
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Kindelan, M., Moscoso, M., & González-Rodríguez,
P. (2016). Radial basis function interpolation in the
limit of increasingly flat basis functions. Journal of
Computational Physics, 307, 225-242.

DOI: 10.1016/j.jcp.2015.12.015

© 2015 Elsevier Inc.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jcp.2015.12.015

Radial basis function interpolation in the limit

of increasingly flat basis functions

Manuel Kindelan, Miguel Moscoso, and
Pedro González-Rodŕıguez ∗

Abstract

We propose a new approach to study Radial Basis Function (RBF) interpolation
in the limit of increasingly flat functions. The new approach is based on the semi-
analytical computation of the Laurent series of the inverse of the RBF interpolation
matrix described in a previous paper [3]. Once the Laurent series is obtained, it can
be used to compute the limiting polynomial interpolant, the optimal shape param-
eter of the RBFs used for interpolation, and the weights of RBF finite difference
formulas, among other things.

1 Introduction

This paper is concerned with the behavior of Radial Basis Function (RBF)
interpolation in the limit of increasingly flat functions. In the past, there has
been a considerable interest in analyzing this limit [6,9,11,12,15,18,20,21,27]
since it leads to accurate interpolants which are effective both for interpolation
problems and for solving partial differential equations.

Many RBFs commonly used in interpolation contain a shape parameter ǫ > 0
which controls their flatness. As ǫ → 0, the RBF becomes increasingly flat.
In this limit, the interpolation system becomes highly ill-conditioned, but the
limit RBF interpolant at any point is well behaved so it converges to a finite
number (except in some particular cases). Indeed, Driscoll and Fornberg [6]
proved that 1D RBF interpolants converge to Lagrange interpolating polyno-
mials, subject to some easily stated conditions on the RBF. They also observed
numerically that in 2D the situation is more complicated, as the limit may

∗ Corresponding author. Address: Universidad Carlos III de Madrid, Avenida de la
Universidad 30, 28911 Leganés, Spain. Fax: +34 91 624 91 29

Email addresses: moscoso@math.uc3m.es, kinde@ing.uc3m.es,
pgonzale@ing.uc3m.es (Pedro González-Rodŕıguez).

not exist and, if it exists, it is a multivariate polynomial that might depend
on the node layout and on the used RBF. Existence of the limit polynomial
was proved in [19,28]. Conditions on the used RBFs, so that multivariate in-
terpolation converges, have been recently derived in [20,21].

In this work, we analyze the limit of flat RBFs using the framework proposed
in [3]. The main ingredient used in our analysis is the Laurent series of the
inverse of the interpolation matrix, which we compute using a semi-analytical
procedure [3]. The relevant parameter in the Laurent series is δ = (ǫh)2, which
is the square of the product of the shape parameter ǫ and and a characteristic
inter-nodal distance h. If we denote by ri,j the distamce between nodes i
and j, then the dimensionless distances ri,j/h are of order unity (for details,
see, for example, [32]). Multiplying the Laurent series of the inverse of the
interpolation matrix by the data at the nodes we obtain a Laurent series
for the interpolation coefficients avoiding the ill-conditioning associated to
straightforward numerical approaches in the flat RBF limit.

In reference [2] we use the Laurent series of the inverse to compute the weights
of RBF-FD formulas. In this paper we use the Laurent series of the inverse
to approximate the RBF interpolant by a series of interpolation polynomi-
als. This approach has several advantages for different issues related to RBF
interpolation. We focus our attention in the following three important issues
described below where we also note which contributions are novel:

• Derivation of the interpolating polynomial, which is the limit of RBF inter-
polation when δ → 0. These polynomials have been derived in some specific
cases using symbolic language [6,18]. We not only obtain the leading or-
der polynomial but a series of polynomials in powers of δ. Furthermore, we
derive them for any node layout.

• Computation of the optimal value of the shape parameter in RBF interpola-
tion. We propose a new method that makes use of the first two terms of the
series of polynomials to obtain the value of δ that minimizes the interpola-
tion error. We consider this new method as one of the main contributions
of the paper.

• Derivation of RBF finite difference (RBF-FD) formulas. We use the series
of polynomials in powers of δ to obtain the weights of RBF-FD formulas.
In this way, we obtain formulas for each weight as a series in powers of δ.
We also use these weights to derive exact formulas for the local truncation
error.

The results presented in the paper show the usefulness of the Laurent series
of the inverse to analyze RBF interpolation in the flat limit. It should be
emphasized, though, that for large size problems the bottleneck is the compu-
tation of the Laurent series. The semi-analytical procedure that we use [3] is
very accurate and efficient compared to its symbolic computation. However,

2

its computational cost grows exponentially with the order of the singularity
of the Laurent series. Thus, we can only compute stencils with singularities
whose order is not greater than seven. Since the order of the singularity grows
with the number of nodes [2] this means that the method is only applicable
to a relatively small number of nodes. In fact, it is only possible to compute
the Laurent series of the inverse for 36 nonequispaced nodes or 24 equispaced
nodes in 2D, and for 84 nonequispaced nodes or 31 equispaced nodes in 3D.
To apply it to large number of nodes would require a much faster procedure
to compute the Laurent series.

The paper is organized as follows: Section 2 describes the formulation based on
the Laurent series of the inverse and how to compute a Laurent series of poly-
nomials that approximates the RBF interpolant in the limit δ → 0. Section
3 describes several significant results obtained with the proposed procedure.
It is structured into three subsections focused on three main applications:
limiting polynomial interpolant, computation of the optimal shape parame-
ter and derivation of RBF-FD formulas. Finally, Section 4 contains the main
conclusions of the paper.

2 Formulation

RBF interpolation is a very efficient technique for the approximation of scat-
tered data. The data is approximated in the functional space spanned by a
set of translated RBFs φ(‖ x − xk ‖), where φ(r̂) is a function that only
depends on the distance r̂k =‖ x − xk ‖ to a node xk. RBFs often contain
a free parameter which greatly influences the accuracy of the RBF approx-
imation. For instance, in the case of multiquadrics (φ(r̂; ǫ) =

√
1 + ǫ2 r̂2) or

gaussians (φ(r̂; ǫ) = e−ǫ2 r̂2) the free parameter ǫ, known as shape parameter,
determines the flatness of the radial basis function; as ǫ → 0 these functions
become increasingly flat near the origin. It is convenient to use dimensionless
distances by using a characteristic internodal distance h as the spatial unit.

Thus, ǫ2r̂2k = ǫ2 h2 ‖x−xk‖
2

h2 = δ r2k, where δ = (ǫh)2, is the square of the prod-
uct of the shape parameter ǫ times the inter-nodal distance h, and rk is the
dimensionless distance ‖ x − xk ‖ /h. With this notation the RBF φ(r̂; ǫ) is
rewritten as φ(r; δ).

If the data are given at n nodes x1,x2, . . . ,xn in d dimensions, the RBF
interpolant is given by

s(x; δ) =
n
∑

k=1

αk(δ)φ

(

‖ x− xk ‖
h

; δ

)

=
n
∑

k=1

αk(δ)φ(rk; δ) , (1)

where rk is the nondimensional distance to node xk. For given data values

3

fi = f(xi), the interpolation coefficients αk are obtained by solving the linear
system

A(δ)α(δ) = f , (2)

where the entries of the n×n interpolation matrix areAi,j = φ

(

‖ xi − xk ‖
h

; δ

)

,

andα(δ) = [α1(δ) α2(δ) . . . αn(δ)]
T and f = [f1 f2 . . . fn]

T are n-dimensional

column vectors. Equation (2) implies that s(x; δ) computed in (1) interpo-
lates f(x) at nodes x1,x2, . . . ,xn. For many choices of RBFs (including multi-
quadrics) the system is nonsingular for any arbitrary set of nodes. In fact, Mic-
chelli [23] proved that a sufficient condition to guarantee the non-singularity
is that the interpolation matrix is strictly positive definite. Furthermore, it is
well known, that large values of δ lead to well-conditioned linear systems, but
the resulting approximation is inaccurate. On the other hand, small values of
δ lead to accurate results but the condition number of (2) grows rapidly and,
hence, the interpolation coefficients αk diverge in the limit δ → 0. However,
it has been shown [6] that although the interpolation coefficients diverge, the
RBF interpolant itself (1) converges to a finite limit (except in some particular
cases). Thus, computing s(x, δ) from f(x) is a well-conditioned process, but
the intermediate step of computing α is ill-conditioned.

