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Abstract Beam-hardening is the increase of the mean energy of an X-ray 
beam as it traverses a material. This effect produces two artifacts in the 
reconstructed image: cupping in homogeneous regions and dark bands 
among dense areas in heterogeneous regions. The correction methods 
proposed in the literature can be divided into post-processing and 
iterative methods. The former methods usually need a bone 
segmentation, which can fail in low-dose acquisitions, while the latter 
methods need several projections and reconstructions, increasing the 
computation time. 

In this work, we propose a new method for correcting the beam-
hardening artifacts in CT based on deep learning. A U-Net network was 
trained with rodent data for two scenarios: standard and low-dose. 
Results in an independent rodent study showed an optimum correction 
for both scenarios, similar to that of iterative approaches, but with a 
reduction of computational time of two orders of magnitude. 

1 Introduction 
The origin of the beam-hardening effect lies in the 
polychromatic nature of the X-ray sources. It is defined as 
the process whereby the mean energy increases its value 
when traversing a material. This energy shift is due to the 
fact that low-energy photons are more easily absorbed than 
high-energy photons. The beam-hardening effect produces 
two artifacts on the reconstructed image: cupping in 
homogeneous regions and dark bands among dense areas in 
heterogeneous regions [1]. 

We can find multiple correction schemes in the literature. It 
is common to pre-harden the beam by using a physical filter 
that eliminates most of the low-energy photons [1]. 
However, this is not enough to completely eliminate the 
artifacts, making it necessary to use image processing 
methods. The method implemented in most of the scanners 
is the water linearization. It assumes that the sample is 
homogeneous, correcting only the cupping artifacts [2]. To 
correct both cupping and dark bands, the beam-hardening 
effect can be modeled using the spectra knowledge and an 
estimation of the tissue thicknesses [3, 4]. The spectra 
knowledge was substituted with a beam-hardening model 
using information either from a calibration phantom [5] or 
the sample itself [6]. Other works avoid the characterization 
of the beam-hardening model by maximizing the flatness 
[7] or the entropy [8] of the reconstructed image. However, 
all the previous methods need a segmentation that can fail 

in low-dose acquisitions. In these scenarios, the use of 
iterative algorithms allows for the improvement of the 
segmented masks with successive iterations. The work 
proposed by Elbakri et al. [9] included a polychromatic 
model of the source, but required the spectra knowledge to 
incorporate the energy effect into the projection matrix. 
This requirement was eliminated in the method proposed by 
Abella et al. [10], called bhSIR, with a simplification of the 
polychromatic model based on two parameters and the same 
calibration step of the water-linearization method. 
However, the use of iterative methods leads to an increase 
in the execution time. 

Over recent years, deep learning has been widely used in 
CT images for segmentation and classification [11, 12] or 
to improve the quality of low-dose acquisitions [13, 14]. U-
net [15], originally used for image segmentation and one of 
the most known architectures, has already been used to 
reduce the sparse-view artifacts in CT images [16],  metal 
artifacts [17] or ring artifacts [18]. To the best of our 
knowledge, there are no deep learning approaches to reduce 
the beam-hardening artifacts on CT images.  

In this work, we proposed a new method to obtain images 
free of beam-hardening artifacts in CT. We compensate the 
artifacts by using deep-learning techniques based on a U-
net architecture in low and standard-dose scenarios. 

2 Materials and Methods 
The proposed method uses a modification of the original U-
net architecture [15], eliminating the sigmoid layer that 
normalizes the resulting image to allow the restoration of 
the monochromatic values. We use the mean squared error 
(MSE) as the cost function. Figure 1 shows the network 
architecture.  

