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Abstract

In this work, we propose an adaptive importance sampling (AIS) scheme for multivariate
Bayesian inversion problems, which is based in two main ideas: the inference procedure is divided
in two parts and the variables of interest are split in two blocks. We assume that the observations
are generated from a complex multivariate non-linear function perturbed by correlated Gaussian
noise. We estimate both the unknown parameters of the multivariate non-linear model and the
covariance matrix of the noise. In the first part of the proposed inference scheme, a novel AIS
technique called adaptive target AIS (ATAIS) is designed, which alternates iteratively between an
IS technique over the parameters of the non-linear model and a frequentist approach for the covari-
ance matrix of the noise. In the second part of the proposed inference scheme, a prior density over
the covariance matrix is considered and the cloud of samples obtained by ATAIS are recycled and
re-weighted for obtaining a complete Bayesian study over the model parameters and covariance
matrix. Two numerical examples are presented that show the benefits of the proposed approach.
Keywords: Bayesian inversion; importance Sampling; covariance matrix; tempering; sequence of
posteriors

1 Introduction
The estimation of parameters from noisy observations is at the center of areas such as signal pro-
cessing, statistics and machine learning. Looking at this problem from a Bayesian perspective, the
inference problem becomes the construction and analysis the posterior density over the unknown pa-
rameters. The computation of complicated integrals involving these posterior distributions are often
needed (e.g., any moments of the random variable distributed as the posterior density). Monte Carlo
sampling methods are able to draw samples from the posterior probability density function (pdf) and
hence those integrals can approximated by stochastic quadrature formulas employing the generated
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samples. The Monte Carlo techniques can be divided in four main families: direct transformation
methods, rejection sampling, importance sampling and Markov Chain Monte Carlo (MCMC) algo-
rithms [1, 2, 3, 4]. The last two classes are the most used by the user, since they are universal methods,
i.e., they can always be applied.

However, the Monte Carlo techniques find several difficulties that jeopardize their performance in
many scenarios, for instance when working high - dimensional spaces, and with narrow, tight poste-
riors. Both issues are related to the problem of the exhaustive exploration of the state space. For these
reasons, many Monte Carlo algorithms try to work in sub-dimensional spaces (step by step, with itera-
tive or sequential procedures), such as the Gibbs sampling and the particle filtering schemes [3, 5, 6, 7].

In this work, we extend the approach in [8, 9]. Specifically, we address a generic multidimensional
Bayesian inversion problem, where each vector observation yr is the output of a multidimensional,
nonlinear vectorial mapping f(θ) of the parameter of interest θ, perturbed by an error vector with
correlated components, vr ∼ N(vr|0,Σ). The goal is to make inference in the joint space of θ and Σ.
The dimension of the entire space grows linearly with the dimension of the vector θ and quadratically
with the dimension of the matrix Σ. We consider that no assumptions have been made over f, and usu-
ally it represents some complex physical process. For instance, f(θ) could be also non-differentiable.
The unique requirement is to be able to evaluate point-wise f(θ). The inference task on the complete
space {θ,Σ} can be particularly challenging, firstly due to the dimension of the space and, secondly,
since wrong choices for the covariance matrix Σ can jeopardize the inference over θ (and viceversa).
Therefore, the proposed idea is to split the variables of interest in two blocks, θ and Σ (as in a block
Gibbs sampling) and to separate the inference problem in two main parts. In the first part the we
approximate the conditional posterior of θ given the data and the maximum likelihood estimator ΣML
of the matrix Σ. In the second part, we also perform Bayesian inference of the covariance matrix Σ
and approximate the complete posterior of pair of variables of interest {θ,Σ}. The resulting scheme is
a more robust inference approach for Bayesian inversion, based on adaptive importance sampler that
addresses a sequence of different conditional posteriors.

2 Problem Statement
Let us denote as θ = [θ1, ..., θM]⊤ ∈ Θ ⊆ RM, a variable of interest that we desire to infer. Moreover,
related to θ, we observe

• R values in different time instants (or spatial points) of

• K different signals (time series), i.e.,

yr = [yr,1, ..., yr,K] ∈ RK×1 for r = 1, ...,R. Hence, all received data can be stored in a matrix Y =
[y1, ..., yR] ∈ RK×R. Furthermore, let us consider the observation model

yr = fr(θ) + vr, r = 1, ...,R, (1)
Y = F(θ) + V, (2)
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where we have a nonlinear mapping for each time instant and each time series,

fr(θ) = [ fr,1(θ), ..., fr,K(θ)]⊤ : Θ ⊆ RM → RK×1, (3)