In this paper, we compute the interpolation coefficients by means of the Lau-
rent series of the inverse of the interpolation matrix A, which we derive using
the semi-analytical procedure described in [3] for infinitely smooth RBFs. In
this way, we avoid the difficulties associated to the numerical solution of the
ill-conditioned system (2). The algorithm takes as input the matrices Ak that
determine the power series expansion of the interpolation matrix A(δ). That
is, the n× n matrices Ak in

A(δ) = A0 +
∞
∑

k=1

δk Ak . (3)

The output of the algorithm are the matrices Hk which determine the Laurent
series expansion of the inverse of the interpolation matrix. That is, the n× n
matrices Hk in

A−1(δ) =
∞
∑

k=−s

δk Hk , (4)

where H−s 6= 0, and s is the order of the singularity.

It is apparent that the Laurent series for the inverse (4) can be used to derive
the Laurent series for the interpolation coefficients, namely

4

α(δ) = A−1(δ) f =
∞
∑

k=−s

δk Hk f =
∞
∑

k=−s

δkαk , (5)

where αk = Hk f are n-dimensional column vectors. According to (1), the
value of the RBF interpolant at position x is obtained by multiplying the
weights (5) by the corresponding RBFs evaluated at position x. Furthermore,
the Taylor series expansion of the Radial basis function φ(rk; δ) is

φ(rk; δ) = a0 + a1 δ r
2
k + a2 δ

2 r4k + . . . + aj δ
j r2 jk + (6)

Table 1 shows the expansion coefficients for some popular infinitely smooth
RBFs. Hence, using the expansion (6) in (1), we can easily obtain the RBF

Table 1
RBFs expansion coefficients

RBF a0 aj , j = 1, . . .

Multiquadric (MQ) 1
(−1)j+1

2j

j−1
∏

i=1

2i− 1

2i

Inverse

Multiquadric (IM) 1 (−1)j
j
∏

i=1

2i− 1

2i

Inverse

Quadratic (IQ) -1 (−1)j

interpolation in the limit δ → 0 as a Laurent series of polynomials in powers
of δ. Namely,

p(x; δ) ≡ lim
δ→0

s(x; δ) = α(δ)T

a0 + a1 δ r
2
1 + a2 δ

2 r41 + . . .

a0 + a1 δ r
2
2 + a2 δ

2 r42 + . . .

.

a0 + a1 δ r
2
n + a2 δ

2 r4n + . . .

=

=
1

δs
p−s(x) +

1

δs−1
p1−s(x) + . . . + p0(x) + δ p1(x) + (7)

For instance, the two first terms in the expansion are given by

5

p−s(x) = α
T
−s

a0

a0

. . .

a0

, p1−s(x) = α
T
1−s

a0

a0

. . .

a0

+ α
T
−s

a1 r
2
1

a1 r
2
2

. . .

a1 r
2
n

. (8)

In cases where the limiting RBF interpolant is convergent, all the singular
terms in the expansion are identically zero and the first non zero term is p0(x)
which is given by

p0(x) = α
T
0

a0

a0

. . .

a0

+ α
T
−1

a1 r
2
1

a1 r
2
2

. . .

a1 r
2
n

+ . . . + α
T
−s

as r
2s
1

as r
2s
2

. . .

as r
2s
n

. (9)

3 Results

We start this Section by describing the proposed procedure in detail using a
simple interpolation problem. Then, we include three subsections to discuss
the three relevant applications of the method mentioned in the Introduction.

Let us consider RBF interpolation in 1D with three equispaced centers [−1, 0, 1]
using multiquadrics as RBFs [2]. For this simple example, the 1D RBF inter-
polation matrix is given by the 3× 3 symmetric matrix

A(δ) =

1
√
1 + δ

√
1 + 4δ

√
1 + δ 1

√
1 + δ

√
1 + 4δ

√
1 + δ 1

. (10)

It is apparent that A(δ) becomes singular in the limit δ → 0. Using the
procedure described in [3], we derive the Laurent series of the inverse of the
interpolation matrix which is given by

6

A−1(δ)=
1

δ2

−1/4 1/2 −1/4

1/2 −1 1/2

−1/4 1/2 −1/4

+
1

δ

−3/4 5/4 −1/4

5/4 −3 5/4

−1/4 5/4 −3/4

+

0 −1/16 1/2

−1/16 0 −1/16

1/2 −1/16 0

+

δ

−1/4 21/32 −3/4

21/32 −1 21/32

−3/4 21/32 −1/4

+ δ2

3/4 −485/256 7/4

−485/256 3 −485/256

7/4 −485/256 3/4

+ (11)

Notice that the inverse of the Laurent series diverges as δ−2. Hence, the sin-
gularity is of order s = 2.

The Laurent series for the weights is computed using (11) in (5). Consider,
for instance, the case in which the values of the function at the nodes are 0,
1, and 0. The Laurent series for the weights is

α(δ) =
∞
∑

k=−2

δkαk =
1

δ2

1/2

−1

1/2

+
1

δ

5/4

−3

5/4

+

−1/16

0

−1/16

+ (12)

Hence, α−2 = [1/2,−1, 1/2]T , α−1 = [5/4,−3, 5/4]T , α0 = [−1/6, 0,−1/6]T ,
and so on. The value of the RBF interpolant at position x is obtained by mul-
tiplying the weights (12) by the corresponding multiquadrics basis functions,
i.e.,

s(x; δ) = α(δ)T

√

1 + δ(x+ 1)2

√
1 + δx2

√

1 + δ(x− 1)2

. (13)

In the limit δ → 0, we can expand (13) in powers of δ(x− xk)
2 using (6) with

the expansion coefficients given in Table 1. This results in

p(x; δ) ≡ lim
δ→0

s(x; δ) = α(δ)T

1 + δ
(x+ 1)2

2
− δ2

(x+ 1)4

8
+ . . .

1 + δ
x2

2
− δ2

x4

8
+ . . .

1 + δ
(x− 1)2

2
− δ2

(x− 1)4

8
+ . . .

.(14)

Thus,

7

p(x; δ) =
1

δ2

α
T
−2

1

1

1

+
1

δ

α
T
−1

1

1

1

+ α
T
−2

(x+ 1)2

2
x2

2
(x− 1)2

2

+

+

α
T
0

1

1

1

+ α
T
−1

(x+ 1)2

2
x2

2
(x− 1)2

2

+ α
T
−2

−(x+ 1)4

8

−x4

8

−(x− 1)4

8

+ (15)

It is straightforward to check that, as expected, the terms of order δ−2 and
δ−1 vanish and, therefore, the leading term of the limit polynomial is given by

p(x; δ) ≈ α
T
0

1

1

1

+ α
T
−1

(x+ 1)2

2
x2

2
(x− 1)2

2

− α
T
−2

(x+ 1)4

8
x4

8
(x− 1)4

8

= 1 − x2 . (16)

Thus, 1D RBF interpolation in the limit of increasingly flat basis functions
coincides with Lagrange polynomial interpolation.

The same procedure can be used to determine the limit polynomial interpolant
when the function at the nodes are arbitrary, so [f−1, f0, f1]

T . In that case, the
leading term is given by

p0(x) = f−1
x(x− 1)

2
+ f0 (1 + x)(1− x) + f1

x(x+ 1)

2
, (17)

which coincides with the Lagrange interpolating polynomial. We can also com-
pute higher order terms in (7) and obtain

p1(x) =

−1

2

(

x4 − 1

2
x3 − x2 +

1

2
x
)

x4 − x2

−1

2

(

x4 +
1

2
x3 − x2 − 1

2
x
)

T

f−1

f0

f1

, (18)

p2(x) =

9

16
x6 − 3

16
x5 +

3

8
x4 − 3

8
x3 − 15

16
x2 +

9

16
x

−9

8
x6 − 3

8
x4 +

3

2
x2

9

16
x6 +

3

16
x5 +

3

8
x4 +

3

8
x3 − 15

16
x2 − 9

16
x

T

f−1

f0

f1

. (19)

8

Notice that p1, p2, . . . are all zero at the interpolation nodes.