The training was performed during 100 epochs using the 
Adam optimizer [19] with axial slices of four rodent studies 
acquired with the micro-CT scanner ARGUS/CT 
(SEDECAL) [20]. Two scenarios, standard dose (360 
projections covering 360 degrees) and low dose (180 
projections covering 360 degrees), were acquired and 

188



16th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine                    19 - 23 July 2021, Leuven, Belgium 
  

reconstructed with the software FUX-SIM [21], obtaining 
projections of 512×375 pixels and 0.2×0.2 mm of pixel size. 
Reconstruction was performed with the FDK algorithm 
[22], resulting in volumes of 512×512×375 voxels and 
0.121×0.121×0.121 mm of voxel size. In both scenarios, 
images obtained with bhSIR [10] from standard dose data 
were used as reference (Figure 2). 

 
Figure 1: Modified Architecture of the U-net 

 
Figure 2: Axial slice of the rodent study for the low (left) and 

standard-dose (right) scenario and the reference obtained with 
the iterative method (right) 

Images obtained with bhSIR [10] were used as reference. 
To select the appropriate learning rate, we used the Leslie 
N. Smith test [23], resulting in 10-5 (Figure 3). 

 
Figure 3: Results of the Leslie N. Smith test to determine the 
optimum learning rate. 

3 Evaluation and results 
The network was applied to a fifth rodent study, also 
acquired in standard- and low-dose scenarios. We compared 
the proposed method with the FDK, FDK+2DLinBH [5] 
and bhSIR [10] visually and in terms of execution time. 

Figure 4 shows the two axial slices of the standard dose 
scenario obtained with the different methods. We can 
observe a reduction of the dark bands with all the methods 
but with a slight noise increase with the analytical approach 
FDK+2DLinBH. The image corrected with the proposed 
method is very similar to the one obtained with the iterative 
algorithm bhSIR, with higher SNR and a complete 
reduction of the beam-hardening artifacts. 

 
Figure 4: Standard-dose scenario for two different axial slices 1 

(top) and 2 (bottom) obtained with the FDK (A), 
FDK+2DLinBH (B), bhSIR (C) and the proposed method (D) 
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Figure 5 shows the results for the low-dose scenario. 
FDK+2DLinBH shows streak artifacts because of the low 
angular sampling. The proposed method reduces these low-
sampling artifacts and compensates the beam-hardening 
artifacts similar to that in the reference. 

 
Figure 5: Low-dose scenario for the slices 1 (top) and 2 

(bottom) obtained with FDK (A), FDK+2DLinBH (B), bhSIR 
(C) and the proposed method (D) 

Table I shows the computational time of the complete 
volume for the different methods. We can observe that the 
lowest time corresponds to the proposed method. 

TABLE I 
EXECUTION TIME OF EACH METHOD (SECONDS) 

4 Discussion 
We have proposed a new method to compensate the beam-
hardening artifacts on CT images based on the combination 
of conventional reconstruction and deep learning. Our 
method outperforms classical post-processing methods in 
low-dose data, showing a similar performance to a 
polychromatic iterative method (bhSIR) but with a 
considerable reduction of computational time. 

Evaluation performed on real data showed a good correction 
of the beam-hardening artifact but a slight loss of spatial 
resolution. The selection of the simple cost function MSE 
for these preliminary results may be responsible for this loss 
of spatial resolution. Future work will evaluate the use of 
more sophisticated cost functions, such as SSIM or 
perceptual loss, or architectures like GAN (Generative 
Adversarial Networks). 

Due to the impossibility of acquiring the rodent studies with 
a monochromatic source, an iterative method was used as 
the gold standard.  

We focused on head studies, creating a different model 
depending on the number of projections. Further work will 
evaluate the performance of the method when other 
anatomical parts, such as the abdomen or thorax, are 
included in the dataset. We also expect that this increase in 
the amount of training data would enable a single model to 
work independently of the number of acquired projections. 

5 Conclusion 
The proposed method based on deep learning corrects the 
beam-hardening artifacts in CT images with a reduction of 
noise and low-sampling streaks similar to iterative methods 
but with a significant reduction of computational time. This 
reduction allows the method to be used in real-time 
applications like intraoperative imaging. The method can be 
easily implemented in real systems, since it involves only 
an extra processing step right after a conventional 
reconstruction.  
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