F(θ) = [f1(θ), ..., fR(θ)] : Θ ⊆ RM → RK×R, (4)

and a K × 1 vector of Gaussian noise perturbation for each time instant,

vr = [vr,1, ..., vr,K]⊤ ∼ N(vr|0,Σ) ∈ RK×1, (5)

V = [v1, ..., vR] ∈ RK×R (6)

where Σ is K × K covariance matrix, which generally is unknown. The mapping fr(θ) could be
analytically unknown, the only assumption is that we are able to evaluate it pointwise. The likelihood
function is

ℓ(Y|θ,Σ) =
(︄

1
(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤Σ−1 (yr − fr(θ))

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎠ , (7)

Note that we have two types of variables of interest for an inference point of view:

• the vector θ contains the parameters of the nonlinear mapping fr(θ), for r = 1, ...,R,

• and Σ is a scale matrix of the likelihood function.

Given the complete matrix of measurements Y, we desire to make inferences regarding the hidden
parameters θ and the noise matrix Σ, obtaining at least some point estimators ˆ︁θ and ˆ︁Σ. We are also
interested in performing uncertainty and correlation analysis among the components of θ. Further-
more, we aim to perform model selection, i.e., to compare, select or properly average different models.

Application to time series or spatial processes. In the case of having K different time series in
continuous time, or K spatial processes we can have more explicit notation, where have a one-to-one
correspondence between each r ∈ {1, ...,R} and a real time instant τk,r ∈ R or a point xk,r ∈ R

L, i.e.,

r ∈ {1, ...,R} ←→ {τk,r ∈ R}
K
k=1, r ∈ {1, ...,R} ←→ {xk,r ∈ R

L}Kk=1.

More generally, a more explicit notation, instead of fr(θ), in these scenarios would be the following:

yr = fr(θ) + vr,

yr = f(θ, τ1,r, ..., τK,r) + vr, (8)
yr = f(θ, x1,r, ..., xK,r) + vr, r = 1, ...,R, (9)

where τ1,r, ..., τK,r, or x1,r, ..., xK,r play the role of auxiliary known parameters (or vectors of parame-
ters).

Bayesian inference in the complete space. The full Bayesian solution considers the study of the
complete posterior density

p(θ,Σ|Y) =
1

p(Y)
p(θ,Σ,Y) =

1
p(Y)
ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ), (10)
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where gθ(θ) and gΣ(Σ) represent the prior densities over the vector θ and the matrix Σ. Usually,
complex integrals involving p(θ,Σ|Y) should be computed in order to perform the inference.

Main observation. Generally, generating random samples from a complicated posterior in Eq. (10)
and computing efficiently the integrals involving p(θ,Σ|Y) is a hard task. Note that the complete
dimension of the inference problem D is

D = M +
K(K + 1)

2
,

i.e., the number of parameters to infer is exactly D. With M = 2 and K = 5, we have D = 17 and
with M = 2, K = 10 we have D = 57. The dimension D grows linearly with M and quadratic with
respect to K. Moreover, we have also the constrains regarding Σ, since it must be a covariance matrix.
This task becomes even more difficult when we try to perform a joint inference, learning jointly the
covariance matrix Σ and parameters of the nonlinearity θ. Indeed, “wrong choices” of Σ can easily
jeopardize the sampling of θ.
Below, we describe an inference scheme formed by two main parts. First, we tackle the problem of
drawing from conditional posterior of θ given the data the maximum likelihood estimator of Σ. With
this goal, the maximum likelihood estimator of Σ must be obtained. Therefore, in this first part, we
apply a Bayesian inference over θ and a frequentist approach over Σ. In the second part, we assume
also a prior density over the covariance matrix Σ, and perform a Bayesian inference over Σ as well,
recycling the outputs (samples and other information) obtained in the first part.

3 First part of the proposed inference scheme
In this first stage, we consider a sub-optimal (in Bayesian sense) but substantially more efficient infer-
ence scheme, studying only a conditional posterior distribution. More precisely, we study the follow-
ing conditional posterior

p(θ|Y,ΣML) =
ℓ(Y|ΣML,θ)gθ(θ)

p(Y|ΣML)
∝ ℓ(Y|ΣML,θ)gθ(θ). (11)

Furthermore, we have denoted the (conditioned) maximum likelihood estimator of Σ as

ΣML = arg max
Σ
ℓ(Y|Σ,θMAP), (12)

where θMAP denotes the global maximum of p(θ|Y,ΣML), i.e.,

θMAP = arg max
θ

log p(θ|Y,ΣML),

= arg min
θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤Σ−1
ML (yr − fr(θ)) + log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ . (13)

It is important to observe that, given θMAP, we have the analytic form of ΣML, i.e.,

ΣML =
1
R

R∑︂
r=1

(yr − fr(θMAP)) (yr − fr(θMAP))⊤ . (14)
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Note that ΣML depends on θMAP, and θMAP depends on ΣML.