Let us consider now RBF interpolation in 2D using an equispaced five node
stencil [(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)]. In this case, the RBF interpolation
matrix is the 5× 5 matrix

A(δ) =

1
√
δ + 1

√
δ + 1

√
δ + 1

√
δ + 1

√
δ + 1 1

√
2δ + 1

√
4δ + 1

√
2δ + 1

√
δ + 1

√
2δ + 1 1

√
2δ + 1

√
4δ + 1

√
δ + 1

√
4δ + 1

√
2δ + 1 1

√
2δ + 1

√
δ + 1

√
2δ + 1

√
4δ + 1

√
2δ + 1 1

. (20)

The first three terms of the Laurent series of the inverse are

A−1(δ) ≈ 1

δ2

−4
3

1
3

1
3

1
3

1
3

1
3

−1
3

1
6

−1
3

1
6

1
3

1
6

−1
3

1
6

−1
3

1
3

−1
3

1
6

−1
3

1
6

1
3

1
6

−1
3

1
6

−1
3

+
1

δ

−32
9

13
18

13
18

13
18

13
18

13
18

−41
36

11
18

−23
36

11
18

13
18

11
18

−41
36

11
18

−23
36

13
18

−23
36

11
18

−41
36

11
18

13
18

11
18

−23
36

11
18

−41
36

+

+

2
27

− 19
216

− 19
216

− 19
216

− 19
216

− 19
216

− 25
108

31
216

29
108

31
216

− 19
216

31
216

− 25
108

31
216

29
108

− 19
216

29
108

31
216

− 25
108

31
216

− 19
216

31
216

29
108

31
216

− 25
108

+ (21)

Using the same procedure as in the 1D case, we obtain that RBF interpolation
in the limit δ → 0 converges to the polynomial p(x, y) = p0(x, y) + δp1(x, y) +
. . . , with

p0(x, y) =

1− x2 − y2

y(y + 1)

2
x(x+ 1)

2
y(y − 1)

2
x(x− 1)

2

T

f0,0

f0,1

f1,0

f0,−1

f−1,0

, (22)

9

Fig. 1. Left: function (24). Right: difference between RBF interpolation for δ = 0.05
using the five nodes stencil [(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0))], and the RBF inter-
polation in the limit δ → 0 (p(x, y) = p0(x, y)+ δ p1(x, y)+ δ2 p2(x, y) for δ = 0.05).

and

p1(x, y) = 12

10x4 + 20x2y2 − 10x2 + 10y4 − 10y2

20x4 − 5x2y2 − 3x2y − 2x2 − 7y4 − 3y3 + 7y2 + 3y

−7x4 − 3x3 − 5x2y2 + 7x2 − 3xy2 + 3x+ 2y4 − 2y2

20x4 − 5x2y2 + 3x2y − 2x2 − 7y4 + 3y3 + 7y2 − 3y

−7x4 + 3x3 − 5x2y2 + 7x2 + 3xy2 − 3x+ 2y4 − 2y2

T

f0,0

f0,1

f1,0

f0,−1

f−1,0

. (23)

In (22) and (23), f0,0, f0,1, f1,0 ,f0,−1, and f−1,0, are the values of the function
at the corresponding nodes. Similarly, p2(x, y) is a sixth degree polynomial,
and so on.

For instance, we can use the five node stencil to interpolate the function

f(x, y) = ex−y sin (2x) (24)

in a square domain. The left side of Figure 1 shows the function (24). The
RBF interpolant is computed as

10

s(x, y; δ) =
5
∑

i=1

αi(δ)
√

1 + δ [(x− xi)2 + (y − yi)2] , (25)

where the coefficients αi(δ), i = 1, 2, . . . , 5, are the components of the vector

α(δ) = A−1(δ) f(x, y) = A−1(δ)

0

0

e sin (2)

0

e−1 sin (−2)

. (26)

Here, A−1(δ) is the inverse matrix given in (21). We have also computed
the interpolating polynomial in the limit δ → 0. The right side of Figure 1
shows the difference between the RBF interpolation s(x, y; 0.05) and the limit
polynomial interpolant p(x, y) = p0(x, y) + 0.05 p1(x, y) + 0.052 p2(x, y). The
error is zero at the interpolating points, and maximum at the nodes in the
corners of the square. The difference between s(x, y; 0.05) and the interpolating
polynomial decreases with increasing number of terms: ‖ s − p0 ‖∞= 0.0691,
‖ s− p0 − 0.05 p1 ‖∞= 0.0105, ‖ s− p0 − 0.05 p1 − 0.052 p2 ‖∞= 0.0019.

3.1 Limiting polynomial interpolant

In a seminal paper, Driscoll and Fornberg [6] studied RBF interpolation in
the limit of increasingly flat basis functions. They showed that, subject to
some easily stated conditions on φ(r), RBF interpolation in 1D converges to
the Lagrange minimal-degree interpolating polynomial. They also found that
the situation in 2D is more complicated. To this end, they used a symbolic
language to compute the limiting polynomial interpolant for some simple il-
lustrative examples. They showed that in some cases the limit does not exist,
and in others the limit is a low degree polynomial. In cases when the limit
exists, the interpolating polynomial might be different depending on the RBF
function used. Other authors have also made significant contributions to the
study of RBF interpolation in this limit [18,27,31].

In this Section, we use the Laurent series of the interpolation weights (5) to
analyze some of the illustrative examples used by these authors. We will derive
not only the leading order polynomial that approximates the RBF interpolant,
but also the higher order polynomial terms.

Consider the case of 2D interpolation using multiquadrics as RBFs. We use
the four interpolating nodes [(0, 0), (0, 1), (1, 0), (1, 1)], as in Example 4 in [6].

11

Using the procedure described in Section 2, the leading polynomial approxi-
mation to the RBF interpolant is

p0(x, y) =

1− x− y + x y

y (1− x)

x (1− y)

x y

T

f0,0

f0,1

f1,0

f1,1

.

In [6], this stencil was used to interpolate the function f(x, y) = x−2y+3xy,
and therefore,

p0(x, y) =

1− x− y + x y

y (1− x)

x (1− y)

x y

T

0

−2

1

2

= x− 2y + 3xy .

In this case, p0(x, y) coincides with the function being interpolated and with
the Lagrange interpolating polynomial. Exactly the same result is obtained (to
leading order) if the inverse multiquadric RBF φ(r) = 1/

√
1 + δr2 is used for

interpolation. The polynomials pn(x, y) of higher order (n > 1) are, however,
different depending on the used RBF.

Example 5 in [6] considers interpolation using the six nodes [(0, 0), (0, 1), (1, 0),
(1, 1), (0, 0.5), (1, 0.5)]. With multiquadrics as RBF, the interpolant converges
to

p0(x, y) =

−1

2
x3 +

5

4
x2 − 2xy2 + 3xy − 7

4
x+ 2y2 − 3y + 1

−1

2
x3 +

5

4
x2 − 2xy2 + xy − 3

4
x+ 2y2 − y

1

2
x3 − 1

4
x2 + 2xy2 − 3xy +

3

4
x

1

2
x3 − 1

4
x2 + 2xy2 − xy − 1

4
x

x3 − 5

2
x2 + 4xy2 − 4xy +

3

2
x− 4y2 + 4y

−x3 +
1

2
x2 − 4xy2 + 4xy +

1

2
x

T

f0,0

f0,1

f1,0

f1,1

f0,0.5

f1,0.5

.

In [6], this stencil is used to interpolate f(x, y) = x − y − 2xy − 2y2, and
therefore,

12

p0(x, y) =

−1

2
x3 +

5

4
x2 − 2xy2 + 3xy − 7

4
x+ 2y2 − 3y + 1

−1

2
x3 +

5

4
x2 − 2xy2 + xy − 3

4
x+ 2y2 − y

1

2
x3 − 1

4
x2 + 2xy2 − 3xy +

3

4
x

1

2
x3 − 1

4
x2 + 2xy2 − xy − 1

4
x

x3 − 5

2
x2 + 4xy2 − 4xy +

3

2
x− 4y2 + 4y

−x3 +
1

2
x2 − 4xy2 + 4xy +

1

2
x

T

0

−3

1

−4

−1

−1

=

= 2x− y − 2xy − x2 − 2y2 . (27)

A very complex algebraic equation was obtained in [6], instead of this low
order polynomial.

