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a b s t r a c t

In this work, we address the problem of change-point detection (CPD) on high-dimensional, multi-source,

and heterogeneous sequential data with missing values. We present a new CPD methodology based on

local latent variable models and adaptive factorizations that enhances the fusion of multi-source obser- 

vations with different statistical data-type and face the problem of high dimensionality. Our motivation

comes from behavioral change detection in healthcare measured by smartphone monitored data and Elec- 

tronic Health Records. Due to the high dimension of the observations and the differences in the relevance

of each source information, other works fail in obtaining reliable estimates of the change-points location.

This leads to methods that are not sensitive enough when dealing with interspersed changes of different

intensity within the same sequence or partial missing components. Through the definition of local obser- 

vation models (LOMs), we transfer the local CP information to homogeneous latent spaces and propose

several factorizations that weight the contribution of each source to the global CPD. With the presented

methods we demonstrate a reduction in both the detection delay and the number of not-detected CPs,

together with robustness against the presence of missing values on a synthetic dataset. We illustrate its

application on real-world data from a smartphone-based monitored study and add explainability on the

degree of each source contributing to the detection.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
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. Introduction

The problem of change-point detection (CPD) over a sequence

f observations aims to identify abrupt variations in the data distri- 

ution, which we refer to as change-points (CPs). This is frequently

ound in real-world scenarios where tendencies or events need

o be detected like finances [12] , speech-recognition [8] , health- 

are [4,15] , or nature disaster assessment [20] . The methods that

ackle this problem can be categorized as online/offline and model- 

ased/non-parametric. Among the model-based methods, we dif- 

erentiate between frequentist and Bayesian approaches. A com- 

lete review of CPD algorithms can be seen in van den Burg and

illiams [5] , Truong et al. [21] . This work is based on the on-

ine Bayesian approach. There are several works that focus on

ayesian estimation of CPs contingent upon mixture models [7] ,

idden Markov models (HMMs) [9] , and other classification meth- 

ds [16,18] . We consider the Bayesian Online Change-Point Detec-
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ion method (BOCPD) presented in Adams and MacKay [1] as the

asis of this work.

These methods are generally applied to low-dimensional

atasets where all the variables have the same data-type or sim- 

lar generative properties. However, real-world scenarios are typi- 

ally composed of high-dimensional heterogeneous variables. Our

ork is motivated by the use of CPD methods to identify changes

n Human Behavioral patterns over both smartphone monitored

ata and Electronic Health Records (EHR) for healthcare applica- 

ions. In particular, we are interested in detecting psychiatric cri- 

is in mental health patients using mobility and mobile usage pat- 

erns obtained by the preprocessing of digital measurements [2] .

n these cases, observations are (i) high-dimensional with infor- 

ation from different sources. This is because we work with data

rom smartphones, medical tests, diagnoses, questionnaires, de- 

ographic information, etc. [3] . Moreover, they are (ii) heteroge- 

eous, i.e., we simultaneously deal with different statistical data- 

ype variables like continuous (weight, lab measurements), binary

medical history questions) or categorical (type of medication), or

qual data-type variables with different marginal generative distri- 

utions. Also, smartphone data exhibit (iv) missing values due to

ensor failures and the need for privacy permissions, among oth- 

rs [13] .
under the CC BY-NC-ND license
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To tackle this problem, the BOCPD algorithm [1] allows to use 

 Bayesian approach to integrate the presence of missing data but 

esults in noisy detection when dealing with high-dimensional ob- 

ervations because of the need for large statistical evidence to dif- 

erentiate between noise drifts and real CPs. In [14] , a hierarchi- 

al extension of this method is introduced where they assume 

hat there is a unique univariate latent representation that simul- 

aneously summarizes the statistical information of every source. 

his approach solves the high-dimensional data problem. However, 

he latent variable modeling implies the use of different likelihood 

unctions and entails an optimization problem over a product of 

unctions with different support that results in some variables un- 

errepresented in favor of others, loosing essential generative in- 

ormation for the global detection. 

This joint dimensionality reduction has an implicit smoothing 

ffect, making the method not sufficiently sensitive when dealing 

ith interspersed changes of different intensity within the same 

equence. Solely the high-intensity CPs are detected in this cases. 

ven though, the presence of missing temporal data for just a sub- 

et of sources can increase this smoothing effect, motivating the 

earch for a more sensitive way to fuse all the sources while tak- 

ng into account the aforementioned features of the data. 

To overcome the limitations of the described setting, we pro- 

ose a Change-Point Detector based on Local Observation Mod- 

ls (LOM-based CPD) that generalizes and extends the use of la- 

ent variables models for change-point detection. The LOM-based 

PD tackles the problem in a two-stage modeling method. In the 

rst stage, we propose several Local Observation Models (LOMs) 

hat are based on partitioning the feature space depending on the 

ontext-meaning, multi-source and mixed-type nature of the data. 

his allows the dimensionality reduction of the observations and 

ontrol over how the local CP information is transfered to homoge- 

eous local spaces, implying technical advantages in the inference 

rocess and solving the heterogeneous initial problem. In the sec- 

nd stage, different Factorizations Models for the CP detector are 

roposed to consider several weighting mechanisms for the homo- 

eneous local latent representations obtained from the first stage, 

esulting in a generalized hierarchical CPD methodology that holds 

or any observation model previously introduced. 

Our main contributions are: 

• We present the LOM-based CPD that allows us to perform on- 

line CP detection over multi-source, high-dimensional, and het- 

erogeneous data ( Section 2 ). We propose different LOMs to 

partition the feature space and transform the heterogeneous 

original data into homogeneous local latent representations 

( Section 3 ). 
• We propose several CPD Factorization Models ( Section 5 ) to 

calibrate the contribution of each local set (independence, 

mixture-weighting and beta-weighting). 
• We evaluate the performance of the methods in terms of pre- 

cision rate and delay in the detection on a synthetic dataset. 

We include an experiment on a smartphone-based monitored 

dataset of a real human behavior study and explainability 

about the contribution of each source to the global detection 

( Section 6 ). 

. CPD over Local Observation Models (LOMs) 

Let x 1: t be a sequence of mixed-type high-dimensional obser- 

ations where x i = [ x i 1 , . . . , x iN ] is composed of N heterogeneous 

ata sources ∀ i ∈ { 1 , . . . , t} . Each observation x in has its own data-

ype m ∈ { 1 , . . . , M} and high dimension, d n , that is constant for

very observation. We consider the scenario proposed in Adams 

nd MacKay [1] and assume that x 1: t may be divided into non- 

verlapping temporal partitions ρ = { 1 , 2 , . . . } separated by change- 
2 
oints (CPs), where each partition ρ has a surrogate generative dis- 

ribution p( x | θρ ) with unknown parameters θρ and observations 

re i.i.d. within it. Our goal is to find both (i) the location of the

Ps that define the beginning and end of each temporal partition 

nd (ii) the unknown parameters of the distribution within them, 

ll this in an online manner. 

When dealing with high-dimensional data as in our case, the 

omplexity of the generative distribution p( x t | θ ) increases natu- 

ally with the dimension of the observations x t leading to an ex- 

remely large set of parameters θt to estimate at each time-step. 

n these cases, we need proportional statistical evidence to feasibly 

pdate the posterior distribution given x 1: t . Otherwise, the CPs are 

ypically confounded with noise drifts in the underlying parame- 

ers, leading to a noisy detection. Moreover, the original method 

1] works over homogeneous data sequences while our setting is 

omposed of different statistical type sources. 