Remark. The key idea to implement this inference scheme is to perform an alternating optimization
procedure where, at each iteration t, we produce two estimations ˆ︁θ(t)

MAP, ˆ︁Σ(t)
ML of θMAP, ΣML, respectively.

Clearly, we desire the convergence as the number of iterations grow, t → ∞, i.e.,

ˆ︁θ(t)
MAP −→ θMAP, (15)ˆ︁Σ(t)
ML −→ ΣML. (16)

The suggested iterative approach is summarized briefly by two steps. Starting with an initial matrix
Σ

(0)
ML , that is as a rough approximation of ˆ︁ΣML, the alternating optimization procedure is given in Table

1.

Table 1: Alternating optimization.

For t = 1, . . . ,T :

1 Estimate ˆ︁θ(t)
MAP by Monte Carlo, e.g., by an importance sampling (IS) scheme, working with

respect to p(θ|Y, ˆ︁Σ(t−1)
ML ), i.e., equivalently

θ(t)
MAP = arg min

θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

(yr − fr(θ))⊤
[︂ˆ︁Σ(t−1)
ML

]︂−1
(yr − fr(θ)) − log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ . (17)

2 Compute

ˆ︁Σ(t)
ML =

1
R

R∑︂
r=1

(︂
yr − fr(ˆ︁θ(t)

MAP)
)︂ (︂

yr − fr(ˆ︁θ(t)
MAP)

)︂⊤
. (18)

Since, we employ IS scheme for obtaining ˆ︁θ(t)
MAP, at each t-th iteration, we have also a cloud of particles

{θ(n)
t )}Nn=1 that can be used for performing Bayesian inference over θ. Namely, after T iteration, we can

build a particle approximation of p(θ|Y, ˆ︁Σ(T )
ML ), i.e.,

ˆ︁p(θ|Y, ˆ︁Σ(T )
ML ) =

T∑︂
t=1

N∑︂
n=1

˜︁w(n)
t δ(θ − θ

(n)
t ),

T∑︂
t=1

N∑︂
n=1

˜︁w(n)
t = 1. (19)

By Eq. (28), we can approximate all the moments associate to the conditional posterior p(θ|Y, ˆ︁Σ(T )
ML )

hence, for instance, we can also provide an uncertainty estimation over the vector of θ.

On the convergence of the alternating optimization. Due to the error in step 1 of the alternat-
ing optimization (described above) can be controlled by the number of particles N (i.e., the error in
the approximation of θMAP can be bounded increasing N, i.e., even with a bad choice of ˆ︁Σ(t−1)

ML we can
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obtain a reasonable vector ˆ︁θ(t)
MAP), and the estimator ˆ︁Σ(t)

ML in Eq. (18) approaches the matrix ΣML in Eq.
(14), as t → ∞. Moreover, as the number of realizations R grows the matrix ΣML in Eq. (14) converges
to the true covariance matrix of the data. Moreover, note that the pair θMAP and ΣML are fixed points of
the iterative (dynamical) system formed by Eqs. (17)-(18).

Accelerating the convergence of the global optimization problem. In other to find a good region of
the space for starting the alternating optimization, we can use some iterations (let say T0 < T ) of the
algorithm considering

θ(t)
MAP = arg min

θ

⎡⎢⎢⎢⎢⎢⎣ R∑︂
r=1

||yr − fr(θ)||2 − log gθ(θ)

⎤⎥⎥⎥⎥⎥⎦ , t = 1, ...,T0, (20)

that is equivalent to set ˆ︁Σ(t)
ML = IK for t = 0, ...,T0 − 1 in Eq. (17), where IK is a K × K unit matrix.

Thus, we avoid the alternating optimization in the first T0 iterations, and we use them to find a good
point θ(T0)

MAP . Indeed, note that if there exists a point θ∗ such that
∑︁R

r=1 ||yr − fr(θ∗)||2 = 0, then this point
θ∗ is also a root for

∑︁R
r=1 (yr − fr(θ∗))⊤ ˆ︁Σ−1 (yr − fr(θ∗)) = 0 for any possible covariance matrix ˆ︁Σ.