If instead of using multiquadrics we use the inverse quadratic φ(r) = 1/(1+δr2)
as RBF, the leading order approximation to the RBF interpolant is given by

p0(x, y) =
1

35

−10x3 + 22x2 − 70xy2 + 105xy − 47x+ 70y2 − 105y + 35

−10x3 + 22x2 − 70xy2 + 35xy − 12x+ 70y2 − 35y

10x3 − 8x2 + 70xy2 − 105xy + 33x

10x3 − 8x2 + 70xy2 − 35xy − 2x

20x3 − 44x2 + 140xy2 − 140xy + 24x− 140y2 + 140y

−20x3 + 16x2 − 140xy2 + 140xy + 4x

T

0

−3

1

−4

−1

−1

=

=
7

5
x− y − 2

5
x2 − 2xy − 2y2 , (28)

which coincides with that computed in [6] (there is an error in the sign of the
xy term). Notice that, in this case, the leading order approximation to the
RBF interpolant is different depending on the RBF used: equation (27) for
multiquadrics, and equation (28) for inverse quadratic. In fact, if we use the

inverse multiquadric we obtain to leading order p0(x, y) =
3

2
x − y − 1

2
x2 −

2xy − 2y2, a third low order polynomial which also interpolates the function
at the given nodes.

Example 6 in [6] considers interpolation in a unit square using four non-
equispaced nodes [(0, 1), (1/4, 1), (1/2, 1/2), (1, 3/4)]. Again, in this case, the
interpolating polynomial depends on the particular RBF used for interpola-
tion. For instance, using multiquadrics the leading order interpolating poly-
nomial is

13

p0(x, y) =
1

115

−420x2 − 80xy − 485x+ 180y2 − 355y + 290

−504x2 + 96xy + 490x− 216y2 + 610y − 394

−84x2 + 16xy + 5x− 36y2 − 205y + 241

168x2 − 32xy − 10x+ 72y2 − 50y − 22

T

f0,1

f1/4,1

f1/2,1/2

f1,3/4

.

In [6], this stencil is used to interpolate the function f(x, y) = (x+2y)/(3x−
y + 2). Thus, the resulting interpolating polynomial is

p0(x, y) =
846

391
x2 − 1128

2737
xy − 2335

782
x+

829

894
y2 − 457

912
y +

757

481
, (29)

which coincides with that reported in [6]. Also for the inverse quadratic and
inverse multiquadric we obtain identical results to those obtained in [6].

Example 7 in [6] considers interpolation in the unit square using 5× 5 equis-
paced nodes. According to [6], the RBF interpolant diverges as δ → 0. We have
not been able to verify this case because the singularity of the interpolation
matrix is of order 7, which we can not compute in reasonable times.

Larsson and Fornberg [18] analyzed theoretically and numerically the be-
havior of multivariate interpolants in the limit δ → 0. They derived infor-
mation about the degree of the limiting polynomial and gave precise condi-
tions on the RBFs and the data points for different limiting results. In par-
ticular, they analyzed when the limiting polynomial is unique (independent
of the used RBF) and when it is divergent. As an example of a divergent
RBF, they considered the case of six equispaced nodes along a line. These
nodes are [(0, 0), (1/5, 1/5), (2/5, 2/5), (3/5, 3/5), (4/5, 4/5), (1, 1)]. Following
[18], we use cardinal data for the interpolant. That is, the interpolant takes
the value one at the first node, and zero in the other five nodes. In the case
of multiquadrics, the resulting polynomial is

p−1(x, y) =
625

29568
(x− y)2 (18− 7x− 7y) /δ , (30)

which coincides with that reported in [18]. The next higher order polynomial
is

p0(x, y) = −1756

1283

(

x5 + y5
)

− 2053

444

(

x4y + xy4
)

− 5714

813

(

x3y2 + x2y3
)

+

+
3507

496

(

x4 + y4
)

+
652

32

(

x3y + xy3
)

+
2218

89
x2y2 − 7765

553

(

x3 + y3
)

−

−9099

301

(

x2y + xy2
)

+
45625

3388

(

x2 + y2
)

+
4447

223
xy − 137

24
(x+ y) + 1 . (31)

14

This divergence is not generic to all RBFs. For instance, Fornberg, Wright and
Larsson [13] proved that interpolation with nodes on a line always converges in
the case of Gaussian RBF. In the following, we also observe that convergence
depends on the number of nodes.

To understand this divergence, we consider the problem of interpolation using
equally spaced nodes along the x-axis. For instance, using the three equispaced
nodes [(−1, 0), (0, 0), (1, 0)], the interpolation matrix is identical to that for the
1D case (see Eq. (10)). The interpolation matrix only depends on the distance
between nodes. Thus, the Laurent series of the inverse is given by (11), and
the Taylor series of the weights by (12). The only difference with the 1D case
comes from the power expansion of the radial basis functions (13). Hence, the
value of the RBF interpolant at position x, in the limit δ → 0, results in

lim
δ→0

s(x; δ) = lim
δ→0

α(δ)T

1 + δ
(x+ 1)2 + y2

2
− δ2

[(x+ 1)2 + y2]
2

8
+ . . .

1 + δ
x2 + y2

2
− δ2

[x2 + y2]
2

8
+ . . .

1 + δ
(x− 1)2 + y2

2
− δ2

(x− 1)4

8
+ . . .

=

= 1 − x2 − y2

2
. (32)

The same procedure can be used to analyze the limiting 2D interpolant for
a higher number of equispaced nodes along a line. In the case of four equi-
spaced nodes [(0, 0), (1/3, 0), (2/3, 0), (1, 0)] in the interval [0, 1], the limiting
interpolating polynomial for cardinal data is

p0(x, y) = −9

2
x3 + 9x2 − 9

4
xy2 − 11

2
x+

9

4
y2 + 1 . (33)

Notice that setting y = 0 in (32) and (33), we recover the Lagrange interpo-
lating polynomial in 1D. For the case of five equispaced nodes [(0, 0), (1/4, 0),
(1/2, 0), (3/4, 0), (1, 0)], the limiting interpolating polynomial for cardinal data
is

p−1(x, y) =
32

21
y2 , (34)

p0 =
32

3
x4 − 80

3
x3 +

48

7
x2y2 +

70

3
x2 − 200

21
xy2 − 25

3
x+

650

147
y2 + 1 . (35)

The interpolant diverges for y 6= 0, but for y = 0 we still recover the 1D
interpolating polynomial. Similarly, for the case of six equispaced nodes [(0, 0),
(1/5, 0), (2/5, 0), (3/5, 0), (4/5), (1, 0)], the limiting interpolating polynomial
for cardinal data is

15

p−1(x, y) =
[

1875

616
y2 − 625

264
xy2

]

, (36)

p0 = −625

24
x5 +

625

8
x4 − 3125

176
x3y2 − 2125

24
x3 +

8611

246
x2y2 + (37)

+
375

8
x2 − 11729

493
xy2 − 137

12
x+

6649

951
y2 + 1 , (38)

which, again, diverges as δ−1.

For the case of seven nodes the interpolating polynomial diverges as δ−2. The
limiting interpolating polynomial for cardinal data is

p−2(x, y) = 3.38824 y2 , (39)

p−1(x, y) = 8.13332 y2 − 9.2984 x y2 + 6.35294 x2 y2 . (40)

As the number of nodes increases the interpolant diverges faster.

It is interesting to see what happens in 3D. If we use nodes located along a
line, the limiting interpolating polynomial in 3D coincides with that in 2D if
y2 is replaced by y2 + z2. For instance, in the case of four equispaced nodes
[(0, 0, 0), (1/3, 0, 0), (2/3, 0, 0), (1, 0, 0)], the limiting interpolating polynomial
for cardinal data is

p0(x, y) = −9

2
x3 + 9x2 − 9

4
x(y2 + z2)− 11

2
x+

9

4
(y2 + z2) + 1 . (41)

Next, let us see what happens when the nodes in 3D are located on a plane.
Using the five node stencil, [(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0)], the
limiting interpolating polynomial is

p0(x, y) =

1− x2 − y2 − 2

3
z2

x(x+ 1)

2
+

1

6
z2

y(y + 1)

2
+

1

6
z2

x(x− 1)

2
+

1

6
z2

y(y − 1)

2
+

1

6
z2

T

f0,0,0

f1,0,0

f0,1,0

f−1,0,0

f0,−1,0

, (42)

which coincides with (22) when z = 0, since in (22), we used the same layout
for the nodes but in 2D. In the case of nine equispaced nodes [(0, 0, 0), (1, 0, 0),
(0, 1, 0), (−1, 0, 0), (0,−1, 0), (1, 1, 0), (−1, 1, 0), (1,−1, 0), (−1,−1, 0)] located on
the plane z = 0, the interpolant diverges as

