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Abstract

The unifying theme of this dissertation is the behaviour of firms over their life cycle,

namely regarding their financing and growth, and its macroeconomic implications.

My thesis starts from a general question: how should we allocate financial resources

to young firms over their first years of activity? On one side, young firms are often

small, which may prevent them from accessing financial markets. On the other side,

in some sectors, there is high uncertainty regarding the underlying quality of young

firms. These issues might deter productive firms from growing over life. Neverthe-

less, those firms are worth financing from an aggregate perspective. Exploring the

conditions under which productive young firms can flourish is a first-order issue to

promote a well-functioning productive sector and a good economy-wide performance.

Chapter 1 of this dissertation uses micro data on Spanish companies to study

the life-cycle behaviour of firm productivity and factor inputs. I find evidence that

some firms are expected to grow strongly when young. Moreover, factor input data

points to firm-level frictions affecting resource allocation to firms over life.

Motivated by empirical findings in Chapter 1, I build a firm-dynamics model in

Chapter 2 to study whether firms with a high growth potential at birth manage

to realise high growth, or whether they are deterred by the existence of firm-level

frictions, namely borrowing constraints. This chapter addresses the firm-level effects

of borrowing constraints, as well as their aggregate impact on the Spanish economy.

Chapter 3 studies how young, innovative firms make investment, liquidation and

sale decisions in a context of high uncertainty. I show that a model where firms learn

about their uncertain quality captures documented patterns in the venture capital

literature, such as delayed exits and contingent stage financing.

Chapter 1. A Life-Cycle Study of Productivity and Factor Allocation of

Spanish Firms. The Spanish economy has recently experienced a poor aggregate

performance accompanied by the prevalence of low-growth, small firms. This chapter

relates these facts to the phenomenon of high-growth-potential firms. I use a rich

micro-level dataset containing financial information on companies, and I perform a

study of the evolution of firm-level productivity, employment and capital over the

life cycle. First, I find that Spanish firms are heterogeneous in their expected growth
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rates. Second, I find that dynamic life-cycle moments in the data are informative

about the allocation of factor inputs to companies, and thus about frictions affecting

young firms.

Chapter 2. Factor Misallocation and High-Growth Firms in Spain. Mo-

tivated by empirical patterns on the life-cycle evolution of productivity and input

allocations to firms, I study whether young firms are deterred from growing by bor-

rowing constraints, and its macroeconomic implications. I develop a firm-dynamics

general equilibrium model considering a firm-level productivity process and frictions.

I calibrate two alternative models, with and without expected-growth-rate hetero-

geneity, to match data on input life-cycle allocations. In the model with heteroge-

neous expected growth, high-growth-potential firms are prevented from growing by

financial frictions, and eliminating borrowing constraints generates large aggregate

gains. In the model without this source of heterogeneity, there are less high-growing

firms and aggregate effects from removing financial frictions are smaller.

Chapter 3. Venture Capital Investments and Learning over the Life Cy-

cle. The life cycle of young, high-risk entrepreneurial projects and the financing of

innovation has become increasingly important for economists, companies and policy-

makers. The objective of this chapter is to understand how high-risk firms learn over

time about their unknown quality, and how this affects firm decisions and financing.

I develop a model of the firm that imitates realistic features of young, high-risk

companies, such as uncertainty about a firm’s own quality, staged financing, exit

strategies, and the realisation of period cash-flows that yield information about the

firm’s unobserved quality. The model captures empirical patterns of innovative firms

documented in the venture capital literature – namely, delayed exit decisions and

investments into companies being contingent on firm-level results over their life. I

find that the ability to learn makes investment sensitive to period cash-flows in the

model. A high initial quality uncertainty reflects into exit and investment strategies

and may motivate firms to perform growth investments. In this context, a higher

learning ability increases firm value substantially by motivating experimentation

and contingent staged financing.



Contents

1 A Life-Cycle Study of Productivity and Factor Allocation of

Spanish Firms 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Description of the Dataset . . . . . . . . . . . . . . . . . . . . 3

1.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 A Process for Firm-Level Productivity . . . . . . . . . . . . . 5

1.3.2 Empirical Autocorrelation Structures . . . . . . . . . . . . . . 11

1.3.3 Other Evidence on the Lack of High-Growing Firms . . . . . . 13

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.1 Dataset Construction and Data Cleaning . . . . . . . . . . . 17

A.2 Alternative Samples . . . . . . . . . . . . . . . . . . . . . . . 19

A.3 Statistical Process and Autocorrelations . . . . . . . . . . . . 28

2 Factor Misallocation and High-Growth Firms in Spain 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2 Productivity Processes . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Quantitative Experiments . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 Baseline Economies . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Quantitative Experiment: Eliminate Borrowing Constraints . 52

2.3.3 The Role of Working Capital Constraints . . . . . . . . . . . . 56

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Venture Capital Investments and Learning over the Life Cycle 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 The US Venture Capital Industry: a Brief Overview . . . . . . . . . . 67

3.3 A Model of the Firm . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



viii

3.3.2 Learning, Investment and Exit Decisions . . . . . . . . . . . . 75

3.4 Quantitative Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Exit and Investment Decisions . . . . . . . . . . . . . . . . . . 81

3.4.2 The Role of Uncertainty . . . . . . . . . . . . . . . . . . . . . 86

3.4.3 The Role of Learning . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1 Derivation of the Kalman Filter Equations . . . . . . . . . . . 95

A.2 Algorithm to Solve the One-Agent Model . . . . . . . . . . . . 96

Bibliography 101



List of Figures

1.1 Productivity processes and TFP autocorrelations by age . . . . . . . 10

1.2 Autocorrelations by age: frictionless vs. empirical . . . . . . . . . . . 12

1.3 Life-cycle moments, Spain and the United States . . . . . . . . . . . . 13

1.4 Coefficient of variation by age, logged employment and TFP . . . . . 14

1.5 Life-cycle average employment: permanent vs. non-permanent sample 21

1.6 Life-cycle firm heterogeneity: permanent vs. non-permanent sample . 21

1.7 Autocorrelations by age: permanent vs. non-permanent sample . . . 24

1.8 Autocorrelation structures by age: permanent vs. non-permanent . . 25

1.9 Firm exit rate by age: Spain vs. US . . . . . . . . . . . . . . . . . . . 26

1.10 Mean ARPK by age: permanent vs. non-permanent sample . . . . . 27

1.11 Simulated average employment by age, different parameterisations . . 30

1.12 Productivity processes and employment autocorrelations by age . . . 31

2.1 Targeted moments: GP and NGP models . . . . . . . . . . . . . . . . 44

2.2 Average employment by age: GP and NGP models . . . . . . . . . . 46

2.3 Average employment by age of firms with a high ex-ante component . 55

2.4 NWK economy and empirical moments . . . . . . . . . . . . . . . . . 56

2.5 Untargeted higher-ages autocorrelations: logged TFP . . . . . . . . . 60

2.6 Untargeted higher-ages autocorrelations: logged employment . . . . . 61

2.7 Untargeted higher-ages autocorrelations: logged capital . . . . . . . . 62

3.1 Belief updating: standard deviation and Kalman gain . . . . . . . . . 76

3.2 Market value: stationary and life cycle . . . . . . . . . . . . . . . . . 77

3.3 Sale and termination thresholds, baseline model . . . . . . . . . . . . 81

3.4 Old agents, investment decisions . . . . . . . . . . . . . . . . . . . . . 82

3.5 Young agents, exit decisions . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Investment policy function gkt (π̂, CF ) . . . . . . . . . . . . . . . . . . 85

3.7 Sale and termination thresholds, different σ0 . . . . . . . . . . . . . . 86

3.8 Exit and investment dynamics and initial quality uncertainty σ0 . . . 88

3.9 Simulated outcomes and initial quality uncertainty σ0 . . . . . . . . . 89

3.10 Investment policy gkt (π̂, CF ) at period t = 0, no learning . . . . . . . 90

3.11 Exit and investment dynamics and learning σε . . . . . . . . . . . . . 91

3.12 Simulated outcomes and learning σε . . . . . . . . . . . . . . . . . . . 92

3.13 Value and learning, two levels of initial uncertainty . . . . . . . . . . 92

ix





List of Tables

1.1 Estimated process for logged productivity, Spain . . . . . . . . . . . . 8

1.2 Estimated process for logged productivity, Spain (non-permanent sam-

ple) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Estimated process for logged employment, Spain and United States . 28

2.1 GP and NGP processes for logged productivity, Spain . . . . . . . . . 42

2.2 Calibration of structural model, different productivity processes . . . 43

2.3 Baseline economies: GP and NGP model . . . . . . . . . . . . . . . . 49

2.4 No financial friction in alternative economies . . . . . . . . . . . . . . 52

3.1 Parameterisation of baseline model . . . . . . . . . . . . . . . . . . . 80

xi





Chapter 1

A Life-Cycle Study of

Productivity and Factor

Allocation of Spanish Firms

1.1 Introduction

It has been long argued that firm size heterogeneity is a key determinant of total

factor productivity (TFP) in the overall economy (Hsieh and Klenow, 2009; Restuc-

cia and Rogerson, 2008). Large firms are often more productive than their smaller

peers and account for a large share of aggregate employment. Across countries,

there exist big differences in terms of the firm size distribution even among similarly

developed economies. If we look at the Spanish economy in recent years, many

studies highlight a relative lack of large firms (Rubini et al., 2012) as well as a low

employment growth over the firm life cycle (Hsieh and Klenow, 2014) when com-

pared to other developed countries. On the other hand, the misallocation literature

for Spain reports a bad Spanish TFP performance in recent decades, and links it to

a poor allocation of resources, namely capital1, across heterogeneous firms, which

makes it difficult for most productive firms to become large (Gopinath et al., 2017;

Fu and Moral-Benito, 2018; Garćıa-Santana et al., 2020).

In this chapter, motivated by the documented firm growth and aggregate TFP

patterns for Spain, I study firm-life-cycle performance through the lens of the phe-

1The misallocation literature for Spain has often considered financial frictions as the one to

blame for the poor TFP performance of the Spanish economy in recent decades. For instance,

Gopinath et al. (2017) show that standard deviation of the logged marginal revenue product of

capital (MRPK), a standard measure of capital misallocation, has been steadily increasing during

the 2000s. They rationalise this pattern by considering a size-dependent collateral constraint at

the firm level and an exogenous drop in the real interest rate. Importantly, they do not observe

such a strong increase in the standard deviation of the logged marginal revenue product of labour

(MRPL).

1



2 CHAPTER 1

nomenon of high-growth-potential firms (Birch and Medoff, 1994; Haltiwanger et al.,

2017; Pugsley et al., 2021). A high-growth-potential firm is a firm that is expected

to exhibit very high growth rates during the first periods of its life. While reported

as important for the United States (Pugsley et al., 2021), it is unclear whether the

high-growth-potential phenomenon could be taking place in Spain, often depicted by

the literature as a frictional environment that is particularly unsuitable for young,

small firms to grow.

The objective of this chapter is to study empirically firm growth and factor hin-

dering it in the Spanish economy. To do this, I use micro-level data of Spanish firms

from Central de Balances Integrada (CBI) at the Bank of Spain2. I construct a panel

of Spanish firms that contains information on financial variables and small compa-

nies. The data is particularly well-suited for studying the nature of firm growth

and distortions affecting young firms in Spain. In particular, financial information

allows to pin down a measure of firm-level productivity. I document firm-life-cycle

facts that suggest that there is a lack of firms effectively growing in Spain. Using

firm-level dynamic moments, I arrive at two empirical results. First, building on

Pugsley et al. (2021)’s empirical framework, I find that there is heterogeneity in

expected growth rates across Spanish firms. This margin of heterogeneity is not

often considered in the firm dynamics literature. Second, dynamic moments at the

firm level are informative about the existence of frictions affecting young firms in

Spain. Specifically, autocorrelations of employment and capital by age suggest that

firms have difficulties to adjust their inputs over the life cycle.

Literature review. This chapter relates to the existing literature in the following

ways. First, it relates to the firm dynamics literature (Pugsley et al., 2021; Halti-

wanger et al., 2013; Hsieh and Klenow, 2014). The main reference of this chapter is

Pugsley et al. (2021). In their work, they use US administrative employment data to

estimate a rich firm-level employment process with an ex-ante, life-cycle component

that accounts for firm heterogeneity in expected growth rates at birth, thus giving

room to the high-growth-potential firms phenomenon. This ex-ante component al-

lows for firm-specific initial conditions at birth and firm-specific steady states after

some years of life, and parameters characterising it are identified using long-run

life-cycle data. They find that this component is relevant for representing firm het-

erogeneity in the US. In this chapter, I apply Pugsley et al. (2021)’s methodology

to TFP life-cycle information for Spanish firms. Moreover, taking advantage of the

CBI data, which contains not only employment data but also financial information, I

assess the life-cycle allocation of employment and capital to firms, which is my main

contribution. This novel view of the allocation of inputs to firms, which studies dy-

namic moments over the firm life cycle, is useful for identifying firm-level frictions.

2The source of the data is BELab. Banco de España/CORPME, Colegio de Registradores de

la Propiedad y Mercantiles de España. CBI. DOI:10.48719/BELab.CBC1121 01.

https://www.da-ra.de/dara/search/search_show?v=1&res_id=773036&lang=en&mdlang=en&detail=true&q=defaultSearch%3A%28belab%29&rtList=&personal=false&widget=&widgetclient=&offset=0&max=10
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Regarding documented empirical facts for Spanish firms, Rubini et al. (2012) and

Hsieh and Klenow (2014) document a small share of large firms and a low life-cycle

growth of manufacturing Spanish firms. I contribute to this strand of the literature

by showing that these patterns also extend to all sectors in the Spanish economy,

and I take advantage of the rich data to measure firm-level TFP.

Second, this chapter contributes to the literature on firm-level distortions (Cooper

and Ejarque, 2003; Cooper and Haltiwanger, 2006; Cooper and Willis, 2009; Asker

et al., 2014; Baley and Blanco, 2022). My contribution to this literature is the

study of empirical autocorrelations of TFP, employment and capital over the firm

life cycle, which can be used as a piece of evidence to identify borrowing constraints

at the firm level. These moments might also be useful to identify other distortions

regarded as important in the literature, e.g. capital adjustment costs, investment

irreversibilities, and labour market imperfections.

Layout. This chapter is structured as follows: in section 1.2, the data for Spanish

firms is presented. In section 1.3, I estimate a statistical firm-level process with

ex-ante components that reflect growth-potential heterogeneity using a measure of

firm-level TFP, and I discuss empirical firm-life-cycle moments. In section 1.4, I

conclude.

1.2 Data

1.2.1 Description of the Dataset

I use micro-level panel data for Spanish firms. The dataset is constructed from Bank

of Spain’s Central de Balances Integrada (CBI) database, which contains yearly

data at the firm level. The data broadly covers the production side of the Spanish

economy, thus being representative of the population of Spanish companies. The

information in CBI ultimately comes from financial statements (annual accounts)

that all Spanish companies have to submit by law to the Commercial Registry

(Registro Mercantil), as well as voluntary cooperation of a subset of these firms

with the Bank of Spain. Importantly, the data does not restrict to employment data,

but it also contains financial information such as value added, assets and liabilities,

among others. Taking advantage of these features of the Spanish data, I pin down a

measure of firm-level TFP. The data contains information on corporations, including

limited liability companies (both S.A. and S.L. companies), and cooperatives. The

data does not include self-employed workers. Nonetheless, the data is not restricted

to listed firms. Indeed, a vast number of observations in the dataset I construct

belong to unquoted firms, thus being more representative of the Spanish economy

and allowing to investigate more deeply small and young firms.
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The variables that are important to the analysis are firm identification number,

period, year of legal creation/birth, industry identifiers, gross value added, book

value of long-term assets, and yearly average number of employees, among others.

My dataset covers the period 1997-2016. In my analysis, I consider all the main

economic sectors (from A to S, according to the 1-digit NACE classification) in

Spain, so my dataset talks to a wide range of activities including large sectors as

manufacturing, construction, commerce, hotel industry, but also agriculture and

financial services. I exclude government firms from the analysis. I use gross value

added as the measure of nominal output at the firm level, and the book value of

long-term assets as the measure of nominal capital. I deflate the book value of long-

term assets using industry investment deflators, which are taken from EU-KLEMS.

The measure of employment I consider throughout the chapter is the yearly average

number of employees at the firm level3. Firm age is defined as the difference between

the current observation period and the year of legal birth4. I consider that a firm

exits the market in the last period it has reported its financial information.

Using the CBI, I adopt a life-cycle perspective and I construct a dataset con-

sidering firms that were born between 1997 and 2006, both years included, so that

I have enough observations of firms during their life. Apart from selecting these

specific cohorts, I select firms for which information at age 0 is available, so that

it is possible to track them over their life cycle starting from the moment of (le-

gal) birth. This dataset is named the permanent dataset (224,148 observations,

18,065 firms), for it only considers firms that have not exited the market before age

10, thus containing information about firms that stay operating after or at age 10.

Throughout the chapter, I discuss empirical features and estimation results for this

permanent dataset. These empirical patterns and results are robust to consider-

ing a non-permanent dataset (322,278 observations, 47,430 firms) which covers all

firms meeting the cohort and age-0 information requirements regardless of the age

at which they exit, thus containing information about both stayers and exiters5;

see Appendix A.1 for the definition of the non-permanent dataset and A.2 for the

robustness check. Details and discussion on data cleaning and the construction of

3Using the wage bill instead of the yearly average number of employees does not change

substantially the empirical results of this chapter.
4In an unreported exercise, I have also considered an alternative definition of age, such that a

firm is born (has age 0) in the first in the first firm-level observation with a yearly average

number of employees greater or equal to one. This definition is closer to the age notion in

Pugsley et al. (2021). Under this alternative definition of age, empirical patterns regarding low

firm growth over the life cycle and life-cycle autocorrelation structures remain qualitatively

similar to those presented in section 1.3.
5Previously to selecting specific cohorts, I have also constructed an aggregate dataset aiming

at being representative of the universe of Spanish firms without looking at specific birth periods.

In an unreported exercise, I use this dataset to analyse capital misallocation facts and total

factor productivity from an economy-wide perspective over the considered period 1997-2016. The

aggregate data displays similar misallocation patterns as those previously documented in the

literature for Spain, which have been mentioned in footnote 1 (see Gopinath et al. (2017)).
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the datasets are provided in the Appendix.

TFP measure. The data enables us to go deep into the study of the determinants

of firm growth in Spain, for it includes financial information. This feature of the

data allows for pinning down a measure of firm-level TFP. To do so, I impose

some structure. Following Hsieh and Klenow (2009), Gopinath et al. (2017) and

Restuccia and Rogerson (2017), I assume a Cobb-Douglas specification for the firm-

level production function: Yit = AitK
α
itL

1−α
it , where i and t index a firm and an age in

the data, respectively. Here, α is assumed to be homogeneous across firms and equal

to 0.35. I assume that each firm produces a variety i for which it has a monopoly,

and faces an isoelastic demand of the form Yit = D(Pit) = P−σ
it , where σ is the

elasticity of substitution between different varieties. I impose σ = 3, homogeneous

across firms. Given these assumptions, I use the permanent sample of Spanish firms

to pin down a measure of firm-level TFP6:

TFPit =
(PitYit)

σ
σ−1

Kα
itL

1−α
it

(1.2.1)

where PitYit is value added, Lit is the yearly average number of employees, and

Kit is the deflated book value of fixed assets.

1.3 Empirical Analysis

In order to investigate whether firm-level and aggregate patterns in the Spanish

economy are linked to a low effective growth of high-growth-potential firms in the

economy, I perform an empirical study of nature of firm growth and frictions in

Spain. I start by estimating a rich firm-level statistical process for productivity.

Then, I document evidence on firm life-cycle moments, namely autocorrelations of

production factors over the life cycle. I arrive at two empirical findings. First,

Spanish firms are heterogeneous in terms of their expected productivity growth

rates. Second, there is evidence on firm-level frictions affecting the allocation of

resources over the firm life cycle.

1.3.1 A Process for Firm-Level Productivity

Firm-level process. The process for logged firm-level productivity I consider is a

simplified version of the one in Pugsley et al. (2021). I call it the GP process (for

6This measure includes both physical productivity in the production function and quality of

the variety embedded in the demand function. In Hsieh and Klenow (2009), this measure is

called “physical TFP”, or TFPQ.
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growth potentials). Here, i indexes firm and a indexes age. I assume the following

statistical process for logged productivity7:

log(Aia) = uia⏞⏟⏟⏞
ex-ante

+ wia⏞⏟⏟⏞
ex-post

(1.3.1)

where

uia = ρuui,a−1 + θi, ui,−1 ∼ N(µu, σ
2
u), θi ∼ N(µθ, σ

2
θ)

wia = µw + ρwwi,a−1 + εia, wi,−1 = 0, εia ∼ N(0, σ2
ε)

and |ρu|, |ρw| < 1. In equation (1.3.1), log(Aia) is assumed to be the sum of an

ex-ante deterministic component, uia, and an ex-post random component resulting

from shocks that realise as firms age, wia. The ex-post, shock component of the

process is a standard AR(1) process. It is the ex-ante component that is the focus

of our attention. The uia term represents the expected productivity growth rate of

the firm at birth. According to the law of motion of uia, a firm i starts out from

an initial condition ui,−1 and it converges to a firm-specific long-run steady state

ui,∞ = θi
1−ρu as it ages. Therefore, the u component of the process captures the idea

of the growth potential of firm i. The cross-sectional variance of long run steady

states across firms is V ar
(︁

θi
1−ρu

)︁
=

σ2
θ

(1−ρu)2 . In Appendix A.3, I estimate the GP

process using Spanish employment data.

Although this process for log(Aia) is relatively simple8, it is richer than processes

typically considered in the firm dynamics literature. To understand why we need

a richer process to analyse the role of high-growth-potential firms, let us compare

equation (1.3.1) to such often used processes. First, the standard AR(1) process

log(Aia) = wia = µw + ρwwi,a−1 + εia does not allow for any source of heterogeneity

in expected growth rates at birth and in long-run productivity steady states. Second,

in a process with ex-ante heterogeneity in firm-level fixed effects, log(Aia) = θi+wia
(assuming ρu = µu = σu = ui,−1 = 0 for all i), firms immediately converge to their

long-run deterministic steady states θi, thus not allowing for a firm-level transition

capable of generating richer growth paths that could differ across firms. Relative

7While the GP process has an u+ w structure, the process in Pugsley et al. (2021) has an

u+ v + w + z shape. This extended process adds an extra ex-post component (an iid shock z)

and an extra ex-ante component aiming to capture differences in the speed of convergence to

firm-level steady states (a deterministic term v) to my specification. Main results from this

section, namely the share of u in terms of the variance and the match of autocorrelation

structures, are robust to considering that extended version of my process.
8The reason for considering here an u+ w process, simpler than the u+ v + w + z process in

Pugsley et al. (2021) (see footnote 7), is showing that just adding the ex-ante component u to an

AR(1) process is already a huge step forward in terms of matching the empirical autocorrelation

structure by age of firm-level TFP, as discussed in section 1.3.1, so that it is the u component

what really makes a difference. Moreover, the GP process can be plugged into a structural model

without increasing the computation burden so much.
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to these more traditional processes, the GP process does a better job in terms of

matching autocorrelations by age of logged TFP in the data, as discussed below.

Estimation and identification. The parameter vector ϑ = (ρu, ρw, σθ, σu, σε)

characterising the process for logged productivity is estimated from the data via a

minimal distance procedure, as in Chamberlain (1984). Previous to estimation, I

take out industry and cohort fixed effects of the firm-level data in logarithms. I

estimate the process in order to match the empirical autocovariance of logged TFP

by age. In particular, I minimize a sum of squared deviations between the theoret-

ical Cov(log(Aa), log(Aa−j)), for any two age levels a and a − j, and its empirical

counterpart ˆ︃Cov(log(TFPa), log(TFPa−j)) documented in the data. As discussed in

Pugsley et al. (2021), this empirical object is used in order to identify the key param-

eters of the process9, for it contains information on ex-ante and ex-post components.

More specifically, the theoretical autocovariance function Cov(log(Aa), log(Aa−j))

can be written as the sum of a term that depends only on parameters characterising

u (that is, ρu, σu and σθ) and a term that depends only on parameters characterising

w (i.e. ρw and σε):

Cov
(︁
log(Aa), log(Aa−j)

)︁
=

(︃ a∑︂
k=0

ρku

)︃(︃ a−j∑︂
k=0

ρku

)︃
σ2
θ + ρ2(a+1)−j

u σ2
u⏞ ⏟⏟ ⏞

ex-ante term

+σ2
ερ

j
w

a−j∑︂
k=0

ρ2kw⏞ ⏟⏟ ⏞
ex-post term

(1.3.2)

Specifically, the parameters governing the u component, and thus long-run steady

states and their dispersion, ρu and σθ, are identified from the long-run autocovari-

ance. Let us consider h = a− j. If we take h fixed and let a go to infinity, so that

we are considering an autocovariance corresponding to a infinitely long lag j, then:

lima→∞Cov
(︁
log(Aa), log(Ah)

)︁
=

1− ρh+1
u

(1− ρu)2
σ2
θ (1.3.3)

which equals zero if σ2
θ = 0, i.e. there is no heterogeneity in long-run steady

states. Put simply, the empirical long-run autocovariance by age enables us to

identify persistence and dispersion parameters characterising the u component in

equation (1.3.1). The idea of identifying ex-ante components using long-run ex-

post data goes back to Guvenen (2007). He uses long-run life-cycle consumption

data to identify ex-ante components of the income process that evolve slowly over

the consumer life cycle. Here, I use long-run autocovariances to identify ex-ante

components that develop over time (through parameter ρu).

9Mean parameters µu, µθ and µw are not identified from the autocovariance function.

