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We investigate the modulation of turbulence caused by the presence of finite-size dispersed
particles. Bluff (isotropic) spheres versus slender (anisotropic) fibres are considered to
understand the influence of the shape of the objects on altering the carrier flow. While
at a fixed mass fraction – but different Stokes number – both objects provide a similar
bulk effect characterized by a large-scale energy depletion, a scale-by-scale analysis of the
energy transfer reveals that the alteration of the whole spectrum is intrinsically different.
For bluff objects, the classical energy cascade shrinks in its extension but is unaltered in
the energy content and its typical features, while for slender ones we find an alternative
energy flux which is essentially mediated by the fluid–solid coupling.
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1. Introduction

Particle-laden turbulent flows are multiphase systems where a carrier fluid interacts with
a dispersed phase made up by a number of solid objects, e.g. spheres or fibres. Such flows
concern an important class of problems with numerous applications related to both natural
and industrial processes (De Lillo et al. 2014; Breard et al. 2016; Sengupta, Carrara &
Stocker 2017; Falkinhoff et al. 2020; Rosti et al. 2020). In the analysis and modelling of
such problems, a crucial distinction can be made regarding the mutual coupling between
the carrier flow and the dispersed objects. When the suspension is dilute enough, it can be
safely assumed that the fluid flow is not substantially altered by the presence of the objects
(Balachandar & Eaton 2010; Maxey 2017; Brandt & Coletti 2021).
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However, we often deal with non-dilute conditions where the mutual coupling between
the two phases is relevant and gives rise to a macroscopic alteration of the turbulent
carrier flow. The resulting turbulence modulation effects have been the subject of previous
studies over different classes of multiphase turbulent flows, i.e. considering isotropic
(Lucci, Ferrante & Elghobashi 2010; Gualtieri et al. 2013; Uhlmann & Chouippe 2017;
Capecelatro, Desjardins & Fox 2018; Ardekani, Rosti & Brandt 2019; Yousefi, Ardekani
& Brandt 2020) or anisotropic (Andersson, Zhao & Barri 2012; Olivieri et al. 2020b,a;
Olivieri, Mazzino & Rosti 2021, 2022; Wang et al. 2022) solid particles, as well as droplets
or bubbles (Dodd & Ferrante 2016; Freund & Ferrante 2019; Rosti et al. 2019; Cannon
et al. 2021), typically focusing on the alteration of both the bulk flow properties as well as
the scale-by-scale energy distribution. In particular, Lucci et al. (2010) and Yousefi et al.
(2020) showed that Taylor-length-scale-sized spheres reduce turbulent kinetic energy at
the large scales and enhance its energy content at the small scales.
Nevertheless, the accurate characterization of the underlying physics in these

complex systems still requires significant efforts from the theoretical, computational and
experimental viewpoints, with relevant questions still not fully addressed, such as the
following. (i) What are the mechanisms controlling the scale-by-scale energy distribution
in the presence of immersed objects with finite size (i.e. larger than the dissipative length
scale)? (ii) How do the geometrical properties of the dispersed particles (i.e. their size
and isotropy) affect the back-reaction on the carrier flow and the consequent turbulence
modulation?
In this work, we comprehensively investigate the multiscale nature of the turbulence

modulation due to finite-size rigid particles, focusing on the role of geometrical properties
and comparing, in particular, the back-reaction caused by isotropic bluff objects (i.e.
spheres) versus anisotropic slender ones (i.e. fibres). Exploiting massive direct numerical
simulations (DNS), it is observed, at first, that the macroscopic effect in the turbulence
modulation essentially consists of a large-scale energy depletion for both configurations.
However, we show that this bulk effect arises from qualitatively different mechanisms
depending on the geometrical features of the dispersed objects, which becomes evident
from a scale-by-scale energy-transfer balance. For isotropic objects (spheres), the
back-reaction effectively acts at a well-defined length scale (i.e. the sphere diameter) and
over a limited range of smaller scales, without appreciably modifying the inertial range
that is obtained in the single phase (i.e. without particles) configuration. For anisotropic
objects (fibres), instead, the fluid–solid coupling is responsible for a global modification
of the energy distribution over all the scales of motion, which is characterized by the
emergence of an alternative energy flux along with a relative enhancement of small-scale
fluctuations.
The rest of the paper is structured as follows: § 2 describes the modelling and

computational methodology, § 3 shows the results, and § 4 contains the conclusions.