16

p(x, y) ≈ z2

δ

1

77

4

−2

−2

−2

−2

2

2

2

2

T

f0,0,0

f1,0,0

f0,1,0

f−1,0,0

f0,−1,0

f1,1,0

f−1,1,0

f1,−1,0

f−1,−1,0

. (43)

Another case analyzed in [18] is when the points lie on a circle. Consider the
case in which the nodes are distributed as

xk =
1

2

[

cos

(

(k − 1)π

3

)

+ 1, sin

(

(k − 1)π

3

)

+ 1

]

, k = 1, 2, . . . , K . (44)

Buhmann and Dinew [4] proved that all RBF types give the same flat basis
function limit (provided that the radial function’s Taylor expansion has no
zero coefficients, which is virtually always valid). For instance, consider the
case K = 6 for which there is no unique interpolating polynomial. However,
all RBFs have the same limit interpolant of degree 3. Using cardinal data
(f(x1, y1) = 1, f(xk, yk) = 0 for k = 2, . . . , 6), the limit interpolant is

p0(x, y) =
1

6

(

8x3 − 24xy2 − 4x2 + 4y2 + 24xy − 4x− 4y + 1
)

. (45)

A very interesting case is the seven node stencils (hexagonal stencils), since this
is the preferred arrangement when one tries to distribute nodes uniformly on a
domain [10]. This is similar to (44), but including the center node. Therefore,

x1 = (0, 0), x2 = (1, 0), and xk = (cos
(

2(k−2)π
6

)

, sin
(

2(k−2)π
6

)

) for k = 3, . . . , 7.
In this case, the limit interpolant is

17

p0(x, y) =

1− x2 − y2

1

6
x3 +

1

2
x2 − 1

2
xy2 +

1

3
x− 1

6
y2

−1

6
x3 +

1

2
xy2 +

1√
3
xy +

1

6
x+

1

3
y2 +

1

2
√
3
y

+
1

6
x3 − 1

2
xy2 − 1√

3
xy − 1

6
x+

1

3
y2 +

1

2
√
3
y

−1

6
x3 +

1

2
x2 +

1

2
xy2 − 1

3
x− 1

6
y2

+
1

6
x3 − 1

2
xy2 +

1√
3
xy − 1

6
x+

1

3
y2 − 1

2
√
3
y

−1

6
x3 +

1

2
xy2 − 1√

3
xy +

1

6
x+

1

3
y2 − 1

2
√
3
y

T

f0

f1

f2

f3

f4

f5

f6

, (46)

p1 is a polynomial of degree 5, and p2 a polynomial of degree 7.

3.2 Optimal shape parameter

In 1979, R. Franke published a report [17] in which he compared the per-
formance of more than thirty algorithms for scattered data interpolation. He
used a set of six 2D test functions defined in the unit square (see Appendix
B), and three data sets composed of 25, 33, and 100 scattered interpolation
points. The RBF multiquadric method performed exceptionally well and, as a
result, the multiquadric method began to generate considerable interest among
researchers. Some years later, Carlson and Foley [5] used the same set of func-
tions and interpolation nodes (adding some additional sets of interpolation
nodes) to analyze the dependence of the interpolation accuracy on the multi-
quadric shape parameter, and they proposed a simple algorithm to compute
its optimal value.

To evaluate the accuracy for each value of the shape parameter δ, they com-
puted the RBF interpolant (1) at a set of 1089 (33 × 33) equispaced nodes,
and defined the root-mean-square (RMS) error as

RMS(δ) =

√

√

√

√

1

1089

1089
∑

k=1

[fn(xk, yk)− s(xk, yk; δ)]
2 , n = 1, 2, . . . , 6, (47)

where fn(x, y) is one of the six test functions used by Franke.

Figure 2 summarizes the results in four different interpolation data sets:
Franke’s 25, 33 and 100 nodes, and Carlson and Foley’s 58 nodes (union of
the 25 and 33 data sets). For ease of comparison with the results in [5], we
use c2 = h2/δ as shape parameter, and write the multiquadric as φi(x, y) =

18

10−4 10−3 10−2 10−1 100 101
10−3

10−2

10−1

c2

RM
S

10−4 10−3 10−2 10−1 100 101
10−3

10−2

10−1

c2

RM
S

10−4 10−3 10−2 10−1 100 101
10−5
10−4
10−3
10−2
10−1

c2

RM
S

10−4 10−3 10−2 10−1 100 101
10−8

10−6

10−4

10−2

c2
RM

S

10−4 10−3 10−2 10−1 100 101
10−5
10−4
10−3
10−2
10−1

c2

RM
S

10−4 10−3 10−2 10−1 100 101 102
10−6
10−5
10−4
10−3
10−2
10−1

c2

RM
S

Fig. 2. RMS error versus c2 for multiquadric interpolation to test functions f1,
f2, . . . fn (from left to right and from top to bottom). Solid line: 25 interpolation
nodes. Dotted: 33 interpolation nodes. Dashed: 58 interpolation nodes. Dot-dashed:
100 interpolation nodes.
√

c2 + (x− xi)2 + (y − yi)2. From these results, the authors concluded that
the optimal shape parameter is essentially independent of both, the number
and the location of the interpolation points. On the other hand, the opti-
mal shape parameter strongly depends on the function being interpolated. It
should also be pointed out that, for relatively large data sets (58 and 100
nodes) the numerical computation of the solution becomes ill-conditioned for
values of c2 slightly larger than one and, therefore, large round-off errors ap-
pear. In fact, very often, the optimal shape parameter is not determined by
the minimal interpolation error but by the value of the shape parameter where
ill-conditioning starts. This was not clearly observed in the results reported in
[5] because the resolution in c2 was rather small.

On the very crucial question of how to select an optimal value of the shape

19

parameter, there have been a significant number of relevant contributions.
Carlson and Foley [5] were the first to propose an ad-hoc method for selecting
the optimal value. It was based on their experimental observations. Rippa [24]
was the first to propose an algorithm based on the idea of leave-one-out cross
validation (LOOCV), which is used in the statistics literature for a variety of
parameter identification problems. Their method is based on minimizing a cost
function that estimates the RMS error. To compute the cost function, they
split off one single data point (xk, yk) at a time, calculate the approximation
error Ek = fk − sk of the interpolant at the removed node, and estimate a
cost function by taking a norm of the vector E = [E1, E2, . . . , En]

T . The cost
function depends on the shape parameter, and minimizing it yields the optimal
value. The significant impact of Rippa’s method in RBF research has led to a
significant amount of work based on similar ideas [8,25,26,29,30].

We propose to use the polynomial approximation to the RBF interpolant in
the limit of increasingly flat basis functions to compute the optimal value
of the shape parameter. For the procedure to work, it is necessary that the
interpolation error has a minimum in the region δ < 1, where the polynomial
approximation to the interpolant is valid.

We define the interpolation error at location x as E(x; δ) = f(x) − s(x; δ),
where f(x) and s(x; δ) are the exact value of the function, and the RBF
interpolant at x, respectively. Our objective is to find the value of the shape
parameter that minimizes some norm of E(x; δ). Most methods use nonlinear
minimization to find this optimal value, and this requires to solve interpolation
equations several times. Instead, we use the power series approximation to the
RBF interpolant (7) to estimate the optimal value of the shape parameter. To
this end, we select a set xk, k = 1, . . . ,M , ofM evaluation nodes, and compute
the optimal value of δ by minimizing the error function

E(δ) =‖
M
∑

k=1

(f(xk)− p0(xk)− δ p1(xk)− δ2 p2(xk)− . . .) ‖ , (48)

where ‖ · ‖ denotes some norm. To minimize the infinite norm we use Matlab
fminimax function. To minimize the two norm (to leading order) we compute

δ∗2 = dot(f− p0, p1)/dot(p1, p1). (49)

To check the method, we interpolate the function

f(x, y) =
√

1 + 0.04 ((x− 1/2)2 + (y − 1)2) (50)

using the nodes [(1/2, 1/2), (1/2, 1), (1, 1/2), (1/2, 0), (0, 1/2), (1, 1), (1, 0), (0, 0),

20

10
−4

10
−3

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

δ

R
M

S

Fig.3.Solidline:RMSerroroftheRBFinterpolantforfunction(50).Dashedline:
polynomialapproximationp(x,y)=p0(x,y)+δp1(x,y)+δ2p2(x,y).