Outputs of this first part of the inference scheme. With the procedure above, we perform a
Bayesian inference over the vector θ, but only analyzing and approximating the conditional poste-
rior p(θ|Y, ˆ︁Σ(T )

ML ). With respect to Σ, we only provide a frequentist estimator ˆ︁Σ(T )
ML .

Note that, in the iterative procedure, we have a sequence conditional posteriors p(θ|Y, ˆ︁Σ(t)
ML). For this

reason, we call the algorithm as adaptive target adaptive importance sampling (ATAIS)1 The details
of the ATAIS algorithm which performs this scheme are given in the next section.

4 Adaptive Target Adaptive Importance Sampling (ATAIS)
This section is devoted to provide more details with respect to the Step 1 of the alternating proce-
dure described above. More generally, we will provide all the details of the ATAIS algorithm. For
simplifying the notation, we denote the unnormalized conditional posterior at the t-th iteration,

πt(θ) = ℓ(Y|ˆ︁Σ(t−1)
ML ,θ)gθ(θ) ∝ p(θ|Y, ˆ︁Σ(t−1)

ML ). (21)

At each iteration, we consider πt(θ) as the target distribution but, finally, we are able to approximate
πT+1(θ) ∝ p(θ|Y, ˆ︁Σ(T )

ML ), without any additional evaluation of the likelihood function. The dependence
on the iteration t is due to ˆ︁Σ(t)

ML varies with t. The ATAIS algorithm is outlined in Table 2, whereas the
main feature of ATAIS are described below.

IS steps. A set of N samples {θ(n)
t }

N
n=1 are drawn from a (normalized) proposal density q(θ|µt,Λt)

with mean µt and a covariance matrix Λt. An importance weight

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Λt)

,

1Another reason is that it is also an extension of the techniques in [8, 9], that use the acronym ATAIS as well.

6



is assigned to each sample θ(n)
t , for all n and t.

Optimal denominator in IS weights. Since we adapt the proposal density during the iterations,
we are actually in a multiple IS scenario [10, 11]. It is well-known that the standard IS denominator
(using just the unique proposal q(θ|µt,Λt)) provides instability and high variance in the final IS esti-
mators. The correct way of avoiding this behavior is to employ a mixture of all proposals used during
the iterations, i.e.,

w(n)
t =

πt(θ
(n)
t )

1
T

∑︁T
i=1 q(θ(n)

t |µi,Λi)
.

This procedure provides the lowest variance of the final IS estimators but requires an high computa-
tional cost. Indeed, for each sample θ(n)

t , we have to evaluate a mixture where the number of compo-
nents grows with the iterations. Moreover, at least in the final iteration T decided by the user, all the
previous weights must be updated recomputing a new denominator for each sample. Alternatives for
reducing the computational cost have been proposed [12]. The simplest solution among the proposed
one is to build a compressed denominator [13, 11]. Here, for avoiding instabilities in the results, we
discard the samples in the first iterations when the proposal density changes substantially. For in-
stance, one can discard the samples in the first iterations t such that ||ˆ︁θ(t)

MAP −
ˆ︁θ(t−1)
MAP || > ϵ where ϵ is a

small positive value.

Proposal adaptation. The location parameter of the proposal density is moved to ˆ︁θ(t)
MAP, i.e.,

µt = ˆ︁θ(t)
MAP. (22)

Note that, we set µt = ˆ︁θ(t)
MAP instead of using the empirical mean of the samples (as in other classical

AIS schemes). This is because we have noticed that this choice provides better and more robust re-
sults, especially as the dimension of the problem grows. Indeed, his choice helps in the search of the
global maximum (since the next cloud of particles will be around the current MAP estimation) and, as
a consequence, helps also the estimation of ˆ︁ΣML due to (18).
The covariance matrix Λt is adapted by considering the empirical covariance of the weighted sam-
ples at the t-th iteration, plus a diagonal matrix controlled by a parameter δ > 0 which determines
the elements in the diagonal. The value of δ must be always greater than zero, since it helps the IS
performance (see , e.g., [14, Numerical Example 1]) and avoids catastrophic scenarios. For a robust
implementation, we suggest to use a greater value of δ specially in the first iterations of the algorithm.
The value of δ could be decreased as the iterations grow.