2. Methods

To investigate the problem, we devote our attention to particles of finite size (i.e. diameter
or length) that lies well within the inertial subrange of the turbulent flow. A visual example
of two representative configurations is given in figure 1. Specifically, we have performed
DNS where the fluid and solid dynamics are mutually coupled using the immersed
boundary method (Hori, Rosti & Takagi 2022; Olivieri et al. 2022). An incompressible,
homogeneous and isotropic turbulent (HIT) flow is generated within a tri-periodic cubic
domain of size L = 2π using Arnold–Beltrami–Childress (ABC) cellular-flow forcing
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(a) (b)

Figure 1. Two-dimensional views of the vorticity magnitude of homogeneous isotropic turbulence in the
presence of dispersed, finite-size (a) spheres and (b) fibres, from two representative cases of the present DNS
study.
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Figure 2. Energy spectra of the modulated turbulent flow for (a) spheres and (b) fibres, for different mass
fractions M (increasing with the colour brightness from dark to light), along with the reference single-phase
configuration (i.e. M = 0, black curve) and the expected Kolmogorov scaling in the inertial subrange (grey
dashed line). The insets report the microscale Reynolds number Reλ as a function of the mass fraction; error
bars show the standard deviation in Reλ from the time-averaged value. As an additional check on the accuracy
of the computations, diamonds show results calculated using an Eulerian grid with halved resolution (5123

cells), which produces little change in Reλ and the inertial range of the spectra.

(Podvigina & Pouquet 1994), achieving in the single-phase case a microscale Reynolds
number Reλ = u′λ/ν ≈ 435, where u′ is the root mean square of the turbulent fluctuations,
λ is the Taylor microscale and ν is the kinematic viscosity. Such a high-Reynolds-number
configuration is computationally explored for the first time in the framework of multiphase
flows in order to achieve proper scale separation. As shown in figure 2, the energy spectrum
in the single-phase configuration (black curve) shows the classical Kolmogorov scaling
∼κ−5/3 (dashed line) at low-to-intermediate wavenumbers over more than one decade.
Once the single-phase case has reached the fully developed regime, N rigid spheres

(characterized by diameter D and volumetric density ρs) or fibres (characterized by length
c and linear density difference �ρ̃s) are added to the carrier flow at randomly initialized
positions and orientations. The multiphase cases were therefore evolved until reaching a
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statistically stationary state. An overview of the main configurations considered in our
study is shown in table 1.
The dynamics of the bluff, spherical objects is governed by the well-known

Newton–Euler equations (Hori et al. 2022), whereas the slender, anisotropic ones are
modelled in the general framework of the Euler–Bernoulli equation for inextensible
filaments, choosing a sufficiently large bending stiffness such that the deformation is
always negligible (i.e. within 1%) (Cavaiola, Olivieri & Mazzino 2020; Brizzolara et al.
2021). Hence, the mass fraction M of the suspension is defined as the ratio between the
mass of the dispersed solid phase and the total mass (i.e. the sum of the fluid and solid
masses contained in the domain). Note that for the chosen parameters and when matching
M, bluff and slender particles have remarkably different Stokes numbers, here computed
using expressions for small particles, i.e. of length below the dissipative scale, for the
sake of a comparative estimate (Lucci, Ferrante & Elghobashi 2011; Bounoua, Bouchet
& Verhille 2018). Moreover, we indicate M = 1 as the configurations where the dispersed
objects are constrained to a fixed random position; such a setting serves as the limiting
case where the dispersed phase has infinitely large inertia, as well as a representation of
flows in porous media. Finally, we note that sphere and fibre cases with the same mass
fractions have different volume fractions but approximately the same total wetted area.
To solve the governing equations numerically, we employ the in-house solver

Fujin (https://groups.oist.jp/cffu/code). The code is based on the (second-order)
central finite-difference method for the spatial discretization and the (second-order)
Adams–Bashforth scheme for the temporal discretization. The incompressible Navier–
Stokes equations are solved using the fractional step method on a staggered grid. The
Poisson equation enforcing the incompressibility constraint is solved using a fast and
efficient approach based on the fast Fourier transform (FFT). The solver is parallelized
using the MPI protocol and the 2decomp library for domain decomposition (http://www.
2decomp.org). In this work, the fluid domain is discretized onto a uniform Eulerian grid
using 10243 cells, ensuring that, for the chosen set of domain size and fluid properties,
the ratio between the Kolmogorov dissipative length scale and the grid spacing is η/�x =
O(1). The carrier- and dispersed-phase dynamics are coupled by the no-slip condition
Ẋ = U = u(X , t), where X is the position of a generic material point on the solid surface
and u = u(x, t) is the fluid velocity field. In the present work, we employ two types of
immersed boundary (IB) method where the mutual interaction between the two phases is
achieved by means of a singular force distribution. Specifically, for bluff spherical particles
we use the Eulerian IB method recently proposed by Hori et al. (2022), whereas for slender
fibres we use the method originally proposed by Huang, Shin & Sung (2007) and recently
employed for fibre-laden turbulence by Olivieri et al. (2020a,b, 2021, 2022). Overall, the
code has been extensively validated and tested in a variety of problems; see e.g. Rosti &
Brandt (2020), Rosti et al. (2020, 2021) and Olivieri et al. (2022).