(0,1)].Theleadingorderp0(x,y)oftheapproximationpolynomialoftheRBF
interpolantiswritteninAppendixA.

ThesolidlineinFigure3showsthe RMSerrorinagridof33×33eval-
uationpoints(N =1089)asafunctionof δ. Withadashedline,weshow
theRMSerrorusingthesecondorderpolynomialapproximationtotheRBF
interpolant,i.e.,p(x,y)=p0(x,y)+δp1(x,y)+δ2p2(x,y).Noticethatthere
isa minimumnearδ=0.04whichisalsowelldefinedusingthepolynomial
approximation.Infact,minimizingtheinfinitenormusingyieldsδ∗

∞ =0.0388,
andminimizingthetwonorm(toleadingorder)yieldsδ∗

2=0.0303.

Figure4showsthesameanalysisforthefunction

f(x,y)= 1+210−4((x−1/2)2+(y−1)2). (51)

Inthiscase,theoptimalshapeparameterliesintheregionofill-conditioning
and,therefore,itisdifficulttocomputetheoptimalvalueofδnumerically.
However,itisstraightforwardtocomputeitusingthepolynomialapproxima-
tion.Usingl∞-norm minimizationyieldsδ∗

∞ =1.98210−4,andusingl2-norm
minimization δ∗

2=1.54510−4.

LarssonandFornberg[18]studiedtheerrordependencewiththeshapepa-
rameterforthefunction

21

10
−4

10
−3

10
−2

10
−1

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

δ

R
M

S

Fig.4.Solidline:RMSerroroftheRBFinterpolantforfunction(51).Dashedline:
polynomialapproximationp(x,y)=p0(x,y)+δp1(x,y)+δ2p2(x,y).

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

δ

Fig. 5. Solidline: RMS error (black) and maximum error (red) of the
RBFinterpolantforfunction (52). Dashedline: polynomial approximation
p(x,y)=p0(x,y)+δp1(x,y)+δ2p2(x,y).

22

10
−4

10
−3

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

δ

R
M
S

Fig. 6. Thin lines: RMS error of the RBF interpolant for func-
tion (50) using eight nodes out of nine ([(1/2,1/2),(1/2,1),(1,1/2),
(1/2,0),(0,1/2),(1,1),(1,0),(0,0),(0,1)]). Thickline: RMSerrorofthe RBF
interpolantforfunction(50)usingtheseninenodes.

f(x,y)=
25

25+(x−1/5)2+2y2
, (52)

usingnodes[(1/10,4/5),(1/5,1/5),(3/10,1),(3/5,1/2),(4/5,3/5),(1,1)].Fig-
ure5showstheRMSerrorandthemaximumerror(E ∞)asafunctionof
δfortheRBFinterpolant(solidline)andforthepolynomialapproximation
p(x,y)=p0(x,y)+δp1(x,y)+δ

2p2(x,y)(dashedline).Theerroriscomputed
inthefinegridof33×33equispacednodes.Usingl∞-normminimization
yieldsδ∗∞ =0.0371,andusingl2-normminimizationδ

∗
2=0.0389.

Themethodjustdescribediseffectivewhentheinterpolatedfunctionisknown
explicitlyand,therefore,theerrorscanbecomputedexactlyateachevaluation
node.Ifthefunctionisknownonlyattheinterpolationnodes,wecanuse
avariationofRippa’smethodbutusingthepolynomialinterpolationthat
approximatestheRBFinterpolantinthelimitδ→ 0.Forinstance,inthe
previousexampleofRBFinterpolationusingninenodes,wecancomputethe
RBFinterpolantforeachofthenineeightnodestencilsobtainedbyremoving
onenodeatatime,evaluatetheerrorattheremovednodeasafunctionofδ,
andcomputethevalueofδthatminimizessomenormoftheerror.

Figure6showstheRMSerroroftheRBFinterpolationoffunction(50)using
eightnodesoutofnine. WealsoshowtheRMSerrorusingninenodes.Notice

23

10
−4

10
−2

10
0

10
−2

10
−1

10
0

δ

Fig. 7. Solidline: RMS error (black) and maximum error (red) of the
RBFinterpolantforfunction (52). Dashedline: polynomial approximation
p(x,y) =p−1(x,y)/δ+p0(x,y)+δp1(x,y)+δ2p2(x,y). Dot-dashedline:polyno-
mialapproximation p(x,y)=p0(x,y)+δp1(x,y)+δ2p2(x,y).

that,althoughtheRMSerrorsaredifferentforeachsetofeightnodes,the
locationofthe minimumerrordoesnotchange.Thus,insteadofhavingto
computethepolynomialinterpolantsforeachsetofeightnodes,itsuffices
tocomputejustoneeightnodestenciltofindtheoptimalvalueofδ.Thisis
inagreementwiththeobservationofCarlsonandFoley[5]thattheoptimal
shapeparameterisquiteindependentonthenumberandpositionsofthe
interpolationnodes.

Thus,the methodweproposetochooseagoodvalueoftheshapeparameter
inRBFinterpolationusingninterpolationnodes,isthefollowing:

•Selectonesubsetofn−1nodesoutofthennodes.
•Computethepolynomialinterpolant(7)whichapproximatesthe(n−1)

RBFinterpolant.
•Evaluatetheerrorattheremovednodexi:E(δ)=yi−p0(xi)−δp1(xi)−

δ2p1(xi).
•Findagoodvalueofδbysolvingthesecondorderequationyi=p0(xi)+

δp1(xi)+δ2p1(xi).Ifthecomputedvalueisnegativetakeδ=0.
•UsethegoodvalueofδtocomputetheRBFinterpolantinnnodes.

Asalastexample,letusconsideronecaseinwhichtheRBFinterpolantdi-
vergesasδ→ 0.Usingnodesonaline([(0,0),(1/5,1/5),(2/5,2/5),(3/5,3/5),

24

(4/5, 4/5), (1, 1)]), the RBF interpolant diverges, and the limiting interpolant
goes as

p(x, y) = δ−1p−1(x, y) + p0(x, y) + δp1(x, y) + δ2p2(x, y) +

For function (52), Figure 7 shows the RMS error and the maximum error (‖
E ‖∞) as a function of δ for the RBF interpolant (solid line) and for the poly-
nomial approximation p(x, y) = p−1(x, y)/δ + p0(x, y) + δp1(x, y) + δ2p2(x, y)
(dashed line). The error is computed in the fine grid of 33 × 33 equispaced
nodes. Also shown (dot-dashed) is the polynomial interpolant excluding the
divergent term. This is in agreement with the remark in page 11 of [18]: if we
could discard the divergent terms, we would get a limit that makes sense also
with the non-unisolvent point sets.

3.3 RBF Finite Difference Formulas (RBF-FD)

The power series expansion of the RBF interpolant in the limit δ → 0 (7)
can also be used to derive RBF-FD formulas. It should be mentioned that
other alternatives have been successfully proposed in the past to compute
interpolants and RBF-FD weights in the limit of infinitely flat basis functions:
Contour-Padé [12], RBF-QR [14,15] and RBF-GA [16].

Consider, for instance, the case of three equispaced nodes in 1D. To compute
the first derivative of f(x) at x = 0, we can just compute the first derivative
of p0(x) in (17) at x = 0. This results in

h
df

dx
=

1

2
(f1 − f−1) .

The second order approximation is obtained by computing the first derivative
of p1(x) and p2(x) in (18)-(19) at x = 0. Thus,

h
df

dx
=

1

2
(f1 − f−1) +

δ

4
(f1 − f−1)−

9 δ2

16
(f1 − f−1) +

Analogously, to compute the weights of the RBF-FD formula for the second
derivative, we can just compute the second derivative of p0(x), p1(x), . . . at
x = 0. This results in

h2 d
2f

dx2
= (f1 − 2f0 + f−1) + δ (f1 − 2f0 + f−1)− δ2

(

15

8
f1 − 3f0 +

15

8
f−1

)

+

25

To compute the Laplacian of f(x) at x = (0, 0) using five equispaced nodes in
2D, we can just compute the Laplacian of p0(x) in (22) at x = (0, 0). Thus,

h2∆f = −4f0,0 + f1,0 + f−1,0 + f0,1 + f0,−1 .

The next order approximation to the Laplacian is obtained by taking the
Laplacian of p1(x) in (23) at x = (0, 0), so

h2∆f = −4f0,0 + f1,0 + f−1,0 + f0,1 + f0,−1 +

+δ
[

−10

3
f0,0 +

5

6
(f1,0 + f−1,0 + f0,1 + f0,−1)

]

.