Identification of mean parameters requires the utilisation of additional moments. However, mean

parameters are not necessary for determining the ex-ante and ex-post components of the

cross-sectional variance of log(A) by age, nor the autocorrelation of log(A) by age, which I

discuss in this section.
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Table 1.1 Estimated process for logged productivity, Spain

Estimated process ρu ρw σθ σu σε RMSE

GP process 0.208 0.782 0.406 3.864 0.411 0.038

(0.0085) (0.0055) (0.0059) (0.1583) (0.0021)

AR(1) process - 0.854 - - 0.489 0.148

(0.0020) (0.0021)

AR(1) + fixed - 0.663 0.545 - 0.484 0.074

effect process (0.0059) (0.0042) (0.0019)

Notes: the first row shows parameter estimates for the GP process for logged productivity

log(Aia) = uia+wia. The second and third rows show nested special cases of the baseline process,

namely a plain AR(1) process (that is, log(Aia) = wia), and an AR(1) process where firms draw a

fixed effect θ when born (that is, log(Aia) = wia+ θi). The three estimations have been performed

using autocovariances of logged firm-level TFP by age calculated from the permanent sample. The

standard errors of parameter estimates are in parentheses, and are small due to the very large

sample size. Standard errors are calculated using a parametric bootstrap procedure with 1000

replications.

Estimated process. Estimation results are shown in the first row of Table 1.1. The

estimated value for σθ indicates that firms are not excessively diverse in terms of their

long-run steady states. This in turn relates to the empirical low dispersion of logged

total factor productivity of Spanish firms (see Figure 1.4). Indeed, the variance of

long-run productivity steady states is 0.263. Importantly, the share of the empirical

variance of logged TFP at age 10 that is accounted by the u component is 32.14%,

which is not negligible and indicates that Spanish firms display heterogeneity in

their expected productivity growth rates. The estimate of ρu is large relative to

the estimated value in Pugsley et al. (2021), and the large estimate of σu denotes

large heterogeneity in productivity initial conditions when firms are born. Overall,

the estimated GP process provides support to the idea that life-cycle, firm-specific

components are important to determine firm heterogeneity in Spain.

Model fit and alternative processes. In order to reach a conclusion on the eco-

nomic relevance of expected productivity growth rate heterogeneity, we need first to

understand what we gain in terms of capturing micro-level moments when we depart

from the standard AR(1) process in the firm dynamics literature by considering this

margin of firm heterogeneity. To do so, I estimate nested productivity processes

(shown in the second and third rows of Table 1.1) often seen in the literature. These

are subcases of the GP process. I argue that just adding an ex-ante component u

that embeds the idea that firms evolve from an initial condition at birth towards a

log-run steady state (both firm-specific) improves the way we capture a key moment

of the data: the autocorrelation of logged TFP by age10, which represents the way

10We arrive to the same conclusions if we estimate the same processes using employment data.
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this variable correlates to itself over the life cycle. This object is calculated from the

standard deviation by age and the autocovariance by age, and thus contains similar

information as the later.

Figure 1.1(a) shows the empirical autocorrelation of logged total factor produc-

tivity by age for Spanish firms. In the x axis, I represent age, and each of the black

lines corresponds to another fixed age: the lowest line represents age 0, the next line

represents age 1, and so on. Every point corresponds to an age pair. In the y axis, I

represent the autocorrelation of logged TFP. The graph tells us, for every age pair,

how logged TFP correlates to itself. In Figure 1.1(a), lines are decreasing as we

increase age in the x axis, thus showing a life-cycle effect: if we consider longer age

lags, the variable displays lower autocorrelation. However, lines eventually converge

to a positive number as the age in the x axis keeps on increasing. This feature

that autocorrelation does not fade away as we keep on increasing the age lag is di-

rectly related to the identification of ex-ante components and the discussion around

equation (1.3.3): should there not be any ex-ante heterogeneity across firms, these

long-run autocorrelations should eventually converge to zero.

Let us discuss to which extent different processes can capture these features of

the empirical autocorrelation structure. In Figure 1.1(b), I show simulated auto-

correlations from the estimation of a plain AR(1) process for logged productivity,

log(Aia) = wia, in the second row of Table 1.1. I compare it to the empirical au-

tocorrelation pattern of logged TFP. The empirical feature that autocorrelations

are decreasing as we increase the age lag is well represented by the AR(1) process.

Nonetheless, this process is not capable of capturing the long-run convergence to a

positive number that is present in the data11. In Figure 1.1(c), I consider an alterna-

tive setting that allows for a source of firm ex-ante heterogeneity: an AR(1) process

with a heterogeneous fixed effect, log(Aia) = wia + θi, whose estimation results are

shown in the third row of Table 1.1. Relative to the GP process, this process imposes

ρu = µu = σu = 0 and ui,−1 = 0 for every firm. As we can see, the estimation fit im-

proves in terms of mean squared error relative to the simple AR(1). In addition, the

process with a fixed effect generates positive long-run autocorrelations. However,

the fixed-effect shape of the ex-ante heterogeneity generates too much persistence in

life-cycle productivity, thus generating long-run autocorrelations that are too high

relative to the empirical ones, when considering young ages.

In Figure 1.1(d), I show how the GP process enables us to better replicate the

two features in the autocorrelation data. While it preserves the decreasing prop-

erty of the curves, it allows to better replicate autocorrelations when age lags are

large. The fact that we allow for firms to be heterogeneous not only in their initial

conditions but also in their long-run steady states, to which they converge in time,

See Appendix A.3.
11Indeed, if we consider more than 10 periods, the autocorrelations implied by the AR(1)

process would eventually converge to zero.
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Figure 1.1 Productivity processes and TFP autocorrelations by age

(a) Empirical TFP autocorrelation (b) log(Aia) = wia

(c) log(Aia) = wia + θi (d) log(Aia) = uia + wia

Notes: subfigure (a) shows the empirical autocorrelation of the logarithm of TFP by age, using

the permanent sample. The x axis represents autocorrelation, the y axis represents age, and each

line represents a fixed age. Therefore, every point in the graph is an age pair. Subfigures (b), (c)

and (d) compare the empirical autocorrelation to different models estimated in Table 1.1.

gives more flexibility and thus generates higher long-run autocorrelations than the

plain AR(1), yet lower than the AR(1) process with fixed effects. In addition, the

mean squared error from the estimation is notably lower than the two alternative

settings. Adding an ex-ante component allowing for initial condition and long-run

steady-state heterogeneity to a standard AR(1) process allows us to better capture

the empirical TFP autocorrelation structure of Spanish firms, and this makes the

GP process suitable for representing firm-level productivity in Spain.
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1.3.2 Empirical Autocorrelation Structures

In the previous section, I have estimated the GP process in equation (1.3.1) using

TFP data. If I estimate the same process using employment data (as it is done in

Appendix A.3), I find that estimated parameters differ when we use Spanish em-

ployment data and Spanish TFP data. These distinct results emerge from differing

autocovariance structures for these two variables; or, equivalently, differing auto-

correlation structures for logged employment and TFP. These empirical differences

indicate that Spanish firms have difficulties to adjust factors of production over their

life cycle. This fact, which cannot be rationalised by a completely frictionless model

of the firm, is informative of the existence of firm-level frictions affecting young

Spanish firms.

Autocorrelations by age. In Figure 1.2, I compare empirical autocorrelations by

age for logged TFP, employment and capital, with the same object generated by

a frictionless model of the firm. Let us call s the age corresponding to each line

in the graphs, and t the age that is represented in the x axis. For expositional

purposes, I only show autocorrelation lines corresponding to ages s = 0 and s = 4.

The complete autocorrelation maps from ages 0 to 10 can be found in Appendix

A.2. Let us call ρTFPˆ t,TFPˆ s
, ρL̂t,L̂s

and ρK̂t,K̂s
the autocorrelations of logged TFP,

employment and capital for an age pair (t, s).

Figure 1.2(a) shows simulated autocorrelations from a frictionless model of the

firm12, considering 1,000,000 firms and taking as given the estimated GP produc-

tivity process. As we can see, a model with no firm-level frictions generates auto-

correlations of logged TFP, employment and capital that coincide across the three

variables for every age pair (t, s). The lines are decreasing due to the AR(1) com-

ponent of the productivity process, and they converge to a strictly positive number

as we increase t, keeping s fixed.

Figure 1.2(b) shows the empirical autocorrelation structures for ages s = 0 and

s = 4. They do not coincide with simulated autocorrelations for a frictionless

model, and are different across the three logged variables if we consider the same

age pair. Indeed, autocorrelations are notably higher for logged employment and

logged capital than for logged TFP, so that employment and capital levels across

different ages (t, s) are more positively correlated than the corresponding TFP levels.

As discussed in section 1.3.1, the empirical pattern of autocorrelation of logged

TFP is convex as we keep s fixed and increase t, and it converges to a value that is

above zero when t is sufficiently large, thus suggesting the presence of firm-specific

long-term steady states. The autocorrelation of logged employment displays an

12In Appendix A.3, I discuss the frictionless model in detail and show that it must be the case

that no difference across the three variables should appear in terms of autocorrelations if there

are no firm-level frictions.
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Figure 1.2 Autocorrelations by age: frictionless vs. empirical

(a) Simulated, frictionless (b) Data

Notes: subfigure (a) shows simulated autocorrelations for logged TFP, employment and capital

for different pairs of ages (t, s), for a simulated permanent sample of 1,000,000 firms, using the

estimated productivity process for Spain in the first row of Table (1.1) and a frictionless setting

that is described in Appendix A.3. Subfigure (b) shows the same object from the data, using

the permanent sample of Spanish firms. The x-axis represents age t, and each line in the graph

corresponds to another age s, either age 0 or age 4.

almost linear pattern for lags t − s > 1. Regarding the autocorrelation of logged

capital, given an age s, it is close to the autocorrelation of logged employment in the

permanent sample, and it is by all means larger than the autocorrelation of logged

TFP. Importantly, these differences in autocorrelations exist over the life cycle, even

when firms get older. The age s = 4 lines indicate that factors of production seem to

be relatively difficult to adjust even if we consider firms after some periods of activity.

For both s = 0 and s = 4 and for small age lags t− s, the autocorrelation of logged

capital is slightly larger than the autocorrelation of logged employment, suggesting

that, in the short term, capital adjusts less than employment. This is expected

if firms face financial frictions and/or capital adjustment costs that prevent them

from optimally adapting their capital stock to different short-term contingencies13.

For s = 0, this pattern of ρL̂t,L̂s
< ρK̂t,K̂s

reverts for larger time lags t − s, so that

employment is adjusting less in the medium term.

Overall, the observed differences in empirical autocorrelation structures of logged

firm-level TFP, employment and capital for young firms point to the existence of

underlying frictions that may be interacting with the firm-level productivity pro-

cess and may be preventing high-growth-potential firms from achieving high levels

of growth. Given the standard view in the misallocation literature for Spain, the

13Indeed, capital distortions alone may be inducing not only a greater persistence of capital

but also, to some extent, an autocorrelation of logged employment above that of TFP and below

that of capital. If firms are constrained in the amount of capital they can choose, they will not

optimally adjust capital and will thus be choosing to adjust labour, but not as much as they

would have desired, due to the complementarity of factors in the production function.
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Figure 1.3 Life-cycle moments, Spain and the United States

(a) Average employment by age

(b) Standard deviation of log(employment) by

age

Notes: the Spanish moments (solid, red line) over the life cycle are calculated using the permanent

sample. The moment in (a) is computed using yearly average number of employees in levels. The

moment in (b) is computed using the logarithm of the yearly average number of employees. In

both cases, I take out industry and cohort fixed effects in order to examine an average industry

and cohort in the economy. The US moments (dashed, blue line) come from the balanced sample

in Pugsley et al. (2021).

main culprit of the slow adjustment of capital is a firm-level borrowing constraint

(Garćıa-Posada and Mora-Sanguinetti, 2014; Gopinath et al., 2017; Ruiz-Garćıa,

2021). Nevertheless, it may also be the case that adjustment costs in capital (Cooper

and Haltiwanger, 2006), as well as labour market imperfections (Cooper and Willis,

2009), affect autocorrelation structures. The statistical process in section 1.3.1 alone

is unable to replicate empirical autocorrelation patterns, since this setting considers

no friction whatsoever. Hence, any such differences across ρTFPˆ t,TFPˆ s
, ρL̂t,L̂s

and

ρK̂t,K̂s
must come from departures from the frictionless setting. Given an appropri-

ate structural model that explicitly accounts for frictions at the firm level, we can

estimate the parameters characterising these distortions using empirical autocorre-

lations by age in Figure 1.2, which seem a plausible source of information to identify

firm-level frictions.

1.3.3 Other Evidence on the Lack of High-Growing Firms

Using the Spanish data, I have found that Spanish firms display heterogeneity in

expected growth rates, and that there is evidence on the existence of frictions pre-

venting firms from easily adjusting their factors of production. In this section, I show

more life-cycle evidence supporting the idea that Spain lacks high-growth-potential

firms that are effectively realising their growth.

Previous studies have shown that manufacturing Spanish firms display low av-
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Figure 1.4 Coefficient of variation by age, logged employment and TFP

Notes: the Spanish moments over the life cycle are calculated using the permanent sample, con-

sidering the logarithm of employment and TFP respectively. In both cases, I take out industry

and cohort fixed effects in order to examine an average industry and cohort in the economy. The

coefficient of variation for US employment is calculated using moments from the balanced sample

in Pugsley et al. (2021).

erage growth over their life cycle (Hsieh and Klenow, 2014). The permanent sample

I use in this chapter confirms this pattern for the whole productive sector in Spain.

Figure 1.3(a) shows the average employment by age for Spanish firms over their first

ten years of life. In order to benchmark the discussion, I plot the same object for

the United States; the US moments are taken from a permanent sample of firms in

Pugsley et al. (2021). On average, Spanish firms grow until age 6 but, differently

from US firms, they stop growing from then on. The line displays a concave pattern

so that Spanish average firm growth slows down after some years, even becoming

negative. In the United States, the curve is strictly increasing even after ten years,

so that the average firm still grows beyond age 10. The existence of frictions deter-

ring Spanish firms (and, in particular, a high-potential subset of firms) from growing

might be contributing to this empirical life-cycle pattern.

The lack of high-growing firms in Spain might also be reflecting in firm hetero-

geneity over the firm life cycle in Spain. Figure 1.3(b) shows the cross-sectional

standard deviation of logged employment by age for young Spanish firms, in the

permanent sample. Again, I plot the same object for the United States in Pugsley

et al. (2021)’s balanced sample, to benchmark the numbers for Spain. As we can

see, Spanish firms are not very diverse in their employment levels over different age

groups, and this lack of diversity prevails over the life cycle14. Figure 1.3(b) sug-

14The documented low heterogeneity in terms of logged employment is also present if we
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gests that Spanish firms are on average closer to the average employment by age

than firms in the United States. Figure 1.4 confirms this idea, for it considers the

coefficient of variation by age (that is, the ratio of the standard deviation by age

to the mean by age) for logged employment and TFP. The coefficient of variation

of logged TFP is lower than that of logged employment. This relates to the low

heterogeneity in ex-ante components estimated in section 1.3.1, which contributes

to a low firm heterogeneity overall.

Apart from these life-cycle facts and the well-known misallocation facts (see

footnotes 1 and 5), other moments may point in the direction that highly productive

firms may be deterred from growing in Spain, so that large firms end up being of less

importance to the aggregate economy. Using the permanent sample, I compute the

quantiles of the employment distribution by age to look at the top 5% of Spanish

firms and their share of aggregate employment by age. I find that, after 15 years

of firm life, top-5% firms in the employment distribution at that age account for

28.42% of total employment at age 1515. The corresponding quantile is 25.18 ≈
25 employees. I interpret this 95th quantile as being low, thus denoting a lack of

aggregate importance of top firms in the Spanish economy. Other empirical patterns

that reinforce the idea of the absence of high-growing firms are discussed in Appendix

A.2.

1.4 Conclusion

In this chapter, I perform a life-cycle study of firm-level productivity and factors

of production for Spanish firms. I take advantage of a rich panel data for Spanish

companies, containing information about financial variables at the firm level and

about the life cycle of small and young firms. First, I look into the possibility that

some firms in Spain have a high expected growth at birth. I use the methodology

proposed by Pugsley et al. (2021) to study the evolution of TFP over firm life,

which considers a productivity process with a life-cycle component embedding het-

erogeneity in expected growth rates at birth. I find that explicitly accounting for the

idea that some firms may be determined to grow strongly at birth helps to better

capture the micro evidence on firm-level TFP. Second, I look into the evolution of

TFP, employment and capital to reach a conclusion on how well factor inputs are

allocated throughout the firm life cycle. By looking at the dynamic moments of

consider the non-permanent sample (containing stayers and exiters; see Appendix A.2), as well as

if we consider a permanent sample using an alternative definition of age based on employment

(see footnote 4).
15To the best of my knowledge, there is no study that allows me to benchmark this number.

Indeed, Pugsley et al. (2021) do not report this moment for their US sample. In addition, they

claim that their structural model is unable to match well the right tail of the employment

distribution by age.
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input data (namely, empirical autocorrelations by age), I find supportive evidence

that the allocation of inputs to Spanish firms is affected by firm-level frictions.

The documented patterns on autocorrelations of inputs by age suggest that there

are frictions affecting firm growth in Spain. Yet, it remains to study how these

distortions affect firms with a high growth potential, and how this translates into

aggregate outcomes. Chapter 2 addresses these issues by proposing a structural

model that explicitly accounts for firm-level borrowing constraints and considers a

productivity process that embeds the idea of high-growth-potential firms.
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A Appendix to Chapter 1

A.1 Dataset Construction and Data Cleaning

I build three datasets combining firm-level data from Central de Balances Integrada

(CBI) with investment deflators at the 2-digit industry level (NACE) for Spain from

EU-KLEMS. All these data correspond to the period 1997-2016. As mentioned in

the main text, I consider sectors from A to S, according to the 1-digit NACE classi-

fication, thus including range of activities including large sectors as manufacturing,

construction, commerce, hotel industry, but also agriculture and financial services.

I do not consider government firms. Before merging the data from CBI with cap-

ital deflators, it is necessary to realise that some firms may change their industry

indicators over time, which is problematic when it comes to controlling for industry

fixed effects. I assume that firms belong to the industry for which they have a larger

number of observations, according to their industry indicators from CBI. I also de-

fine an age variable as the difference between the current year and the year of legal

creation of the firm, which may be different from the first year the firm reports its

information to the Commercial Registry, and also from the first year in which the

firm has a positive value for logged employment.

The datasets I construct are an aggregate dataset (considers all cohorts), a non-

permanent dataset (firms born in period 1997-2006 with information at age 0), and

a permanent dataset (firms born in period 1997-2006 with information at age 0 that

have not exited before or at age 10). The main text utilises the permanent sample,

thus focusing on stayers, and I leave the non-permanent dataset for robustness

checks. I require that firms have reported their information at the period of legal

birth (which I define as age 0), so that we are able to track Spanish firms from

their first years of activity. In an unreported exercise, I consider an alternative

definition of age which is in line with that in Pugsley et al. (2021), as mentioned in

footnote 4. In that check, I define firm birth as the first period reported by a firm

in which a firm’s yearly average number of employees is greater than one. Under

this alternative age definition, my permanent sample contains a greater number of

firms of observations, and the empirical life-cycle patterns discussed in the main text

remain qualitatively similar.

The data cleaning process departs from an initial dataset that has 16,124,897

firm-year observations. In order to get the permanent sample in the main text, as

well as the non-permanent sample used for robustness checks in section A.2, I follow

these steps:

1. I drop firm-year observations that belong to government firms, in order to

focus on the private sector. I drop 19,312 observations in this step.

2. I drop firms that have had an invalid zip code at some point in time. I drop
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firms that have had an invalid age at some point in time. I drop 185,008

observations in this step.

3. I drop firm-year observations with a missing or zero value for value added

(revenue minus the cost of materials), long-term assets, wage bill and average

number of employees. I drop 6,302,875 observations in this step.

4. I drop firms that have had a value lower than 1 for gross value added (revenue

minus the cost of materials), capital, wage bill, or average number of employees

at some point in time. I drop 4,379,898 observations in this step.

5. I drop firm-year observations with a value added below 1 (1,000 euros) or above

10,000,000 (10 billion euros), or with a wage bill below 1 (1,000 euros), or with

an average number of employees above 1 million. Besides, for observations

with a value added above 25,000 (25 million euros), I also require that the

consistency requirements in accounting and units of measure established by

Central de Balances are satisfied16, since observations with an extreme value

of value added are suspicious of being misreported. I drop 8,176 observations

in this step.

6. I drop firm-year observations that have an average number of employees larger

or equal than 3000 and do not satisfy the staff coherence requirement of Central

de Balances. I drop 693 observations in this step.

7. I drop firm-year observations that have a zero or a missing value for deprecia-

tion or long-term liabilities; and missing values of taxes over profits, short-term

assets, and liquid assets. Then, I drop firm-year observations that are below

the 1 percentile or above the 99 percentile of the distribution of the following

variables: ratio of wage bill to value added, depreciation, taxes over profits,

long-term liabilities, and liquid assets. I drop observations with a ratio of liq-

uid assets over total assets greater than 1.1. I drop 544,137 observations in

this step.

8. I drop firms which have some observations with very low values for certain

variables while having very high values for different, yet related variables.

Specifically, firms that have observations below the 1 percentile of the distri-

bution of value added, long-term assets, wage bill or the average number of

employees, and at the same time, above the 99 percentile of the distribution

of any other of these variables. I drop 1,939 observations in this step.

16In a robustness exercise, I build the aggregate dataset by just considering firm-year

observations that satisfy the Central de Balances’ consistency and staff coherence criteria,

without further cleaning apart from the non-negativity and non-missing-values steps. Results are

similar to those in the main text.
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9. I drop firm-year observations whose level of total nominal assets is above 12,500

(12,500,000 euros) and that do not satisfy the Central de Balances consistency

criterion. I drop 4,695 observations in this step.

10. Drop outliers for financial variables: firm-year observations below the 1 per-

centile or above the 99 percentile of the distribution of: debt over assets, liquid

assets over assets, cash-flow over assets, and real investment. Drop firm-year

observations with an investment rate above 10. I drop 126,172 observations in

this step.

11. Once productivity and marginal revenue products have been calculated, I drop

firms that have been at some point in time above the 99.5 percentile or below

the 0.5 percentile of the distribution of physical productivity (A), revenue pro-

ductivity (TFPR), marginal revenue product of capital (MRPK), or marginal

revenue product of labour (MRPL). I also drop observations corresponding

to a negative value of logged physical productivity A. Finally, to clean some

weird observations in the initial reports, I eliminate observations at age 0 for

which physical productivity is below (above) the 97.5 (2.5) percentile within

that age group. I drop 471,865 observations in these steps. After these previous

cleaning steps, we obtain the aggregate dataset (4,080,065 observations).

12. Departing from the aggregate dataset, I drop firms that were not born in

between 1997 and 2006, both years included in this period (2,512,650 obser-

vations), and those firms that do not have financial information at period 0

(1,245,137 observations). I drop 3,757,787 observations in this step. I eventu-

ally obtain the non-permanent dataset (322,278 observations).

13. Departing from the non-permanent dataset, I drop firms whose last financial

report belongs to an age smaller than 10. I drop 98,130 observations in this

step. I obtain the permanent dataset (224,148 observations).

A.2 Alternative Samples

Throughout the main text, the permanent sample is used to discuss empirical pat-

terns and to get estimation results. This Appendix has two objectives. First, I

show that the main empirical patterns and estimation results of the chapter remain

similar when we consider the non-permanent sample instead of the permanent one.

Second, I discuss differing empirical patterns between the permanent and the non-

permanent samples that reinforce the idea that Spanish young firms, particularly

most productive ones, face difficulties to grow.
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Robustness Checks Using the Non-Permanent Sample

It may well be argued that our permanent sample is not representative of the pop-

ulation of Spanish firms, for it does not consider exiting firms during the first ten

years of firm life. Indeed, non-exiters may be firms with somewhat special char-

acteristics relative to the whole population - particularly, a larger size in terms of

employment. I consider the non-permanent dataset as described in section 1.2. This

dataset includes not only firms that have been documented to still exist after ten

periods of life, but also those firms that have exited before age 10. Thus, the number

of observations increases from 224,148 in the permanent sample to 322,278 in the

non-permanent sample (the number of firms increases from 18,065 to 47,430). The

object of this section is to analyse the non-permanent sample to address whether

this is a concern for the empirical life-cycle patterns discussed in the main text,

namely mean employment by age, standard deviations of logged employment and

TFP by age, and the estimated process for firm-level productivity.

Mean employment and standard deviations by age. As suspected, it can be

shown that firms in the permanent sample are larger over the life cycle than firms in

the non-permanent sample in terms of the average employment by age. Figure 1.5

compares the average employment by age of the permanent and the non-permanent

samples for Spain. Even though firms in the non-permanent sample are smaller, on

average, than those from the sample in the main text, the key motivating pattern of

the chapter remains: Spanish firms typically display low growth over their life cycle

in terms of employment. This fact holds regardless of whether we consider exiters

or stayers in our sample, as the slopes of the average employment profiles of the two

samples show.

As for the pattern of the standard deviation of logged employment by age, Figure

1.6(a) shows that the empirical pattern in Figure 1.3(b) is still present if I consider

a larger sample of firms that are smaller in size, on average. In particular, the cross-

sectional deviation of logged employment is slightly increasing in age. Figure 1.6(b)

represents the coefficient of variation for logged employment and TFP by age for

both the permanent and the non-permanent sample. Thus, even if we consider the

non-permanent sample, which aims to be more representative of the population of

Spanish firms by including exiters and a larger number of small firms, firm hetero-

geneity in logged employment and TFP over the life cycle does not differ much from

that discussed in the main text.
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Figure 1.5 Life-cycle average employment: permanent vs. non-permanent sample

Figure 1.6 Life-cycle firm heterogeneity: permanent vs. non-permanent sample

(a) Standard deviation by age (b) Coefficient of variation by age
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Table 1.2 Estimated process for logged productivity, Spain (non-permanent sample)

Estimated process ρu ρw σθ σu σε RMSE

GP process 0.482 0.577 0.326 1.636 0.508 0.032

(0.0076) (0.0044) (0.0044) (0.0297) (0.0009)

AR(1) process - 0.832 - - 0.537 0.003

(0.0014) (0.0015)

AR(1) + fixed - 0.606 0.566 - 0.553 0.067

effect process (0.0037) (0.0029) (0.0012)

Notes: the first row shows parameter estimates for the GP process for logged productivity

log(Aia) = uia+wia. The second and third rows show nested special cases of the baseline process,

namely a plain AR(1) process (that is, log(Aia) = wia), and an AR(1) process where firms draw a

fixed effect θ when born (that is, log(Aia) = wia+ θi). The three estimations have been performed

using autocovariances of logged firm-level TFP by age calculated from the non-permanent sample.