3. Results

3.1. Main features of turbulence modulation
The presence of the dispersed phase clearly causes a complex modification of the key
features of the carrier flow, as may be observed in the energy spectra for suspensions
of spheres (figure 2a) or fibres (figure 2b) at different mass fractions M. At first glance,
and focusing on the smallest wavenumbers (i.e. largest scales), one can note a similar
phenomenology between the two kinds of particles, with an overall tendency to decrease
the turbulent kinetic energy while increasing M. Indeed, for both bluff and slender
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Figure 3. Dependence of the exponent β in the energy spectrum scaling E ∼ κ−β on particle mass fractionM.
Flows with spheres are marked in blue, flows with fibres in orange, and the single-phase flow in black. The blue
and orange shaded regions show the approximate error in β, estimated by moving the time averaging window.
The Kolmogorov scaling is marked by a grey dotted line.

particles, the energy-containing scales are depleted by the hydrodynamic drag exerted
by the particles. A direct indication on how the bulk properties of the flow are altered
is provided in the insets of figure 2, showing a very similar variation between spheres
and fibres in terms of Reλ with the mass fraction, notwithstanding the different Stokes
numbers of the suspended objects, in agreement with previous findings (Hwang & Eaton
2006; Olivieri et al. 2021, 2022).
However, from figure 2 some peculiar differences between the two kinds of suspensions

can also be noticed when extending the observation to the full range of active scales.
For bluff particles, the alteration of the energy spectrum with M remains almost entirely
limited to the low-wavenumber region (i.e. κ � 5), with only a minimal increase at the
largest wavenumbers (i.e. κ � 300) associated with the high-shear regions in the boundary
layers around the spheres. Instead, for fibres, the modulation extends up to the highest
wavenumber (i.e. κmax = 512). At sufficiently large M, a departure from the Kolmogorov
scaling indeed appears throughout the full inertial subrange. We anticipate that here the
energy transfer is mainly due to the fluid–solid coupling, and not to the convective term as
in the single-phase or bluff particle cases, leading to a different form of energy flux.
A quantitative evaluation of the resulting power law E(κ) ∼ κ−β in the inertial subrange

of both single-phase and multiphase flows is given in figure 3, showing the scaling
exponent β as a function of the mass fraction for both spheres and fibres. The single-phase
flow (M = 0) and the flows with spheres can be seen to follow the Kolmogorov scaling
(β = 5/3), whereas the flows with fibres show a significant reduction in β asM increases.
An heuristic explanation for the latter trend is that fibres act as a barrier to the flow between
any two points with separation greater than the fibre diameter d, which influences the
scaling of the second-order velocity structure function 〈(δu)2〉 ∼ rγ for two points at a
distance r > d, with γ = β − 1. In the single-phase case γ = 2/3, whereas the presence
of fibres tends to decorrelate the flow, thus reducing the value of γ or, equivalently, β.

3.2. Scale-by-scale energy transfer
A clear distinction in the mechanism of energy distribution between the two geometrical
configurations can be highlighted. To gain a more detailed insight, we look at the
scale-by-scale energy transfer balance

P(κ) + Π(κ) + Πfs(κ) + D(κ) = ε, (3.1)
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Figure 4. Scale-by-scale energy transfer balance for two representative configurations at M = 0.9 of
(a) spheres and (b) fibres, showing the contributions of fluid–solid coupling Πfs (solid line), nonlinear
convection Π (dashed line) and viscous dissipation D (dash-dotted line), each normalized with the average
dissipation rate ε. Furthermore, the total energy flux, Πfs + Π , is also reported (dotted line).