This formula is in agreement with that derived in [1].

The same method can be used to determine the weights of the RBF-FD for-
mula for the nine-nodes Laplacian in the limit δ → 0. The result is

h2∆f = −372

77
f0,0 +

109

77
(f1,0 + f−1,0 + f0,1 + f0,−1)−

−16

77
(f1,1 + f1,−1 + f−1,−1 + f−1,1) + (53)

+δ
[

−1217

205
f0,0 +

2717

1095
(f1,0 + f−1,0 + f0,1 + f0,−1) −

− 1391

1395
(f1,1 + f1,−1 + f−1,−1 + f−1,1)

]

+ (54)

To compute the local truncation error for this formula we expand fi,j around
f0,0 in a Taylor series leading to

ǫ9 ≈
[

1

12

(

u(4,0) + u(0,4)
)

− 16

77
u(2,2)

]

h2 +

+
75

154

(

u(2,0) + u(0,2)
)

δ − 15

22

δ2

h2
u , (55)

where all derivatives are evaluated at (0, 0). Approximation (55) is in very good
agreement with that computed numerically in [1]. In fact, the coefficients of
u(4,0) and u(0,4) are identical, while the other coefficients are very close to those
found in [1]. The coefficient of u(2,2) is 16/77 = 0.2078 (instead of 0.2 in [1]),
the coefficients of u(2,0) and u(0,2) are 75/154=0.487 (instead of 0.47 in [1]),
and the coefficient of u is 15/22=0.6818 (instead of 2/3=0.6666 in [1]).

Notice that the leading order of the RBF-FD (53) formula does not coincide
with the usual 9-point Laplacian [22]

26

h2∆f =
1

6
[−20f0,0 + 4 (f1,0 + f−1,0 + f0,1 + f0,−1) −

− (f1,1 + f1,−1 + f−1,−1 + f−1,1)] .

This is due to the fact that the polynomial interpolant of degree two using
nine nodes is not unique and, in fact, the polynomial which is obtained in the
limit δ → 0 depends on the RBF used. In the case of the inverse multiquadric
the limiting interpolant is

h2∆f = −1108

243
f0,0 +

311

243
(f1,0 + f−1,0 + f0,1 + f0,−1)−

− 34

243
(f1,1 + f1,−1 + f−1,−1 + f−1,1) + (56)

+δ
[

−1321

137
f0,0 +

13093

3957
(f1,0 + f−1,0 + f0,1 + f0,−1) −

− 1121

1248
(f1,1 + f1,−1 + f−1,−1 + f−1,1)

]

+ . . . , (57)

and the corresponding local truncation error is

ǫ9 ≈
[

1

12

(

u(4,0) + u(0,4)
)

− 34

243
u(2,2)

]

h2 +

+
245

162

(

u(2,0) + u(0,2)
)

δ +
35

18

δ2

h2
u . (58)

The same method can be used to derive the weights of the RBF-FD thirteen-
points formula for the Laplacian in the limit δ → 0. To order δ, the result
is

h2 ∆f = −5f0,0 +
4

3
(f1,0 + f−1,0 + f0,1 + f0,−1)−

− 1

12
(f2,0 + f−2,0 + f0,−2 + f0,2) + (59)

+δ
[

−1502

173
f0,0 +

1318

519
(f1,0 + f−1,0 + f0,1 + f0,−1) −

− 92

173
(f1,1 + f1,−1 + f−1,−1 + f−1,1)−

− 935

1038
(f2,0 + f−2,0 + f0,−2 + f0,2)

]

+ (60)

The corresponding local truncation error is

27

ǫ13 ≈ − 1

90

[

u(6,0) + u(0,6)
]

h4 −
[

935

1038

(

u(4,0) + u(0,4)
)

− 92

173
u(2,2)

]

δ h2 +

+
{

241

92

[

u(4,0) + u(0,4)
]

− 2430

337
u(2,2) − 1599

346

[

u(2,0) + u(0,2)
]

}

δ2 + . . . , (61)

where all derivatives are evaluated at (0, 0). This formula is in close agreement
with that derived numerically in [1].

In the case of seven nodes hexagonal stencils (x1 = (0, 0), x2 = (1, 0), and

xk = (cos
(

2(k−2)π
6

)

, sin
(

2(k−2)π
6

)

) for k = 3, . . . , 7), we can use p0, p1 and p2
to compute the value of the weights of the RBF-FD formula for the Laplacian
in the limit δ → 0. The resulting weights are

α0 = − 4

h2
− δ

h2

10

3
+

δ2

h2

157

36
,

αi =
1

h2

2

3
+

δ

h2

5

9
− δ2

h2

199

216
, i = 1 , . . . , 6 .

In the general case of a regular n node stencil distributed along the unit circle

xi = cos

(

2π(i− 1)

n− 1

)

, yi = sin

(

2π(i− 1)

n− 1

)

, i = 1 , . . . n− 1

plus the central node x0 = y0 = 0, it is easy to prove that the following
relationships hold

n−1
∑

i=1

x2m+1
i =

n−1
∑

i=1

y2m+1
i = 0 , i = 0 , 1 , . . .

n−1
∑

i=1

x2
i =

n−1
∑

i=1

y2i =
n− 1

2
,

n−1
∑

i=1

x4
i =

n−1
∑

i=1

y4i =
6(n− 1)

16
.

Expanding
∑n−1

i=0 αi u(xi, yi) in Taylor series around (0, 0), and collecting like
powers of ∆x,∆y, the leading order terms of the RBF-FD weights are

α0 = − 4

h2
− δ

h2

10

3
,

αi =
1

h2

4

n− 1
+

δ

h2

10

3 (n− 1)
, i = 1 , . . . , n− 1 .

The corresponding local truncation error is

ǫn(x) =
h2

16

[

u(4,0) + u(0,4) + 2 u(2,0) u(0,2)
]

+
5 δ

6

[

u(2,0) + u(0,2)
]

+

28

Notice that this error is independent of n.

4 Conclusions

In this paper we propose a new approach to study RBF interpolation in the
limit of flat RBFs. The method is based on the computation of the Laurent
series of the inverse of the RBF interpolation matrix in powers of the parameter
δ = (ǫh)2, where ǫ is the shape parameter and h is the characteristic inter-
nodal distance. The matrix coefficients of this Laurent series are computed
using a semi-analytical algorithm described in [3]. It is semi-analytical because
the Laurent series is derived from analytical formulas, but the implementation
requires a significant amount of numerical computations.

We show that the Laurent series for the inverse of the interpolation matrix
can be effectively used for different purposes: for the derivation of the limiting
interpolation polynomial, for the computation of the optimal value of the
shape parameter, and for the derivation of the weights of RBF-FD formulas
and their corresponding local truncation error. An important advantage of
our approach is that all the results obtained are extremely accurate, since the
proposed procedure avoids the effects of ill-conditioning and the corresponding
rounding errors.

It should be mentioned that the computational cost of the algorithm that
provides the Laurent series of the inverse of the RBF interpolation matrix
grows exponentially with the order of its singularity. Hence, although the
algorithm is more efficient than symbolic languages, it is only feasible for
singularities of order seven or less. As the order of the singularity increases
with the number of interpolant nodes, it is only possible to obtain the Laurent
series of the inverse for 36 nonequispaced nodes or 24 equispaced nodes in 2D,
and for 84 nonequispaced nodes or 31 equispaced nodes in 3D.

5 Acknowledgments

This work has been supported by Spanish MICINN Grants FIS2010-18473,
FIS2013-41802-R, CSD2010-00011.