ATAIS outputs. After T iterations, a final correction of the weights is needed, i.e.,

˜︁w(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )
, for all n, t, (23)

in order to obtain a particle approximation of the measure of the final conditional posterior πT+1(θ) ∝
p(θ|Y, ˆ︁Σ(T )

ML ). Thus, the algorithm returns the final estimators ˆ︁θ(T )
MAP, ˆ︁Σ(T )

ML , and all the weighted samples
{θ(n)

t ,˜︁w(n)
t }, for all n = 1, ...,N and t = 1, ...,T . Other outputs can be obtained with a post-processing of
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the weighted samples, as shown below. Note that Eq. (23) does not require any additional evaluations
of the model, if the save the computation of the error vectors e(n)

t,r = yr− fr(θ
(n)
t ). Moreover, we can also

use {e(n)
t,r } and {θ(n)

t } for building a particle approximation of any other conditional posterior p(θ|Y,Σ).

5 Second part of the proposed inference scheme

5.1 Approximating different conditional posteriors
The idea here is to re-use all the generated samples since, if we have saved the computation of the
error vectors e(n)

t,r = yr − fr(θ
(n)
t ) no any additional evaluation of the model are required. Note that

the cloud of particles {θ(n)
t } is well-located, since ATAIS works to generates samples around the MAP

and ML estimators of θ and Σ. Moreover, we can also use {e(n)
t,r } and {θ(n)

t } for building a particle
approximation of any other conditional posterior p(θ|Y,Σ), i.e.,

ˆ︁p(θ|Y,Σ) =
T∑︂

t=1

N∑︂
n=1

ρ̄(n)
t (Σ) · δ(θ − θ(n)

t ),
T∑︂

t=1

N∑︂
n=1

ρ̄(n)
t (Σ) = 1, (28)

where

ρ̄(n)
t (Σ) ∝ ρ(n)

t (Σ) =
ℓ(Y|θ(n)

t ,Σ)gθ(θ
(n)
t )

q(θ(n)
t |µt,Λt)

, (29)

ρ̄(n)
t (Σ) =

ρ(n)
t (Σ)∑︁T

τ=1
∑︁N

i=1 ρ̄
(i)
τ (Σ)

. (30)

Given a new matrix Σ, to compute the likelihood

ℓ(Y|θ(n)
t ,Σ) =

(︄
1

(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

R∑︂
r=1

(︂
yr − fr

(︂
θ(n)

t

)︂)︂⊤
Σ−1

(︂
yr − fr

(︂
θ(n)

t

)︂)︂⎞⎟⎟⎟⎟⎟⎠ , (31)

=

(︄
1

(2π)K/2det(Σ)1/2

)︄R

exp

⎛⎜⎜⎜⎜⎜⎝−1
2

R∑︂
r=1

(︂
e(n)

t,r

)︂⊤
Σ−1

(︂
e(n)

t,r

)︂
,

⎞⎟⎟⎟⎟⎟⎠ (32)

we need the vectors e(n)
t,r , the inverse matrix of Σ and the determinant of Σ.

5.2 Approximating the complete posterior
We can apply an IS scheme with the complete target pdf,

p(θ,Σ|Y) ∝ ℓ(Y|θ,Σ)gθ(θ)gΣ(Σ),

and a proposal density factorized as q(θ|µt,Λt)qΣ(Σ). Recycling the NT samples produced by ATAIS,
i.e., θ(n)

t ∼ q(θ|µt,Λt) and drawing J random matrices from the proposal qΣ(Σ), i.e., Σ( j) ∼ qΣ(Σ),
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the complete IS weights are

β(n)
t, j =

ℓ(Y|θ(n)
t ,Σ

( j))gθ(θ
(n)
t )gΣ(Σ( j))

q(θ(n)
t |µt,Λt)qΣ(Σ( j))

, (33)

= ρ̄(n)
t (Σ( j))

gΣ(Σ( j))
qΣ(Σ( j))

= ρ̄(n)
t (Σ( j))γ j, (34)

where we have set γ j =
gΣ(Σ( j))
qΣ(Σ( j)) . Clearly, if qΣ(Σ) = gΣ(Σ) then γ j = 1. The complete posterior

approximation is given by

ˆ︁p(θ,Σ|Y) =
J∑︂

j=1

T∑︂
t=1

N∑︂
n=1

β̄
(n)
t, j · δ(θ − θ

(n)
t )δ

(︂
Σ −Σ( j)

)︂
(35)

where β̄(n)
t, j =

β(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β̄
(m)
v,i

. Note that we have different numbers of samples about θ (i.e., NT ) and

Σ (i.e., J). This recall the recycling Gibbs sampling idea in [5], where the space is divided in blocks
and different numbers of samples is considered for each block.