where P is the turbulence production associated with the external forcing (acting only at
the largest scale κ = 1), Π and Πfs are the energy fluxes associated with the nonlinear
convective term and the fluid–solid coupling term, respectively, and D is the viscous
dissipation (Olivieri et al. 2021, 2022).
In figure 4, we show the energy fluxes and dissipation in two representative cases with

strong back-reaction (M = 0.9) for (a) bluff objects and (b) slender particles. Focusing on
the two different energy fluxes (i.e. Π and Πfs), we note at first that the sum of these two
contributions (thin dotted line) appears in both cases as a horizontal plateau for relatively
low wavenumbers, as expected from (3.1) and similar to the single-phase case. However,
qualitatively different scenarios can be identified for bluff versus slender objects when
analysing the two distinct contributions separately. On the other hand, it can be noticed
that in both cases, and similarly to the classical, single-phase case, for sufficiently large
wavenumbers the energy fluxes tend to zero, and the viscous dissipation D recovers the
totality of the balance.
For bluff objects (figure 4a), we first have a dominance of the fluid–solid coupling

contribution Πfs within a limited low-wavenumber range, and only subsequently of the
convective term Π for larger κ . Indeed, two distinct plateau-like regions are found over
two distinct subranges of scales, suggesting that, for increasing κ , the energy is first
transferred from the largest scales (where energy is injected) to smaller ones mainly
by the action of the particles, only after which the nonlinear term prevails and the
balance substantially recovers the classical energy cascade predicted by Kolmogorov
theory.
For slender objects (figure 4b), the scenario looks radically different, with Πfs acting

over a much wider range of scales and being responsible for transferring most of the
energy across all scales, with the nonlinear term being weakened overall. It should
also be noted that such alternative energy flux is overall prolonged with respect to
the single-phase case, consistent with the observed alteration in the energy spectrum
(figure 2b). Note that we refer to an energy flux also for fibre-laden turbulence, because
not only is Πfs constant across a wide range of scales, but also the overall drag
coefficient Cd = ε/(u′3κin) here κin = 1 is the wavenumber at which the energy is injected
(Alexakis & Biferale 2018), remains finite and comparable with the single-phase case
(see table 1).
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Figure 5. Fluid–solid coupling contribution to the energy-spectrum balance for (a) spheres and (b) fibres for
various mass fractions M (varying with colour brightness). Circles are plotted for the cases with (a) smaller
diameter D or (b) shorter length c, while different line styles are used to denote the variation of the number of
objects N. For ease of comparison, the y-axis is normalized by the maximum value of the reported quantity.
The inset in (a) shows the same data as a function of the wavenumber κ normalized with the sphere diameter
D. Images show wakes that are similar in size to the (a) sphere diameter and (b) fibre diameter.

3.3. Characteristic length scale of the fluid–solid coupling
The reason for the observed difference between bluff and slender objects can be
ascribed indeed to specific geometrical features. For bluff, isotropic particles the most
representative scale is uniquely identified as the particle diameterD. For slender fibres, the
back-reaction could be expected instead to act across multiple length scales, approximately
ranging from the fibre length c to the cross-sectional diameter d. In fact, the latter is
found to have the dominant role (as later shown in figure 5). This qualitative difference
has a remarkable consequence on the properties of the modulated turbulent flow at
sufficiently small scales: on the one hand, spherical particles affect the flow essentially
only at a scale that is well within the inertial range, without modifying the extension and
energy amplitude of the latter; on the other hand, slender fibres are directly acting on
wavenumbers that are also beyond the original energy cascade.
To isolate the characteristic length scale up to which the energy is transferred by the

back-reaction for the two kinds of dispersed objects, we show in figure 5 the fluid–solid
coupling contribution in the energy-spectrum balance, i.e. Ffs, such that

∫ ∞
κ

Ffs = Πfs. To
this aim, along with the variation of the mass fraction, we also consider the influence of
the sphere diameter D or fibre length c in the limiting case of fixed objects (or infinite
inertia). For bluff (isotropic) objects (figure 5a), it can be clearly observed that the peak
of Ffs scales with the diameter D, as also shown from the inset, where the wavenumber is
normalized using such quantity. For slender (anisotropic) objects (figure 5b), we observe
instead that the fibre length c does not appreciably change the position of the peak of Ffs;
rather, it appears to be controlled by the fibre diameter d. Differently from spheres, here
the fluid–solid contribution shows a wider distribution, therefore suggesting a quantitative
role of the fibre length as well, as previously suggested. For both objects, the mass fraction
appears to control not the wavenumber associated with the maximum forcing but only the
strength of the back-reaction. Remarkably, the same holds also when varying the number
of objects N.