The standard errors of parameter estimates are in parentheses, and are small due to the very large

sample size. Standard errors are calculated using a parametric bootstrap procedure with 1000

replications.

Process for firm-level productivity. In the main text, I have estimated the

statistical process for firm-level productivity in equation (1.3.1) by using firm-level

TFP data that was pinned down using the permanent sample. In this section, I use

the non-permanent sample to estimate the GP process, as well as the simple AR(1)

process and a process containing an AR(1) component and a firm-level fixed effect.

Table 1.2 shows estimated parameters and standard errors for these processes using

the non-permanent sample.

As we can see, when compared to results in Table 1.1, estimated parameters

for the GP process only change slightly with respect to those in the main text.

In particular, parameters governing the u component are all statistically significant,

which indicates the presence of ex-ante firm heterogeneity as the one described by the

initial-condition-plus-steady-state structure of the GP process. In addition, while

the estimated cross-sectional variance of long-run steady states – that is, σ2
θ/(1 −

ρu)
2, was equal to 0.263 for the permanent sample, it is equal to 0.396 for the

non-permanent sample. This reinforces the main empirical finding regarding firm

heterogeneity in the main text: the non-permanent sample confirms that Spanish

firms are heterogeneous in their expected productivity growth rates. Regarding

other estimated statistical processes for firm-level productivity, namely the plain

AR(1) and the AR(1)-plus-fixed-effect processes, estimation results are robust to

using the permanent and the non-permanent sample.

Empirical autocorrelations by age. A key object of the discussion in the main

text is the empirical autocorrelation by age of several variables – namely, logged em-
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ployment, capital, and TFP. It is of particular interest to check that the distinctive

features of the permanent sample that inspired the calibration of the firm-dynamics

model in section 2.2 in Chapter 2 are also present if we consider exiters – that is,

the non-permanent sample.

Figure 1.7 compares the empirical autocorrelations by age of the variables of

interest across the permanent and the non-permanent sample. In particular, for

clearness, I show autocorrelation curves for age 0 and age 4 (at is was done in Figure

1.2(b) in the main text). I find that, for these two ages, the autocorrelation curves

of the three logged variables (TFP, employment, and capital) calculated using the

non-permanent sample look very similar to those in the main text, which correspond

to the permanent sample. Thus, the fact that we are considering a sample with

exiters does not make a great difference in empirical autocorrelation structures –

particularly in empirical autocorrelations of factors of production at age 0, which

are our targets in the model calibration in section 2.2.3 in Chapter 2.

Figure 1.8 shows the complete map of autocorrelations (that is, for several age

pairs (t, s) corresponding to young firms) for logged employment, logged capital and

logged TFP. It compares empirical autocorrelations from the permanent sample

with those from the non-permanent sample. As we can see, there is not a very

large difference between empirical autocorrelations by age between the two samples.

Interestingly, autocorrelations by age of the three logged variables are slightly smaller

for the non-permanent sample. This is due to the fact that, although empirical

autocovariances by age (the numerator of the autocorrelation expression) are larger

for the sample of exiters, the fact that the non-permanent sample contains more

firms increases its cross-sectional standard deviation by age (the denominator of

the autocorrelation expression) in the three variables considered (see, for instance,

Figure 1.6(a) for the case of logged employment). As a result, there is a small

divergence between the two samples in terms of empirical autocorrelations.
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Figure 1.7 Autocorrelations by age: permanent vs. non-permanent sample

(a) Permanent sample (b) Non-permanent sample

Notes: subfigure (a) shows the autocorrelations for logged TFP, employment and capital for differ-

ent pairs of ages (t, s) from the permanent sample of Spanish firms. Subfigure (b) shows the same

object from the non-permanent sample of Spanish firms. In both subfigures, the x-axis represents

age t, and each line in the graph corresponds to another age s, either age 0 or age 4.
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Figure 1.8 Autocorrelation structures by age: permanent vs. non-permanent

(a) Logged TFP (b) Logged employment

(c) Logged capital (d) All, permanent

(e) All, non-permanent

Notes: subfigures represent autocorrelations by age for logged TFP, employment and capital, for

different age pairs (t, s). The x-axis represents age t, and each line in the graphs corresponds to

another age s such that 0 ≤ s ≤ t. Moments are calculated using the permanent sample of Spanish

firms.
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Empirical Patterns Differing Across Permanent and Non-Permanent Sam-

ples

As shown in Appendix A.2, although the main empirical patterns of interest are

similar if we consider the permanent and the non-permanent samples, there are

some differences across the two datasets, which come from the fact that some firms

are exiting the non-permanent sample at some point between age 0 and age 10.

However, as I briefly argue here, these differences reinforce the main hypothesis of

this chapter: young Spanish firms seem to face difficulties to grow and get financing.

Indeed, these difficulties mitigate the aggregate role of high-growth-potential firms.

In particular, the non-permanent sample provides suggestive evidence for the average

revenue product of capital (ARPK) by age, and the exit rate by age.

Figure 1.9 Firm exit rate by age: Spain vs. US

Exit rates by age. First of all, the permanent sample remains silent about the

firm exit rate by age, by construction. From the non-permanent sample, we are able

to pin down the number of firms that exit every period. I compute the exit rate of

and age s as the ratio of firms that exit at age s, (i.e. firms whose last observation

takes place at age s − 1) over the total number of firms alive at age s. In Figure

1.9, I compare the exit rate by age of Spanish firms in the non-permanent sample

with the exit rate of US firms, taken from the unbalanced sample in Pugsley et al.

(2021). As we can see from the graph, the exit rate by age of Spanish firms is

substantially high over the first 5 years of activity. For age 1, the exit rate is about

28%. For ages 2 to 10, the exit rate ranks between about 16% and 8% and shows
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a decreasing pattern with firm age. The exit rate profile is steeper than that of US

firms, particularly at young ages. This is indicative of a lot of firm exit taking place

in the youngest ages in Spain. Although not discussed in the main text, this might

relate to firm-level frictions preventing firms not only from growing, but also from

surviving in the market.

Figure 1.10 Mean ARPK by age: permanent vs. non-permanent sample

Mean ARPK by age. The permanent and the non-permanent samples are differ-

ent in the mean average revenue product of capital (ARPK) by age of firms therein.

Figure 1.10 represents that object over the life cycle, for the permanent and the

non-permanent samples. On average, firms in the non-permanent sample display a

noticeably greater ARPK than their permanent-sample counterparts over the first

5 years of activity. After that age, mean average revenue products of capital tend

to slightly equalise across the two samples, but mean ARPK remains higher for

the sample that considers exiters. The average revenue product of capital, which

is defined as the nominal product of the firm divided by its stock of real capital, is

often considered as an indirect measure of the intensity of firm-level financial fric-

tions that prevent firms from achieving their optimal level of capital. Thus, a higher

mean ARPK of exiters could potentially be interpreted as high-productivity firms

facing problems in order to fulfill their desired investments and exiting the market

when they are young, thus reflecting difficulties of some productive firms to grow

and remain active.
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Table 1.3 Estimated process for logged employment, Spain and United States

Estimated process ρu ρw σθ σu σε RMSE

SP, GP process 0.165 0.846 0.491 3.139 0.318 0.019

(0.0124) (0.0050) (0.0063) (0.2316) (0.0017)

US, GP process 0.119 0.934 0.646 5.604 0.300 0.038

(0.0015) (0.0003) (0.0011) (0.0701) (0.0003)

Notes: the graph shows parameters estimates for the GP process for logged employment ℓia =

uia + wia for Spain and the United States. The first row corresponds to estimates for Spain

(SP), using autocovariances of logged employment by age calculated from the permanent sample

for Spain. The second row corresponds to estimates for the United States (US), using the same

empirical moments from the balanced sample in Pugsley et al. (2021). The standard errors of

parameter estimates are in parentheses, and are small due to the very large sample size. Standard

errors are calculated using a parametric bootstrap procedure with 1000 replications.

A.3 Statistical Process and Autocorrelations

A Process for Firm-Level Employment

Estimated process. I consider the GP process in equation (1.3.1) for ℓia, where

ℓia is the logarithm of employment, instead of logged productivity. I estimate the

process using employment data. Results from estimation are shown in the first

row of Table 1.3. The second row shows estimated parameters from estimation

using the corresponding moments for the balanced sample of US firms in Pugsley

et al. (2021), in order to benchmark the results for Spain. Regarding the ex-post

component, the estimated ρw is smaller in Spain than in the United States, which

translates into a lower variance of the w component, according to equation (1.3.2).

As for the u component, Spanish firms display a lower dispersion in long-run steady

states than US firms. Although the estimated ρu is slightly higher for Spain than

for the United States (which indicates slower convergence to firm-level steady states

in terms of employment), a lower estimate of σθ results in the dispersion of ui,∞
being noticeable smaller in the Spanish case. Specifically, while the cross-sectional

dispersion of steady states
σ2
θ

(1−ρu)2 equals 0.538 for the United States, it is only 0.346

for Spanish firms, indicating that there are less Spanish firms with extreme values for

their long-run steady states. This is evocative of the existence of distinct patterns

regarding heterogeneity in expected growth rates between Spain and the United

States, and may indicate a lower presence of high-growth-potential firms in Spain.

I want to study whether lower heterogeneity in ex-ante components translates

into a lower employment dispersion over the life cycle for Spain. To do this, I

calculate the fraction of the variance of logged employment over the life cycle that

is accounted by the ex-ante term u. I find that ex-ante components account for a
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considerable amount of the life-cycle employment dispersion, and thus contribute

to explaining the low employment heterogeneity over the life cycle in Spain. If

we consider US moments, the variance of the u component can explain 49.85% of

the empirical variance for US firms at age 10. In Spain, it explains 46.39% of the

dispersion of logged employment ten years after birth17. Apart from the variance

of long-run steady-states being lower in Spain, a lower estimate of ρw decreases the

variance of ex-post shocks, which is also bringing down life-cycle dispersion.

Ex-ante heterogeneity and firm size. Long-run employment steady states dis-

play a noticeably low dispersion in Spain. We may wonder to which extent this is

reflecting in life-cycle employment patterns as we let firms age and grow, with an

eye on firms that are on the top of the employment distribution by age. To study

this, I simulate 1,000,000 paths for ℓia given the estimated parameters for Spain and

for the US, in Table 1.3. I use simulated data to compute (i) the fraction of employ-

ment by age accounted for firms that are above the 95th quantile of the employment

distribution at age 15; and (ii) the slope of the average employment by age curve18.

The first of these moments gives us an idea on the existence of firms that have a

large size after several periods of activity and account for a considerable fraction of

employment within their age group once they are older. The second is motivated

by the different slopes for Spain and the United States in Figure 1.3(a). I want to

study whether these two objects are sensitive to changes in parameters determining

long-run steady-state heterogeneity, namely ρu and σθ.

The simulated moments I obtain do not match those in the data, for they were

not targeted in the estimation. However, they are indicative of the effects of long-

run steady state heterogeneity, which is notably different under the SP and the US

parameterisations. First, regarding the simulated employment share of top 5% age-

15 firms, I find that these firms account for 20.99% of total employment at age 15

for the SP parameterisation, and for a 28.46% percent for the US estimates. These

differences suggest that the relevance of top firms for aggregate employment by age is

sensitive to parameters characterising the u component in (1.3.1). More specifically,

the lower variance of long-run steady states (represented by a lower σθ) is driving

this result19, indicating that a lower heterogeneity in long-term ex-ante components

has a negative effect on the size of top firms. Second, the slope of the simulated

average employment by age from ages 5 to 10 is lower if we consider the SP estimates.

As we see in Figure 1.11, although the empirical mean employment by age was not

17The numbers for the cross-sectional variance of long-run steady states and the importance of

the u component for explaining the empirical cross-sectional deviation of employment by age are

robust to the estimation of the u+ v + w + z process in Pugsley et al. (2021); see footnote 7.
18As mentioned in footnote 9, the average employment by age is not targeted in estimations, so

the focus is on how parameters, specifically σθ, affect the slope of this moment over the life cycle.
19If we perform comparative statics exercise with other parameters, such as σu and ρw,

changes in these parameters do not affect this simulated moment significantly. The same happens

if we consider the slope of the average employment by age.
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Figure 1.11 Simulated average employment by age, different parameterisations

targeted by the estimation in Table 1.3, the different estimations capture relatively

well the empirical fact in Figure 1.3(a) that the slope of the average employment by

age is steeper in the United States than in Spain from age 5 to age 10. Differences

in steady-state dispersions are reflected in the slope of the curve. This suggests that

a lower diversity in terms of expected growth rates translates into Spanish firms

displaying a less steep average size profile over their life cycle, all else equal.

To conclude, the estimation of the GP process using employment data from

Spain and the United States indicates that Spanish firms display relative low dis-

persion in terms of their employment long-run steady states. I find that a substantial

percentage of the variance of employment by age in Spain is explained by ex-ante

components, which contributes to a lower size diversity. Finally, I show that low

steady-state heterogeneity reduces the aggregate prominence of top firms, and ren-

ders the age profile of average employment less steep.
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Autocorrelation of Logged Employment and Alternative Processes

Figure 1.12 Productivity processes and employment autocorrelations by age

(a) Empirical employment autocorrelation (b) log(Lia) = wia

(c) log(Lia) = wia + θi (d) log(Lia) = uia + wia

Notes: subfigure (a) shows the empirical autocorrelation of the logarithm of employment by age,

using the permanent sample. The x axis represents autocorrelation, the y axis represents age, and

each line represents a fixed age. Therefore, every point in the graph is an age pair. Subfigures

(b), (c) and (d) compare the empirical autocorrelation to different models: an AR(1) process, an

AR(1) process with fixed effects, and the GP process in the first row of Table 1.3, respectively.

Frictionless Setting and Autocorrelation Structures

In section 1.3.2, I use the fact that a frictionless model of the firm generates auto-

correlation structures by age for logged productivity, employment and capital that

are equal for the three variables, for every age pair. That is, ρÂt,Âs
= ρL̂t,K̂s

= ρK̂t,K̂s

for every pair of ages (t, s)20. This appendix proves this sentence. I explicitly de-

20Although I use letter A, I am referring to firm-level TFP when I talk about the data or

simulations using the frictionless model. However, it turns out that if I simulate frictionless Lt

and Kt series given a process for productivity At and I use equation (1.2.1) and the simulated
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scribe a frictionless and stationary model of the firm and argue that, under such

a setting, no differences could arise in autocorrelation structures across the three

variables of interest. Within this framework, the problem of the firm is dynamic,

as it will become apparent, although it can be shown to be equivalent (in terms of

first-order conditions) to a simple static model. This frictionless setting also serves

as an undistorted reference for the more elaborated theoretical framework in section

2.2 in Chapter 2.

The environment is as follows. There is a discrete-time economy inhabited by just

one firm (for illustration purposes) that lives for infinite periods. In every period

t, the firm owns a stock of capital Kt−1 brought from previous period, it takes

its idiosyncratic productivity At as given and, after observing it, chooses how much

labour Lt to hire and how much investment good It to buy in order to produce output

Yt. I assume a Cobb-Douglas production function of the form Yt = AtK
α
t L

1−α
t ,

where α ∈ (0, 1) and At is firm-level productivity, and a demand function for the

good produced by the firm Yt = P−σ
t , where σ > 0 and Pt is the price of the final

good. These two assumptions on production and demand yield the revenue function

PtYt = AγtK
η
t L

ξ
t , where γ = 1 − 1

σ
, η = α(1 − 1

σ
) and ξ = (1 − α)(1 − 1

σ
), also

present in the structural model of section 2.2 in Chapter 2. The problem of the firm

is dynamic, in that capital Kt is owned, and not rented, by the firm. The law of

motion of capital is standard: Kt = It + (1 − δ)Kt−1, where δ is the depreciation

rate. Notice the timing assumption that the firm enters period t with stock Kt−1

and chooses It and Kt once the value for At is known, and Kt becomes productive

immediately21. Input prices are exogenous to the firm and are constant over time.

In particular, the price of hiring labour at every period t is ω, and the price of the

investment good is pI (which I set to one in the main text, thus considering a one-

sector model). I also assume that the firm discounts period payoffs at an exogenous

rate r. Productivity At evolves according to an exogenous idiosyncratic process.

In this section, I consider a productivity process of the same form in (1.3.1), with

a = t. This implies, similarly to the statistical model, that the firm draws θ and

u−1 at birth from independent normal distributions, and has a long-run steady-state

productivity level θ
1−ρu . Importantly, in this simple model, the firm faces no friction

whatsoever. Let us consider Ât = log(At), L̂t = log(Lt) and K̂t = log(Kt). I will

show that, in this setting, it must be the case that the autocorrelation between

data, the simulated measure of TFP coincides with firm-level productivity At.
21A different assumption would be to consider a one-period lag for capital to become

productive (time-to-build in capital). I do not make such an assumption for simplicity, in part.

But, more importantly, it has been argued that this time-to-build feature is a source of marginal

revenue product of capital dispersion, since the firm is making a decision under uncertainty that

may not be ex-post optimal. Thus, time-to-build in capital can be seen as a form of capital

adjustment friction (see Gopinath et al. (2017) and Asker et al. (2014)). As a matter of fact, the

time-to-build assumption affects the expressions of firm first-order conditions, thus rendering

autocorrelations of logged productivity, labour and capital different across the three variables,

even in the absence of distortions other than the productive lag of capital.
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logged employment, logged productivity and logged capital for any age pair (t, s)

is the same for the three variables, ρÂt,Âs
= ρL̂t,K̂s

= ρK̂t,K̂s
for every (t, s). The

problem of the firm, expressed in standard dynamic programming notation22, is:

V (K−1, θ, u, w) = max
L,K

{︃
AγKηLξ − ωL− pI

(︁
K − (1− δ)K−1

)︁
+

1

1 + r
Et[V (K, θ, u′, w′)]

}︃

s.t. log(A) = u+ w

Developing first-order conditions and defining rK := pI
(︁
1 − 1

1+r
(1 − δ)

)︁
, I find the

following relationships between productivity, employment and capital:

Lt =
rK
ω

ξ

η
Kt =⇒ L̂t = log

(︃
rK
ω

ξ

η

)︃
+ K̂t

and

Kt =

[︃(︁ ξ
ω

)︁ξ(︁ η
rK

)︁1−ξ]︃ 1
1−ξ−η

A
γ

1−ξ−η

t =⇒ K̂t =
1

1− ξ − η
log

(︃(︁ ξ
ω

)︁ξ(︁ η
rK

)︁1−ξ)︃
+

γ

1− ξ − η
Ât

It can be easily shown that the first-order conditions of this dynamic problem

are equivalent to the first-order conditions of a static problem where the firm rents

capital, instead of owning it, thus yielding the same result in terms of allocations

and autocorrelation structures. Therefore, instead of solving a dynamic problem

numerically, I can solve a simple static problem, so that the size of the state space

is not an issue, as far as no firm-level frictions are considered.

What we learn from first-order conditions is that this frictionless model of the

firm yields linear relationships between the logarithm of At, Lt and Kt, so that Ât,

L̂t and K̂t are perfectly (contemporaneously) correlated. Since this is the case, then

it is easy to check that their autocorrelations by age, ρÂt,Âs
, ρL̂t,L̂s

and ρK̂t,K̂s
are

all equal, given age pair (t, s).

22i.e. K−1 stands for Kt−1, K stands for Kt, K
′ stands for Kt+1, etc.





Chapter 2

Factor Misallocation and

High-Growth Firms in Spain

2.1 Introduction

From the empirical analysis in Chapter 1, we arrive at two results. First, there are

some firms in Spain that are expected to display high growth at the moment of

birth. Second, the allocation of factor inputs to young Spanish firms is affected by

firm-level frictions. The objective of this chapter is to study how high-growth firms

and distortions interact – i.e. whether Spanish high-growth firms are prevented from

growing due to the existence of borrowing constraints, and how this translates into

aggregate total factor productivity and output.

Motivated by firm-level findings in Chapter 1, a structural model of the firm

is developed. I model a stationary economy in which firms are born, produce,

and exit over the life cycle. Importantly, there exist firm-level frictions affecting

labour and capital choices of firms. Specifically, I consider convex adjustment costs

in capital and a collateral constraint limiting capital and labour (thus serving as

a working-capital constraint) allocations. Within this framework, I consider two

alternative firm-level productivity processes. The first process explicitly accounts

for heterogeneity in expected productivity growth rates across firms (thus allowing

for high-growth-potential firms); the second process is a standard process from the

firm dynamics literature without this margin of heterogeneity. I calibrate the struc-

tural model for each of these alternative processes, to match empirical firm-life-cycle

moments documented in Chapter 1. The model embedding the first productivity

process matches satisfactorily the empirical autocorrelations of logged TFP, employ-

ment and capital, and captures the life-cycle profile of average employment by age.

The model with the more standard process is worse at capturing these empirical

dynamic moments.

I use the two calibrated models to perform quantitative experiments. I find

35
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that, in the economy with heterogeneity in expected growth rates, a 1.11% of firms

are classified as high-growth-potential firms. Although this is a small fraction of

firms, it accounts for a 3.30% of aggregate TFP and a 7.15% of aggregate output.

Nevertheless, only 36.63% of these firms are effectively growing, which indicates

that they are affected by frictions. If I eliminate borrowing constraints, there are

substantial increases in aggregate TFP (a 20.52% increase), output (22.96%), and

the number of effectively high-growing firms. In addition, a 76.20% of high-growth-

potential firms realise enough growth, and this group of firms increases its aggregate

relevance to 4.30% of TFP and 10.59% of output. The working-capital constraint

in the model is an important feature that helps to generate large aggregate results.

In the economy with a more standard productivity process, however, there are no

high-growth-potential firms, and large and high-growing firms are less in number

and aggregate importance. Eliminating the friction in this economy generates lower

gains in aggregate TFP (14.07%) and output (13.59%) than in the economy with

growth-potential heterogeneity. Therefore, using a model that omits this source of

heterogeneity would lead us to underestimate the aggregate productivity and output

gains from removing financial frictions.

Quantitative exercises show that explicitly accounting for life-cycle features in

the productivity process (namely, differences in expected growth rates) altogether

with frictions is important not only for capturing empirical firm-level moments, but

it also has sizable aggregate implications. If some firms slowly transition to a high

productivity level as they age, they start their life earning low profits and performing

low investments. After some years, these firms attain their long-run potential, but

they are still harmed by borrowing constraints and are inefficiently small. The

elimination of financial frictions strongly benefits this group of firms and generates

substantial aggregate gains.

Literature review. This chapter relates to the economics literature in several

ways. First, it is related to the literature on firm dynamics and individual hetero-

geneity (Pugsley et al., 2021; Haltiwanger et al., 2013; Hsieh and Klenow, 2014;

Moll, 2014; Buera and Shin, 2011; Guvenen, 2007). The main reference is Pugsley

et al. (2021). Similarly to Chapter 1, I consider here a firm-level productivity pro-

cess in the spirit of the employment process in the empirical part of Pugsley et al.

(2021). However, our structural models differ. The authors rely in a frictionless

theoretical framework, and find that a small fraction of firms that have a high ex-

pected growth rate represents an important share of average employment by age and

aggregate output1. My contribution to their work is to study how life-cycle com-

ponents in the firm productivity process interact with explicitly modelled frictions

1More specifically, they find that a 5.4% of US firms, which they call gazelles, account for

about 25% of average employment by age 19 years after birth. Moreover, they show that a small

decline in the fraction of gazelles that happened in time (from 6.4% in the 1979-1985 period to

5.3% in the 1986-1993. period) has translated into a 4.85% fall in aggregate output.
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to capture firm-level moments in the data and generate aggregate effects. Buera

and Shin (2011) and Moll (2014) develop theoretical models in which heterogeneous

firms face collateral constraints. In these works, a standard firm-level productivity

process with persistent shocks is considered. They show that if productivity shocks

are highly persistent, as it is often the case in the literature, aggregate productivity

losses from financial frictions in steady state are small. I contribute to these works

by showing that explicitly accounting for life-cycle components in the productivity

process (which are in turn informed from the firm life-cycle evidence), in addition

to ex-post shocks, allows to generate large steady-state aggregate effects of financial

frictions.

Second, this chapter is tightly related to the capital misallocation literature in

Spain using firm micro-level data. Following the tradition initiated by Restuccia

and Rogerson (2008) and Hsieh and Klenow (2009), several authors have studied

the role of a bad allocation of resources, particularly capital, and financial frictions

in Spain in recent decades (see, for example, Gopinath et al. (2017), Almunia et al.

(2018), Fu and Moral-Benito (2018), Garćıa-Santana et al. (2020) and Ruiz-Garćıa

(2021)). None of these papers consider the idea that firms may be heterogeneous

in their expected growth rates, and they do not study the aggregate importance of

high-growth-potential firms. I contribute to this literature by considering life-cycle

components in the productivity processes that explicitly allow for such phenomena,

and their aggregate effects when interacted with financial frictions.

Layout. This chapter is structured as follows: in section 2.2, I develop a structural

model of the firm with frictions and a firm-level productivity process, and I calibrate

two alternative models to the Spanish data. In section 2.3, I use calibrated models

to perform quantitative experiments and I discuss results. In section 2.4, I conclude.