To tackle the high-dimensionality problem, latent variable mod- 

ls are frequently used because they allow the transformation of 

he initial heterogeneous space into a new one where we can make 

ecisions about its dimensionality or nature (continuous, discrete) 

hile keeping the generative characteristics of the original obser- 

ations. In [14] , they apply this strategy to mixed-type data un- 

er the hypothesis that there is a low-dimensional latent repre- 

entation of the data, z 1: t , where the true CPs lie. They propose 

he consideration of heterogeneous likelihoods to obtain a univari- 

te latent representation where the change-point detection is later 

erformed. However, this assumption has an implicit smoother ef- 

ect that may lose the detection of low-intensity changes when 

hey are interspersed with high-intensity ones. Moreover, the op- 

imization problem over a product of functions with different sup- 

ort usually leads to uncalibrated modeling of the variables. Con- 

equently, information is lost and noise is introduced in the detec- 

ion. 

We generalize and extend the work in Moreno-Muñoz et al. 

14] , and present a LOM-based CPD methodology that allows to 

arry out the detection over homogeneous local latent representa- 

ions of the original data, assuming different factorization models 

or the local contributions. General flow of is depicted in Fig. 1 . 

e consider that there exist D partitions of the feature space 

 1: t = { x d 
1: t 

} D 
d=1 

( local sets ) such that their associated latent rep-

esentations z 1: t = { z d 
1: t 

} D 
d=1 

( local latent representations ) are inde- 

endent and the characteristic information of the local CPs is 

ully contained. With this approach we directly solve the high- 

imensionality and mixed-type data problems because we reduce 

he high dimension of the heterogeneous space of observations X 

o a low-dimensional homogeneous space of local latent represen- 

ations Z . We choose to work with univariate discrete variables to 

eep a lower number of parameters to estimate and to simplify 

he interpretability of the algorithm. That is, z d t ∈ { 1 , . . . , K d } ∀ t, d,

ith K d the number of latent classes defined for local set d. We 

ow deal with multi-source information that is not heterogeneous 

nymore, allowing an equivalent level of treatment for all of them. 

As an example, let us consider that we aim to study behavioral 

hanges of a person. We represent the mobility at each day with 

 48-dim real variable that counts the distance walked by half an 

our time-slots. Additionally, we consider a 48-dim binary variable 

epresenting whether or not the user has been at home. Another 

ne indicates if the user has used or not WhatsApp. We can have 

 categorical variable expressing the activity of the person (run- 

ing, walking) in each time-slot. In this case, the feature space 

ould be partitioned by source, resulting in D = 4 local sets. Or, we 

ould assume that the distance walked and activity performed con- 

orm to a unique one, having D = 3 local sets and designing struc- 

ured relationship between them through the local latent model- 

ng. Different Local Observation Models (LOMs) are presented in 

ection 3 . 
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Fig. 1. LOM-based CPD flow. 
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In all the cases, the result is a set of posterior distributions 

p(z d t | x d t ) 
}D 
d=1 

with size equal to D , the number of local sets con- 

idered. We follow the approach of Romero-Medrano et al. [17] by 

rawing S i.i.d. samples of each posterior distribution and trans- 

orming them into counting vectors s d t ∈ Z 

K d + , where the k th compo-

ent s d,k 
t counts the times that class k has been drawn from local 

osterior d. We consider this definition because it will allow us to 

ssume multinomial generative distributions that maintain infer- 

nce analytically tractable while keeping the most information as 

ossible from the posterior distributions. 

Finally, we can consider the sequence of counting vectors s 1: t = 

s d 
1: t 

}D 
d=1 

as homogeneous input pseudo-observations to perform the 

hange-point detection. Up to now, we have not assumed statisti- 

al dependence between the local sets for any LOM presented, but 

here could actually be dependences between them. In the pre- 

ious example, the variable WhatsApp usage could be conditioned 

y the variable Being at home . We can assume independence over 

he variables or give some flexibility by modeling their relationship 

hrough different weighting mechanisms to calibrate their contri- 

ution. Each option gives specific benefits and structure complex- 

ty. We propose different factorizations models for the CP detector 

n Section 5 . The graphical representations of these relationships 

re shown in Fig. 3 . The first one assumes that every local set dis-

ribution conditioned on the generative parameters is independent 

rom the others. The second one is considered a mixture model of 

very local set distribution, with or without memory of past con- 

ributions. The third one poses a Beta prior on the weights, allow- 

ng different combinations of variables contributing at each time- 

tep. The last two approaches allow us to obtain explainability on 

he degree of contribution by each local set to the global detection 

t each time-step, and to directly cancel its contribution when the 

hole local set is missed. 

. Local Observation Models (LOMs) 

The generative model for each local set d and time-step t is 

xpressed as 

p(x d t | θ d 
t ) = 

∫ 
p(x d t | z d t ) p(z d t | θ d 

t ) dz 
d 
t (1) 

here p(x d t | z d t ) is assumed to be fixed and p(z d t | θd 
t ) is the distri-

ution over the latent variable that can be either continuous or 

iscrete, but it is always of the same nature for every local set ∈
 1 , ., D } . We choose to consider categorical univariate latent vari-

bles z d t ∈ { 1 , . . . , K} ∀ d, t , while both the factorization and na-

ure of the likelihoods { p(x d t | z d t ) } D d=1 
depend on the sources that

ompose each local set and thus, how we define them. The infer- 
3

nce is carried out separately for each local set d via the online 

xpectation-Maximization algorithm (EM) [6] . With this approach 

e reduce the dimensionality of each observation at instant t from 

 N 
n =1 d n to D , the number of local sets considered. 

We present different LOMs that are built through the defini- 

ion of several partitioning alternatives of the feature space into D 

ets to consider different scenarios and benefit from the specific 

haracteristics of the original sequence. They are summarized in 

able 1 . 

.1. Full joint representation (Joint OM) 

In this approach, we consider a univariate latent representation 

 t for the whole observation x t , assuming that there is a unique la- 

ent representation that holds the generative characteristics of ev- 

ry source simultaneously. This observation model is presented in 

oreno-Muñoz et al. [14] and corresponds with the D = 1 case. 

hey propose an heterogeneous mixture model with likelihood 

p( x t | z t , { φk 1 , . . . , φkN } K k =1 ) = 

K ∏ 

k =1 

N ∏ 

n =1 

p(x tn | φkn ) 
1 { z t = k } ∀ t, (2) 

here z t ∈ [1 , 2 , . . . , K] indicates which component of the mixture

s active in observation t , K is the total number of components of 

he mixture model, and φkn are the generative parameters of com- 

onent k and source n . Given the class z t and the parameters, the 

ariables x t1 , . . . , x tN are considered independent. Note that, in this 

bservation model, the likelihood for each component k is a prod- 

ct of mixed-type likelihoods, each one defined based on the na- 

ure of each source. With this approach, we obtain one posterior 

robability distribution p(z t | x t ) for each time-step t . 

.2. Independent source representation (Sources OM) 

Given an observation x t , in this approach we define an obser- 

ation model based on the assumption that there exists a latent 

epresentation for each data source x tn , having x 
d 
t := x tn and D = N,

.e., the number of local sets is equal to the number of sources. The 

ikelihood of each local set d is 

p(x d t | z d t , 
{
φd 
k 

}K d 

k =1 
) = 

K d ∏ 

k =1 

p(x d t | φd 
k ) 

1 { z d t = k } ∀ d, t, (3) 

here K d is the dimension of the latent variable for source d. Note 

hat the likelihood of each local set, p(x d t | φd 
k 
) , is no longer hetero-

eneous, because each set d (each source) has its own data-type. 

ith this approach we not only solve the high-dimensionality 

roblem, but we also avoid the product of mixed-typed likelihoods 
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Table 1 

Summary of local observation models (LOMs). 

