(R) UHD
Graphics 750 GPU.
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TABLE 2. Results in terms of average tumor distance [mm] obtained with different sets of surface fiducials alone and in combination with fixed internal
fiducials.

B. DATA PREPARATION
The breast was segmented in both CT and MRI using 3D
Slicer [30]. The segmentation of the breast in the CT image
was only used to extract the surface used to simulate the
patient’s surface in the surgical position. The CT image was
also used to segment the tumor in the supine position to
validate the methodology. The volume of the breast in the
prone position was obtained from the T2 SPAIR MRI in a
semi-automatic manner as described in Section II-A. The
tumor in the prone preoperative position was segmented in
the Subtraction MRI. The position of the nipples in both
the CT and MRI was marked manually in 3D Slicer to be
used as reference real correspondence between the prone
and supine surfaces. The prone and supine surfaces were
rigidly registered aligning the nipples and the intermammary
space (see Section II-A). After a visual inspection of the
rigid registration process for 4 cases was necessary to correct
the adjustment in the z direction to achieve a better align-
ment of the total breast. Furthermore, in 2 cases with large
breasts, a correction in x-y plane was also necessary because
the intermammary cleft was not matched in the supine
position due to the movement of the breast in the medial
direction.

C. IMPLEMENTATION AND EVALUATION
After the reconstruction of the supine volume masks and the
generation of the corresponding surface fiducials, a land-
mark driven non-rigid registration was performed to esti-
mate the prone to supine volumetric displacement field and
to localize the tumor in the surgical position. We com-
pared two non-rigid registration methods, one based on
LDDMM and one based on a multiresolution Bspline. The
landmark driven LDDMM registration algorithm was imple-
mented in MATLAB, the maximum number of iterations
were 300 and the average running time was less than
2 minutes for each case. A low resolution grid (8 mm)
was considered to ensure robust performance and com-
putational efficiency. The multiresolution landmark driven
Bspline registration was implemented in Python 2.6 and

a compiled C library to accelerate multidimensional Bspline
computation. The maximum numbers of iterations in each
stage were 150 and the average running time was more than
30 minutes for each case. None of the algorithms has been
optimized to reduce computation time. The evaluation of the
registration algorithm has been carried out using as target
registration error (TRE) the Euclidean distance between the
estimated position of the tumor centroid and the reference
position of the tumor centroid in the supine CT image. The
cutaneous projection of the estimated tumor position, defined
as the closest point between the center of mass of the tumor
and the skin, was also calculated and compared with the
cutaneous projection of the center of mass of the supine tumor
from the CT image. The distance between the two projected
points is a key metric to evaluate the effectiveness of the
method in supporting the decision making in the preoperative
planning and it has been previously used to assess this type
of algorithms [19], [20]. In addition, the Dice coefficient of
the artificial supine mask and the deformed prone mask was
computed to evaluate the global deformation.

D. PARAMETER ADJUSTMENT
To adjust the registration parameters and obtain the most
satisfactory results we have considered a set of 5 cases with
different characteristics. Multiple experiments have been
conducted varying the weights of the landmark and regular-
ization terms, the density of the deformation field and other
parameters involved in the registration algorithms. After tun-
ing the registration parameters, we used a randomly sampled
subset of cases (training set) to find the set of fiducials
that better guided the landmark driven registration process.
We considered a training set of 45 cases with the following
distribution of breast sizes: 22 % small, 38 % medium and
40 % large. The remaining 22 cases were used as an indepen-
dent test set to evaluate the method and had the following
distribution of breast size: 32 % small, 41 % medium and
27% large. Table 2 shows the average tumor distance obtained
with different sets of fiducials for all the training set and for
each breast size subset.
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TABLE 3. Comparison of the performance of the landmark driven LDDMM and Bspline based registration.

FIGURE 6. Visual examples of the prone to supine tumor displacement.
CT images of 3 cases: the blue mask is the region of the prone breast
volume, the green line is the outline of the artificial supine breast
volume, the magenta and yellow regions outline the prone and supine
tumor respectively. The three cases differ in the amount of displacement
of the tumor from prone to supine position: a) small b) medium c) large.

The fiducials set of choice for the proposed method was
Nipple Areola + Internal Boundary. This collection of fidu-
cials points achieves a lower TRE when all cases of the

FIGURE 7. Visual results of prone to supine LDDMM registration.
CT images of 3 cases: the blue mask is the region corresponding to the
prone breast volume, the green line is the outline of the artificial supine
breast volume, the magenta and yellow lines outline the prone and
supine tumor respectively. The red region is the estimated position of the
tumor. The three cases differ in the amount of displacement of the tumor
from prone to supine position: a) small b) medium c) large.

training set are considered, and specifically for M size breast
group, there is a significant difference as proved byWilcoxon
left-tailed signed rank test (p ≤ 0.05). Additionally, the
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FIGURE 8. Visual results of prone to supine LDDMM registration.
CT images of 3 cases (a) S size breast, b) M size breast, c) L size breast).
The yellow line outlines the actual location of the supine tumor, while the
red region is the estimated position of the tumor.

FIGURE 9. Visual results of prone to supine LDDMM registration.
a) CT image and outlines of the supine tumor (yellow) and the estimated
tumor (red), b) CT image and 3D model of the supine surface with the
cutaneous projections of the supine tumor (yellow) and the estimated
position of the tumor (red).

workflow to obtain this fiducials set is simpler and it does not
require the computation of the laplacian deformation of the
surface like the Laplacian Surface fiducials set and therefore
it ensures faster running time of the registration process. It is
important to note that this fiducials configuration provides
good performance for medium and large breast volumes for
which the problem is more challenging due to large deforma-
tions. Table 2 also reports as None Fiducials Set the average
tumor distance obtained when the registration is not landmark
driven. The results are significantly worse as confirmed by
paired Wilcoxon left-tailed signed rank test (p � 0.05 ) and
justify the use of the landmark driven approach.