2.2 Structural Model

2.2.1 Firms

I consider a stationary small open economy with heterogeneous firms, exogenous

firm entry, and both exogenous and endogenous firm exit. Time is discrete and

infinite. Every period, a continuum of firms with mass 1 enters the economy and

starts producing. I call age t = 0 this initial productive stage in a firm’s life, and

entrants are called age-0 firms. After age 0, a firm may exit the economy or continue

its activity. I study firm decisions over the life cycle, and assume that labour supply

is fixed over time, L. At every period, firms are heterogeneous in their productivity

levels and in their capital stocks.

Technology. At every period, a firm i of age t that has not exited the economy
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produces a variety of the final good of which it is a monopolist, following Melitz

(2003). Production of firm i at age t is called Yit, and it requires using hired labour

Lit and capital Kit that is owned by the firm. Period payoffs are discounted at an

exogenously given discount rate r. Each firm i faces a downward-sloping demand

curve Yit = P−σ
it , where Pit is the price of the variety, and σ > 0 is the elasticity

of substitution between varieties. All varieties are produced according to a Cobb-

Douglas technology Yit = AitK
α
itL

1−α
it , where the capital share α is assumed to be

equal for all firms, and Ait is the productivity of firm i at age t. Consistent with the

TFP measure used in Chapter 1, I impose σ = 3.0 and α = 0.35. Given these as-

sumptions, we can express the revenue of firm i at age t as PitYit =
(︁
AitL

1−α
it Kα

it

)︁1− 1
σ .

I express the logarithm of Ait as a function log(Ait) = h(φit), where φit is a vector

of firm-level characteristics that are taken as given by the firm and vary over its life

cycle. Specifically, φit may include ex-post shocks to productivity and/or ex-ante

components, depending on the life-cycle productivity process assumed.

Capital accumulation. The capital stock of a firm evolves as it ages, starting

from an exogenous initial draw that varies across firms. When a firm is born, it

draws an initial capital stock Ki,−1 from a time-invariant distribution. Then, when

a firm starts producing at age 0, it uses the initial capital draw to produce, so

that Ki0 = Ki,−1 is exogenous. More specifically, I assume that Ki,−1 is drawn

from a bivariate log-normal distribution of initial capital and productivity. The

parameters characterising this exogenous distribution are chosen to match cross-

sectional variances and covariances of logged capital and logged TFP in the data for

age 0 – that is, σ2
K̂0

= 2.30, σ2
TFP0

ˆ = 1.01 and σ2
K̂0,TFP0

ˆ = −0.072. This allows initial

capital draws to replicate the data on capital at age zero well.

At ages greater than zero, capital stock follows a standard law of motion of the

form Kit = Iit − (1− δ)Ki,t−1, where Iit is the investment exerted at age t and δ is

the depreciation rate. Importantly, when a firm chooses to invest, it pays a convex

capital adjustment cost, which is assumed to take a standard quadratic specification

in investment:

C(Ki,t−1, Kit) =
ψ

2

(︁
Kit − (1− δ)Ki,t−1

)︁2
Ki,t−1

where ψ > 0 parameterises the intensity of the convex adjustment cost. The

cost is paid in the period when the investment effort is exerted and when the new

capital becomes productive.

2I also discipline initial capital draws to capture the average level of capital at age 0 in the

data, which equals 115.6. Notice that the covariance between logged initial capital and logged

initial TFP in the data is very close to zero. Indeed, the correlation coefficient of these two

logged variables is −0.047 in the data, and 0.035 in levels. This justifies the adoption of the

exogenous initial capital draws assumption: should capital be optimally chosen at age t = 0, the

correlation between initial capital and initial TFP would be larger, contrary to the data.
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Markets of factors. At every period in time, capital is supplied inelastically in

the global capital market, and firms take the interest rate r as given. Regarding

labour, firms take the stationary price of labour ω as given, which is determined in

equilibrium to clear the labour market, given the fixed aggregate supply of labour.

Importantly, I assume that firms are subject to a borrowing constraint at the firm

level that works as a upper bound on investment and labour expenditures according

to:

λLωLit + Iit ≤ λKi,t−1 (2.2.1)

This borrowing constraint limiting investment follows closely Cooper and Ejarque

(2003) and it enables me to keep the state space of the firm problem small – in

particular, by not including debt. The upper bound λKi,t−1 is linear in the capital

owned by the firm at the beginning of age t, and it is parameterised by λ. If

λ = ∞, neither investment nor labour expenditures are restricted by the borrowing

constraint. On one side, a positive λ imposes a bound from above to investment,

and therefore functions as a restriction on (fixed) capital. On the other side, it limits

labour expenditures ωLit up to a fraction λL, and thus represents a working-capital

constraint, which is frequent in the business cycle literature (Jermann and Quadrini,

2008; Quadrini, 2011). It embeds the idea that firm access to current assets, or

working capital, is also limited to some extent, and that labour expenditures are

correlated to current assets. This positive correlation between labour expenditures

and current assets is indeed a feature of the Spanish sample: the unconditional

correlation between these two variables in the data is 0.57, and the correlation by

age between current assets and labour expenditures fluctuates between 0.50 and 0.59

over the first ten periods after firm birth. A positive λL generates a wedge in labour

that allows the model to better replicate empirical autocorrelations of employment

by age, while not increasing the computational burden. If we instead set λL = 0,

employment autocorrelations generated by the model are too low relative to those in

the data. In section 2.3.3, I study an alternative economy without working-capital

constraints.

Firm entry and exit. Entrants and incumbents coexist in the economy. Firm

entry is exogenous. There is a mass 1 of age-0 entrants that start producing ev-

ery period, given Ki0 and φi0. After age 0, firms may exit either exogenously or

endogenously. At the beginning of age t > 0, exogenous exit may happen with

probability ν ∈ (0, 1). If the firm does not exit exogenously at age t > 0, it may exit

endogenously and obtain a value of zero. Otherwise, if the firm decides to remain

in the market, it must pay a fixed operation cost fOP > 0. Then, the firm chooses

Pit, Yit, Iit, Kit and Lit to produce.

Firm problem. Let us adopt a dynamic programming notation and omit subscript
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i for exposition purposes. The problem faced by an entrant (i.e. an age-0 firm) is

that of choosing how much labour to hire in order to produce. Both K−1 and φ are

taken as given by the firm at entry. I assume that labour at age 0 is chosen opti-

mally. For simplicity, I assume that labour expenditures at age 0 are not restricted

by a borrowing constraint. This results in firm labour demand at age 0 being a

function of the level of the initial capital draw and productivity components at age

0, gL0 (K−1, φ).

Incumbent firms that have not exited exogenously (i.e. age-t firms, with t > 0)

enter age t with a firm-level state (K−1, φ). The age-t incumbent decides whether

to exit endogenously, thus having the following value:

V (K−1, φ) = max{0, V NE(K−1, φ)}

Upon not exiting, the optimisation problem of an incumbent with state (K−1, φ)

is:

V NE(K−1, φ) = max
L,K

{︃
AγLξKη −

(︁
K − (1− δ)K−1

)︁
− ωL− fOP

− ψ

2

(︁
K − (1− δ)K−1

)︁2
K−1

+
1

1 + r
(1− ν)E[V (K,φ′) | φ]

}︃
s.t. log(A) = h(φ),

λLωL+K ≤
(︁
λ+ (1− δ)

)︁
K−1

From the problem of the incumbent, we get an exit policy x(K−1, φ) ∈ {0, 1}
(where x = 1 if the firm decides to exit), and labour and capital policies, gL(K−1, φ)

and gK(K−1, φ).

Aggregation and market clearing. Let s = (K−1, φ) be the state of a firm

at a point of its life, and S be a set of possible values for s. Let Γt(S) be the

measure of age-t firms in S. At age 0, there is a mass 1 of firms that are distributed

across capital and productivity according to a distribution Γ0(S). This distribution

is exogenous, provided that firms draw initial capital and productivity components

from exogenous distributions. Total labour demand at age 0 is thus:

LD0 (ω) =

∫︂
s

gL0 (s;ω)dΓ0(s)

where I make explicit the dependence of individual labour demands on the equi-

librium price of labour, ω. At age 1, endogenous capital accumulation and the

exogenous evolution of the productivity vector (which depends on the specific pro-

cess we assume) give rise to a transition law for s. Thus, the measure of age-1 firms

in S satisfies:
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Γ1(S
′) =

∫︂
s

F (S ′ | s, gK , gx)[1− x(s)](1− δ)dΓ0(s)

where F (S ′ | s, gK , gx) is the transition law for the state vector; I make it

explicitly dependent on capital and exit policies. As a result, the measure of

age-1 firms in the economy is M1 =
∫︁
s
dΓ1(s), and their total labour supply is

LD1 (ω) =
∫︁
s
gL(s;ω)dΓ1(s). We can pin down the distribution of age-t firms for any

t, Γt(S), the mass of age-t firms in the economy Mt, and the total labour demand of

age-t firms LDt (ω). Summing age-t masses for all t gives us the (endogenous) mass

of firms in the stationary economy.

Labour market clearing implies that aggregate labour supply equals aggregate

labour demand, which is the sum of total labour demands of all cohorts of firms:

L =
∞∑︂
t=0

MtL
D
t (ω)

The stationary-equilibrium wage ω is then determined from this equation.

2.2.2 Productivity Processes

I consider two alternative productivity processes at the firm-level. These two pro-

cesses differ in the existence of ex-ante heterogeneity in expected growth rates. The

first process is the GP process in equation (1.3.1) in Chapter 1 (with a = t). The

GP process explicitly considers both ex-ante and ex-post heterogeneity in produc-

tivity growth rates. The life-cycle evolution of the ex-ante component u is known at

birth, while the ex-post w component is stochastic. Before production starts at age

0, each firm draws and observes a tuple (θi, ui,−1) that determines the evolution of

the ex-ante component towards a firm-specific long-run steady state. Under the GP

process, the vector of productivity components of firm i at age t is φit = (θi, uit, wit).

In section 1.3.1 of Chapter 1, I have shown that the GP process captures empirical

micro-level patterns of Spanish firms, namely life-cycle autocorrelations of logged

TFP, better than a more standard process that ignores firm heterogeneity in ex-

pected growth rates.

The second process for logged productivity does not consider ex-ante heterogene-

ity in expected growth rates, as it is standard in the firm dynamics literature. I call

it the NGP process (for no growth potentials). It reads:

log(Ait) = θi⏞⏟⏟⏞
ex-ante

+wit + zit⏞ ⏟⏟ ⏞
ex-post

(2.2.2)

where
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Table 2.1 GP and NGP processes for logged productivity, Spain

Estimated process ρu ρw σθ σu σε σz RMSE

GP process 0.208 0.782 0.406 3.864 0.411 - 0.038

(0.0085) (0.0055) (0.0059) (0.1583) (0.0021)

NGP process - 0.820 0.522 - 0.339 0.382 0.070

(0.0059) (0.0041) (0.0040) (0.0035)

Notes: the first row replicates parameter estimates for the GP specification of the process for logged

productivity log(Ait) = uit + wit, which was first shown in the first row of Table 1.1 in Chapter

1. The second row shows parameter estimates for the NGP specification in equation (2.2.2). The

standard errors of parameter estimates are in parentheses, and are small due to the very large

sample size. Standard errors are calculated using a parametric bootstrap procedure with 1000

replications.

θi ∼ N(µθ, σ
2
θ)

wit = ρwwi,t−1 + εit, wi,−1 = 0, εit ∼ N(0, σ2
ε)

zit ∼ N(0, σ2
z)

The NGP process has an ex-ante component that consists of a firm-specific fixed

effect θi drawn from a normal distribution previous to age 0. This fixed effect does

not display any transition towards a long-run steady state, since ρu = µu = σu = 0

and ui,−1 = 0, and remains constant over the firm life cycle3. Regarding the ex-

post component, the firm receives persistent AR(1) shocks and, additionally, an iid

shock zit every period. The presence of z is the only difference with respect to the

“AR(1)+fixed effect” process in the third row of Table 1.1 in Chapter 1, and it is

added here to compensate for excessive autocorrelations of logged TFP generated by

the “AR(1)+fixed effect” process (see Figure 1.1(c) in Chapter 1) and to improve the

match of empirical autocovariances. Under this process, the vector of productivity

components of firm i at age t is φit = (θi, wit, zit).

I estimate each of these two processes autonomously using empirical autocovari-

ances of logged TFP by age, as in section 1.3.1 of Chapter 1. The estimates for

the GP and the NGP processes are shown in Table 2.1. The first row of the table

replicates the “GP process” row in Table 1.1 in Chapter 1. The second row shows

estimates of (ρw, σθ, σε, σz) for the NGP process. As we can see, the match of empir-

ical autocorrelations is worse in terms of RMSE when we consider the NGP process

relative to the GP process4. Once productivity processes are estimated, I plug them

3In this setting, we can see θi as a firm-specific long-run steady state to which the firm

converges immediately at birth.
4Indeed, when we consider an AR+fixed-effects process without the iid shock z, the RMSE

equals 0.076, so this alternative process is similar to the AR+fixed-effects in the third row of

Table 1.1 in Chapter 1 in terms of goodness of fit. The most important difference with respect to

this process is that the estimate of ρw increases when we add an iid shock.
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Table 2.2 Calibration of structural model, different productivity processes

Parameter Definition GP economy NGP economy

Set a priori

r Discount rate 0.087 0.087

δ Depreciation rate 0.05 0.05

ν Probability of exogenous exit 0.10 0.10

ω Price of labour 1.0 1.0

σ Elasticity of substitution 3.0 3.0

α Production function 0.35 0.35

µw Ex-post component w, average 0.0 0.0

Set to target moments

ψ Convex capital adjustment cost 0.372 0.441

λ Upper bound in borrowing constraint 0.306 0.220

λL Working-capital constraint parameter 0.415 0.495

fOP Period fixed operation cost 0.820 0.939

µθ Ex-ante component θ, average 1.551 1.167

µu Ex-ante component u, average -1.522 –

ρu Ex-ante component u, persistence 0.208 –

ρw Ex-post component w, persistence 0.782 0.820

σθ Ex-ante component θ, variance 0.406 0.522

σu Ex-ante component u, variance 3.864 –

σε Ex-post component ε, variance 0.411 0.339

σz iid shock z, variance – 0.382

into the structural model, each in turn, and I calibrate the rest of parameters.

2.2.3 Calibration

This section discusses the calibration of the structural model considering each of the

two productivity processes in turn. Parameters for the GP and the NGP cases are

shown in Table 2.2. I discuss how each of the two calibrated models is capable of

replicating a set of relevant targeted and untargeted moments.

After having estimated the corresponding productivity process autonomously, as

described above, I calibrate parameters (ψ, λ, λL, µu, µθ, fOP ) to match the empir-

ical autocorrelations by age of logged employment and capital at age 0, as well as

the empirical average employment by age at age 0 (leaving the rest of the average

employment profile over the life cycle untargeted). All targets come from the perma-

nent sample. Specifically, my targeted autocorrelations are the three lines in Figure

1.2(b) in Chapter 1, corresponding to age s = 0, for they contain enough informa-

tion about how labour and capital behave over the firm life cycle. I assume that the

mean parameter of the AR(1) component of the productivity process, µw, is equal

to zero in both processes, following Pugsley et al. (2021). Regarding parameters set

a priori, they coincide in both models. I set the elasticity of substitution equal to 3.0
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Figure 2.1 Targeted moments: GP and NGP models

(a) Logged TFP (b) Logged employment (c) Logged capital

Notes: subfigures (a), (b) and (c) respectively show autocorrelations for logged TFP, employment

and capital for age 0. The x-axis represents age t, and lines in the graph correspond to another

age s = 0. Solid lines correspond to autocorrelations from the data. Dashed lines correspond to

autocorrelations for a simulated permanent sample using the GP model and parameter values in

Table 2.2, column “GP economy”. Dotted lines correspond to autocorrelations for a simulated

permanent sample using the NGP model and parameter values in Table 2.2, column “NGP econ-

omy”.

and the capital share in the production function equal to 0.35, following Gopinath

et al. (2017). The depreciation rate δ = 0.05 and the probability of exogenous exit

ν = 0.1 are standard in the firm dynamics literature. I assume an interest rate of

0.087. Finally, I normalise the aggregate supply of labour L in order to have a price

ω = 1 in equilibrium. Using parameters in Table 2.2, I solve the two models and

then I simulate 500,000 firms over 20 years in each setting.

Targeted moments. Let us first show how the GP model and the NGP model

behave in terms of replicating empirical autocorrelations of logged labour and capital

at age zero5. In Figure 2.1, I show autocorrelations of logged TFP, employment

and capital for age zero. Solid lines correspond to empirical autocorrelations from

the Spanish sample at age s = 0. Dashed and dotted lines correspond to simulated

5The discussion in section 1.3.1 and Figure 1.1 in Chapter 1 regarding the autocorrelation of

logged TFP generated also applies here, since parameters in the GP process were estimated

previously. Indeed, the estimated NGP process is inferior than the GP process in terms of

replicating the entire TFP autocorrelation map.
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autocorrelations using permanent samples of firms from the GP and the NGP model,

respectively. The properties imposed on the structural model, namely the value

of parameters (ψ, λ, λL, µθ, fOP ), affect the relative position and curvature of the

autocorrelation curves at age zero in both models. In particular, a higher λ, i.e a

less tight borrowing constraint, translates all else equal into a lower autocorrelation

of logged capital, but also reflects in a more attenuated manner (due to λL < 1) in

the autocorrelation of labour, which also becomes lower. A higher λL increases all

else equal the labour wedge, thus shifting the autocorrelation of logged employment

up6.

Both the GP and the NGP model are able to replicate reasonably well autocor-

relations for logged employment and capital in the data. The properties I impose

on the GP model (dashed lines) generate long-run autocorrelations (i.e. autocorre-

lations between age 0 and age 10) in line with those in the data, while the NGP

model (dotted lines) misses these long-run autocorrelations. The GP model cap-

tures well the slope of the solid blue line, corresponding to the autocorrelation of

capital, thus suggesting the appropriateness of considering both a financial friction

(parameterised by λ) an a convex capital adjustment cost (parameterised by ψ).

Indeed, a sufficiently large ψ = 0.372 and a sufficiently low λ = 0.306 are able to

shift the blue curve up, further enough from the TFP, black curve. However, in the

short term, it generates a too high autocorrelation of capital. Autocorrelation of

labour is well captured by the GP model, specially in the long run. The convex,

decreasing shape in the empirical curve is present in the simulated curve as well.

This is owing to the presence of a working-capital constraint: the positive value for

λL = 0.415 generates a sufficiently large autocorrelation of labour over the firm life

cycle, thus allowing for a good match of the data. Interestingly, in the long run, the

dashed red and blue lines are close to each other, in line with the data.

Regarding the NGP model, it also matches reasonably well targeted autocorrela-

tions. Differently from the GP model, it fails at capturing long-run autocorrelations

of logged TFP, employment and capital, but it does a better job in capturing short-

run autocorrelations. The worse match of long-run moments is due to the fixed-effect

nature of θ and the lack of flexibility of the NGP process. This idea also extends to

long-run autocorrelations of inputs, and to higher-ages autocorrelations7. In particu-

6These effects are similar if we consider higher-ages autocorrelations (i.e for ages s > 0),

which are untargeted in my calibrations. In Appendix A.1, I discuss how the GP and NGP model

capture higher-ages autocorrelations.
7Higher-ages autocorrelations (for ages s > 0) are untargeted in my calibrations. In Appendix

A.1, I discuss how the GP and the NGP models replicate them. As shown there, for ages higher

than age 0, the GP model replicates well the autocorrelations of logged TFP (as it was also

shown in Figure 1.1(d) in Chapter 1) and employment, but generates autocorrelations of capital

that are too high in comparison to the data. In spite of this, relative positions of the three curves

for these upper ages are preserved by the model. In the NGP model, higher-ages autocorrelations

are too low relative to the TFP and employment data, both for short and long lags, indicating

the lower ability of the NGP model to replicate these life-cycle objects.
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Figure 2.2 Average employment by age: GP and NGP models

Notes: the blue, solid line shows the empirical average employment by age for Spanish firms,

calculated using the permanent sample and yearly average number of employees in levels. I take out

industry and cohort fixed effects in order to examine an average industry and cohort in the economy.

The green, dashed line shows the average employment by age in a simulated permanent sample

using the GP model, given the baseline parameterisation in Table 2.2, column “GP economy”.

The yellow, dotted line shows the same simulated object using the NGP model with parameters

in Table 2.2, column “NGP economy” .

lar, it generates a long-run autocorrelation of logged employment that is higher than

that in the data, and a long-run autocorrelation of logged capital that is lower than

the empirical one. It is worth noting that, due to this, the NGP model generates

a sizable long-run difference between the red and blue dotted lines. This difference

between long-run autocorrelations of capital and employment is much smaller in the

data, as shown in Figure 1.2(b) in Chapter 1. Overall, both the GP and the NGP

model provide a good match of the empirical autocorrelation patterns, but the GP

model replicates better the long term and the NGP model is better at capturing

short-term trends.

Notice that, relative to the GP model, calibrated parameters (ψ, λ, λL, fOP ) in

Table 2.2 are larger in the NGP model. Given equation (2.2.2), a firm reaches its

steady-state level of productivity immediately at birth. Therefore, if these param-

eters had the same (lower) values as in the GP model, this would allow firms to

adjust production factors more strongly over their first years of life. As a result,

simulated autocorrelations of employment and capital would be lower than in the

data. Matching this piece of evidence using the NGP model thus requires that

friction parameters are larger relative to the GP model.
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Untargeted moments. In Figure 2.2, I show how the GP and the NGP models

behave in terms of untargeted moments – specifically, the average employment by

age over the life cycle for ages greater than zero, for a permanent sample of firms,

which is of particular interest to us. The GP model replicates well the empirical

concave shape of the curve for the Spanish sample, which is notably different from

the US pattern in Figure 1.3(a) in Chapter 1. Nevertheless, the NGP model is

not capable of capturing such an empirical feature. The average Spanish firm is

shrinking as it ages: average employment declines from 7.84 at age 0 to 3.75 at age

10, at odds with the data.

This declining average size profile is partially related to the high calibrated values

of parameters representing frictions, but it is the lack of expected growth that is key

in shaping the curve. Provided that the expected productivity growth rate at birth

is equal to zero for all firms, the average Spanish firm starts its activity with an

initial capital endowment that is too large. As a consequence, it is optimal for the

average firm to disinvest over time, so that the simulated average capital decreases

as firms age, and low capital accumulation renders Spanish firms small after some

periods8. To sum up, the GP model is superior to the NGP model in terms of

capturing relevant untargeted empirical moments of the firm life cycle.

The concave age profile for average employment in the data denotes that Spanish

firms have on average difficulties to grow strongly during their first years of life.

Indeed, the two calibrated models suggest that frictions faced by firms are playing a

role in determining average firm growth. In the next section, I perform quantitative

experiments to study how borrowing constraints affect the allocation of production

factors, and how they relate to this pattern of slow growth over the life cycle and to

the aggregate performance of the Spanish economy.

2.3 Quantitative Experiments

I use the calibrated GP and NGP models to assess how financial frictions interact

with the firm-level productivity process, how borrowing constraints deter Spanish

firms from growing over their life cycle, and the resulting effects on aggregate out-

put and total factor productivity. I pay particular attention to two subgroups of

firms, those that have a high expected productivity growth at birth and those that

effectively realise a high level of employment growth. As we shall see, the aggregate

importance of these firms is different in the GP and in the NGP model.

I start out by introducing two definitions of high-growth firms, an ex-ante def-

8Larger adjustment costs of factors also play a role here. However, quantitative analysis

shows that relaxing different firm-level frictions shifts the average employment by age curve up,

but does not revert its decreasing pattern as firms age.
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inition and an ex-post one9, that are then applied to simulated firms. First, let us

define ex-ante high-growth potential firms (labeled HGP). A firm is an HGP firm if

the average yearly growth rate of its deterministic component in the productivity

process in levels (that is, eu) is greater or equal than 20% over the first 5 years of

life, and if eu is greater or equal than a given level at some point in the first 5 periods

of life. Specifically, I require that u is greater or equal than two standard deviations

above the mean of firm-level long-run steady states in the cross-section of simulated

firms, so that eu ≥ eµθ/(1−ρu)+2σθ/(1−ρu), at some point during the first five years. I

thus restrict to firms whose expected productivity after some years of activity not

only has grown a lot, but also it ends up being very high. This definition follows

closely the ex-ante definition in Pugsley et al. (2021). Second, let us define ex-post,

effective high-growth firms (labeled EHG). A firm is an EHG firm if the average

yearly growth rate of firm-level employment L is greater or equal than 20% over the

first 5 years of life, and if L is greater than a given level (I consider L ≥ 25) at some

point in the first 5 periods of life. EHG firms are those who have effectively realised

high growth rates in terms of employment and ended up being sufficiently large.

It may be the case that firms labeled as HGP do not fit the definition of EHG, and

vice versa. For example, we can imagine a firm that is not an HGP firm but received

good realisations of the ex-post productivity shock w over its first years of life, so it

ended up displaying effective growth and fitting the EHG definition. Similarly, a firm

that is ex-ante categorised as HGP may be prevented from realising its growth due

to a very stringent borrowing constraint. The share of EHG firms among the group

of HGP firms provides information on the extent to which high-growth-potential

firms are deterred from effectively growing in the Spanish economy.