Local observation models 

LOM Likelihood Number of sets 

Joint OM p( x t | z t , { φk 1 , . . . , φkN } K k =1 ) = 

∏ K 
k =1 

∏ N 
n =1 p(x tn | φkn ) 

1 { z t = k } D = 1 

Sources OM p(x d t | z d t , 
{
φd 
k 

}K d 

k =1 
) = 

∏ K d 
k =1 

p(x d t | φd 
k 
) 1 { z d t = k } D = N, nb. of sources 

Grouped OM p(x d t | z d t , 
{
φd 
k 

}K d 

k =1 
) = 

∏ K d 
k =1 

p(x d t | φd 
k 
) 1 { z d t = k } D = M, nb. of data-types 

Context OM p(x d t | z d t , 
{
φd 
k 1 

, . . . , φd 
kN d 

}K d 

k =1 
) = 

∏ K d 
k =1 

∏ N d 
n =1 

p(x d tn | φd 
kn 

) 1 { z d t = k } Depends on the prior knowledge 
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hat can bias the resulting posterior for the latent classes. We 

ransform each source to a latent space that has the same nature 

or all of them, independently of the initial type. Hence, the re- 

ult in this case is not only one posterior probability distribution 

t time-step t , but a new set 
{
p(z d t | x d t ) 

}D 
d=1 

, whose size is equal 

o the number of sources, N. 

.3. Data-type based representation (Grouped OM) 

This approach is based on the previous one and motivated by 

he technical advantage of avoiding the product of mixed-type like- 

ihoods. We propose a partition of the feature space based on the 

ata-type of the sources, assuming that there is a latent represen- 

ation for each group. We stack the same statistical type sources 

aving x d t := [ x tn s.t. source n is of type m ] and D = M, the num- 

er of data-types. The likelihood is expressed in Eq. (3) . Like the 

ources OM, the likelihood of each local set is no longer heteroge- 

eous. The difference is that, in this case, the set x d t based on type

 has dimension 
∑ 

d n for every source n of type m . The result

s the set 
{
p(z d t | x d t ) 

}D 
d=1 

with size equal to the number of data- 

ypes, M. 

.4. Prior knowledge based representation (Context OM) 

In this approach, we propose to group the sources using con- 

extual information of the data such as external relations between 

ources due to the collection method or context meaning. For ex- 

mple, in a behavioral modeling scenario, we can benefit from 

xisting correlations between variables like the number of steps 

alked in a day and the distance traveled, both computed from lo- 

ation traces, reducing the noise in the latent variable modeling. 

e can also define local sets by life domains like mobility, physi- 

al activity or social interactions, to study behavioral changes over 

omains instead of over variables, that could be more informative 

n a health analysis context. 

In the limit of considering a unique group, D = 1 , or each source

eparately, D = N, we have the observation models presented in 

ections 3.3 and 3.2 , respectively. The likelihood is the generaliza- 

ion of Eqs. (2) and (3) , 

p(x d t | z d t , 
{
φd 
k 1 , . . . , φ

d 
kN d 

}K d 

k =1 
) = 

K d ∏ 

k =1 

N d ∏ 

n =1 

p(x d tn | φd 
kn ) 

1 { z d t = k } ∀ d, t. 

(4) 

 d is the dimension of the latent variable associated with local set 

and N d is the number of sources conforming to that set. The re- 

ult is the set of posterior distributions 
{
p(z d t | x d t ) 

}D 
d=1 

whose size 

epends on the prior knowledge we considered. 

. LOM-based CPD 

We introduce a hierarchical CPD generalization, that we call 

OM-based CPD, and extends the original BOCPD, allowing to per- 

orm change-point detection over any local observation model pre- 

ented in Section 3 . 
4 
.1. Background: Bayesian online change-point detection 

Our work is based on the Bayesian Online Change-Point Detec- 

ion (BOCPD) method [1] , where the change-point detection prob- 

em is tackled by the introduction of a new auxiliary discrete vari- 

ble r t , the run-length , that counts the number of time-steps since 

he last CP so, at each time-step t: r t = 0 if there is a CP at time t

nd, r t = r t−1 + 1 , otherwise. The objective of the method is to ob-

ain the posterior distribution of r t given the data, p(r t | x 1: t ) , that
rovides an uncertainty measure for the last CP location at each 

ime-step. As an example, for t = 100 , p(r 100 = 5 | x 1:100 ) measures

he probability that a change-point happened 5 time-steps ago, 

t t = 95 . p(r t | x 1: t ) can be inferred at each time-step in a recur-

ive manner, based on the normalization of the joint distribution 

p(r t , x 1: t ) . For its computation, the underlying generative model 

p( x t | θ ) needs to be defined a priori and the parameters have to 

e updated at each time-step considering the new arrived obser- 

ation. 

.2. LOM-based CPD 

Given the set s 1: t = 

{
s d 
1: t 

}D 
d=1 

with t ∈ { 1 , . . . T } , we want to

nd the joint distribution of a global run-length r t and the given 

seudo-observations for every time-step. We can build up the joint 

istribution based on [1] , 

p ( r t , s 1: t ) = 

∑ 

r t−1 

p ( r t , r t−1 , s 1: t ) = 

∑ 

r t−1 

p ( r t , r t−1 , s t , s 1: t−1 ) 

= 

∑ 

r t−1 

p ( r t , s t | r t−1 , s 1: t−1 ) p ( r t−1 , s 1: t−1 ) 

= 

∑ 

r t−1 

p ( r t | s t , r t−1 , s 1: t−1 ) 

p ( r t | r t−1 ) 

p 
(
s t 

∣∣r t−1 , s 
( r ) 
1: t−1 

)
predictive posterior 

p ( r t−1 , s 1: t−1 ) 

recursive term 

.

(5)

This formulation allows the recursive computation of p(r t , s 1: t ) 

t each time-step. The first term works as a prior of the change- 

oint, and is considered as proposed in the original paper: 

p(r t | r t−1 ) = H(r t−1 + 1) if r t = 0 and p(r t | r t−1 ) = 1 − H(r t−1 + 1) if

 t = r t−1 + 1 . H(·) is the hazard function that for the choice of the
eometric distribution becomes constant H = 

1 
λ

and dependent on 

he hyperparameter λ [10] . The third term can be computed recur- 

ively due to the nature of Eq. (5) . The second term is the joint

redictive posterior distribution of the new observation s t given 

he sequence of past observations s 1: t−1 . The conditioning on r t−1 

epresents the current partition, r, that started r t−1 time-steps ago, 

nd s (r) 
1: t−1 

denotes the subsequence of s 1: t−1 contained on r. The 

valuation of this joint predictive term depends on (i) the under- 

ying generative model assumed for each local set d and (ii) the 

elationship between all of them. The first point is addressed in 

ection 4.3 , while several structures for (ii) are discussed and pre- 

ented in Section 5 . 
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Fig. 2. Illustration of the inference mechanism developed to estimate the local set 

parameter distribution in parallel at each possible partition at instant t . 
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Table 2 

Summary of CPD factorization models. 