5.3 Approximation of the marginal posterior of the covariance matrix
We can assign a weight to each drawn matrix above Σ( j), approximating the marginal posterior of the
covariance matrix

p(Σ( j)|Y) =
∫︂
Θ

p(θ,Σ( j)|Y)dθ ≈

∑︁T
t=1

∑︁N
n=1 β

(n)
t, j∑︁J

i=1
∑︁T

v=1
∑︁N

m=1 β
(m)
v,i

δ
(︂
Σ −Σ( j)

)︂
, (36)

= λ̄ j · δ
(︂
Σ −Σ( j)

)︂
. (37)

For instance, an minimum mean square error estimator of Σ can be approximated as

ˆ︁Σ = J∑︂
j=1

λ̄ jΣ
( j),

and approximations of high-order moments p(Σ|Y) can be also obtained.

5.4 Prior over covariance matrices
Consider a positive definite K × K matrix Σ = {σi, j} with i, j = 1, . . . ,K. The Wishart distribution is
defined on the space RK × RK of positive definite matrices. The corresponding pdf is

gΣ(Σ) ∝ |Σ|
ν−K−1

2 exp
(︄
−

1
2

trace(Φ−1Σ)
)︄
, (38)
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where |Σ| denotes the determinant of the matrix Σ, ν ≥ K is the number of degrees of freedom and Φ
is an K ×K reference covariance matrix. The Wishart distribution is often interpreted as a multivariate
extension of the Gamma distribution. We choose here

Φ =
1
ν
ˆ︁Σ(T )
ML . (39)

In this sense, our approach is an empirical Bayes approach since this parameter of the prior is cho-
sen after looking the data by ATAIS (see also data-based priors in [15]). For simplicity, we assume
qΣ(Σ) = gΣ(Σ) then, as a consequence, γ j = 1 in Eq. (34).
Generation of random matrices according to the Wishart prior. When ν is an integer, the Wishart
distribution represents the sums of squares (and cross-products) of n draws from a multivariate Gaus-
sian distribution. Specifically, given ν random K × 1 vectors si ∼ N(0,Φ), i = 1, . . . , ν, of dimension
K, the matrix

Σ′ =
ν∑︂

i=1

sis⊤i ,

is distributed as a Wishart density with ν degrees of freedom and K×K scale matrix Φ. Then, trivially
we can derived the following sampling method:

1. Draw ν multivariate Gaussian samples si = [si,1, . . . , si,K]⊤ ∼ N(0,Φ), with i = 1, . . . , ν.

2. Set Σ′ =
∑︁ν

i=1 sis⊤i .

6 Simulations
We test the proposed scheme in two numerical examples. The first numerical experiment is a simple
bidimensional location example where the function f does no depend on the time instant. The second
experiment considers a four dimensional signal depending on the instant of time with the unknown
parameters lying on a 2D space.

6.1 First numerical analysis
To test our proposed method, we aim to solve the task of determining the location of a target in a two-
dimensional space based on wireless sensor measurements. We can represent the target position as a
random vector θ ∈ R2, We have a wireless network of K = 3 sensors, whose positions are known and
labeled as s1, ..., sK . We collect R measurements from each sensor, and these measurements follow a
certain distribution. Lets recall that each observations has the from

yr = fr(θ) + vr (40)

with fr : R2 → R3 given by:

fr(θ) = [−A log(∥ θ − s1 ∥
2), −A log(∥ θ − s2 ∥

2), −A log(∥ θ − s3 ∥
2)] (41)
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The error term is vr ∼ N(0,Σtrue), with Σtrue ∈ R3×3 being a diagonal matrix with diagonal elements
1, 2 and 3. The parameter A is a constant that determines the rate at which the signal strength decreases
with distance and is fixed at 10. This value can be influenced by various factors, such as environmental
conditions or manufacturing processes. The values of variance of the sensors, as stated before, is
unknown for each sensor.
To facilitate simulation, we consider a scenario where there are K = 3 sensors, which makes the
complete dimension of the problem to be

D = M +
K(K + 1)

2
= 2 +

3(3 + 1)
2

= 8.