3.4. Phenomenological interpretation
A simple and effective interpretation of our results can be proposed by considering the
characteristic Reynolds number experienced by the particles, i.e. Re� = u′�/ν, in order
to argue the main hydrodynamic effect caused by the solid objects and discern peculiar

950 R2-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

83
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.832


Effect of particle anisotropy on modulation of turbulence

0.50 0.75 1.00 1.25 1.50

α

1.5

2.0

2.5

3.0

F(α)
Single phase

Spheres

Fibres

Experiment

Figure 6. Multifractal distribution of the kinetic energy dissipation rate in the single-phase flow (black),
flow with spheres of mass fraction M = 1 (blue), flow with fibres of mass fraction M = 1 (orange), and the
single-phase experimental measure from Sreenivasan & Meneveau (1988) (black crosses).

differences between bluff and slender objects. For the sake of simplicity, we consider the
root mean square of the fluid velocity fluctuations u′ (accounting for its variation due to the
effective back-reaction) and the sphere diameter D or the fibre diameter d as the reference
length scale �. For the spherical particles such a choice is natural, whilst for fibres it comes
from that previously observed for the energy-transfer balance (figure 5b).
When computing the characteristic Reynolds number, we typically find that for spheres

ReD ∼ O(103), whereas for fibres Red ∼ O(101). These estimates suggest that bluff and
slender objects experience qualitatively different hydrodynamic regimes, one dominated
by inertial and the other by viscous forces, respectively. In particular, spheres are subject to
a large-Reynolds-number flow, inducing a turbulent wake on scales comparable with and
smaller than D, while fibres generate flow structures typical of laminar vortex shedding
on scales comparable with d, but without any further proliferation of scales due to the
dominant viscous dissipation. Note that here we refer to the range of scales smaller than
the characteristic length scale associated with the individual particles. For spheres, the
energy of the generated wakes is therefore converted into smaller structures by means of
the well-known energy cascading process (controlled by the nonlinear term Π ); for fibres,
a similar phenomenology is not possible since the smaller-scale generated flow structures
are essentially within the dissipative region.

3.5. On the intermittency of the modulated turbulence
Strong spatial and/or temporal fluctuations in the energy flux are the source of
intermittency in turbulent flows. Owing to the different nature of the flux in the two
configurations, it is natural to wonder how intermittency is altered. A comprehensive
approach to study this is to compute the multifractal spectrum of the energy dissipation
rate (Sreenivasan & Meneveau 1988), which we report in figure 6. For spheres, we find
that F(α) is substantially similar to the single-phase case with only minor differences. On
the other hand, for fibres, we have a remarkable qualitative difference in the spectrum.
This further supports the idea of a standard energy cascade in particle-laden flows with
finite-size spherical particles, whilst it is not the case for finite-size fibres.

4. Conclusions

By means of unprecedented high-Reynolds-number multiphase DNS, we have investigated
particle-laden turbulent flows considering solid objects of finite size, i.e. well within the
inertial range of scales, with the goal of understanding how the geometrical features of the
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immersed objects impact on the basic mechanisms of turbulence modulation. Specifically,
we have focused on two representative classes of suspensions, i.e. bluff (isotropic) spheres
versus slender (anisotropic) fibres, as a benchmark for highlighting the effect of particle
anisotropy.
As a common feature, we found that the presence of the dispersed phase induces a

similar decrease of the turbulent kinetic energy and microscale Reynolds number for
increasing mass fractions. At the same time, we unravelled the intrinsic differences in the
resulting scale-by-scale energy distribution. For both kinds of dispersed objects, we have
shown that the representative length scale at which the fluid–solid coupling is dominant
is associated with the (sphere or fibre) diameter. For finite-size spherical objects, however,
the back-reaction due to the dispersed phase is always confined to relatively large scales,
with a negligible alteration of the higher-wavenumber inertial and viscous subrange.
Finite-size fibres, on the other hand, transfer energy up to the smallest scales, with a
consequent modification of the full energy spectrum and the emergence of a modified
energy cascade. Note that, while confirming the same phenomenology, these results
substantially enrich those recently reported at lower Reynolds number (Olivieri et al.
2022), in particular, concerning the evaluation of the scaling exponent in the modulated
intermediate range of the energy spectrum. Also, the high-Reynolds-number configuration
and the consequent scale separation clarified the different nature of the dominant energy
flux in fibre-laden flows.
A simple phenomenological description for this complex problem is that the immersed

objects subtract energy from the flow by means of hydrodynamic drag and then re-inject
it by their wakes. For spheres, this happens fully within the inertial subrange and therefore
results in a turbulent wake that still contributes to the classical energy cascade. For fibres,
the transfer involves significantly smaller scales where viscosity eventually dominates,
providing to the latter additional energy with little contribution of the nonlinear terms due
to the low local Reynolds number.
In conclusion, we underline that these results are unique for finite-size objects and

remarkably different from what was previously observed for small particles (i.e. those
whose size is smaller than the Kolmogorov dissipative length scale). Our findings
have primary relevance for advancing the fundamental understanding of particle-laden
turbulence and its numerous related applications (e.g. slurry flows, combustion,
papermaking and other industrial processes).
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