CPD factorization models 

Factorization Expression 

Independent CPD p(s t | r t−1 , s 1: t−1 ) = 

D ∏ 

d=1 

p(s d t | r t−1 , s 
d 
1: t−1 ) 

Mixture CPD p(s t | r t−1 , s 1: t−1 ) = 

D ∑ 

d=1 

π d 
t,r · p(s d t | r t−1 , s 

d 
1: t−1 ) 

with 

D ∑ 

d=1 

π d 
t,r = 1 

Weighted CPD p(s t | r t−1 , s 1: t−1 ) = max 
w t,r 

p(w t,r ) ·
D ∏ 

d=1 

p(s d t | r t−1 , s 
d 
1: t−1 ) 

w d t,r 

with p(w t,r ) = 

D ∏ 

d=1 

Beta (w 
d 
t,r ; a, b) 
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.3. Local likelihood models and inference 

We consider independent generative models for each local set 

 , . . . , D , resulting in D parallel inference processes to obtain the

et of local posterior distributions { p(s d t | r t−1 , s 
d 
1: t−1 

) } D 
d=1 

. Marginal-

zing out, we can express each local posterior d as 

p(s d t | r t−1 , s 
d, (r) 
1: t−1 

) = 

∫ 
p(s d t | θ d, (r) 

t ) p(θ d, (r) 
t | r t−1 , s 

d, (r) 
1: t−1 

) dθ d, (r) 
t , (6)

here θd, (r) 
t are the generative parameters of the distribution 

t time-step t and each possible current partition r, that is ex- 

ressed as the conditioning on the run-length r t−1 . We can es- 

imate p(θd, (r) 
t | r t−1 , s 

d, (r) 
1: t−1 

) recursively, and, following the thread 

echanism depicted in Fig. 2 , we can evaluate the likelihood once 

he new observation is given. For each local set d and instant t we 

ssume that s d 
1 
, . . . , s d t are independent and multinomial distributed 

ithin each temporal partition r. We also consider a prior for the 

arameters, having 

 
d 
t ∼ Multinomial (θ d 

t , S) , θ d 
t ∼ Dirichlet (αd ) , (7) 

here αd ∈ R 
K + and the likelihood expression of s d t is 

p(s d t, 1 , . . . , s 
d 
t,K | θd 

t , S) = 

S! ∏ K 
k =1 s 

d 
t,k 

! 

K ∏ 

k =1 

(θd 
t,k 

) 
s d 
t,k . The posterior up- 

ate of the parameters has the following closed form ˜ αd = αd + s d t . 

his allows a direct update when a new sample is observed, and 

he inference of the posterior distribution of the parameter vector 
d 
t related to the current partition and the data within it. Now, we 

re able to compute the predictive term, �d, (r) 
t := p(s d t | r t−1 , s 

d, (r) 
1: t−1 

) ,

hat is a function of the statistics of the model, 

d, (r) 
t = 

K ∏ 

k =1 

s d 
t,k 

−1 ∏ 

j=0 

αk 
t−1 + j 

S α + S (k −1) 
c + j 

S (k −1) 
c + j + 1 

j + 1 
, (8) 

ith S (k −1) 
c := 

∑ k −1 
l=1 

s d 
t,l 

∀ k = 1 . . . K. 

To carry out the full inference for the detection we need the 

oint predictive distribution conditioned on the current partition 

nd associated data, 

p(s t | r t−1 , s 1: t−1 ) = p(s 1 t , . . . , s 
D 
t | r t−1 , s 

1 
1: t−1 , . . . , s 

D 
1: t−1 ) . (9)

his is direct for the Joint OM where D = 1 [17] . In Section 5 we

ddress the problem of how to estimate this joint predictive dis- 

ribution when D > 1 assuming different CPD factorization models 

ver the local predictives { p(s d t | r t−1 , s 
d 
1: t−1 

) } D 
d=1 

. 

.4. Definition of change-points 

This method allows us to obtain the posterior distribution of 

he run-length r t in a recursive manner. Given the joint distri- 

ution p(r t , s 1: t ) , we can normalize, p(r t | s 1: t ) = 

p(r t , s 1: t ) ∑ 

r p(r t , s 1: t ) 
. 
t 

5 
nce the posterior p(r t | s 1: t ) is obtained, we define the se- 

uence of maximum-a-posteriori (MAP) estimates { r ∗
1: t 

} , with r ∗t = 

rg max p(r t | s 1: t ) ∀ t , which we use to find the most likely change-

oints. 

. CPD Factorization Models 

We present three new factorizations of the CP detector to fuse 

he multi-source information through the construction of the joint 

redictive distribution p(s t | r t−1 , s 1: t−1 ) from the homogeneous set 

f local predictive ones, { p(s d t | r t−1 , s 
d 
1: t−1 

) } D 
d=1 

. Two of these ap-

roaches, additionally, allow us to obtain explainability on the de- 

ree of each local set contributing to the global detection at each 

ime-step and, to directly cancel its contribution when the whole 

ocal set is missed. As detailed in Section 4 , each local predictive 

istribution is computed by taking into account the data related 

o each temporal partition and local set separately, as expressed in 

q. (8) ( Table 2 ). 

.1. Independent product (Independent CPD) 

We assume that parameters θd 
t of each local set d conditioned 

o the current temporal partition r and past data of the same set, 

 
d 
1: t−1 

, are independent. The relations between variables are graphi- 

ally represented in Fig. 3 (a). Given θ = (θ1 
t , . . . , θ

D 
t ) , we obtain the

ollowing factorization, 

p(s t | r t−1 , s 1: t−1 ) = 

∫ 
p(s t | θ ) p(θ | r t−1 , s 1: t−1 ) dθ

= 

∫ D ∏ 

d=1 

p(s t | θ d 
t ) p(θ

d 
t | r t−1 , s 1: t−1 ) dθ

= 

D ∏ 

d=1 

∫ 
p(s t | θ d 

t ) p(θ
d 
t | r t−1 , s 1: t−1 ) dθ

d 
t 

= 

D ∏ 

d=1 

p(s d t | r t−1 , s 
d 
1: t−1 ) , 

here the third equality follows from the independence assump- 

ion. The resulting joint predictive is the product of the local pre- 

ictive distributions and we call this CPD version Independent CPD . 

.2. Mixture weighting by temporal partition (Mixture CPD) 

We consider that there exists a hidden variable that acts as a 

eighting mechanism deciding the contribution of each local pre- 

ictive distribution p(s d t | r t−1 , s 
d 
1: t−1 

) to the global detection. In par-

icular, we assume that there is a different variable h t,r for each 

ime-step t and partition r that takes values from 1 to D with 
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Fig. 3. Graphical representation of LOM (blue boxes) and CPD (upper region) stages, both connected through dashed lines. (a) Graphical representation of Independent CPD. 

(b) Graphical representation of Mixture CPD. Red lines indicate the Mixture Memory scenario. (c) Graphical representation of Weighted CPD. Red lines indicate the Weighted 

Partition scenario. Details explained in Appendix D. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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robabilities πt,r = (π1 
t,r , . . . , π

D 
t,r ) , as depicted in the graphical rep- 

esentation shown in Fig. 3 (b). Thus, we have a weights matrix 

 πd 
t,r } r,d of size D × t at each time-step. The resulting factorization 

s 

p(s t | r t−1 , s 1: t−1 ) = 

D ∑ 

d=1 

π d 
t,r · p(s d t | r t−1 , s 

d 
1: t−1 ) 

with 

D ∑ 

d=1 

π d 
t,r = 1 . 

he model can be seen as a mixture model at each temporal par- 

ition, where the d component distribution is the predictive dis- 

ribution associated to local set d. The parameters of each com- 

onent have to be previously inferred separately, as explained in 

ection 5.1 . To estimate the weights πd 
t,r , we can solve an optimiza- 

ion problem at each time-step t and partition r, that is to find 

∼1 

t,r , . . . , 
∼
π

D 

t,r = arg max 
π1 
t,r , ... ,π

D 
t,r 

D ∑ 

d=1 

π d 
t,r · p 

(
s d t 

∣∣r t−1 , s 
d 
1: t−1 

)

s.t. 