The positions of these sensors are given by: s1 = [0.5, 1], s1 = [3.5, 1] and s3 = [2, 3]. The positions
of the target (and parameter we want to estimate) is θtrue = [2.5, 2]. In this scenario 50 observation
vectors were generated. For comparison purposes, the prior over θ was set as uniform, i.e., g(θ) ∝ 1.
In table 3 and 4 we present the results for this example under the column “Location”. As a remark, we
must highlight that we are measuring the error in the estimation of two matrices, one is the real covari-
ance matrix which we know because we user simulated data and the other is the covariance matrix we
obtain if we replaced the true value of θ when calculating the covariance matrix of the observations.
As expected, the best results are obtained increasing the number of particles and the iterations, allow-
ing a better exploration of the parameter space. Enhancing the exploration of the algorithm is a hard
task in this example, given that the posterior is very narrow, which makes it hard for the generated
samples to be in regions with high posterior evaluation, this is why the adaptation of the proposal
covariance in step 2d of Table 2 is very important. In order to improve even more the exploration,
at some iteration the covariance matrix of the proposal density can be increased to allow exploration
of areas away from the narrow mode. For the task of finding the mode the algorithm does no need
many particles, e.g., when using 50 iterations it is enough to use 10 particles. The importance of the
number of particles is evidenced in Figure 1 (left), where we can see the mean absolute error when
calculating the mean of the posterior using the samples from the iterative process. In this case, even
when the algorithm performs well with a few particles per iteration, the error continue to decrease as
we increase the number of samples for both, T = 50 and T = 100.

Credible interval with 95% of probability for the matrix. In order to perform a Bayesian infer-
ence over the covariance matrix, we consider a Whisart proposal with ν = 100 (degrees of freedom)
with a reference matrix (Φ) equals to ˆ︁Σ(T )

ML . With this proposal distribution, we generate J matrices
and assign a weight to each of the following Eq. (36). Applyng resampling according to the weights
{λ̄ j}

J
j=1 we calculate the percentiles 0.025 and 0.975 for each component to get a credible interval for

the covariance matrix Σ, as shown below (where we have averaged over 50 indipendent runs),⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ [0.6361; 1.1075] [−0.2343; 0.2230] [−0.5306; 0.1851]
[−0.2343; 0.2230] [1.1698; 2.0466] [−0.3207; 0.6487]

[−0.5306;−0.5306] [−0.3207; 0.6487] [2.8710; 5.0023]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (42)

Remark. The particularity of this simple example makes it possible to estimate the desired covariance
matrix by calculating the covariance matrix of the observations. This is just a particular case where
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the observation share the same theoretical mean, but our method is able to accomplish the estimation
in a more general scenario where each observation has its own mean. As example of this, we present
an example where the signal is given by a four dimension vector, and the components of such vector
are not uncorrelated.

6.2 Multi-output model
In this second example, we take a multi-output model given by

yr = fr(θ) + vr (43)

where the vector function fr : R2 → R4 is given by the components

fr,1(θ) = θ1 sin(t)t,
fr,2(θ) = θ2 cos(t)t2,
fr,3(θ) = (θ1 + θ2) sin(t) cos(t),
fr,4(θ) = θ2t2,

(44)

Where the error term vr ∼ N(0,Σtrue) with

Σtrue =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.1 0.3 0.16 0
0.3 1.05 0 0

0.16 0 2 0
0 0 0 2.95

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The true value of theta is set as θ = [0.2, 0.1]⊤. In this case de dimension of the observations remains
at K = 4, with θ of dimension M = 2, which makes a total inference dimension of

D = M +
K(K + 1)

2
= 2 +

4(4 + 1)
2

= 10.

This example states clearly the difficulty of performing an estimation Σ directly from the vectors
observed, {yr}

R
r=1. This difficulty comes from the vectors not sharing the same theoretical mean. The

prior for θ was also taken as g(θ) ∝ 1.
The results for this example are shown in Tables 3 and 4 under the column multi-output. The

importance of using a large number of particles and iterations is also evidenced. It is fair to comment
that the even when the error of the estimation of ΣML is very small, the error estimating the true Σ
of the process can be high, because this estimation depends on the amount of data we have, being
better when there are many data. We must highlight that this example shows the strength of ATAIS,
since in this problem the covariance matrix cannot be calculated directly from the observations. Even
though it is evidenced that if the number of particles is great enough then there is no need of a very
large number of iterations, which can reduce the computational time of the algorithm. Once more,
the particles obtained through ATAIS are used to calculate the mean of the posterior. The errors are
shown in Figure 1 (right), in log scale, for a better appreciation. As in the previous example, for both
cases (T = 50 and T = 100) increasing the number of samples will lead to a better exploration of the
sample space which results in better approximations of the true conditional mean of the posterior.
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Figure 1: Mean absolute error for the estimation of the true mean of the posterior with different
number of particles. (Left: location example. Right: multi-output example with the scale for y-axis in
logarithm).