9I also consider, as robustness checks, definitions such as “a firm is an EHG (or an HGP) firm

if it multiplies its size (or ex-ante component) by X during the first 5 years of live. Qualitative

results from these alternative definitions are similar to the ones presented here.
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Table 2.3 Baseline economies: GP and NGP model

GP economy NGP economy

Panel A: Firm life-cycle characteristics

% ex-ante HGP firms 1.11 0.0

% ex-post EHG firms 6.53 0.36

Average employment, age 19 12.66 2.74

% ex-ante HGP that grew ex-post 36.63 –

Panel B: Aggregate variables in steady state

Equilibrium price ω 1 1

% of firms above 250 employees 0.04 0.002

% of aggregate employment, firms above 250 employees 1.15 0.13

Panel C: Aggregate relevance of EHG firms

% aggregate TFP 11.10 1.20

% aggregate output 28.22 2.68

% aggregate employment 20.33 1.80

% aggregate capital 17.23 0.94

Panel D: Aggregate relevance of HGP firms

% aggregate TFP 3.30 0.0

% aggregate output 7.15 0.0

% aggregate employment 4.30 0.0

% aggregate capital 3.50 0.0

Notes: the first column shows simulated moments for the GP model (with heterogeneity in expected

productivity growth rates) in Table 2.2, column “GP economy”. The second column shows these

simulated moments for the NGP model (without heterogeneity in expected productivity growth

rates) in Table 2.2, column “NGP economy”. Results in Panel A refer to characteristics of simulated

firms in each of the two settings. Panel B shows results concerning aggregate outcomes. Panels C

and D focus on the aggregate importance of the subgroups of effective high-growth firms (EHG)

and high-growth-potential firms (HGP).

2.3.1 Baseline Economies

I study the differences between the GP model and the NGP model in terms of the

number of EHG firms, the fraction of HGP firms that end up displaying sufficient

growth, and the aggregate role of these groups of firms. To do this, I consider the

GP and the NGP models and simulate 500,000 firms over 80 years, in each of them.

Table 2.3 shows simulated moments for the GP and the NGP economies.

Firm-life-cycle and aggregate moments. Panel A in Table 2.3 shows simulated

firm life-cycle moments of interest – namely, the fraction of HGP and EHG firms

over all firms, the average employment by age at age 19 of all operating simulated
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firms10, and the fraction of HGP firms that are also EHG firms.

Let us first discuss results for the GP economy. In this economy, only 1.11%

of all firms fit the definition of HGP firms. Nevertheless, 6.53% of firms display

high effective employment growth and become sufficiently large to fit the EHG

definition. EHG firms are distinct to the average firm in some margins: EHG firms

have, on average, a higher initial capital endowment (185 vs. 116 in the overall

simulated GP sample); they have higher realised ex-post productivity shocks wt
averaged over the first 5 years of life (0.31 vs. 0 in the overall sample); and HGP

firms are disproportionately represented in the EHG group of firms (6.21% of EHG

firms are also HGP, vs. 1.11% in the overall economy). On one side, EHG firms

are on average more productive than the average firm in the GP economy, due to

higher ex-ante and/or ex-post productivity components. On the other side, EHG

firms hold, on average, larger endowments of capital when they are born, which

allows them to overcome more easily the financial friction in (2.2.1) when young

and realise their growth. This suggests that initial capital is linked to firm growth

in Spain11. Average employment by age at age 19 of all operating firms is 12.66

employees, in line with the pattern shown in Figure 2.2. This denotes difficulties

for the average firm to grow over its life cycle. Importantly, only 36.63% of firms

fitting the HGP definition end up fitting the EHG definition. This indicates that

high-growth-potential firms are facing difficulties that prevent them from effectively

realising their growth.

In the NGP economy, however, there are no HGP firms. This is due to the fact

that the ex-ante component of the productivity process does not evolve over time,

and hence it is expected to grow at a rate of zero for all firms in the economy.

Importantly, the number of EHG firms in the NGP economy is much lower than

that in the GP economy: 0.36% of firms fit the definition. In addition, average

employment at age 19 of firms in the NGP economy is 2.74. The model with no

heterogeneity in expected productivity growth rates is generating smaller firms on

average and less high-growing firms than the GP model.

I calculate the share of simulated firms that have more than 250 employees, as

well as the fraction of total employment they account for. These numbers are shown

in Panel B of Table 2.3. In the GP economy, firms above 250 employees represent a

share of 0.04% of total firms. Even if very small, the GP model reflects the reduced

presence of very large firms in Spain. This small fraction of firms accounts for 1.15%

of aggregate employment in the GP model. The numbers generated by the NGP

model are smaller: firms above 250 employees account for a 0.002% of firms and

10Here, I adopt a long-term perspective by discussing this moment for age 19. Considering

lower age horizons, as in Figure 2.2, yields similar intuitions.
11Similar conclusions about the characteristics of EHG firms are obtained under the NGP

model, both in the baseline and in the counterfactual economy. I only discuss these

characteristics in the GP economy, for briefness.
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a 0.13% of total employment in the economy. Thus, under the NGP model, there

are less large firms, and they are less relevant to the economy than those in the GP

economy.

Aggregate relevance of high-growth firms. I compute the fraction of aggregate

TFP, output, capital and employment that is accounted by EHG firms (Panel C in

Table 2.3) and HGP firms (Panel D in Table 2.3) in the GP and NGP economies.

To do so, I first calculate aggregate variables in an economy considering all simu-

lated firms. Second, I recompute aggregate variables in the same economy, but this

time excluding simulated EHG (or HGP) firms from the calculation. Differences

in aggregate variables between these two calculations give us the fraction of each

aggregate variable accounted by EHG (or HGP) firms. I find that, while EHG firms

account for a very substantial fraction of aggregate variables in the GP economy,

they represent a notably lower fraction of the aggregate economy in the NGP econ-

omy. The higher frictions faced by firms in the NGP economy (see Table 2.2) and

the absence of a transition towards high firm-level productivity steady states gives

room to this muted role of EHG firms in this economy.

Regarding HGP firms, I find that, even though HGP firms account for only

a 1.11% of firms in the GP economy, they represent a 3.30% of aggregate TFP

and a 7.15% of aggregate output, thus being disproportionately important for the

macroeconomy. This is the case in spite of only about one third of these firms being

able to effectively realise their growth. In other words, high-growth-potential firms

are playing a non-negligible role in the GP economy – while being absent in the

NGP economy. Still, we might wonder to which extent the aggregate role of HGP

is being attenuated by the existence of firm-level frictions, particularly borrowing

constraints faced by Spanish firms. To address this issue, I perform a counterfactual

exercise where I shut down the borrowing constraint.
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Table 2.4 No financial friction in alternative economies

GP economy NGP economy NWK economy

(λ = ∞) (λ = ∞) (λ = ∞)

Panel A: Firm life-cycle characteristics

% ex-ante HGP firms 1.11 0.0 1.11

% ex-post EHG firms 12.10 1.39 18.89

Average employment, age 19 13.68 3.78 22.42

% ex-ante HGP that grew ex-post 76.20 – 83.84

Panel B: Aggregate variables in steady state

% of firms above 250 employees 0.25 0.01 0.63

% of aggregate employment, firms above 250 employees 9.39 1.08 15.94

Equilibrium price ω 1.37 1.25 1.09

% change in aggregate TFP with respect to baseline 20.52 14.07 8.49

% change in aggregate output with respect to baseline 22.96 13.59 12.10

Panel C: Aggregate relevance of EHG firms

% aggregate TFP 25.45 6.41 31.44

% aggregate output 52.02 13.01 62.12

% aggregate employment 38.71 8.88 47.65

% aggregate capital 29.53 3.59 38.92

Panel D: Aggregate relevance of HGP firms

% aggregate TFP 4.30 0.0 4.26

% aggregate output 10.59 0.0 10.71

% aggregate employment 7.24 0.0 7.27

% aggregate capital 5.39 0.0 5.72

Notes: the first column shows simulated moments for the GP economy (with heterogeneity in

expected productivity growth rates) in Table 2.2, column “GP economy”. The second column

shows these simulated moments for the NGP economy (with heterogeneity in expected productiv-

ity growth rates) in Table 2.2, column “NGP economy”. The third column shows these simulated

moments for an economy without working-capital constraint (labeled as the NWK economy) dis-

cussed in section 2.3.3. Results in Panel A refer to characteristics of simulated firms in each of

the two settings. Panel B shows results concerning aggregate outcomes. Panels C and D focus on

the aggregate importance of the subgroups of effective high-growth firms (EHG) and high-growth-

potential firms (HGP).

2.3.2 Quantitative Experiment: Eliminate Borrowing Con-

straints

Departing from the GP and NGP economies, I eliminate the borrowing constraint

faced by firms by setting λ = ∞ in the two economies12. Due to λ = ∞, aggregate

demand of labour is larger and equilibrium wage increases to ω = 1.37 in the GP

economy and to ω = 1.25 in the NGP economy. Table 2.4 shows results from

counterfactual exercises.

12Changes caused by a partial relaxation of the financial friction are less intense, but go on the

same direction as the total elimination of the constraint discussed here.
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Firm life-cycle moments. When we eliminate financial frictions, average employ-

ment at age 19 increases in both the GP and NGP economies, in spite of the increase

in the equilibrium price of labour. Besides, this change in λ increases the fraction

of effective high-growth firms from 6.53% in the baseline GP economy to 12.10%

(first column in Table 2.4), and from 0.36% in the baseline NGP economy to 1.39%

(second column in Table 2.4). These increases indicate that borrowing constraints

are actually harming a non-negligible share of young firms and deterring them from

growing.

Interestingly, characteristics of effective high-growth firms change when we re-

move financial frictions. In the counterfactual GP economy, the average initial

capital of EHG firms is smaller than that of the average firm (84 vs. 116). This

indicates that, without financial frictions, having a high initial level of capital is

less linked to firm growth, since more firms with smaller capital endowments at

birth are managing to display high growth. It is productivity that takes on a more

important role for determining which firms are EHG. If λ goes to infinity, realised

ex-post productivity shocks w averaged over the first 5 periods of firm life for EHG

firms increase from 0.31 in the baseline GP economy to 0.39 in the counterfactual

GP economy. In addition, the fraction of EHG firms that are HGP firms is 7.08,

larger than in the baseline GP calibration.

Since parameters characterising productivity processes have not changed, the

percentage of HGP firms remains the same in both economies. Importantly, a sub-

stantial fraction of HGP firms would be capable of growing if financial frictions were

eliminated. If λ goes to infinity, the fraction of HGP firms that are also EHG firms

increases from 36.63% to 76.20%. These numbers indicate that explicitly account-

ing for ex-ante, life-cycle components in the productivity process is important from

an economic perspective: a small subgroup of firms with high growth potentials is

particularly damaged by financial frictions. This phenomenon cannot be observed

through the lens of a more standard productivity process, as it can be seen when

studying the NGP model.

Aggregate relevance of high-growth firms. Panels C and D in Table 2.4

show how the aggregate importance of EHG and HGP changes in the alternative

economies when we eliminate the borrowing constraint. I find that EHG firms

become more prominent in the GP economy without borrowing constraints, in ag-

gregate terms. Their aggregate importance also increases in the NGP economy,

but less. Regarding HGP firms, the fraction of aggregate TFP accounted by high-

growth-potential firms in the GP setting increases from 3.30% to 4.30%, and their

fraction of aggregate output increases from 7.15% to 10.59% if the distortion is

completely alleviated.

The fact that a significant fraction of HGP firms is deterred from growing in the

GP economy has aggregate implications. Eliminating financial frictions facilitates
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firm growth of this subset of firms: a higher percentage of HGP firms effectively

realise high growth rates and they increase their aggregate relevance, even if they

account for a small fraction of all firms in the GP economy. Finally, it is worth

noting that HGP firms do not play any role in the NGP economy. Thus, neglecting

firm heterogeneity in expected growth rates impedes us from studying a subgroup of

firms that, although small in number, is capable of playing a substantial aggregate

role in the economy.

The mechanism that explains that HGP firms increase their macroeconomic rele-

vance in the GP economy when financial frictions are removed is the following. Given

the rich GP productivity process, some firms expect to become highly productive

only after some years of life, due to the existence of a time-consuming transition to

firm-specific steady states. As a consequence of this time delay, these firms will be

earning low profits and performing low investments when they are very young. As

they age, they end up attaining their long-run potential. However, in the baseline

GP economy, a large fraction of these firms are still subject to borrowing constraints

after some years because of the slow capital accumulation over their first years of

life. Removing these constraints thus strongly benefits high-growth-potential firms,

allowing them to grow and become more relevant in the economy.

Aggregate effects of eliminating borrowing constraints. In Panel B of Table

2.4, I discuss the aggregate effects of the elimination of the financial friction in the GP

and NGP economies. First, let us consider the GP economy. If we set λ = ∞ keeping

the rest of parameters equal, aggregate TFP increases by 20.52% and aggregate

output increases by 22.96% relative to the baseline GP setting, with calibrated

λ = 0.306. Besides, the number of firms that have at least 250 employees becomes

6.25 times larger and their aggregate employment share increases from 1.15% to

9.39%. In the NGP economy, I find that completely eliminating the borrowing

constraint increases aggregate TFP (output) by only 14.07% (13.59%). Thus, if we

had ignored the life-cycle evidence on firm heterogeneity in expected growth rates

when specifying our macroeconomic model, we would have concluded that financial

frictions are less important for the aggregate economy.

Firms with high ex-ante components in their productivity processes may con-

tribute significantly to the aggregate economy. Let us analyse how these firms are

affected by borrowing constraints in each of the two alternative economies. In the

GP economy, I focus on the subgroup of HGP firms, which account for a 1.11% of

all firms. In the NGP economy, I look at high-θ firms; in particular, at firms whose

fixed effect lies above the 99 quantile of the θ distribution. By definition, these

firms account for 1% of all firms in the NGP economy13. I observe the simulated

average employment by age for these firms. I find that, although the elimination of

13Results are robust to considering firms above the 99 quantile of the distribution of θ also in

the GP economy, instead of HGP firms.
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Figure 2.3 Average employment by age of firms with a high ex-ante component

(a) GP economy, high-growth-potential firms (b) NGP economy, high-θ firms

Notes: subfigure (a) shows simulated average employment by age of the group of high-growth-

potential firms (HGP) in the GP economy, for different values of the borrowing constraint parame-

ter λ. Subfigure (b) shows simulated average employment by age of the group of high-θ firms in the

NGP economy, again for different values of λ. The solid, black line corresponds to the calibrated-λ

scenario. The dashed, red line corresponds to the λ = ∞. counterfactual.

borrowing constraints is affecting the overall economy, its effects are stronger if we

focus on firms with high ex-ante components.

In the baseline GP economy, I find that HGP firms display a steep pattern in

terms of average employment by age, as shown in Figure 2.3(a). This curve is

steeper than that of the average firm in the economy (see Figure 2.2), reaching an

average size of around 37 employees after 10 years. Importantly, eliminating borrow-

ing constraints causes HGP firms to grow strongly on average. As a consequence,

HGP firms increase their macroeconomic relevance and affect positively the average

employment by age for all firms.

In Figure 2.3(b) for the NGP economy, we observe that, although high-θ firms

start large on average, they shrink over time. Althought these firms have received

high realisations of their fixed effects, the absence of a life-cycle productivity compo-

nent generating expected growth makes these firms disinvest as they age, since their

initial capital endowments were large at birth. This disaccumulation of capital in

time is reverted when we eliminate borrowing constraints. In this case, high-θ grow

more on average, but not strongly. This lack of strong growth contributes to low

aggregate effects from removing financial frictions in the NGP economy. As a con-

clusion, accounting for firm heterogeneity in expected growth rates in our structural

model, and thus allowing for a rich transition towards firm-specific steady states,

matters for generating larger effects of borrowing constraints in the overall economy.

Yet, if we observe the average employment at age 19, in Tables 2.3 and 2.4 for

the GP economy, we see that relaxing borrowing constraints increases this simulated
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Figure 2.4 NWK economy and empirical moments

(a) Autocorrelation of logged employment (b) Average employment by age

Notes: subfigure (a) shows autocorrelations for logged employment for age 0, from the empirical

permanent sample, and for two simulated samples of 500,000 firms using the structural model: one

sample for the GP model in Table 2.2, and another sample for the NWK economy discussed in

this section. Subfigure (b) shows the average employment by age from the empirical permanent

sample and from two simulated samples corresponding to the same models.

moment from 12.66 to 13.68 – a mild increase. That is, in spite of the sizable effects

on aggregate output and TFP, the removal of the friction is incapable of generating

a steep average employment by age profile like the one documented for the United

States in Figure 1.3(a) in Chapter 1. This suggests that, although important for

the Spanish economy, high-growth-potential firms are less productive and converge

to lower steady states than their peers in the US.

2.3.3 The Role of Working Capital Constraints

In this section, I consider an environment in which firms do not face working-capital

constraints – that is, λL = 0. I keep the rest of the calibration as in the GP model14

in Table 2.2. I label this economy NWK, for no-working-capital. In this setting,

equation (2.2.1) becomes simply Iit ≤ λKi,t−1. I argue that having a working-capital

constraint is important not only to generate high employment autocorrelations as

those in the data, but also to generate a wedge in labour that prevents firms from

achieving higher levels of growth. Importantly, I show that aggregate effects from

eliminating firm-level borrowing constraints are smaller in the NWK economy than

in the GP economy.

Replication of empirical moments. I simulate the NWK model in order to

understand what we gain by considering a working-capital constraint in the struc-

tural model in terms of replicating moments from the Spanish data. Figure 2.4(a)

14A full recalibration of the λL = 0 model is still pending work.
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shows the autocorrelation of logged employment in the Spanish data and in the GP

and NWK economies. The empirical and the GP curve are close to each other.

In the NWK economy, this autocorrelation is too low relative to the data – thus

the appropriateness of explicitly considering working-capital constraints to better

match the empirical autocorrelation pattern. The fact that there is no labour wedge

in the NWK economy facilitates substitution of inputs and makes labour easier to

adjust over the life cycle, contrary to data. This, in turn, has consequences on the

simulated average employment by age of firms. As shown in Figure 2.4(b), if firms

were not subject to a working-capital constraint, their average size over the life cycle

would have a steeper profile – again, at odds with the data.

Macroeconomic effects of working-capital constraints. I simulate the NWK

economy, as it was done previously for the GP and the NGP economies in section

2.3.1. If λL = 0, I find that 17.34% of firms in the economy are EHG firms. This is

a notably larger fraction than in the baseline GP economy (with a working-capital

constraint) in Table 2.3, where this share is only 6.53%. The employment share of

firms above 250 employees is large (10.12%, vs. 1.15% in the baseline GP economy),

and 77.70% of HGP firms are able to effectively grow strongly, while only 36.63%

manage to do so in the economy with working-capital constraints. If we eliminate

the working-capital constraint, firms find it easier to adjust its labour factor, and

more firms manage to grow strongly.

Let us take the baseline NWK economy and perform the same quantitative ex-

periment in section 2.3.2. Results are shown in the third column of Table 2.4. If I

eliminate the financial friction in the NWK economy, aggregate TFP increases by

8.49% and aggregate output increases by 12.10%. These numbers are lower than in

the GP economy, where removing the friction increases aggregate TFP by 20.52%

and aggregate output by 22.96%. The reason for these lower aggregate gains is

that, in the baseline GP economy, the borrowing constraint is also restricting firm

labour expenditures. In this setting, removing financial frictions directly facilitates

labour adjustment, since the wedge on labour is eliminated. In the no-working-

capital-constraint economy, however, labour expenditures are not constrained and

the labour wedge is equal to zero. Therefore, there are less gains in terms of firm

growth and aggregates from eliminating financial frictions, which are only restricting

the accumulation of fixed capital and not that of current assets. As a conclusion,

including a working-capital constraint in the structural model has important aggre-

gate implications, because it increases the effect of the borrowing constraint on the

allocation of labour and prevents firms from growing strongly.
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2.4 Conclusion

This chapter explores the role of high-growth potential firms in contributing to ex-

plain relevant facts about firm growth and the aggregate performance of the Spanish

economy. In particular, the key issue that I analyse is whether firms that are ex-

pected to grow strongly when young are prevented from realising their optimal sizes

due to the existence of borrowing constraints, and the effects this carries to the rest

of the economy.

I propose a structural model consisting on two main elements. On one side, I

consider frictions at the firm level. Specifically, firms are affected by a convex capital

adjustment cost and a borrowing constraint that limits the amount of investment

in fixed capital and in labour expenditures, acting as a working capital constraint.

These features allow the model to capture Spanish firm-level dynamic moments.

The borrowing constraint hurts firms who are highly productive, yet small in their

capital endowments. On the other side, I consider two alternative productivity

processes: one that accounts for ex-ante heterogeneity in expected productivity

growth rates (embedding the idea of “high-growth-potential firms”), and one that

does not consider this margin of heterogeneity.

I calibrate two models, one for each productivity process, and I use them to

conduct quantitative experiments. If the “growth-potentials” process is considered,

I find that high-growth-potential firms have difficulties to effectively realise their life-

cycle growth: only about one third of these firms is capable of attaining sufficiently

high sizes over their first periods of life. This phenomenon does not occur in a

more standard “no-growth-potential” process. If I eliminate borrowing constraints, I

find that the aggregate importance of high-growth-potential firms increases notably

in the first economy, but is zero in the economy with a more standard process.

Indeed, not considering heterogeneity in ex-ante growth rates would lead our model

to underestimate the aggregate gains from eliminating financial frictions.

It is worth noting that several margins of firm heterogeneity have been simpli-

fied within the theory developed here. Namely, I have not considered non-convex

adjustment costs in capital, which are important to replicate investment dynamics

at the micro level and, through this channel, to affect firm dynamics and growth.

Additionally, the theory does not consider heterogeneity in access to financial re-

sources, debt issuance and learning about one’s own growth potential. Although

exciting for explaining life-cycle allocation of resources across Spanish firms, these

more complicated features are beyond the scope of this chapter. Nevertheless, I

believe that the model with expected growth rate heterogeneity presented here is an

appropriate starting point to study these and other firm dynamics features, which

are left for future research.
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A Appendix to Chapter 2

A.1 Structural Model

Higher-Ages Autocorrelations

In section 2.2.3, I have calibrated the GP and the NGP model in order to match

empirical autocorrelations by age of logged capital and logged employment at age 0.

The manner these age-0 empirical autocorrelation were captured by the two models

was shown in Figure 2.1. Arguably, empirical autocorrelations of higher ages also

provide information about the allocation of resources to firms over the life cycle.

While these higher-order autocorrelations are not used as targets in my calibration,

I can still simulate those untargeted higher-ages autocorrelations and see how the

GP and the NGP models capture them.

Figures 2.5, 2.6 and 2.7 show some empirical autocorrelations (bold lines) lines

for different ages, respectively for logged TFP, employment and capital. In par-

ticular, I am considering ages 1, 4 and 7, which are all higher ages than age 0.

I compare these higher-ages empirical autocorrelation lines with the same objects

obtained from simulating the GP economy (dotted lines) and the NGP economy

(dashed lines) in turn. As we can see from Figures 2.5 and 2.6, the GP model

clearly outperforms the NGP model in capturing untargeted empirical autocorre-

lations of logged TFP and employment at ages 1, 4 and 7. The reason for that is

the additional flexibility that the initial-condition-plus-steady-state structure of the

firm-level productivity process in equation (1.3.1) from Chapter 1 provides, relative

to the somewhat simpler process in equation (2.2.2). In particular, the model that

explicitly considers firm heterogeneity in expected productivity growth rates is ca-

pable of providing a noticeably good match of the employment and TFP data over

different stages of the firm life cycle, which increases its credibility as a contender

to models where firm heterogeneity is less sophisticated. Regarding the empirical

higher-ages autocorrelations of logged capital in Figure 2.7, the NGP model is closer

to capture the curve corresponding to age 1, although both the GP and the NGP

model generate allocations of capital that are too persistent relative to the data.

However, when considering ages 4 and 7, the two models behave similarly.

Overall, the state-of-the art process in equation (1.3.1) from Chapter 1 makes a

difference with respect to the more standard AR(1)-plus-fixed-effect process in terms

of replicating empirical dynamic moments, particularly higher-ages autocorrelations

of logged TFP and employment in the data.
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Figure 2.5 Untargeted higher-ages autocorrelations: logged TFP

(a) Age 1 (b) Age 4 (c) Age 7

Notes: subfigures (a), (b) and (c) show autocorrelations for logged TFP, for ages s = 1, 4 and 7

respectively. The x-axis represents age t, and lines in the graph correspond to another age s. Solid

lines correspond to autocorrelations from the data. Dashed lines correspond to autocorrelations

for a simulated permanent sample using the GP model and parameter values in Table 2.2, column

“GP economy”. Dotted lines correspond to autocorrelations for a simulated permanent sample

using the NGP model and parameter values in Table 2.2, column “NGP economy”.
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Figure 2.6 Untargeted higher-ages autocorrelations: logged employment

(a) Age 1 (b) Age 4 (c) Age 7

Notes: subfigures (a), (b) and (c) show autocorrelations for logged employment, for ages s = 1, 4

and 7 respectively. The x-axis represents age t, and lines in the graph correspond to another age

s. Solid lines correspond to autocorrelations from the data. Dashed lines correspond to autocorre-

lations for a simulated permanent sample using the GP model and parameter values in Table 2.2,

column “GP economy”. Dotted lines correspond to autocorrelations for a simulated permanent

sample using the NGP model and parameter values in Table 2.2, column “NGP economy”.
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Figure 2.7 Untargeted higher-ages autocorrelations: logged capital

(a) Age 1 (b) Age 4 (c) Age 7

Notes: subfigures (a), (b) and (c) show autocorrelations for logged capital, for ages s = 1, 4 and 7

respectively. The x-axis represents age t, and lines in the graph correspond to another age s. Solid

lines correspond to autocorrelations from the data. Dashed lines correspond to autocorrelations

for a simulated permanent sample using the GP model and parameter values in Table 2.2, column

“GP economy”. Dotted lines correspond to autocorrelations for a simulated permanent sample

using the NGP model and parameter values in Table 2.2, column “NGP economy”.