D ∑ 

d=1 

π d 
t,r = 1 , π d 

t,r ≥ 0 ∀ d, (10) 

here we have noted p d t,r := p(s d t | r t−1 , s 
d 
1: t−1 

) . We refer to { ̃  πd 
t,r } d 

s partial weights . Since p d t,r ≥ 0 ∀ d, and considering the two con-

trictions of Eq. (10) , we have that 

 ≤
D ∑ 

d=1 

π d 
t,r · p d t,r ≤

D ∑ 

d=1 

π d 
t,r · max 

d 
p d t,r ≤ max 

d 
p d t,r . (11) 

herefore, the solution to the optimization problem (10) is 

∼d ∗

t,r = 1 for d ∗ = arg max 
d=1 , ... ,D 

p d t,r , 

∼d 

t,r = 0 otherwise. 

(12) 

e give the maximum weight to local set d where the new ob- 

ervation is more probable, considering the previous parameter es- 

imations. This is a conservative perspective in the sense that it 

educes false alarms, because it needs enough evidence to decide 

hat a change-point is occurring. 
6 
Given the partial weights ˜ π1 
t,r , . . . , ˜ πD 

t,r for the new data point 

e may decide to compute the current weight πd 
t,r to (i) take into 

ccount the weights of the previous time-steps ( memory approach) 

r just (ii) the current one ( memoryless approach), resulting in a 

emoryless scenario. 

We call the first approach Mixture Memory CPD . For fixed time- 

tep t and partition r we consider the previous local contributions 

o the global CP detection and define the current weight of set d

s 

d 
t,r = 

t − 1 

t 
·
(

π d 
t−1 ,r + 

˜ π d 
t,r 

t − 1 

)
. 

his is equivalent to updating the average of past contributions 

ith the current partial one and results in smoother weight func- 

ions πd 
1: t,r 

in time. 

We call the second approach Mixture Memoryless CPD . We ig- 

ore the past contributions information and consider that the con- 

ribution of each local set d is fully determined by the current par- 

ial weight, obtaining 

d 
t,r = ˜ π d 

t,r . 

his option has the advantage that we can totally remove the con- 

ribution of a particular local partition at a time-step if we have 

issing data. 

.3. Likelihood probabilistic weighting (Weighted CPD) 

We propose to penalize the predictive distributions by raising 

ach local predictive to a weight in the interval (0,1), placing a 

rior on them, adapting the idea introduced in Wang et al. [22] . 

s considered in the Mixture approach, we penalize each tempo- 

al partition and local set separately at each time-step, and denote 

 
d 
t,r to a weight for temporal partition r and local set d. That is, 

 matrix w t ∈ (0 , 1) D ×t of weights for fixed t . The graphical repre-

entation of this model is depicted in Fig. 3 (c). We propose the fol-

owing structure for the joint distribution, where we have to solve 

n optimization problem at each time instant, 

p(s t | r t−1 , s 1: t−1 ) = max 
w t,r 

p(s t , w t,r | r t−1 , s 1: t−1 ) (13)
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Table 3 

Individual observation models. Results over 5 trials for each source sep- 

arately using Multinomial CPD [17] . Precision: total ratio of detected 

CPs. Delay: average and standard deviation of the delay just for the de- 

tected CPs. 

Individual OM 

Real 1 Discrete 1 Real 2 Discrete 2 

Precision 0.72 0 . 92 0.36 0.88 

Delay 8 . 8 ± 9 . 7 25 . 3 ± 27 . 7 36 . 2 ± 57 . 8 24 . 8 ± 23 . 0 
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here 

p(s t , w t,r | r t−1 , s 1: t−1 ) = p(w t,r ) ·
D ∏ 

d=1 

p(s d t | r t−1 , s 
d 
1: t−1 ) 

w d t,r · Z −1 
t,r . 

(14) 

he term Z t,r is the normalizing factor. p(w t,r ) is the prior distri- 

ution over the weights that has been considered a product of in- 

ependent Beta distributions, 

p(w t,r ) = 

D ∏ 

d=1 

Beta (w 
d 
t,r ; a, b) , (15) 

ith same hyperparameters a ∈ (0 , ∞ ) , b ∈ (0 , ∞ ) as suggested in

ang et al. [22] . Note that, the constraint that forces the weights 

o be defined in the interval (0,1), ensures that none of the pre- 

ictive distributions become more peaked that it was in the local 

ase. With this approach, which we call Weighted Partition CPD , we 

im to penalize the local sets d that are less probable, giving more 

eight to those sets where the new observation s d t is more prob- 

ble. Therefore, making the model more conservative to detect a 

hange-point and more resistant to false alarms. 

This approach suggests a second one which we call Weighted 

um CPD . This provides an alternative computation of the weights, 

ssuming equal local penalization w 
d 
t for every temporal partition 

and having a vector w t ∈ { 0 , 1 } D of weights at each t instead of

 matrix. Under this claim, we propose to compute the weights 

ased on the penalization of the term, 
 

r t−1 

p(s d t | r t−1 , s 
d 
1: t−1 ) , (16) 

ssuming that the contribution of each local set does not depend 

n the temporal partition r, but on the general predictive capability 

f the new data point. Based on the first approach, we want to find

he weights w t that maximize 

p(w t ) ·
D ∏ 

d=1 

( ∑ 

r t−1 

p(s d t | r t−1 , s 
d 
1: t−1 ) 

) w d t 

· Z −1 
t , (17) 

here p(w t ) is a product of independent beta distributions as in 

q. (15) and Z t is the normalizing term. The motivation behind this 

PD version is that a data point from a local set d that is not very

robable at any of the current possible temporal partitions r could 

e an outlier that would induce noise in the detection at that time- 

tep, so we are interested in reducing its contribution. 

The final expression for the weights w 
d 
t,r and w 

d 
t and the corre- 

ponding mathematical analysis is detailed in Appendix A. 

.4. Missing temporal data 

Data can be (i) partially missed within a local set d or (ii) to- 

ally missed for several or every local set at time-step t . In the first

ase, missing data is treated through the construction of the latent 

epresentation following the approach presented in Moreno-Muñoz 

t al. [14] . For the missing temporal case, we consider different ap- 

roaches for each factorization model that are explained in detail 

n Appendix B. 

. Experiments 

In this section we evaluate the performance of the proposed 

ethods through the metrics of precision and delay in the detec- 

ion of different intensity change-points on a synthetic dataset and 

tudy their robustness against the presence of missing data (Ap- 

endix C). We also compare the LOM-based CPD with other exist- 

ng CPD mechanisms. Finally, we apply our method to a real multi- 

ource dataset of a human behavior study and analyze the contri- 

ution of each source to the detection. 
7 
.1. Synthetic data 

We present a comparison of precision and delay in the detec- 

ion for the same dataset but different observation models (OM): 

i) independent sources (Sources OM), (ii) grouping by type of data 

Grouped OM) and (iii) joint modeling (Joint OM). We also com- 

are the performance for each factorization and consequent ver- 

ion of the CP detector presented in this work: (i) independent 

roduct (Independent CPD), mixture weighting by temporal par- 

ition ((ii) Mixture Memory and (iii) Memoryless CPD), likelihood 

robabilistic weighting ((iv)Weighted Partition and (v) Sum CPD). 

etails of some approximations considered for the experiments are 

escribed in Appendix A. 