E. RESULTS
The results of the performance of LDDMM registration
are shown Table 3 in comparison with those obtained with
the multi-resolution Bspline based registration. When all
67 patients were considered, the average tumor distance was
16.21 ± 8.18 mm for LDDMM and 18.24 ± 9.69 mm for
Bspline while the Dice score was 0.93 ± 0.02 for LDDMM
and 0.82 ± 0.06 for Bspline. The average distance between
the cutaneous projections of the actual and estimated tumor
was 13.86 ± 7.59 mm for LDDMM and 14.83 ± 8.12 mm
for Bspline. Visual results of 3 cases from the training set
are shown in Figure 7, from smaller (Fig. 7a) to larger tumor
displacement (Fig. 7c) between prone to supine positions.
Figure 8 shows the results of three cases of the test set with
different breast volumes. Figure 9 shows visual results with

a 3D model of the supine surface and the projections on the
skin of the supine tumor and the estimated tumor.

IV. CONCLUSION AND DISCUSSION
The goal of this research is to develop a landmark driven
non-rigid registration method to assist surgeons in planning,
and possibly guiding, BCS by estimating tumor position. The
method was developed to require only the surface of the
patient in the surgical position and a standard of care diagnos-
tic preoperative prone MRI in which the tumor is clearly vis-
ible. After rigid alignment, we generated an artificial supine
volume based on the delineation of the chest wall boundary
and then defined a set of artificial correspondences between
the prone and the supine surfaces to guide the volume-
to-volume landmark driven registration. We extended the
LDDMM registration approach to include a landmark based
spring term and compared the results to a multiresolu-
tion non-rigid Bspline registration that also includes such
a term. Our experiments demonstrate that the LDDMM
method is more accurate, robust and faster than the Bspline
implementation used and it ensures more stability of the
retrieved deformation field. The proposed method was evalu-
ated in 67 clinical cases with an average localization error of
16.21 ± 8.18 mm. The results for the test set (13.88 ±
7.30 mm) reported in Table 3 are better than those reported
for the training set. This can be attributed to the fact that as
a result of the random split in this subset there is a smaller
proportion of large breasts (24 % in the test set vs 40 % in
the training test). As reported in Table 2 the method is more
effective in the range of breast volumes including small and
medium size breasts. No significant variation in the localiza-
tion error was found according to tumor depth and size.

This preoperative localization approach could be useful to
guide the surgeon towards the location of the tumor without
the limitations ofWGL. The benefit of use could be of interest
even in combination with other guidance mechanisms such as
the wire itself, radar guidance, radiofrequency identification,
or radioactive seeds [31], [32]. On the other hand, the target of
resection always includes a 5-10 mmmargin of healthy tissue
surrounding the tumor in order to allow for the inaccuracies
inherent to the different localization techniques and to ensure
complete removal of cancerous tissue.

In addition, the error associated with the skin projection of
the lesion is smaller and may be the main interesting infor-
mation for the procedure. The use of a visualization system
in the operating room with a 3D model of the breast surface
and the skin projection of the tumor could complement the
WGL information and help determine the most appropriate
incision site to ensure a better cosmetic outcome or to endorse
the localization achieved by other less invasive localization
techniques.

The tumor target error results obtained are very compet-
itive considering that they are obtained without including
biomechanical models in the registration workflow nor the
requirement of acquiring supine MRI or other preoperative
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supine imaging. Some prior hybrid methods using supine
image information achieve better results. However, they have
been tested in a very reduced datasets (less than 5 cases) with-
out ensuring generalization of the proposed technique [10],
[15], [16], [17]. The use of surgical surface information com-
bined with biomechanical models produced similar results
(average landmarks distance of 15.3 mm) [22] or worse
results (average cutaneous distance of 20.8 mm) [20].
Recent research using a hybrid approach and combining
biomechanical models and supine surface information has
obtained very competitive results (average tumor distance of
8.05 mm), although the dataset is still limited (25 cases) and
with a smaller percentage of medium and large breast volume
cases [23].

The validation of the current proposal has been developed
using the surface of the patient from a supine CT image
for validation purposes. The proposed workflow has been
designed to use an optical scanner for the acquisition of
the breast surface in the operating room, altering minimally
the surgical procedure. Further research is guaranteed in a
prospective study during surgery or biopsy using the optical
scanner. Preliminary experiments of this setup have con-
firmed the feasibility of acquisition and processing of the
surface from the optical scan of the supine position, including
the proper identification of the nipple from the texture map.
Unlike previous proposals in the literature that involve supine
MRI, our proposal does not require any change in the standard
of care imaging protocol.

Future research will consider improving tumor localization
results by incorporating deep learning algorithms to acceler-
ate and learn the plausible deformation fields underlying the
transformation from prone to supine breast pose.

In conclusion, we have designed and developed a tool that
using only the surface of the patient in the surgical position
and a preoperative MRI achieves competitive results in terms
of localization error and could potentially be used in the
clinical practice to assist the planning and guidance of breast
cancer treatment. Additionally, this study cohort represents
the largest reported for prone to supine registration, ensuring
that different ages and sizes are represented.
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