Chapter 3

Venture Capital Investments and

Learning over the Life Cycle

3.1 Introduction

The life cycle of firms and the dynamics of firm growth and financing have recently

become of increasing interest to economists (Luttmer, 2011; Pugsley et al., 2021). In

particular, a key issue is how financial resources should be allocated to young firms

over their first years of activity, so that they grow and make sound contributions

to the economy. This issue is crucial when we talk about innovative, high-risk

entrepreneurial projects, whose underlying quality and future prospects are unknown

at birth. The objective of this chapter is to shed light on a feature of the firm life

cycle that has not been studied in much detail in the context of high-risk firms

and their financing: their ability to learn about the company’s uncertain quality, as

firm-level results are observed over time. This chapter studies how learning affects

life-cycle investment and exit decisions, as well as firm value, in contexts of high

uncertainty.

I present a model of the firm that imitates realistic features of high-risk, innova-

tive companies – namely, uncertainty about a firm’s own quality, staged investments

in time, exit decisions and firm-level results at different ages. In this one-agent

model, the owner of an entrepreneurial project carries out investments over the firm

life cycle until it decides to terminate the project or to sell it to the market. While

injecting funds over time, the owner learns about the uncertain quality of her firm

in a Bayesian manner. The learning process is possible because the agent receives

period cash-flows that convey information about the true quality of the firm. Given

the high degree of uncertainty about the project, this information serves to update

beliefs about the firm’s unobserved quality and thus affects investment and exit

decisions of the agent.

The model is capable of capturing some firm-level regularities of innovative com-
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panies – namely, it replicates empirical patterns that have been documented by the

venture capital literature. By venture capital, I refer to a type of financial interme-

diation consisting of a financier, the venture capitalist, that buys shares of a private

company. In exchange, the company receives not only funding, but also, and impor-

tantly, monitoring, networking and expertise from the venture capitalist. Venture

capital is focused on the growth of young firms, having as its final goal the exit

of the venture capitalist by means of the sale of the shares previously acquired1.

The venture capital industry in the United States, often considered the paradigm

for a developed venture capital industry2, has become an important vehicle for the

financing of young, innovative firms3.

Some of the practices and conventions within venture-backed companies have

been documented by Kaplan and Strömberg (2003), among others. They report that

investments made by venture capitalists are contingent on firm-level results or cash-

flows, and thus made in a staged manner over the firm life cycle (staged financing).

Additionally, exit strategies are carefully chosen by venture capitalists, and contracts

used in deals are often sophisticated convertible securities. Some explanations for

these practices have been proposed in the literature using principal-agent models to

study moral hazard problems (Bergemann and Hege, 1998; Schmidt, 2003; Repullo

and Suarez, 2004), control rights (Marx, 1998) and tax motives (Gilson and Schizer,

2003; Ollivierre, 2010). However, little is known about how the learning process

inherent to innovative, high-risk projects affects the life cycle of venture-backed

companies. In this chapter, I abstract from the contracting problem between a

financier and an entrepreneur and I rationalise firm-level patterns of venture capital

investments, namely staged financing and exit strategies, by modelling a single agent

that learns about her firm’s uncertain returns over time.

I study the properties of the model and I arrive at two theoretical results. First,

the possibility of learning from period cash-flows provides value to high-risk projects.

In particular, I find that the ability to learn, jointly with the capability of terminating

the project at every period, gives the agent an option value of waiting and updating

her beliefs. This is possible if cash-flows are informative, to some extent, about the

true quality of the project. Second, the ability to learn from these signals renders

optimal investment decisions contingent on period cash-flow realisations, which is

consistent with documented patterns at Kaplan and Strömberg (2003). Should

we turn signals into completely uninformative ones (so that there is no learning),

optimal investment would be unaffected by realised cash-flows.

I numerically solve the model and simulate it to better understand the implica-

1Usually via an initial public offering (IPO) or mergers and acquisitions (M&A).
2See Gompers and Lerner (2001) for a historical overview.
3For the sake of example, successful firms that received venture capital financing at different

points of their life cycle, such as Cisco Systems, Apple, Google, Starbucks or Yahoo, are

well-known.
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tions of its theoretical properties. I find that investment and exit policies change

over the life cycle of the firm, as more information is revealed and uncertainty de-

creases. Importantly, if the noise of the signal is sufficiently low, a higher degree of

uncertainty results into a higher value from experimentation and a higher sensitivity

of investment to cash-flow realisations. This in turn translates into a high positive

contemporaneous correlation between simulated investments and cash-flows, in line

with the empirical finding that fund injections and firm-level results go hand in

hand. Next, I use the model to perform quantitative experiments. If we consider

an environment in which learning is impossible, then cash-flow realisations do not

provide information to the agent and there is no valuable belief updating. As a

consequence, investment is completely insensitive to cash-flow realisations. Instead,

if cash-flows are highly informative about project quality, this motivates the owner

of a risky firm to continue running it and to carry out contingent investments. This

translates into a greater value for firms, particularly when little is known about

firm quality at birth. My findings are supportive of the idea that, when the de-

gree of uncertainty about a firm’s own quality is intense, a superior ability to learn

about firm-level results over the life cycle renders the capacity to perform contin-

gent growth investments valuable – thus being particularly interesting for innovative

entrepreneurial projects.

Literature review. This chapter relates to different areas of the economics and

finance literature. First and foremost, it relates to the theoretical literature on

venture capital. This strand of the economic literature aims to rationalise differ-

ent practices in the venture capital industry and proposes alternative explanations

on why venture capital is capable of increasing the value of firms receiving this

type of financing. This literature points to agency problems (Bergemann and Hege,

1998; Schmidt, 2003; Cornelli and Yosha, 2003; Repullo and Suarez, 2004), the

split of control rights between entrepreneurs and venture capitalists (e.g. the ca-

pability of terminating entrepreneurial projects) (Aghion and Bolton, 1992; Marx,

1998; Hellmann, 1998; Jovanovic and Szentes, 2013), and the expertise, the ability

to screen entrepreneurial projects, and the reputation of venture capitalists (Ueda,

2004; Sørensen, 2007; Piacentino, 2019) as key determinants of contractual practices

and investment and exit dynamics within venture capital projects. These mecha-

nisms are proposed to explain the use of convertible securities, staged financing, and

the prevalence of venture-backed firms in the IPO market.

Bergemann and Hege (1998) propose a model to study termination decisions in a

context where entrepreneurs and venture capitalists are subject to moral hazard in

the allocation of funds and learn about project returns in the event of exit. They con-

clude that pure equity contracts cannot maximise the net present value of projects

since it generates inefficiently early termination. A convertible security structure

that mixes debt and equity (both retained by the venture capitalist) and links debt

to the liquidation value if the project is unsuccessful is an efficient contract in their
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setting. Jovanovic and Szentes (2013) also study the dynamic implementation of

venture-backed projects as well as the way entrepreneurs and venture capitalists

match and split rents from projects in a context in which the venture capitalist

has an incentive to terminate a project if she is not sufficiently optimistic about its

future prospects and move on to finance a new entrepreneur. Given competition

among different venture capitalists, the optimal contract is a simple equity contract,

and venture capitalists add value to projects by facilitating financing and monitor-

ing. Although these two works are the main references of this chapter, none of them

explicitly models the role of intermediate results as signals that help agents engaging

in high-risk projects to learn about future returns over their implementation and

the way this may shape financing and exit decisions over time altogether. I con-

tribute to this literature by proposing an explanation of staged financing contingent

on intermediate results based on learning ability, which is in turn a characteristic of

venture capitalists that is thought of as capable of increasing firm value.

Second, this chapter relates to the growing macroeconomic literature on venture

capital. There are many recent contributions to this literature aiming to assess

the economy-wide impact of the venture capital industry. In order to generate

substantial aggregate effects of venture capital, these works consider particular value-

adding features of venture capital financing, namely the ability to attract superior

entrepreneurial talent (Opp, 2019), the expertise in product development (Ateş,

2018), and the degree of assortative matching between entrepreneurs and capitalists

(Akcigit et al., 2022). Differently from these works, this chapter develops a detailed

model of the firm with learning over the life cycle, as in Jovanovic (1982) and

Guvenen (2007), to rationalise a superior form of fund injection that is contingent

on the realisation of intermediate results and is value-enhancing at the firm level,

and thus may add to previously explored explanations of the aggregate effects of the

venture capital industry.

Finally, this chapter is motivated by the empirical literature on venture capital fi-

nance. The seminal article in this field is Kaplan and Strömberg (2003), which is the

first one to exhaustively document the contingent nature of venture capital invest-

ments. Following this seminal work, other papers such as Kaplan and Strömberg

(2004), Lerner and Schoar (2005), Cumming (2008), and more recent surveys by

Gompers et al. (2020) and Ewens et al. (2022) have nurtured this part of the finance

literature by providing more empirical evidence on venture capital contracts and in-

vestments. Inspired by this evidence, I propose a learning explanation to rationalise

some of these empirical patterns.

Layout. This chapter is structured as follows. In section 3.2, I briefly revise trends

and practices in the US venture capital market. In section 3.3, I present an invest-

ment model of the firm and I discuss theoretical properties of the model. In section

3.4, I perform a quantitative exploration of the model and I discuss the main results.
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In section 3.5, I conclude.

3.2 The US Venture Capital Industry: a Brief

Overview

In order to motivate this chapter, let us briefly discuss trends and recent results of

the US venture capital industry, as well as firm-level practices within venture-backed

companies.

Industry trends. Over the recent decades, the venture capital industry has become

increasingly important in the United States, both in terms of resources allocated to

it and economic outcomes from venture-backed firms. Metrick and Yasuda (2010)

and NVCA (2022) provide data on capital raised by venture capital funds on a yearly

basis. In 1983, total resources allocated to venture capital funds were $2.9 billion

and accounted for 0.08% of the US gross domestic product. In 2021, these funds

were $131.2 billion and represented 0.57% of US GDP. Between 1983 and 2021, funds

allocated to venture capital have increased steadily, even during the world pandemic

in 2020, with the only exception of the 2001 burst after the dotcom boom. Regarding

summary output measures from the US venture capital industry, venture-backed

firms broke several all-time records in 2021, as accounted by NVCA (2022). A

record number of venture-backed firms, 14,411 companies, received a record amount

of funding, $322 billion. In addition, the number of venture-backed exits (181 initial

public offerings and 1,357 mergers and acquisitions) reached a historical peak as well.

Importantly, the National Venture Capital Association also reports the relatively

high prevalence of venture-backed firms in terms of employment: between 1990 and

2020, employment growth at venture-backed companies was eight times higher than

that of non-venture-backed ones, and the seven largest publicly traded companies

in 2021 have received venture capital financing at some point of their life cycle. As

it has also been studied by Akcigit et al. (2022), these firms are disproportionately

larger than their non-venture-backed counterparts in terms of employment.

Firm-level practices. The success of venture capital as a financing device for

young, innovative firms in the United States is usually linked to the sophistication

of venture capitalists. Practices at the firm level that prevail in the US venture

capital industry were exhaustively documented by Kaplan and Strömberg (2003) in

a seminal empirical study. Some of these practices are common to other venture

capital markets, but others are distinct in Europe, Canada or developing countries

(Cumming, 2008; Ollivierre, 2010; Lerner and Schoar, 2005). Here, I briefly describe

some of these practices, namely staged financing, exit strategies and security types.

Staged financing consists in the injection of funds into firms being split into dif-
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ferent periods of their life cycle. Staged financing has been of special interest to

the theoretical literature, e.g Neher (1999) and Cornelli and Yosha (2003). Accord-

ing to the empirical study in Kaplan and Strömberg (2003), injection of funds of

venture capitalists into firms is found to often be contingent in the realisation of

favourable intermediate results or milestones within the company. The punchline of

their study is that, within a venture-backed firm, cash-flow rights and other control

rights that are important to the relationship between companies and financiers are

separated and made contingent on different states of the world, given the high risk of

entrepreneurial projects – namely, contingent on project performance4. This trans-

lates into venture capitalists deciding to inject money into high-risk venture-backed

firms over different stages of their life.

Exit strategies refer to the decision of a venture capitalist to sell its shares of the

company to the market, typically via an initial public offering (IPO) or a merger

or an acquisition (M&A); or, alternatively, to liquidate the project if it turns out

to be a failure. On one side, regarding the time path of successful venture-backed

companies, Metrick and Yasuda (2010) report that the average sale period in the

US venture capital market ranges between 3 and 7 years since the first venture

capital investment takes place. This indicates that venture capitalists spend a large

amount of time injecting funds and monitoring companies over their life cycle, and

choose carefully when to bring the firm to the market. On the other side, a non-

negligible fraction of venture-backed firms are terminated without a successful sale.

In a recent survey by Gompers et al. (2020) made to venture capitalists and venture-

backed firms in the United States, it has been documented that the average venture

capital intermediary reports that 32% of its exits are failures (being 15% of its

exits initial public offerings and 53% mergers or acquisitions). All this indicates the

importance that an expected sale after some firm life periods has on within-firm

decisions, but also the high frequency of failures and terminations among venture-

backed companies.

Finally, Kaplan and Strömberg (2003) report the widespread usage of convert-

ible securities in the US industry. This type of security can be roughly seen as a

combination of debt and equity. Under convertible securities (also called convertible

preferred stock), entrepreneurs and venture capitalists split the returns they receive

from projects according to an equity share and the venture capitalist accumulates

liquidation rights as she invests into the project. In the event of an exit or a liqui-

dation, the venture capitalist can exercise the right to convert her liquidation rights

4This contingency guideline also shows up in other characteristics of venture capital

contracts. As other examples of contingency, and thus contract sophistication, venture capitalists

may vest entrepreneurs with larger cash-flow rights as performance milestones are satisfied. The

convertible security structure of contracts, in turn, allows venture capitalists to increase their

cash-flow rights in case of exit or liquidation of the project as they invest funds into the firm.

Also, investors have an implicit control right over the firm through their ability to stage

investments in time. For more on this, see Kaplan and Strömberg (2003).



3.3. A MODEL OF THE FIRM 69

into simple equity and get paid. This class of contracts are though of in the literature

as having desirable efficiency properties, as in Bergemann and Hege (1998), Marx

(1998) and Schmidt (2003). Importantly, they are overwhelmingly used in the US

industry, to the point of a variety of classes of convertibles accounting for 95.8% of

all investment rounds in the sample of Kaplan and Strömberg (2003). Interestingly,

convertible securities have not been the traditional type of security in other coun-

tries, where simpler contracts are used very often in their national venture capital

markets5. Thus, security sophistication has been indeed a special element of the US

venture capital industry over the last years.

Some explanations for these practices have been proposed in the literature, e.g.

agency problems (Bergemann and Hege, 1998; Schmidt, 2003; Repullo and Suarez,

2004), control rights (Marx, 1998) and tax reasons (Gilson and Schizer, 2003; Ol-

livierre, 2010). This chapter relates widespread industry practices, namely staged

financing and exit strategies, to a feature that is inherent to innovative, high-risk

projects: the learning process over the life cycle about their true quality, which

is uncertain at firm birth. Since these projects have high return uncertainty, they

might require a specialist, (who may be, for instance, a venture capitalist), to learn

about the unknown quality of the firm over the life cycle while injecting funds to

grow the project towards a successful sale. I present a model in which a firm learns

about its uncertain quality over the life cycle. My model is informative on how the

ability to learn relates to contingent staged financing, exit strategies, and outcomes

of high-risk firms.

3.3 A Model of the Firm

3.3.1 The Environment

In this section, I describe the problem of an agent that owns an entrepreneurial

project, or a firm. The agent may live and invest in her firm during several periods.

I refer to the life cycle of a firm as project implementation.

Physical environment. At a given point in time, an exogenous mass 1 of age-0

agents is born, each of them owning one firm. Let us first describe what agents

know at the moment of firm birth (prior to t = 0). An agent, indexed by i, starts

its life with a draw πi0 from a normal population distribution, πi0 ∼ N(Γ0,Σ0),

5Cumming (2008) considers a sample for the European industry and reports that only 32.3%

of all investments were using some class of convertible security – indeed, it is common stock that

is more generalised in European venture capital markets. A similar pattern has been observed in

Canada (Ollivierre, 2010). In developed countries, less sophisticated securities such as common

stock or even plain debt contracts are prevailing due to legal constraints that impede enforcement

of more complicated securities (Lerner and Schoar, 2005).
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where Γ0 and Σ0 are the exogenously given cross-sectional mean and variance of πi0,

respectively. Thus, firms are ex-ante heterogeneous in πi0. Draw πi0 represents the

quality of the entrepreneurial project – that is, the capacity of the firm to generate

cash-flows. Importantly, I assume that agents do not observe their initial draw πi0
at birth, and it remains unobserved over the life cycle. Nevertheless, agents know

the population distribution of initial quality. Thus, the cross-sectional distribution

of πi0 determines initial beliefs of agents. At age 0, every firm i believes that its

unobserved quality is distributed according to a normal distribution with mean π̂i0 =

Γ0 and variance σ2
i0 = Σ0. All firms in the economy have the same initial beliefs,

although they are heterogeneous in their underlying unobserved quality draw6. This

is equivalent to assuming that an agent owning a firm i is born with unobserved

initial quality πi0, and a duple (π̂0, σ
2
0) representing initial prior beliefs that is equal

for all firms. I take this bidimensional object as a primitive of the model.

I study the firm life cycle after firm birth. Time is discrete and infinite, t =

0, 1, ..., agents are risk neutral and discount future payoffs at an exogenous discount

rate r > 0. In what follows, I focus on a specific firm owner and thus I omit

subscript i for expositional purposes. At an age t ≥ 0, an agent owning a firm

enters the period with a prior belief (π̂t, σ
2
t ) about her firm’s quality. The agent

may decide to continue running her project or, alternatively, liquidate it or sell it

to the market. If she decides to keep her firm at t, she observes period cash-flows,

which are informative about the true quality of the project and thus enable the

agent to update her prior beliefs, as we shall see. Once period cash-flows realise, the

agent can invest in her firm to improve its unobserved quality.

Within an age t ≥ 0 of an agent’s life, there are four stages, in chronological

order:

1. Exit decision: the agent decides whether to keep her firm, to terminate it, or

to sell it to the market in exchange of a price (keep/termination/sale). Upon

termination or sale, the agent leaves the economy.

2. Cash-flow realisation: upon keeping the firm, the agent receives period

cash-flows.

3. Belief updating: given the cash-flow realisation, prior beliefs are updated.

4. Investment decision: after updating beliefs, the agent chooses how much to

invest in her firm. The unobserved quality of the project evolves accordingly.

At the end of age t, the agent ends up with posterior beliefs (π̂t+1, σ
2
t+1).

6These assumptions are made to represent an innovative, cutting-edge industry composed of

firms whose true quality is unknown at the moment of birth and may differ across firms. In this

environment, projects are inherently risky and no firm has privileged information about its true

quality.
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Exit and investment decisions. Agents make exit and investment decisions over

the life cycle. At the beginning of age t ≥ 0, the agent makes a discrete decision,

either to cease the activity of the firm (termination), to sell the firm to the market

(sale), or to continue running the firm (keep). If the agent chooses termination at

age t, the firm stops its activity, the agent leaves the economy and she gets a value

of zero. If the agent chooses sale, the firm is sold and the agent gets the discounted

expected value of future cash-flows generated by the firm in exchange, and leaves the

economy. The sale process is costly, and these costs are represented by an amount

CIPO > 0 that the agent has to pay if she chooses sale. Importantly, in the event of

a sale or a termination, no further investments are made in the project. The original

firm owner is the only individual that is capable of exerting effort to make the firm

grow. Upon a keep decision at period t, the firm observes the realisation of a random

variable that I label period cash-flows, CFt ∈ IR, which represents intermediate

revenues or results taking place during the firm life cycle. After the realisation of

CFt, the agent makes a non-negative investment, kt. Investment is worthy to the

firm in that it allows to increase the unobserved quality of the firm at age t, πt.

More specifically, πt increases by B > 0 per unit of investment. Keeping the project

and exerting investments has costs. First, there is a fixed cost of operation cop to be

paid whenever the agent chooses keep, regardless of the level of investment. Second,

the agent pays a price pK per unit of investment good bought. Third, there is an

increasing and convex investment cost c(k) = ψ
2
k2, whose intensity is parameterised

by ψ > 0.

Learning process. At birth, the agent does not observe the true quality of the

project. However, over the life cycle, as she chooses to keep her project, she receives

period cash-flows that are informative about its unobserved quality. Let us focus on

the learning process that characterises project implementation, aiming to represent

the dynamic experimentation that is inherent to high-risk, innovative projects. I

do this by assuming that the firm updates its prior beliefs about project quality in

an optimal, Bayesian manner, expressed as a Kalman filtering problem (Kalman,

1960). At birth, the firm has an initial prior belief about the distribution of π0
that is assumed to be normal, N(π̂0, σ

2
0). Under the Kalman filter setting, if the

variable whose distribution we are updating is normal at any period t, the updated

distribution at period t+1 is also normal. Therefore, the learning process describes

the evolution of the duple (π̂t, σ
2
t ).

Two key ideas underlie belief updating. First, period cash-flows CFt observed

upon a keep decision are an imperfect signal about the true quality of the project,

πt. This is reflected in the following “observation equation”, which represents the

observable variable CFt as a linear expression in the unobservable quality πt and a

transitory shock εt, which can be understood as a measurement error. The obser-

vation equation reads:



72 CHAPTER 3

CFt = πt + εt (3.3.1)

where εt ∼ N(0, σ2
ε). The variance of εt, σ

2
ε , is non-negative and represents the

intensity of the measurement error. If σ2
ε > 0, the firm is prevented from knowing

with certainty whether an observed CFt was due to its project’s quality πt, or just

luck. Second, I assume that the unknown quality evolves in time according to a linear

“law of motion equation”. The level πt+1 is affected by the investment exerted at

period t, so that it helps to improve the project’s quality, and by its lagged value πt.

This allows us to generate persistent effects of investment in the model. The law of

motion for project quality is:

πt+1 = πt +Bkt (3.3.2)

where B is strictly greater than zero. The law of motion of uncertain quality

makes it explicit that firm growth is only possible if effort is put at a cost. Equa-

tions (3.3.1) and (3.3.2) determine how agent’s beliefs evolve over the firm life cycle.

We can use equation (3.3.1) to get the distribution of CFt conditional on our prior

quality distribution, at a period t. This conditional distribution has cdf Gt(CFt|π̂t)
and, similarly to the prior distribution, it is normal: CFt ∼ N(π̂t, σ

2
t +σ

2
ε). In order

to derive equations for the evolution of expected quality π̂t and quality uncertainty

σ2
t , we apply the Kalman filter. As it is discussed in Kalman (1960) and Perla et al.

(2022), the Kalman filter consists in recursively finding a predictor for the unknown

variable using observed imperfect measures of it, thus yielding laws of motion for

its expected value and variance. This form of representing learning is becoming in-

creasingly used in the macroeconomics literature7. In our context, the Kalman filter

yields a point estimate for the unknown quality, which is the conditional expecta-

tion for πt, given past observations for cash-flows and investment injections. This

estimate is the mean squared error minimiser among all Borel functions on IR with

bounded variance8. The derivation of the Kalman filter equations is discussed in

Appendix A.1. Under imperfect observability of the true quality of the project, the

evolution of beliefs (π̂t, σ
2
t ) is characterised by the following Kalman filter equations:

π̂t+1 = π̂t +Bkt + κt(CFt − π̂t) (3.3.3)

σ2
t+1 = (1− κt)σ

2
t (3.3.4)

7See Guvenen (2007), Baley and Veldkamp (2021) and Farboodi and Veldkamp (2021) for

applications of the Kalman filter in macroeconomics.
8In fact, it can be shown that predictions using the Kalman filter when the true state πt is

unobservable perform relatively well if we compare them with those from the optimal predictor (in

terms of minimising the squared error) IE[πt+1|πt] under perfect observability of πt, which is the

predictor a rational agent would use. See Perla et al. (2022) for a simple application of this idea.
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and

κt =
σ2
t

σ2
t + σ2

ε

(3.3.5)

where κt is the so-called Kalman gain. The Kalman gain provides an idea on

how much we update the distribution mean from realisations of period cash-flows, or

the sensitivity of π̂t+1 to different magnitudes of the observed CFt, as it is reflected

in equation (3.3.3). Importantly, it depends positively on quality uncertainty σ2
t

and negatively on the intensity of the measurement error σ2
ε : the updating of π̂t is

more intense when quality is very uncertain and when the imperfect measure is more

accurate. At any period t, the three Kalman filter equations (3.3.3)-(3.3.5) give us

the duple (π̂t+1, σ
2
t+1) that characterises the updated quality distribution. Notice

that the dynamics of the Kalman gain κt are fully determined by the dynamics of

quality uncertainty σ2
t+1. The Kalman gain, in turn, affects the dynamics of both

the distribution mean and variance.

Value functions. Let us now discuss the problem faced by an agent that owns

a firm, as well as optimal exit and investment policies. The agent chooses the

investment amounts and the exit strategies to maximise the discounted expected

value from her firm. There are no frictions, e.g. informational asymmetries, conflicts

of interest, or hold-up problems.

First, in order to determine the value the agent gets in the event of a sale, it

is necessary to make a distinction between a firm that is held by the agent and a

firm that is held by the market (i.e. it has been previously sold) at age t. The key

difference between these two firms is that the market is unable to perform productive

investments to increase the unobserved project quality, while the agent is capable

of doing so. Additionally, the agent has to pay sale costs in the event of a sale as

well as period operation and investment costs, while the market is free of those. I

assume, however, that both the agent and the market have the ability to terminate

projects, and that, upon not terminating, projects generate period cash-flows and

beliefs are updated accordingly; that is, both have the ability to learn.