The generated dataset is composed of four 10-dimensional vari- 

bles: two Gaussian (Real 1 OM, Real 2 OM) and two Bernoulli 

Discrete 1 OM, Discrete 2 OM). Every variable has 5 different in- 

ensity CPs periodically defined along T = 600 time-steps. Three 

ow-intensity (L) CPs are located at t = 10 0 , 30 0 , 50 0 and two high-

ntensity (H) CPs at t = 20 0 , 40 0 . That is, every variable has the

ame number of CPs and locations. For the continuous variables, 

he L-CPs correspond to variations ≈ 0 . 3 around the mean for two 

onsecutive partitions of the data and the H-CPs correspond to 

andom variations between 3.0 and 6.0. For the discrete variables, 

he L-CPs correspond to variations ≈ 0 . 2 around the mean and the 

-CPs to variations ≈ 0 . 7 . We have run the methods 5 times for

 datasets, obtaining the results presented in Tables 4 and 5 . We 

ave also included the results of the detection for each variable in 

able 3 to know the information contained within each of them 

eparately, and see the gain of the fusion of sets. The precision 

etric is measured as the ratio of detected CPs over every trial. 

e consider a CP as detected if there is a decrease higher than 20 

ime-steps from r ∗
t−1 

to r ∗t . The delay is measured as the difference 

etween the moment of the CP detection, given by t , and the real 

ocation of the CP, given by r t . Note that the delay is presented as

he average ± the standard deviation over every trial and has been 

omputed just over the detected CPs. Therefore, it is usual to see 

ower delay values for methods with a lower precision rate, but we 

onsider it as a more informative measure for the performance of 

he method. 

Looking at Table 3 we see that we are not able to detect all the

Ps by treating each source separately. Only in the discrete case 

he precision rate is ≈ 0 . 9 , but then the delay is 25 . 3 ± 27 . 7 . How-

ver, considering the Sources OM, we detect every CP for Indepen- 

ent CPD, Weighted Partition CPD and Weighted Sum CPD, i.e., a 

recision rate of 1.0. Moreover, the delay rates are really low, with 

 mean of 8.4 time-steps and a standard deviation of 8.8. The Joint 

M gets lower precision rates due to the smoothing effect of the 

oint modeling. Due to this fact, it is able to detect only the high- 

ntensity CPs although keeping a low delay, similar to the Sources 

M. This can be shown in the example of Fig. 5 . Red lines indicate

he MAP estimates of the run-length, and the dashed green and 

lack lines indicate the location of H-CPs and L-CPs, respectively. 

he same occurs with the Mixture Memory and Mixture Memory- 

ess CPDs. In this case, we always detect the H-CPs and some of the 

-CPs, but this approach is more accurate with the abrupt ones. 
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Table 4 

Sources and grouped observation models. Results over 5 trials for every CPD factorization. Precision: total ratio of 

detected CPs. Delay: average and standard deviation of the delay just for the detected CPs. 

Sources OM 

CPD version Mixture memory Mixture memoryless Independent Weighted partition Weighted sum 

Precision 0.64 0.64 1 . 0 1 . 0 1 . 0 

Delay 20 . 1 ± 17 . 18 8 . 6 ± 12 . 6 8 . 4 ± 8 . 8 12 . 1 ± 13 . 5 8 . 7 ± 9 . 25 

Grouped OM 

Precision 0.36 0.36 0 . 88 0.8 0 . 88 

Delay 11 . 3 ± 13 . 9 10 . 0 ± 14 . 13 24 . 2 ± 22 . 4 27 . 7 ± 24 . 9 24 . 9 ± 23 . 43 

Fig. 4. Detection result of the four sources separately: two Gaussian and two Bernoulli. Red line: MAP estimates of the run-length. Detected CPs are drops of this line. 

Dashed green and black lines: true high and low intensity CPs, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 5. Detection result for Sources OM and Grouped OM + Independent CPD (Left) and Joint OM (Right). Red line: MAP estimates of the run-length. Detected CPs are drops 

of this line. Dashed green and black lines: true high and low intensity CPs, respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Table 5 

Joint observation nodel. Results over 5 trials using 

Multinomial CPD [17] . Precision: total ratio of detected 

CPs. Delay: average and standard deviation of the delay 

just for the detected CPs. 

Joint OM 

Precision 0 . 48 

Delay 8 . 33 ± 12 . 73 
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As a conclusion, we can see that the Sources OM achieves the 

est precision rate and delay results for several CPD adaptations. 

he method is able to detect every CP, even if we have mixed in-

ensity levels and to keep an average delay of 8.4 time-steps. In 

articular, the Independent CPD obtains better metrics indepen- 

ently of the observation model chosen. Examples of the output 

or every observation model and CPD version can be shown in 

igs. 4–6 . 

.2. Comparison with existing CPD methods 

In this subsection, we compare the presented LOM-based CPD 

ith other existing CPD methods in the literature. The variables 

sed are the same as those generated in Section 6.1 and also the 

etrics definition of precision rate and delay in the detection. We 

ave considered for comparison the (i) Sources OM + Independent 

PD, (ii) Grouped OM + Independent CPD, (iii) Multinomial CPD, 
8 
iv) Hierarchical CPD, (v) Optimal Partitioning (OP) [11] and (vi) Bi- 

ary Segmentation (BS) [19] . The methods (i)–(iii) works on sam- 

les of the local latent spaces that are considered multinomial dis- 

ributed. The Multinomial CPD is equivalent to the Joint OM pro- 

osed in this work, because we consider only one local set com- 

osed of every source. Methods (iv)–(vi) work over univariate rep- 

esentations of the original data. We have performed a dimension- 

lity reduction as proposed for the Joint OM, but we have consid- 

red the maximum-a-posterior (MAP) estimates as input for the CP 

etector. Moreover, the OP and BS are offline techniques since they 

ork over the whole sequence of data. We compare them just in 

erms of precision rate because the delay metric does not make 

ense in this scenario. 

The results are shown in Table 6 . We see that the two LOM- 

ased approaches ((i) and (ii)) obtain the best results in terms of 

recision rate in the detection. For the Sources OM + Indepen- 

ent CPD every CP is detected while we obtain a precision rate of 

.88 for the Grouped OM + Independent CPD. The Multinomial CPD 

eeps low delay in the detection, but it is computed just over the 

etected CPs and is still lower than that of the Sources OM. The 

ierarchical CPD and the offline methods obtain precision rates of 

.44, which are equivalent to the detection of the high-intensity 

Ps. This is expected when we work with only one representa- 

ion of the data (one local set composed of every source) due to 

he smoothing effect of the dimensionality reduction and the opti- 

ization problem of a product of different support likelihoods, as 

e saw in the performance subsection. 
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Fig. 6. Detection result for every factorization using the Sources OM. Red line: MAP estimates of the run-length. Detected CPs are drops of this line. Dashed green and black 

lines: true high and low intensity CPs, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Result of the Sources OM with Mixture Memory CPD performed over a user from the Human Behavior dataset. The green regions separates the different partitions of 

the data given by the detector output ignoring the delay. Three upper rows: of both images: App usage data (1), log-distance data (2) and presence at home data (3) every 

30 min, respectively. Left bottom : CPD run length probabilities and the MAP (in red) that determines the CPs. Right bottom : Weights associated to each source during the 

detection for each partition determined by the run length MAP. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Table 6 

LOM-based CPD comparison with existing CPD methods. Results over 5 trials for every CPD method. Precision: total ratio of detected CPs. Delay: 

average and standard deviation of the delay just for the detected CPs. 