7 Conclusions
In this paper we introduce an adaptive importance sampling (AIS) method for robust inference in
complex Bayesian inversion problems with unknown parameters θ of the non-linear mapping and
unknown covariance matrix Σ of the noise perturbation. The variables of interest are split in two
blocks, the parameters θ of the non-linear model and the covariance matrix Σ, are handled in different
ways. Moreover, the proposed inference scheme is divided in two main parts. The first part is devoted
to approximate a conditional posterior θ given the data and the maximum likelihood estimator of Σ. In
the second part, a Bayesian approach is also performed over Σ and an approximation of the complete
posterior of {θ,Σ} is provided.
The proposed AIS algorithm, called ATAIS, is employed in the first part of the inference scheme.
In each iteration, ATAIS deals with a sequence of posterior distributions depending on the current
estimation of the covariance matrix. All the particles yielded by ATAIS are finally reused for obtaining
a the complete posterior of {θ,Σ}. Differente numerical simulations shows the good performance of
ATAIS.
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Table 2: ATAIS: AIS with adaptive target pdf

1. Initializations: Choose N, µ1, Λ1, ˆ︁Σ(0)
ML , and set πMAP = 0. Recall πt(θ) ∝ p(θ|Y, ˆ︁Σ(t−1)

ML ).

2. For t = 1, . . . ,T :

(a) Sampling:
i. Draw θ(1)

t , ...,θ
(N)
t ∼ q(θ|µt,Λt).

ii. Assign to each sample the weights

w(n)
t =

πt(θ
(n)
t )

q(θ(n)
t |µt,Λt)

, n = 1, ...,N. (24)

(b) Current maximum estimations:
i. Obtain θ(t)

max = arg max
n
πt(θ

(n)
t ), and computeˆ︁rt = fr(θ

(t)
max).

ii. Compute ˆ︁Σt =
1
R

R∑︂
r=1

(yr −ˆ︁rt)(yr −ˆ︁rt)⊤.

(c) Global maximum estimations:
• If πt

(︁
θ(t)
max

)︁
> πMAP:

i. ˆ︁θ(t)
MAP = θ(t)

max,

ii. ˆ︁Σ(t)
ML =

ˆ︁Σt,

iii. Update according to ˆ︁θ(t)
MAP and ˆ︁Σ(t)

ML, i.e, πMAP = πt+1
(︁ˆ︁θ(t)
MAP

)︁
.

• Otherwise ˆ︁θ(t)
MAP =

ˆ︁θ(t−1)
MAP , and ˆ︁Σ(t)

ML =
ˆ︁Σ(t−1)
ML .

(d) Adaptation: Set

µt = ˆ︁θ(t)
MAP, (25)

Λt =

N∑︂
n=1

w̄(n)
t (θ(n)

t − θ̄t)⊤(θ(n)
t − θ̄t) + δIM, (26)

where w̄(n)
t

w(n)
t∑︁N

i=1 w(i)
t

are the normalized weights, θ̄t =
∑︁N

n=1 w̄(n)
t θ(n)

t and δ > 0.

3. Output: Return the final estimators ˆ︁θ(T )
MAP, ˆ︁Σ(T )

ML , and all the weighted samples {θ(n)
t ,˜︁w(n)

t },
for all t and n, with the corrected weights

˜︁w(n)
t = w(n)

t
πT+1(θ(n)

t )

πt(θ
(n)
t )
. (27)
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Table 3: Mean absolute error over 100 simulations of ATAIS for estimating the θMAP, ΣML and Σtrue.
For every value N, the number of iterations is fixed at 50.

Location Multi-output
N θmap ΣML Σtrue θmap ΣML Σtrue
5 0.0377 0.8934 1.0720 0.2325 0.7666 0.9094
12 0.0207 0.0443 0.2322 0.0102 0.0136 0.1789
25 0.0205 0.0443 0.2323 0.0013 0.0026 0.1709
50 0.0205 0.0442 0.2324 0.0012 0.0023 0.1713
100 0.0204 0.0442 0.2325 0.0009 0.0017 0.1712

Table 4: Mean absolute error over 100 simulations of ATAIS for estimating the θMAP, ΣML and Σtrue.
For every value T , the number of particles is fixed at 100.

Location Multi-output
T θmap ΣML Σtrue θmap ΣML Σtrue
5 0.1740 2.4068 2.4644 0.2100 0.4648 0.5526
10 0.0758 0.4292 0.5360 0.1219 0.1293 0.2328
20 0.0328 0.5835 0.6933 0.0355 0.2663 0.3594
30 0.0205 0.0441 0.2326 0.0015 0.0031 0.1711
50 0.0205 0.0443 0.2324 0.0010 0.0021 0.1714
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