29

A Limit polynomial interpolant

In the case of nine equispaced nodes the polynomial interpolant in the limit
δ → 0 is

p0(x, y) =
[

256

77
x4 − 512

77
x3 + 16x2y2 − 16x2y +

320

77
x2 − 16xy2+

+16xy − 64

77
x+

256

77
y4 − 512

77
y3 +

320

77
y2 − 64

77
y
]

f1/2,1/2 +

+
[

−128

77
x4 +

256

77
x3 − 8x2y2 + 4x2y − 160

77
x2 + 8xy2−

−4xy +
32

77
x− 128

77
y4 +

179

77
y3 − 89

154
y2 − 13

154
y
]

f1/2,1 +

+
[

−128

77
x4 +

179

77
x3 − 8x2y2 + 8x2y − 89

154
x2 + 4xy2−

−4xy +
13

154
x− 128

77
y4 +

256

77
y3 − 160

77
y2 +

32

77
y
]

f1,1/2 +

+
[

−128

77
x4 +

256

77
x3 − 8x2y2 + 12x2y − 468

77
x2 + 8xy2−

−12xy +
340

77
x− 128

77
y4 +

333

77
y3 − 551

154
y2 +

141

154
y
]

f1/2,0 +

+
[

−128

77
x4 +

333

77
x3 − 8x2y2 + 8x2y − 551

154
x2 + 12xy2−

−12xy +
141

154
x− 128

77
y4 +

256

77
y3 − 468

77
y2 +

340

77
y
]

f0,1/2 +

+
[

64

77
x4 − 179

154
x3 + 4x2y2 − 2x2y +

89

308
x2 − 2xy2+

+xy +
13

308
x+

64

77
y4 − 179

154
y3 +

89

308
y2 +

13

308
y
]

f1,1 +

+
[

64

77
x4 − 179

154
x3 + 4x2y2 − 6x2y +

705

308
x2 − 2xy2+

+3xy − 295

308
x+

64

77
y4 − 333

154
y3 +

551

308
y2 − 141

308
y
]

f1,0 +

+
[

64

77
x4 − 333

154
x3 + 4x2y2 − 6x2y +

1167

308
x2 − 6xy2+

+9xy − 1065

308
x+

64

77
y4 − 333

154
y3 +

1167

308
y2 − 1065

308
y
]

f0,0 +

+
[

64

77
x4 − 333

154
x3 + 4x2y2 − 2x2y +

551

308
x2 − 6xy2+

+3xy − 141

308
x+

64

77
y4 − 179

154
y3 +

705

308
y2 − 295

308
y
]

f0,1

30

B Functions

f1(x, y) =
3

4
exp

[

−(9x− 2)2 + (9y − 2)2

4

]

+
3

4
exp

[

−(9x+ 1)2

49
− 9y + 1

10

]

+

+
1

2
exp

[

−(9x− 7)2 + (9y − 3)2

4

]

− 2

10
exp

[

−(9x− 4)2 − (9y − 7)2
]

f2(x, y) =
1

9
[tanh (9y − 9x) + 1]

f3(x, y) =
1.25 + cos (5.4 y)

6(1 + (3 x − 1)2)

f5(x, y) =
exp (−81/16 [(x− 0.5)2 + (y − 0.5)2])

3

f5(x, y) =
exp (−81/4 [(x− 0.5)2 + (y − 0.5)2])

3

f6(x, y) =
1

9

√

(64− 81 [(x− 0.5)2 + (y − 0.5)2)]− 0.5

References

[1] V. Bayona, M. Moscoso, M. Carretero, M. Kindelan, RBF-FD formulas and
convergence properties, J. Comput. Phys. 229 (2010) 8281-8295.

[2] P. González-Rodŕıguez, V- Bayona, M. Moscoso, and M. Kindelan, Laurent
series based RBF-FD method to avoid ill-conditioning, Engineering Analysis
with Boundary Elements 52 (2015) 24-31.

[3] P. González-Rodŕıguez, M. Moscoso, and M. Kindelan, Laurent expansion of
the inverse of perturbed, singular matrices, Journal of Computational Physics
299 (2015) 307-319.

[4] M. D. Buhmann, S. Dinew, Limits of radial basis function interpolants,
Communications on Pure and Applied Analysis, 6 (2007) 569-585.

[5] R. E. Carlson, T. A. Foley, The parameter R2 in multiquadric interpolation,
Comput. Math. Appl. 21 (1991) 29-42.

[6] T. A. Driscoll, B. Fornberg, Interpolation in the limit of increasingly flat radial
basis functions, Comput. Math. Appl. 43 (2002) 413-422.

[7] G. E. Fasshauer, Meshfree Approximation Methods with MATLAB, World
Scientific Publishing Co., Singapore (2007).

[8] G. E. Fasshauer, J. G. Zhang, On choosing optimal shape parameters for RBF
approximation, Numer. Algor., 45 (2007) 345-368.

31

[9] G. E. Fasshauer, M. J. McCourt, Stable evaluation of Gaussian RBF
interpolants, SIAM J. Sci. Comput., 34 (2012), 73-762.

[10] N. Flyer, E. Lehto, Rotational transport on a sphere: Local node refinement
with radial basis functions, J. Comput. Phys. 229 (2010) 1954-1969.

[11] N. Flyer, B. Fornberg, Radial basis functions: developments and applications
to planetary scale flows, Comput. & Fluids, 46 (2011), 23-32.

[12] B. Fornberg, G. Wright, Stable computation of multiquadric interpolation for
all values of the shape parameters, Comput. Math. Appl. 48 (2004) 853-867.

[13] B. Fornberg, G. Wright, E. Larsson, Some observations regarding interpolants
in the limit of flat radial basis functions, Comput. Math. Appl., 47 (2004) 37-55.

[14] B. Fornberg, C. Piret, A stable algorithm for flat radial basis functions on a
sphere. SIAM J. Sci. Comput., 30 (2007) 60-80.

[15] B. Fornberg, E. Larsson, N. Flyer, Stable computations with Gaussian radial
basis functions, SIAM J. Sci. Comput. 33 (2011) 869-892.

[16] B. Fornberg, E. Lehto, C. Powell, Stable calculation of Gaussian-based RBF-FD
stencils, Comput. Math. Appl. 65 (2013) 627-637.

[17] R. Franke, A critical comparison of some methods for interpolation of scattered
data, Naval Postgraduate School, Technical Report NPS-53-79-003 (1979).

[18] E. Larsson, B. Fornberg, Theoretical and computational aspects of multivariate
interpolation with increasingly flat radial basis functions, Comput. Math. Appl.
49 (2005) 103-130.

[19] Y. J. Lee, G. J. Yoon, J. Yoon, Convergence of Increasingly Flat Radial Basis
Interpolants to Polynomial Interpolants, SIAM J. Math. Anal. 39 (2007) 537-
553.

[20] Y. J. Lee, G. J. Micchelli, J. Yoon, On Convergence of Flat Multivariate
Interpolation by Translation Kernels with Finite Smoothness, Constr. Approx.
40 (2014) 37-60.

[21] Y. J. Lee, C. A. Micchelli, J. Yoon, A study on multivariate interpolation by
increasingly flat kernel functions, J. Math. Anal. Appl 427 (2015) 74-87.

[22] Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial
Differential Equations: Steady-State and Time-Dependent Problems, SIAM
(2007).

[23] C. A. Micchelli, Interpolation of scattered data: Distance matrices and
conditionally positive definite functions, Constr. Approx. 2, (1986) 11-22.

[24] S. Rippa, An algorithm for selecting a good value for the parameter c in radial
basis function interpolation, Adv. Comput. Math. 11 (1999) 193-210.

[25] R. M. C. Roque, A. J. M. Ferreira, Numerical experiments on optimal shape
parameters for radial basis functions Numer. Methods Partial Differ. Equ., 26
(2010) 675-689.

32

[26] Y. V. S. S. Sanyasiraju, C. Satyanarayana On optimization of the RBF shape
parameter in a grid-free local scheme for convection dominated problems over
non-uniform centers, Appl. Math. Model., 37 (2013) 7245-7272

[27] R. Schaback, Multivariate interpolation by polynomials and radial basis
functions, Constr. Approx., 21 (2005) 293-317.

[28] R. Schaback, Limit problems for interpolation by analytic radial basis functions,
J. Comp. Appl. Math. 212 (2008) 127-149.

[29] M. Scheuerer, An alternative procedure for selecting a good value for the
parameter c in RBF-interpolation, Adv. Comput. Math. 34 (2011) 105-126.

[30] M. Uddin, On the selection of a good value of shape parameter in solving time-
dependent partial differential equations using RBF approximation method,
Appl. Math. Model.

[31] G. B. Wright, B. Fornberg, Scattered node compact finite difference-type
formulas generated from radial basis functions, J. Comput. Phys. 212 (2006)
99-123.

[32] Z. Wu and R. Schaback, Local Error Estimates for Radial Basis Function
Interpolation of Scattered Data, IMA J. Numer. Anal., 13 (1993), 13-27.

33

View publication stats

https://www.researchgate.net/publication/287373638