Method Sources OM + Independent CPD Grouped OM + Independent CPD Multinomial CPD Hierarchical CPD OP BS 

Precision 1 . 0 0.88 0.48 0.44 0.44 0.44 

Delay 8 . 08 ± 8 . 56 24 . 86 ± 23 . 82 8 . 0 ± 12 . 96 2 . 82 ± 0 . 94 – –

6

p

d

v

p

h

U  

i

i

1  

L

a

e

a  

h

m

t

M  

u

t  

(

s

t

p

d

t

.3. Human behavior data 

We examine the presented method through a real-world exam- 

le. The data are part of a human behavior study with anonymized 

aily measurements obtained from the passive monitoring of indi- 

iduals using their personal smartphones. The collection and pre- 

rocessing of the data were performed by the Evidence-Based Be- 

avior ( eB 2 ) app between April, 2019 and March, 2020 [2] . 

Each daily observation x t is composed of three variables: App 

sage ( x 1 t ), Log-Distance ( x 
2 
t ) and Presence at Home ( x 3 t ). The daily

nformation is split up into 30 min slots during the day, resulting 

n 48-dim variables. App Usage is a binary variable that is set to 

 if the phone has been used at a time slot, and 0 otherwise. The

og-Distance is a continuous variable that corresponds to the log- 

rithm of the distance traveled, which is computed as the differ- 
9 
nce between two consecutive location coordinates. The Presence 

t Home variable is also binary, and is 1 if the user has been at

ome at a time slot, and 0 otherwise. The real variable has been 

odeled as an isotropic Gaussian and the binary variables as mul- 

ivariate Bernoulli. 

The method used for the detection is the Sources OM with the 

ixture Memory CPD and the results are shown in Fig. 7 . The three

pper rows show the three daily variables. In the y -axis we have 

he 48 time slots and in the x -axis, the number of days with data

250 for this user). In the bottom image of the left figure we can 

ee the output of the detection. The red line indicates the MAP of 

he run-length, r ∗t , at each time-step, used to define the change- 

oints. The green regions separate the different partitions of the 

ata given by r ∗t , ignoring the delay. The condition considered for 
he detection is that there is a decrease higher than 20 time-steps 
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rom r ∗
t−1 

to r ∗t that stays in the same temporal partition for more 

han 5 time-steps so as to avoid possible outliers. We have de- 

ected 7 CPs, thus, 8 partitions with these conditions. Looking at 

he data, we may sense that the first CP separates two partitions 

here there is mainly a slight change in the distribution of the bi- 

ary variables over the course of the day. This is probably what we 

efer to as a low-intensity change. For instance, we see that there 

s a reduction in the phone usage between slots 20 and 30. More- 

ver, there are several days without information from Distance and 

ome variables where there is not use of the phone during almost 

he whole day. The second CP is more evident because there is a 

isible change in the data of the three variables and a clear parti- 

ion is defined between the second and third CPs. The fifth parti- 

ion seems to be mainly determined by the absence of phone us- 

ge during several days, as there is no information from the other 

ariables and it presents a huge difference related to the App Us- 

ge during the previous days. Within this partition and after this 

arked period, there is a slight reduction in the distance traveled 

nd a slight increase in the usage of the phone. The beginning of 

he sixth partition is detected with higher delay, probably due to 

he fact that this is a low-intensity change. We mainly appreciate 

t in Distance and Home variables. Note that within this partition 

e could have detected another CP, but it depends on the chosen 

etric, and this is not the case. The seventh partition is visibly dif- 

erent from partitions 6 and 8, but is not as evident as partition 3. 

n fact, the change in App Usage variable is not abrupt but gradual, 

robably the reason for the delay in the detection. 

Explainability: contribution of each source to the detection The 

ixture Memory CPD gives an intuition about the contribution of 

ach source to the detection and is presented in Fig. 7 . In this

ethod, a weight is estimated for each source and for each pos- 

ible current partition, recursively. In the last row of the right im- 

ge we can see the weights estimation associated to the MAP run 

ength r ∗t of left image at each time-step. Due to the weights ex- 

ression, the more probable the new observation, the higher the 

eight. The method is conservative in this sense, reducing the po- 

ential false alarms. In particular, if there is no information on a 

oncrete source, the weight is set to zero, leaving the total con- 

ribution to the observed ones. This behavior is reflected in par- 

ition 5 and another example occurs in partition 3. We see more 

ariability and blurry data for Distance and Home variables with 

onsequently lower weights, while the App Usage is more con- 

tant within the partition, obtaining higher estimates. Note that 

he gradual change of this variable is also reflected in the grad- 

al decrease of the weight along the partition. We see the same 

ehavior in the last partition, where the Distance variable weight 

s lower than the ones related to other variables. This is probably 

ue to the variability of the data distribution along several days 

aced to the more constant data for the two other variables. 

. Conclusion 

In this paper we present a new CPD methodology based on 

daptive local observation models (LOMs) that works on high- 

imensional, multi-source and heterogeneous sequences of data 

hile handling missing observations. 

We introduce several LOMs to adapt the detection method to 

ossible situations, partitioning the feature space depending on the 

ontext-meaning, multi-source and mixed-type nature of the data. 

n this way, we control how the local CP information is transferred 

o homogeneous local latent spaces, which are considered univari- 

te and discrete for every partition avoiding the heterogeneous ini- 

ial problem. We propose three different factorizations of the CP 

etector to fuse the local information that holds for any LOM, and 

nclude specific mechanisms to deal with missing temporal data. 

wo of these factorization models assume different weights for ev- 
10 
ry partition, adding explainability about the contribution of each 

ource to the global detection. We compare the performance of 

very couple LOM-CPD versions between them, and also with re- 

pect to the CP detection over each source separately on a syn- 

hetic dataset. The result is an adaptive LOM-based CPD method 

hat enhances the fusion of heterogeneous multi-source data with 

espect to previous works. This method improves the sensitivity in 

he detection in terms of precision rate and delay when there are 

ifferent intensity CPs within the sequence, together with higher 

obustness against missing data presence. We finally illustrate the 

esults on a real-world dataset from a smartphone-based monitor- 

ng study for healthcare. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgments 

This work has been partly supported by Spanish govern- 

ent (AEI/MCI) under grants RTI2018-099655-B-100, PID2021- 

23182OB-I00, PID2021-125159NB-I00, and TED2021-131823B- 

00, by Comunidad de Madrid under grant IND2018/TIC-9649, 

ND2022/TIC- 23550, by the European Union (FEDER) and the Eu- 

opean Research Council (ERC) through the European Union’s Hori- 

on 2020 research and innovation program under Grant 714161, 

nd by Comunidad de Madrid and FEDER through IntCARE-CM. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.patcog.2022.109116 . 

eferences 

[1] R. P. Adams, D. J. MacKay, Bayesian online changepoint detection, 2007. 
[2] S. Berrouiguet, Ramírez, et al., Combining continuous smartphone native sen- 

sors data capture and unsupervised data mining techniques for behavioral 

changes detection: a case series of the evidence-based behavior (eB2) study, 
JMIR mHealth uHealth 6 (12) (2018) e9472, doi: 10.2196/mhealth.9472 . 