Consider a firm with beliefs (π̂t, σ
2
t ) that has been sold to the market at some

previous age. The value of an age-t firm held by the market is:

Wt(π̂) = max{0,Mt(π̂)} (3.3.6)

where Mt(π̂) is the expected value prior to the cash-flow realisation at t:

Mt(π̂) =

∫︂ (︁
CF +

1

1 + r
Wt+1(π̂

′)
)︁
dGt(CF | π̂)

In this expression, CF = π+ε, and beliefs evolve according to equations (3.3.3)-
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(3.3.5) – namely, π̂′ = π̂ + κt(CF − π̂), since no investment can be exerted by the

market-held firm. If we know market values Wt and Mt, we are able to determine

the value of a firm that is kept by its original owner, who has the ability to make

period investments. The value of an age-t firm held by an agent with beliefs (π̂t, σ
2
t )

is:

Vt(π̂) = max{ 0⏞⏟⏟⏞
termination

,Mt(π̂)− CIPO⏞ ⏟⏟ ⏞
sale

,

∫︂
Ut(π̂, CF )dGt(CF |π̂)⏞ ⏟⏟ ⏞

keep

} (3.3.7)

where the value of keeping the project and receiving a cash-flow realisation CF

is:

Ut(π̂, CF ) = max
k ≥ 0, π̂′ ∈ IR

{︃
CF − c(k)− pKk − cop +

1

1 + r
Vt+1(π̂

′)

}︃
s.t. π̂′ = π̂ +Bk + κt(CF − π̂)

(3.3.8)

and also subject to the exogenous evolution of quality uncertainty and the

Kalman gain in equations (3.3.4) and (3.3.5), given initial beliefs. In words, at

age t, the agent can sell the firm to the market, in which case she pays a sale cost

CIPO and gets the market value of the firmMt(π̂) – that is, the expected discounted

value of future cash-flows9. By selling the project, the agent will be saving invest-

ment and operation costs. Otherwise, she can keep the project, which allows her to

exert investments that increase its profitability. In the meanwhile, the agent updates

her beliefs as new cash-flows arrive. Regarding belief updating, the evolution of the

expected quality π̂ is endogenous, for it depends on the investment decision of the

agent. On the other side, notice that, given σ2
0, equations (3.3.4) and (3.3.5) evolve

exogenously and in a deterministic way. Time is a state in equations (3.3.6)-(3.3.8)

(and thus the time index t) because both quality uncertainty σ2
t and the Kalman

gain κt are strictly positive and vary over the firm life cycle due to belief updating,

provided 0 < σε < ∞. Nevertheless, if we let t increase, σ2
t and κt decrease in t

and infinitely old firms (either held by their initial owners or by the market) have

σ2
∞ = κ∞ = 0, thus facing a stationary problem where there is no belief updating.

We want to find the optimal investment and exit decisions made by the agent

over the firm life cycle. These are investment policies gkt (π̂, CF ) ∈ [0,∞), as well as

the discrete exit strategy gexitt (π̂) ∈ {termination, sale, keep}. To find these policies,

I solve the model numerically using value function iteration. Further details on the

algorithm used to find the policy functions are presented in Appendix A.2. In the

numerical solution, whose properties are discussed in the next section, the optimal

9We have to take into account that the market still has the option to terminate the firm, so

the value of the market-held firm is bounded below.
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exit policy for the agent gexitt (π̂) is characterised by expected quality thresholds for

π̂t, {π̂t, π̂t}∞t=0 with π̂t < π̂t, such that the agent terminates the project at age t if

π̂t < π̂t (when she thinks the project does not have enough quality), sells the project

to the market at age t if π̂t > π̂t (when she thinks the project has enough quality),

and keeps the project otherwise, for expected qualities lying in between the upper

and lower thresholds10. By backward induction, we can eventually find the value

that the agent gets from owning the firm at birth, V0(π̂0), taking as given the initial

prior belief.

3.3.2 Learning, Investment and Exit Decisions

Previous to the quantitative exploration of the model solution, it is necessary to

understand the mechanisms operating in the model presented above. In particular,

it is paramount to study how learning affects exit choices and firm investment over

the life cycle. This section illustrates the role of learning. A learning scenario is one

where the firm receives period cash-flows that are partially informative about the

true quality of projects, so that σ2
ε > 0, and beliefs (π̂t, σ

2
t ) are updated as cash-flows

realisations arrive. Belief updating is possible as far as the signal is not too noisy,

i.e. if σ2
ε < ∞. Otherwise, I will be talking about a non-learning scenario, where

beliefs are not updated over time.

Learning Affects Exit Decisions

Let us first illustrate how belief updating affects discrete decisions. To do this, I

abstract here from investment and I consider a firm that has been sold to the market,

which does not have the ability to invest11. This firm is capable of updating beliefs

over time and make termination decisions.

First of all, timely differences in belief updating are mapped to timely differences

in σ2
t and κt, whose exogenous evolution affects the way cash-flow realisations gen-

erate surprises and change expected quality π̂t over time. Figure 3.1 shows how the

standard deviation σt and the Kalman gain κt evolve in time according to equations

(3.3.4) and (3.3.5), departing from an initial belief of σ0 = 900. As we can see, both

σt and κt have a decreasing profile in time, and they converge to zero as time goes to

infinity. As a consequence, belief updating will be less notorious for old firms than

for young firms, since quality uncertainty fades away with age. Indeed, let us discuss

first what happens to infinitely old firms in terms of value. Consider the stationary

value of a firm that has been sold to the market. Given σ2
ε > 0 and equations (3.3.4)

10Similarly, market-held projects have an optimal termination policy characterised by an

expected quality threshold, such that projects are terminated if π̂t lies below a cutoff.
11Considering investment and the problem of the original firm owner does not change the

main takeaway of this section regarding learning, value and discrete decisions.



76 CHAPTER 3

Figure 3.1 Belief updating: standard deviation and Kalman gain

Notes: the two graphs respectively show the life-cycle evolution of the standard deviation char-

acterising beliefs of a firm, σt, and the corresponding Kalman gain, κt, for 100 periods of life.

The standard deviation and Kalman gain profiles have been calculated using equations (3.3.4) and

(3.3.5), respectively. I assume an initial standard deviation of σ0 = 900 and a measurement error

of σε = 600.

and (3.3.5), if we let time go to infinity we get κ∞ = σ2
∞ = 0. Thus, infinitely old

firms know with certainty their true quality (that is, π̂∞ = π∞) and do not update

their beliefs. As a consequence, the stationary value of a firm of (expected) quality

π̂ is:

W∞(π̂) = max{0, π̂

1− β
} (3.3.9)

where β = 1/(1+r). Figure 3.2(a) plots the stationary valueW∞(π̂) for different

values of π̂. From the graph, it is clear that the optimal exit decision of the stationary

firm consists of terminating if its quality lies below zero, and keep on receiving cash-

flows forever otherwise.

Let us now see what happens over the life cycle of a firm that has been sold to

the market. At ages t < ∞, both the quality uncertainty σ2
t and the Kalman gain

κt are strictly positive, as far as the noise of the signal does not go to infinity. As a

consequence, there is a non-trivial belief updating over time. In particular, expected

quality by the firm evolves according to π̂t+1 = π̂t+ κt(CFt− π̂t). The value of this

age-t firm is given by equation (3.3.6). Figure 3.2(b) shows this value function

for different firm ages (namely, ages 1, 2 and 5). Differently from the stationary

function, value has a curvy, strictly convex shape. Importantly, at younger ages,

value is weakly higher than the stationary value, and it decreases as the firm ages.

The differences in value over the firm life cycle ultimately come from differences

in belief updating over time, which translate into timely differences in the Kalman
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Figure 3.2 Market value: stationary and life cycle

(a) Stationary value (b) Life-cycle value

Notes: subfigure (a) plots the stationary value of a firm that has been sold to the market in

equation (3.3.9), as a function of the expected quality of the firm. Subfigure (b) compares this

stationary value to different life-cycle values (for ages 1, 2 and 5) of a firm that has been sold to the

market in equation (3.3.6). Life-cycle values are again plotted as a function of expected quality.

gain.

To illustrate the effects learning has on value, let us consider an age-0 firm whose

expected value is slightly below zero, e.g. π̂0 = −100, and let us compare it with

an age-∞ firm with π̂∞ = −100. As we see from Figure 3.2(b), the age-0 firm is

getting a positive value and decides not to terminate the project at age 0. In turn,

the infinitely old firm with π̂∞ = −100 decides to terminate the project and gets

a value of zero. The difference between these two firms is that the young firm has

room for belief updating. At age 0, project quality is yet pretty uncertain, since

σ2
0 is high. Consequently, the Kalman gain at age 0 is also large, given equation

(3.3.5). Therefore, choosing to keep the project alive and to observe a new cash-flow

observation CF0 is going to yield an optimistic belief update (i.e. an increase in π̂0)

with a very high probability.

Still, there is also a high probability that CF0 is low, and that beliefs are updated

pessimistically. However, the possibility to terminate generates a positive option

value. Should the firm receive a very bad cash-flow realisation, it can avoid receiving

a time-lasting stream of poor results by just leaving the economy. Put simply, young

firms can cut negative cash-flow streams if they expect them, and so do old firms;

but, differently from old firms, there is room for positive belief updating for young

firms, and thus for attaining higher future cash-flows. As a result, the value of an

age-0 firm can be positive even if it starts its life expecting a relative poor quality.

This is entirely due to the possibility of learning under uncertainty. Indeed, if

we consider a non-learning environment such that period cash-flows are completely

uninformative, then κt = 0 for all t, no belief updating is possible, and firm value

at ages t <∞ coincides with the stationary value shown in Figure 3.2(a).
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Learning Affects Investment

Let us now come back to the problem of the agent who owns a firm and has the ability

to perform growth investments on it. Let us illustrate how belief updating over the

life cycle shapes investment decisions. For illustration purposes, I discuss a simplified

version of the model. The results from this model extend to the more general setting,

which is simulated in section 3.4. I find that learning makes investment by the agent

contingent on intermediate cash-flows, in line with documented empirical patterns

discussed in section 3.2.

Here, I present a three-period version of the model of the firm. There is an

agent that owns a project and lives for three periods: t = 0, 1, 2. Initial beliefs at

age 0 are described by a duple (π̂0, σ
2
0), and may be updated over time. At period

2, the agent chooses whether to terminate the project or to sell it to the market,

leaving the economy right after in either case. I assume that the discrete decision

only takes place at age 2, and not before, but the mechanism discussed here is also

present in a model with discrete decisions every period, as shown in section 3.4. If

the agent decides to sell the project to the market, she gets the expected value of

period cash-flows at age 2 – that is, π̂2. For exposition purposes, I abstract from

operation and sale costs. Leaving these considerations aside, the timing of events is

similar to that in section 3.3.1.

Let us first discuss the non-learning case – i.e. cash-flows are completely uninfor-

mative about the true quality of projects, and prior beliefs are never updated. An im-

plication of this is that the Kalman gain equals zero at every period t = 0, 1, 2 of firm

life. At period 2, the firm with expected quality π̂2 has value V2(π̂2) = max{0, π̂2}.
Thus, in period 1 we have:

V1(π̂1) = Eε1 [U1(π̂1, CF1)]

where

U1(π̂1, CF1) = max
k1≥0

{︃
CF1 −

ψ

2
k21 − pKk1 +

1

1 + r
max{0, π̂2}

}︃
subject to equation (3.3.3), which reads π̂2 = π̂1 + Bk1 in this case, and where

CF1 = π1+ε1. Recall that fund injection k1 is chosen after cash-flow CF1 is realised.

I adopt a backward induction perspective. Conditional on the agent choosing to

terminate at period 2, then she gets value CF1 − ψ
2
k21 − pKk1 and she optimally

chooses kT1 = 0. Otherwise, conditional on choosing sale at period 2, the firm gets

value CF1 − ψ
2
k21 − pkk1 +

1
1+r

(π̂1 + Bk1) and chooses kS1 = 1
ψ
( 1
1+r

B − pK), which

is greater than zero if B is large enough. The sale choice takes place whenever
1

1+r
(π̂1 + BkS1 ) ≥ 0 or, equivalently, when π̂1 +

B
ψ
( 1
1+r

B − pK) ≥ 0. The optimal

investment decision in period 1 is:
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k∗1(π̂1) =

⎧⎨⎩
1

ψ

(︁ 1

1 + r
B − pK

)︁
if π̂1 +

B

ψ

(︁ 1

1 + r
B − pK

)︁
≥ 0,

0 otherwise

Notice that optimal investment is weakly increasing in π̂1: the fact that the

firm enters the period with a high expected quality may alter the discrete decision

towards selling instead of terminating, and thus may generate a positive jump in

investment. Indeed, positive investment will take place for any expected quality such

that π̂1 ≥ −B
ψ

(︁
1

1+r
B − pK

)︁
. Provided that fund injections have a positive marginal

productivity B that is sufficiently large relative to the price of the investment good,

the firm would be willing to invest and sell the project right after even for some

negative values of π̂1. The same logic discussed here can be extended to period 0

to obtain k∗0(π̂0), also weakly increasing in π̂0. Nevertheless, staged financing is not

contingent on period cash-flows – i.e CFt does not affect optimal investment k∗t .

To arrive at this important result, let us now consider a bounded and sufficiently

low σ2
ε , so that there is learning, i.e. belief updating over time. In this case, the

investment problem at period 1 is similar to that in the non-learning case, but the

Kalman gain κ1 is strictly positive and equation (3.3.3) reads π̂2 = π̂1 + Bk1 +

κ1(CF1 − π̂1), where the extra term depends on CF1, and on σ2
1 and σ2

ε via the

Kalman gain. Following the same logic as before, optimal investment at period 1 is:

k∗1(π̂1, CF1) =

⎧⎨⎩
1

ψ

(︁ 1

1 + r
B − pK

)︁
if π̂1 +

B

ψ

(︁ 1

1 + r
B − pK

)︁
+ κ1(CF1 − π̂1) ≥ 0,

0 otherwise

Now, the fact that κ1 > 0 makes both π̂1 and CF1 capable of generating jumps in

investment due to the discrete decision. In particular, the firm will invest and sell the

project afterwards if π̂1 ≥ − 1
1−κ1

(︁
B
ψ
( 1
1+r

B−pK)+κ1CF1

)︁
. For example, imagine κ1

is large. This can be caused either by a very uncertain environment (high σ2
1) or by

a very high learning ability (low σ2
ε), or both. In this high-κ environment, a negative

CF1 realisation may induce the firm to choose to terminate the project instead of

selling it at period 2, and thus may prevent it from investing, even if π̂1 is positive

and large enough. We can extend this logic to period 0 (although more unpleasantly

from an algebraic point of view) and get a similar intuition for k∗0(π̂0, CF0). The key

insight from this illustrative model is that, jointly with the possibility of terminating

or selling the project, learning is a force that makes investment contingent on period

cash-flows.

As we see next, the mechanism presented here also operates in the infinite-periods

model of section 3.3.1. The ability to learn about firm-level outcomes generates inter-

esting patterns of staged financing, a phenomenon that has been of great interest to

the venture capital literature (Neher, 1999; Cornelli and Yosha, 2003). Specifically,
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Table 3.1 Parameterisation of baseline model

Parameter Definition Value

Initial beliefs

π̂0 Expected quality at birth -50

σ0 Quality uncertainty (standard deviation) at birth 900

Other parameters

r Discount rate 0.042

B Marginal productivity of effort 2

σε Standard deviation of measurement error 600

ψ Intensity of convex investment cost 4.5

pK Price of investment good 1

cop Fixed operation cost 400

CIPO Fixed sale cost 3500

learning is shown to be a theoretical mechanism capable of rationalising contin-

gent fund injections, an important feature of real-life US venture-backed firms, as

documented by Kaplan and Strömberg (2003).

3.4 Quantitative Exploration

In this part of the chapter, I discuss the numerical solution of the complete, infinite-

periods model described in section 3.3.1, given the baseline parameterisation in Table

3.1. The theoretical mechanisms described in section 3.3.2, through which learning

affects exit and investment decisions, are operating in the model. In my baseline

parameterisation, I consider that agents owning firms start out project implementa-

tion with initial beliefs π̂0 = −50 and σ0 = 900. The assumption on initial expected

quality π̂0 guarantees that if there were no initial quality uncertainty (σ0 = 0),

keeping the rest of parameterisation equal, the agent would immediately terminate

the project in the first period of firm life. On the other hand, the assumption that

σ0 = 900 aims at representing a quite intense initial quality uncertainty. I assess

whether quality uncertainty is sufficiently high to motivate the agent to keep the

firm, to update her beliefs about the project’s quality, and to perform growth invest-

ments. In particular, I study whether learning is beneficial for the agent in terms of

the value of the firm, as well as other simulated moments of interest.

The baseline parameterisation in Table 3.1 has been chosen for the model to

display two reasonable decision-making patterns of agents owning entrepreneurial

projects. First, I parameterise the dynamic model such that an infinitely old agent

would always decide not to keep the project. That is, the stationary value of an

agent of age t = ∞ is such that the agent either sells the project to the market, if
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Figure 3.3 Sale and termination thresholds, baseline model

Notes: the graph shows optimal sale π̂t and termination π̂t thresholds for expected quality π̂t

for different periods of an agent’s life cycle. The lines are obtained from the numerical solution

of the optimisation problem of the agent, given the parameterisation in Table 3.1. The orange

line corresponds to the sale threshold π̂t and displays a decreasing pattern in time. The blue line

corresponds to the termination threshold π̂t and is increasing in time.

she knows that the project is profitable, or terminates it otherwise12. The parame-

terisation allows to avoid a situation in which agents keep their projects forever and

growth investments are made eternally. This would be at odds with documented

venture capital industry facts, where the objective of venture capitalists is precisely

to exit the firm after some years, either by cashing out if the firm is profitable or by

terminating it if it turns out to be a failure (Metrick and Yasuda, 2010). Second,

model parameters are chosen such that, over the first years of the agent’s life cycle,

the firm is kept by the owner for a non-empty set of initial beliefs – i.e. there is room

for the agent to keep the project, invest and learn, and she may not sell or terminate

immediately. Again consistently with facts in Metrick and Yasuda (2010), this aims

to capture the experimentation process venture capitalists incur when they start

providing resources and guidance to high-risk firms.

3.4.1 Exit and Investment Decisions

Exit policy over the life cycle. Consider the numerical solution for the baseline

model in Table 3.1. Let us first discuss exit policies of agents owning projects in this

environment. In Figure 3.3, we observe the optimal termination threshold π̂t and

12Regarding implied discrete choices, this stationary value is similar to that shown in Figure

3.2(a).
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Figure 3.4 Old agents, investment decisions

the optimal sale threshold π̂t for an agent over the firm life cycle. As we observe, as

her firm gets old, the agent optimally keeps it for a smaller set of expected qualities

π̂t. The upper threshold π̂t is decreasing in t, so that the agent is more eager to sell

the project to the market as it gets old given a level of π̂t. The lower threshold π̂t
is increasing in t, implying that, for the same level of expected quality, the agent is

more willing to terminate the project as age increases.

Figure 3.3 shows that agents never keep their firms when they are older than a

certain age, under parameter values in Table 3.1. For a very large t, the sale and the

termination threshold coincide. This is due to the fact that σ2
t and the Kalman gain

are zero for infinite ages, as implied by equations (3.3.4) and (3.3.5). When firms

are very old, they already know their true quality pretty accurately, and cash-flow

surprises do not lead to strong updates in their expected quality. For infinitely old

agents, similarly to Figure 3.2(a), the ability to learn does not provide any option

value from not terminating the project. This leads them to either terminate or sell,

but they never keep and invest.

Figure 3.4 represents the investment decision of an infinitely old agent (t = ∞)

that has a sufficiently high expected quality π̂t and corresponding value V (π̂t). This

agent does not get any option value from keeping the project, and will only keep it

if her investments are sufficiently profitable. As in Figure 3.2(a), value is linear for

high expected qualities, and thus its derivative does not vary with π̂t. If the agent

has already decided to keep her project, the marginal cost of investment pk+c
′(k) is

lower than the marginal value from investing, for small amounts of k, and optimal

investment is a fixed positive amount (k∗ in Figure 3.4). Thus, provided that c(k)

is convex, the old firm would thus find profitable to invest a positive amount13. The

13Without a convex cost, the problem of the firm would not be well-defined, and the agent

would like to keep the project forever and make infinite investments to increase project’s quality
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benefit from investing and increasing the project’s quality is represented by the blue

area GK in the graph. Nevertheless, parameters values in Table 3.1 are chosen such

that cop > GK , so that the gains from investing when old are not large enough to

cover operation costs. As a consequence, an agent decides not to keep her firm after

some age, and she either sells it or terminates it depending on what she knows about

her project’s quality.

When agents are younger, however, projects are kept for intermediate values of

π̂t, instead of being terminated or sold. First, the reason why a young agent would

prefer to keep her project instead of terminating it is that, as far as π̂t is not too

low, the high σt when young translates into an option value from not terminating

the project: given the ability to learn the agent has, a positive updating of π̂t can

happen with a large probability, and negative expected cash-flows can be cut down

by the possibility of terminating the firm in the future. Importantly, this additional

option value from not terminating may compensate the operation cost of keeping,

cop. In these cases, once cop is sunk, an agent that keeps her firm finds it profitable

to invest as far as her realised period cash-flows CFt (or, equivalently, her future

expected quality π̂t+1) are high enough.

However, since the market can also learn about the project’s quality, ability to

learn (a low σε) alone cannot explain why an agent would prefer to keep her project

when young instead of selling it, if π̂t is sufficiently high. The reason for this is that

the sale cost CIPO in Table 3.1 is large – in other words, it is costly to pass the firm

to the market and to start market learning. Thus, although once sold to the market

a firm is equally capable of updating beliefs, the original owner of the firm can learn

from cash-flow realisations in a cheaper manner, for she does not have to pay CIPO
while she keeps her firm14. As a result, a young agent can delay paying sale costs

by keeping her project and still benefit from the option value from learning, thus

compensating cop and investing afterwards.

Figure 3.5 shows the values of keeping and selling for different expected qualities,

for an age-1 agent (thus having a high degree of quality uncertainty). For very low

values of π̂t, expected cash-flows are so low that keeping or selling the project today

result in a future termination with a very high probability, so the agent prefers

to terminate immediately, given positive cop and CIPO. For very high values of

π̂t, the probability of the market liquidating the project is almost zero, so the agent

prefers not to delay the sale anymore. For expected qualities in between the sale and

termination threshold, the agent prefers not to terminate the project and obtains an

option value due to high uncertainty and the ability to learn. Still, sale is delayed

in that region. On one side, given the high degree of uncertainty, upon a sale today

and value V . The difference between V ′
t and pK in Figure 3.4 makes that explicit.

14Indeed, if I set the sale cost to zero in a quantitative exercise, I find that no young agent

would be willing to keep the project. An agent would be willing to sell the firm to the market if

π̂t is above some (negative) expected quality.
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Figure 3.5 Young agents, exit decisions

Notes: the graph shows, for an agent of age 1 owning a firm, the value she gets from terminating

(dashed, green line), keeping (solid, orange line), and selling her firm to the market (solid, blue

line). Sale and termination thresholds π̂t and π̂t for age 1 and termination, keep and sale regions

are made explicit in the graph. Values are plotted against expected quality.

the market may liquidate the project afterwards with a positive probability, which

brings down the market price today Mt(π̂). On the other side, selling the project to

the market and starting market learning is expensive, provided that CIPO is large.

This sale cost imposes a wedge between the value of keeping and the value of selling.

Thus, the agent prefers to keep the project and get extra benefits from investing15.

Investment policy over the life cycle. In Figure 3.6, I show the investment

policy function gkt (π̂, CF ) of an agent for two periods of time, t = 0 and t =

5. As argued in section 3.3.2 for a three-period model, learning makes optimal

investment depend positively on CFt. In the complete, numerically solved model,

the investment policy is contingent on period cash-flows for both periods 0 and 5.

Indeed, if I simulate the life cycle of an agent that makes decisions according to these

policies, I find that the contemporaneous correlation between period cash-flows and

investments is equal to 0.75, which denotes that fund injections and intermediate

results are comoving in the simulated data. This is in line with documented facts in

Kaplan and Strömberg (2003) regarding staged financing. It is worth noting that the

frictionless model in this chapter generates contingent investment that is induced by

15If we shut down the ability to invest after keeping (B = 0), agents that keep their projects

today but sell them right after in the next period with a very high probability (i.e. those with a

quite high π̂t) would prefer to sell their projects immediately. This indicates that the extra

benefits from investing are also a reason for keeping projects instead of selling them.
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Figure 3.6 Investment policy function gkt (π̂, CF )

(a) t = 0 (b) t = 5

Notes: subfigure (a) represents the optimal investment policy at age 0 as a function of expected

quality and period cash-flows, gk0 (π̂, CF ). Subfigure (b) represents the same object corresponding

to age 5. Policy functions are obtained from the numerical solution of the optimisation problem

of the agent, given the parameterisation in Table 3.1. Darker colours represent lower amounts of

investment chosen by the agent, and lighter colours represent higher investment amounts.

the ability to learn and, differently from other papers in the firm dynamics literature,

does not rely on financial frictions to yield a high correlation between investments

and cash-flows.

As we can see from Figure 3.6, the degree of sensitivity of the optimal investment

policy to period cash-flows changes over the life cycle of the firm. By comparing

subfigures 3.6(a) and 3.6(b), we observe that the optimal investment policy is more

sensitive to CFt realisations when the firm is very young relative to older periods,

given the same value for π̂t. For example, imagine a firm that enters period t (either

0 or 5) with π̂t = 500. If t = 0, a very bad cash-flow realisation (e.g. CFt = −1000)

would cause the firm not to invest, thus setting gk0(π̂, CF ) = 0, while a moderately

good cash-flow realisation (e.g. CFt = 10) would trigger a positive investment,

being gk0(π̂, CF ) slightly above 5. If t = 5, instead, these two alternative cash-

flow realisations would yield optimal investments of around 9 and 10.5 respectively,

spanning a smaller range of investment values and thus showing a less exacerbate

reaction to intermediate results.

Again, the mechanism causing these different sensitivities is the fact that σ2
t is

decreasing in time. When the agent is young, there is room for her initial expected

beliefs π̂0 to vary, given the large initial uncertainty σ0. This variation in beliefs

may induce shifts in exit decisions and trigger strong investment reactions. However,

after 5 periods, σ5 is noticeably smaller than σ0, as it has been shown in Figure 3.1.