[3] G.S. Birkhead, M. Klompas, N.R. Shah, Uses of electronic health records for pub- 
lic health surveillance to advance public health, Annu. Rev. Public Health 36 

(1) (2015) 345–359 . 
[4] B. Boashash, G. Azemi, et al., Principles of time–frequency feature extraction 

for change detection in non-stationary signals: applications to newborn EEG 

abnormality detection, Pattern Recognit. 48 (3) (2015) 616–627 . 
[5] G.J.J. van den Burg, C.K.I. Williams, An evaluation of change point detection 

algorithms, 2020. arXiv: 2003.06222 . 
[6] O. Cappé, E. Moulines, On-line expectation-maximization algorithm for latent 

data models, J. R. Stat. Soc 71 (3) (2009) 593–613 . 
[7] T. Çelik, Bayesian change detection based on spatial sampling and Gaussian 

mixture model, Pattern Recognit. Lett. 32 (12) (2011) 1635–1642 . 

[8] M.F. Chowdhury, S.A. Selouani, D. O’Shaughnessy, Bayesian on-line spectral 
change point detection: asoft computing approach for on-line ASR, Int. J. 

Speech Technol. 15 (1) (2012) 5–23 . 
[9] E. Epaillard, N. Bouguila, Proportional data modeling with hidden Markov 

models based on generalized Dirichlet and beta-Liouville mixtures applied to 
anomaly detection in public areas, Pattern Recognit. 55 (2016) 125–136 . 

[10] M. Evans, N. Hastings, B. Peacock, Statistical Distributions, Wiley Series in 

Probability and Statistics, Wiley, 20 0 0 . 
[11] B. Jackson, J.D. Scargle, et al., An algorithm for optimal partitioning of data on 

an interval, IEEE Signal Process. Lett. 12 (2) (2005) 105–108 . 
12] M. Lavielle, G. Teyssière, Adaptive Detection of Multiple Change-Points in Asset 

Price Volatility, Springer Berlin Heidelberg, 2007, pp. 129–156 . 
[13] G. Liu, J. Onnela, Bidirectional imputation of spatial GPS trajectories with miss- 

ingness using sparse online gaussian process, J. Am. Med. Inform. Assoc. 28 (8) 
(2021) 1777–1784 . 

[14] P. Moreno-Muñoz, D. Ramírez, et al., Change-point detection in hierarchical cir- 

cadian models, Pattern Recognit. 113 (2021) 107820 . 
[15] P. Moreno-Muñoz, L. Romero-Medrano, et al., Passive detection of behavioral 

shifts for suicide attempt prevention, ML4MH, NeurIPS (2020). 
[16] J.A. Quinn, M. Sugiyama, A least-squares approach to anomaly detection in 

static and sequential data, Pattern Recognit. Lett. 40 (2014) 36–40 . 

https://doi.org/10.1016/j.patcog.2022.109116
https://doi.org/10.2196/mhealth.9472
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0003
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0004
http://arxiv.org/abs/2003.06222
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0006
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0007
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0008
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0009
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0010
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0011
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0012
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0013
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0014
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0016


L. Romero-Medrano and A. Artés-Rodríguez Pattern Recognition 134 (2023) 109116 

 

[

[

[

L

Z
B

V  

m

t
v

D
E

e
h

A

i
d

M  

o
P

d  

p

5
i

o

[17] L. Romero-Medrano, P. Moreno-Muñoz, A. Artés-Rodríguez, Multinomial Sam- 
pling of Latent Variables for Hierarchical Change-Point Detection, in: Journal 

of Signal Processing Systems, 94, 2nd, Springer, 2022, pp. 215–227 . 
[18] H. Sagha, H. Bayati, J.del R. Millán, R. Chavarriaga, On-line anomaly detection 

and resilience in classifier ensembles, Pattern Recognit. Lett. 34 (15) (2013) 
1916–1927 . 

[19] A. Scott, M. Knott, A cluster analysis method for grouping means in the analy-
sis of variance, Biometrics 30 (1974) 507 . 

20] Y. Sun, L. Lei, et al., Nonlocal patch similarity based heterogeneous remote 

sensing change detection, Pattern Recognit. 109 (2021) 107598 . 
21] C. Truong, L. Oudre, N. Vayatis, Selective review of offline change point detec- 

tion methods, Signal Process. 167 (2020) 107299 . 
22] Y. Wang, A. Kucukelbir, D.M. Blei, Robust probabilistic modeling with Bayesian 

data reweighting, in: ICML, in: Proceedings of Machine Learning Research, 
vol. 70, PMLR, 2017, pp. 3646–3655 . 

orena Romero-Medrano obtained her Degree in Mathematics from Universidad de 

aragoza in 2015 and a Master in Mathematical Modelling (Mathematics Applied to 
iological and Medical Sciences Major) from Université Pierre et Marie Curie, Paris 
11 
I, in 2017 supported by a PGSM-Inria fellowship. During that year, she held a 6-
onth traineeship at Inria Research Institute in Paris (MAMBA team) to work on 

he modelling of liver hemodynamics and continued with this project as research 
isitor at Universidad Complutense de Madrid. She is currently Ph.D. student at the 

ept. of Signal Theory and Communications at Universidad Carlos III de Madrid and 
vidence-Based Behavior (eB2). Her research interests include mathematical mod- 

lling, machine learning, probabilistic methods, and its applications to human be- 
avior and biomedical sciences. 

ntonio Artés-Rodríguez (S’89-M’93-SM’01) was born in Alhama de Alméra, Spain, 

n 1963. He received the Ingeniero de Telecomunicación and Doctor Ingeniero 
e Telecomunicación degrees, both from the Universidad Politecnica de Madrid, 

adrid, Spain, in 1988 and 1992, respectively. He is a Professor at the Department

f Signal Theory and Communications, Universidad Carlos III de Madrid, Madrid. 
rior to this, he held different teaching positions at Universidad de Vigo, Universi- 

ad Politecnica de Madrid, and Universidad de Alcalá, all of them in Spain. He has
articipated in more than 70 projects and contracts and has coauthored more that 

0 journal papers and more than 100 international conference papers. His research 
nterests include signal processing, machine learning, and information theory meth- 

ds, and its application to health and sensor networks. 

http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0017
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0018
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0019
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0020
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0021
http://refhub.elsevier.com/S0031-3203(22)00596-9/sbref0022

	Multi-Source Change-Point Detection over Local Observation Models
	1 Introduction
	2 CPD over Local Observation Models (LOMs)
	3 Local Observation Models (LOMs)
	3.1 Full joint representation (Joint OM)
	3.2 Independent source representation (Sources OM)
	3.3 Data-type based representation (Grouped OM)
	3.4 Prior knowledge based representation (Context OM)

	4 LOM-based CPD
	4.1 Background: Bayesian online change-point detection
	4.2 LOM-based CPD
	4.3 Local likelihood models and inference
	4.4 Definition of change-points

	5 CPD Factorization Models
	5.1 Independent product (Independent CPD)
	5.2 Mixture weighting by temporal partition (Mixture CPD)
	5.3 Likelihood probabilistic weighting (Weighted CPD)
	5.4 Missing temporal data

	6 Experiments
	6.1 Synthetic data
	6.2 Comparison with existing CPD methods
	6.3 Human behavior data

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References