Thus, the older agent has more evidence that the true quality of the project is

close to 500, i.e. that the project is sufficiently good. By that period, cash-flow

realisations are less likely to cause strong changes in beliefs that induce shifts in

discrete decisions, thus not giving room to sizable variations in investment.
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Figure 3.7 Sale and termination thresholds, different σ0

Notes: the graph shows optimal sale π̂t and termination π̂t thresholds for expected quality π̂t for

different periods of an agent’s life cycle, considering three distinct levels of initial uncertainty σ0.

The lines are obtained from the numerical solution of the optimisation problem of the agent, given

different levels of σ0. The dashed line line represents the termination-sale threshold when there is

no initial uncertainty. The dotted and the solid lines represent sale and termination thresholds for

higher levels of initial uncertainty.

It is important to highlight that the shape of the exit and investment policies

is possible given our assumption that σε = 600. If the agent was not able to learn

from cash-flows when keeping her project, equations (3.3.4) and (3.3.5) would not

imply a decreasing pattern in σ2
t , and the Kalman gain would be equal to zero.

As I discuss later in this section, an agent that is completely unable to learn from

period cash-flow realisations has an investment policy that is completely insensitive

to period cash-flows, regardless of the level of σ2
t .

3.4.2 The Role of Uncertainty

Here, I simulate the parameterised model and I discuss how policies and simulated

outcomes change when we modify the initial quality uncertainty of the agent, rep-

resented by parameter σ0. The role of initial uncertainty on exit and investment

policies can be easily understood along the lines of the discussions of Figures 3.3

and 3.6: a higher σ0 manifests through an increase in the Kalman gain, thus making

the agent more predisposed to continue running the firm over the life cycle (via

an increase in the option value of keeping). Besides, a higher Kalman gain makes
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investment policy gkt (π̂, CF ) more sensitive to cash-flow realisations. The opposite

occurs if the project is less uncertain at birth. Regarding the exit policy, Figure

3.7 shows how sale and termination thresholds get broader as we consider projects

that are initially more uncertain. The higher the initial uncertainty, the higher the

likelihood that the agent decides to keep the project over the life cycle.

Simulated moments and value. Let us perform simulations to study how several

outcomes are affected by the level of initial uncertainty. For that, I consider differ-

ent levels of σ0. For each of these levels, I solve the model (keeping the rest of the

parameterisation as in Table 3.1) and I simulate 500,000 agents that are born with

a firm. All of these simulated agents have homogeneous initial beliefs, but heteroge-

neous unobserved initial qualities, which are drawn from the exogenous population

distribution of π0. I look at several simulated moments of interest – namely, the

mass of projects that are kept/terminated/have been sold by age, the total invest-

ment by age, the sale rate (i.e. the percentage of firms that are eventually sold at

some period of life), and the value of the agent at firm birth.

First, in Figure 3.8(a), we see that a slightly larger mass of agents decides to

keep their firms at young ages when we consider a level uncertainty σ0 = 600 that

is relatively low compared to the baseline level of 900. The reason for this is that,

although the sale and termination bands are broader when we consider a high σ0 (see

Figure 3.7), the value of initial uncertainty also affects the population distribution

of π0. The higher the level of uncertainty, the larger the population variance of

unobserved qualities across firms, and thus the larger the mass of firms with extreme

values of π0. This second effect prevails, and thus more firms decide either to

terminate or to sell when uncertainty is high.

In Figures 3.8(b) and 3.8(c), we see that, when initial quality uncertainty is

higher, more projects are sold and less projects are terminated at young ages. As a

result of a high σ0, agents that choose to keep their projects when young receive a

high option value from continuing their firms instead of selling or terminating them

immediately. These agents carry out contingent investments and eventually manage

to sell their projects at high market prices. Finally, Figure 3.8(d) shows that total

investment in the economy is larger for younger firms. As they age, many agents

decide to sell them to the market or liquidate them, and this generates a decrease

of total investment in age.

In Figure 3.9, I consider a range of levels of σ0 from 0 to 1800, and I study

how initial uncertainty affects the sale rate of firms, as well as their initial value.

Figure 3.9(a) shows the percentage of firms eventually sold by their owners for

different σ0. If initial uncertainty is very low, the sale rate takes on a value of

zero. The low expected quality of projects at birth, π̂0 = −50, leads agents to

liquidate their firms right away. However, for levels of σ0 above 350, the probability

that a project is eventually sold to the market is monotonically increasing in the
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Figure 3.8 Exit and investment dynamics and initial quality uncertainty σ0

(a) Cumulative mass choosing keep (b) Cumulative mass choosing term

(c) Cumulative mass choosing sale (d) Total investment by age

Notes: for every age, and a simulated sample of 500,000 agents, I show the cumulative mass of

agents choosing to keep their project (subfigure (a)), to terminate the project (subfigure (b)), to sell

the project (subfigure (c)), and the total investment by age in the simulated economy (subfigure

(d)). The dashed, blue line corresponds to an initial level of uncertainty σ0 = 600. The solid,

orange line corresponds to a higher level of uncertainty, σ0 = 900.

initial uncertainty, thus indicating that a sufficiently high risk may induce agents

to not terminate them immediately and to carry out growth investments, given the

higher likelihood of optimistic belief updatings. Indeed, as shown in Figure 3.9(b), a

higher σ0 increases the initial value of the agent. A larger σ0 raises the Kalman gain

in the learning process about the project’s quality and makes keeping the project

and making the appropriate contingent investment more valuable, provided that

termination is always possible if belief updating turns out to be pessimistic. Agents

owning more uncertain firms thus engage in more valuable experimentation, for they

can learn more about its project’s prospects and improve upon an immediate sale

or termination.
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Figure 3.9 Simulated outcomes and initial quality uncertainty σ0

(a) Sale rate (b) Value at period t = 0

Notes: subfigure (a) shows the fraction of simulated agents that eventually sell their firms at some

point in their life, for simulated samples of 500,000 agents with different initial uncertainty levels.

Subfigure (b) shows the initial value of an agent with initial expected quality π̂0 = −50, for different

levels of initial uncertainty. I consider a range of levels for σ0 from 0 to 1800.

3.4.3 The Role of Learning

So far, we have assumed that firms can infer information about the true quality of

the project from period cash-flows. We represent this ability of firms by a parameter

σε = 600, which shows up in the “observation equation” (3.3.1). This section studies

what happens to policies, simulated moments and value when we challenge this

parameter assumption.

The non-learning scenario. Let us first depart from the baseline parameterisation

and consider instead an extreme non-learning case, where I impose the prior belief

(π̂0, σ
2
0) for all t (so that there is no belief updating), while keeping the rest of the

parameterisation in Table 3.1. Under the non-learning scenario, an agent does not

have access to a useful learning technology that allows her to update the quality

distribution. In Figure 3.10, I show that the investment policy at period t = 0 of

such an agent is completely insensitive to cash-flow realisations, and is positive only

if the agent expects already a high quality for her firm16. Underlying this figure

is the theoretical mechanism illustrated the three-period model from section 3.3.2:

when the Kalman gain equals zero, no cash-flow realisation can induce a change in

discrete decisions, and thus it does not affect investment.

Simulated moments and value. To see what happens if agents have access to

better learning technologies relative to a non-learning environment, let us consider

different values for σε while keeping the rest of the parameterisation in Table 3.1, and

16This result holds for any positive σ0. Imposing (π̂0, σ
2
0) for all t implies that κt = 0 for all t,

thus rendering gkt insensitive to cash-flow realisations, regardless of the value of initial uncertainty.
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Figure 3.10 Investment policy gkt (π̂, CF ) at period t = 0, no learning

Notes: the graph represents the optimal investment policy at age 0 as a function of expected quality

and period cash-flows, gk0 (π̂, CF ), in a non-learning scenario. The policy function is obtained from

the numerical solution of the optimisation problem of the agent, imposing the prior belief (π̂0, σ
2
0)

for all t and the rest of the parameterisation in Table 3.1. Darker colours represent lower amounts

of investment chosen by the agent, and lighter colours represent higher investment amounts.

let us see how simulated outcomes are affected. Figure 3.11 shows the simulated (for

500,000 firms) mass of firms that are kept, terminated and sold over the life cycle,

as well as total investment by age, for two different levels of σε. A better learning

technology (i.e. a lower σε) induces some of the simulated agents to keep the project

for more periods than in the model with more noisy signals. Figure 3.11(a) shows

that almost 10% of agents decide to keep the project after 9 years when σε = 100,

versus 3% in the baseline σε = 600. As a consequence, total investment in the

economy at older ages increases (Figure 3.11(d)). Figure 3.12 considers a range of

values for σε, from 0 to 5000, and how they affect the mass of firms eventually sold

and the value at firm birth. As we can see, the lower the noise of period cash-

flows, the higher the sale rate in the economy and the higher the value of owning

a risky project. For very noisy signals, beliefs are barely updated and waiting to

receive cash-flows is useless. Thus, agents decide to terminate the project and get

zero value. As we decrease σε, CFt becomes a more significant signal of πt, which

gives incentives for agents to continue keeping their projects and inject funds in a

contingent manner. This increases the chances that projects are eventually sold,

and thus increases the value of owning risky firms.

Finally, Figure 3.13 shows how the initial value of risky companies changes with

the noise of period cash-flows, for a high (σ0 = 900) and a low (σ0 = 600) level of

initial uncertainty. As we can see, the increase in firm value due to having access to

more informative signals is particularly notorious when the agent owns a more risky

project. This gives us a powerful reason to believe that, when projects are highly

uncertain, their owners’ ability to learn turns out to be a particularly valuable
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Figure 3.11 Exit and investment dynamics and learning σε

(a) Cumulative mass choosing keep (b) Cumulative mass choosing term

(c) Cumulative mass choosing sale (d) Total investment by age

Notes: for every age, and a simulated sample of 500,000 agents, I show the cumulative mass of

agents choosing to keep their project (subfigure (a)), to terminate the project (subfigure (b)), to

sell the project (subfigure (c)), and the total investment by age in the simulated economy (subfigure

(d)). The dashed, blue line corresponds to a high level of learning ability σε = 100. The solid,

orange line corresponds to a lower level of learning ability, σε = 600.

skill. Given a low σε, high-σ0 firms avoid liquidations and benefit from specialised,

contingent funding (which the market is unable to provide), thus increasing their

value.

3.5 Conclusion

In this chapter, I present a model of the firm that mimics realistic features of

young, innovative entrepreneurial projects – namely, venture-backed companies in

the United States. The model explicitly considers uncertain returns, staged financ-

ing, exit decisions and intermediate results of firms over the life cycle. In this

one-agent model, an agent implements a project by making investment and exit

decisions over time. Importantly, the agent receives (as far as the project is not

stopped) cash-flows every period that convey information about the true quality of

the firm. Therefore, intermediate cash-flows allow for learning to take place over the
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Figure 3.12 Simulated outcomes and learning σε

(a) Sale rate (b) Value at period t = 0

Notes: subfigure (a) shows the fraction of simulated agents that eventually sell their firms at

some point in their life, for simulated samples of 500,000 agents with different learning abilities,

σε. Subfigure (b) shows the initial value of an agent with initial expected quality π̂0 = −50, for

different levels of learning ability. I consider a range of levels for σε from 0 to 5000.

Figure 3.13 Value and learning, two levels of initial uncertainty

Notes: the graph shows the initial value of an agent with initial expected quality π̂0 = −50, for

different levels of learning ability. I consider a range of levels for σε from 0 to 5000. The blue line

corresponds to a level of initial uncertainty of σ0 = 900. The red line corresponds to a lower level

of initial uncertainty, σ0 = 600.
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firm life cycle, and this affects the agent’s decisions. By parameterising, solving and

simulating the model, I arrive at two main quantitative findings. First, I find that

optimal decisions regarding when to continue running the firm, when to sell it to

the market or when to liquidate it depend crucially on the uncertainty regarding the

firm’s unobserved quality. In this context of uncertain returns, the agent’s capability

of updating her beliefs about the project (that is, the ability to learn), and of doing

it in a cheaper manner than the market (given the large costs implicit in the sale

process), is determinant for her to decide when to keep and when to stop or sell the

project. Second, I find that, if a sufficiently good learning technology is available

to the agent, she uses period cash-flows as informative signals of the true quality of

the project and injects funds accordingly. As a result, it is optimal for the agent

to make investments that are contingent on realised period cash-flows. Therefore,

the single-agent model with learning is capable of rationalising the empirical fact

that fund injections into US venture-backed firms are contingent in the realisation

of intermediate results (Kaplan and Strömberg, 2003).

From the model simulation, I find that if the noise of the signal is sufficiently

low, higher quality uncertainty translates into a higher value from implementing

projects, a higher sensitivity of investment to cash-flow realisations, and a high pos-

itive contemporaneous correlation between simulated investments and cash-flows, in

line with empirically documented patterns. If we shut down learning, keeping high-

risk projects is not valuable and investment is completely insensitive to cash-flow

realisations. In that situation, improving the learning technology motivates experi-

mentation and contingent investment, thus resulting in value gains for firms. Thus,

we may think of venture capital as being a means of financing that is sophisticated

enough (at least in the United States) to be close to the kind of the learning agent

in my model.

These findings support the idea that a superior ability to learn helps the owners

of highly uncertain entrepreneurial projects to increase their value and motivates so-

phisticated contingent investments. The model in this chapter represents a setting

where a firm owner chooses investment and exit strategies in order to maximise the

net present value of her firm. The agent running the firm is not subject to any sort

of contracting friction. However, in reality, we do not have just one agent imple-

menting a high-risk project, but generally we have two parties – e.g. an entrepreneur

and a venture capitalist. As it has been well acknowledged by the literature, the

fact that two agents implement innovative projects may generate incentive problems

(Marx, 1998; Bergemann and Hege, 1998; Cornelli and Yosha, 2003) that are though

as motivating the usage of real-life, complicated securities (Kaplan and Strömberg,

2003; Cumming, 2008). Our model in section 3.3.1 does not inform about contrac-

tual choices that different parties may make in order to implement an innovative

project. An alternative setting with contracting would consider an entrepreneur that

owns the firm, and a venture capitalist that injects funds in it. These two agents
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implement the project jointly via some financial contract – either simple equity

(Cumming, 2008; Ollivierre, 2010) or convertible securities (Kaplan and Strömberg,

2003; Schmidt, 2003). Still, even if this chapter studies the life-cycle behaviour of

a single agent, I show that a one-agent model is sufficient to study the effects of

learning over the life cycle of risky projects, and it gives an idea on what a good

contracting environment should yield in terms of investment and exit practices in

those firms. As a matter of fact, documented practices in the US venture capital

market seem to present both the widespread usage of exit strategies in time and

contingent fund injections, two features that the model replicates well. Other im-

portant possible extensions of this work, such as the competing role of traditional

sources of financing, like banks, or alternative financial contracts, are left for future

research.
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A Appendix to Chapter 3

A.1 Derivation of the Kalman Filter Equations

We depart from a generalised form of equations (3.3.1) and (3.3.2):

CFt = Cπt + εt

πt+1 = Aπt +Bkt + wt

where εt ∼ N(0, σ2
ε) and wt ∼ N(0, σ2

w); and from the conditional distribution of

CFt on π̂t that we obtain by taking expectations and variance to expression (3.3.1):

CFt ∼ N(Cπ̂t, C
2σ2

t + σ2
ε)

In the main text, I assume that A = C = 1, and that there is no shock in the law

of motion equation, so that σ2
w = 0. The first step is to get a filtering distribution

– that is, the distribution of quality once we have observed the realisation of the

imperfect measure CF . This “filtered” quality is denoted by πFt , and it is our aim

to get an estimate of it, π̂Ft . For that purpose, we perform the following regression

of the unobserved state (πt = πFt − π̂t) on the difference between the realisation of

cash-flows and their prediction (a “surprise” relative to the expected value of CFt
at period t):

πFt − π̂t = β(CFt − Cπ̂t) + vt

The estimator that minimises the mean square error (it is in this sense that I talk

about optimality here) using the information available is β̂ =
Cov(πFt − π̂t, CFt − Cπ̂t | π̂t)

V ar(CFt − Cπ̂t | π̂t)
,

from which we find β̂ = Cσ2
t (C

2σ2
t +σ2

ε)
−1. This allows us to write a point estimate

for the filtered quality and the corresponding variance:

π̂Ft = π̂t + Cσ2
t (C

2σ2
t + σ2

ε)
−1(CFt − Cπ̂t)

σF
2

t = σ2
t − σ2

tC
2σ2

t (C
2σ2

t + σ2
ε)

−1

which are the parameters that characterise the filtering distribution πFt ∼ N(π̂Ft , σ
F 2
t ).

This filtering distribution gives probabilities of different qualities after we filter out

the prior by the new information provided by the realisation of CFt, i.e. it is the

distribution of πt conditional on CFt. In other words, we are applying Bayesian

updating to our prior using the realised period cash-flows. The next step is to move

from filtering to prediction. I use the filtering distribution and the law of motion

(3.3.2) to get the updated distribution of quality πt+1. Since new information
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about CFt has arrived, we can use the filtered random variable πFt instead of πt for

predicting the future value of πt+1. In other words, we turn equation (3.3.2) into

πt+1 = AπFt +Bkt+wt. By taking expectations and the variance in this expression,

we immediately get the two first Kalman filter equations:

π̂t+1 = (A− κtC)π̂t +Bkt + κtCFt

= Aπ̂t +Bkt + κt(CFt − Cπ̂t)

and

σ2
t+1 = (A2 − ACκt)σ

2
t + σ2

w

where κt is the Kalman gain, whose expression is the third Kalman filter equation:

κt = ACσ2
t (C

2σ2
t + σ2

ε)
−1

A.2 Algorithm to Solve the One-Agent Model

Here, I replicate the value functions I have shown in section 3.3.1, which correspond

to a firm that is held by the market (values W and M) and to a firm held by its

original owner (values V and U). In either case, exit and investment decisions are

made to maximise the total surplus from the firm.

The value of an age-t firm held by the market with period beliefs (π̂t, σ
2
t ) is:

Wt(π̂) = max{0,Mt(π̂)}

where Mt(π̂) is given by:

Mt(π̂) =

∫︂ (︁
CF +

1

1 + r
Wt+1(π̂

′)
)︁
dGt(CF | π̂)

where CF = π + ε (observation equation (3.3.1)), and beliefs evolve according

to equations (3.3.3)-(3.3.5) – namely, π̂′ = π̂+ κt(CF − π̂). In turn, the value of an

age-t firm held by its original owner with period beliefs (π̂t, σ
2
t ) is:

Vt(π̂) = max{ 0⏞⏟⏟⏞
termination

,Mt(π̂)− CIPO⏞ ⏟⏟ ⏞
sale

,

∫︂
Ut(π̂, CF )dGt(CF |π̂)⏞ ⏟⏟ ⏞

keep

}

where the value of the keep decision is:
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Ut(π̂, CF ) = max
k ≥ 0, π̂′ ∈ IR

{︃
CF − c(k)− pKk − cop +

1

1 + r
Vt+1(π̂

′)

}︃
s.t. π̂′ = π̂ +Bk + κt(CF − π̂)

and, again, subject to equations (3.3.4) and (3.3.5). Since the evolution of the

variance of the project, σ2
t , and the Kalman gain, κt, are fully exogenous, we can use

the initial condition on quality uncertainty, σ2
0, and equations (3.3.4) and (3.3.5) to

get the entire life-cycle path for the variance and the Kalman gain. An important

feature of these two variables is that they converge to their respective limit values as

t goes to infinity. If the Kalman filter converges at an age Tconv, then, for t > Tconv,

the problem of the firm (either market-held or owner-held) is stationary – that is,

value functions W , M , V and U do not depend on time from age Tconv onwards.

That being said, and taking as given sequences {σ2
t }∞t=0 and {κt}∞t=0, we can rewrite

the optimisation problem faced by the owner-held firm at a generic age t > 0 after

the period cash-flow has realised as:

Ut(π̂, CF ) = max
k ≥ 0

{︃
CF − c(k)− pKk − cop +

1

1 + r
Vt+1(π̂ +Bk + κt(CF − π̂))

}︃

which is a problem where the agent’s control k and state (π̂, CF ) imply a future

value Vt+1. Importantly, the fact that the Kalman gain varies over time makes this

a non-stationary problem for ages t < Tconv, i.e. until convergence of σ2
t and κt is

achieved. Thus, I index values and policies by time in the exposition.

We want to find the investment policy gkt (π̂, CF ) ∈ [0,∞) and the exit policy

gexitt (π̂) ∈ {termination, sale, keep}. Given the max structure of Vt(π̂), for conve-

nience, let us express the exit strategy via possibly time-variant thresholds for π̂t
that make the agent indifferent between any pair of discrete choices. In the main

text, I show that it is indeed the case that policies from the solved model are thresh-

old strategies, given a wide range of alternative parameterisations. I find that these

thresholds are π̂t and π̂t, with π̂t < π̂t, such that the firm decides to terminate for π̂t
below π̂t, to sell above π̂t, and to continue running the firm herself in between these

two thresholds. The algorithm I use to solve the model is value function iteration.

Iterating on the value function, I get the stationary value for market-held firms and

for owner-held firms. For those, I consider that the Kalman gain is equal to its limit

value, which I call κ here. I first get the stationary values W∞ and M∞ (as well as

the stationary termination-sale policy for a market-held firm) and then, introducing

the stationary M∞ in equation (3.3.7) with κt = κ, I find stationary values V∞,

U∞ and stationary policies gk∞(π̂, CF ) and gexit∞ (π̂) for the owner-held firm. Hav-

ing found the stationary functions, I use a backward-induction procedure starting

from age T = Tconv such that κT = κ to period 0, to get the value functions when
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the economy is not stationary – that is, Wt, Mt, Vt and Ut, and the corresponding

non-stationary policies.

The complete value-function-iteration algorithm is:

1. Given σ2
0, find exogenous sequences {σ2

t }∞t=0 and {κt}∞t=0. Find the limit value

for the Kalman gain, κ.

2. Value function iteration (stationary ages): for a market-held firm, find

the fixed point of:

TW∞(π̂) = max{0,M∞(π̂)}

where

M∞(π̂) =

∫︂ (︁
CF +

1

1 + r
W∞(π̂′)

)︁
dG∞(CF | π̂)

which is an operator that gets TW as a function of W . Notice that I am using

the limit value for the Kalman gain, κ, which prevents us from indexing values

by time (I index here by ∞ to make explicit the stationary age). Once this is

done, for an owner-held firm, and using M∞ as an input, find the fixed point

of:

TV∞(π̂) = max{0,M∞(π̂)− CIPO,

∫︂
U∞(π̂, CF )dG∞(CF |π̂)}

where

U∞(π̂, CF ) = max
k ≥ 0

{︃
CF − c(k)− pKk − cop +

1

1 + r
V∞(π̂ +Bk + κ(CF − π̂))

}︃
which is an operator that gets TV as a function of V . Notice the limit value

for the Kalman gain, κ. The stationary investment policy is obtained using

the Nelder-Mead optimisation routine, which does not rely on derivatives17.

The stationary policy, characterised by thresholds {π̂∞, π̂∞}, is obtained by

comparing the stationary values the agent gets if she terminates the firm, if

she sells it to the market (in exchange of a stationary market price M∞), and

if she keeps it, for different values of π̂.

3. Backward induction (non-stationary ages): consider age T = Tconv such

that κT = κ. At that period, value functions are stationary, i.e. MT = M∞,

VT = V∞, and so on. Then, we iterate backwards on market-held and owner-

held values as follows:
17This routine is more stable than a derivative-based approach, such as an LBFGS routine.

This alternative routine, in turn, yields the same results as those in the main text.
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(i) (Period T ) Consider a discrete grid for π̂ and compute WT (π̂) and VT (π̂)

for every value in the discrete grid. Interpolate WT (π̂) and VT (π̂), to get

objects W̃T (π̂) and ṼT (π̂) defined for every π̂T in the real line.

(ii) (Period T − 1) In order to solve for UT−1, consider discrete grids for π̂T−1

and CFT−1. Use the interpolated ṼT (π̂T ) to solve:

UT−1(π̂, CF ) = max
k ≥ 0

{︃
CF − c(k)− pKk − cop +

1

1 + r
ṼT

(︁
π̂ +Bk + κT−1(CF − π̂)

)︁}︃

for every pair (π̂T−1, CFT−1) in the discrete grid. Find the optimal investment

policy gkT−1(π̂, CF ) for every pair (π̂T−1, CFT−1) in the discrete grid. Similarly,

use the interpolated W̃T (π̂T ) to findMT−1(π̂, CF ) for every pair (π̂T−1, CFT−1)

in the discrete grid.

(iii) For each π̂T−1 in the discrete grid, interpolate MT−1(π̂, CF ) with respect

to CF . Similarly, interpolate UT−1(π̂, CF ) with respect to CF . For each

π̂T−1 in the discrete grid, we get M̃T−1(π̂, CF ) and ŨT−1(π̂, CF ) that is

defined for every CF in the real line. Then, take expectations (integrate)

these objects with respect to CF to get the value:

VT−1(π̂) = max{0, M̃T−1(π̂)− CIPO,

∫︂
ŨT−1(π̂, CF )dGT−1(CF |π̂)}

for each π̂T−1 in the discrete grid (take into account that the distribution

of CFT−1 is known given state π̂T−1). By comparison of the three objects

within the maximum, we can get quality thresholds π̂T−1 and π̂T−1, which

drive the termination/keep/sale policy of the firm at period T − 1. Simi-

larly, we can get value for the market-held firm at period T −1, WT−1(π̂),

and the corresponding termination-sale policy for the market.

Again, we can get interpolated objects W̃T−1(π̂) and ṼT−1(π̂), defined for

every πT−1 in the real line.

(iv) (Periods T − 2, ..., 0) Continue backwards until finding V0(π̂0) and opti-

mal policies gkt (π̂, CF ) and g
exit
t (π̂) for all ages t ≥ 0.
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