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ABSTRACT The fifth-generation (5G) of networks is being deployed to provide awide range of new services
and to manage the accelerated traffic load of the existing networks. In the present-day networks, data has
become more noteworthy than ever to infer about the traffic load and existing network infrastructure to
minimize the cost of new 5G deployments. Identifying the region of highest traffic density in megabyte (MB)
per km2 has an important implication in minimizing the cost per bit for the mobile network operators
(MNOs). In this study, we propose a base station (BS) clustering framework based on unsupervised learning
to identify the target area known as the highest traffic cluster (HTC) for 5G deployments. We propose a novel
approach assisted by real data to determine the appropriate number of clusters k and to identify the HTC.
The algorithm, named as NetClustering, determines the HTC and appropriate value of k by fulfilling MNO’s
requirements on the highest traffic density MB/km2 and the target deployment area in km2. To compare
the appropriate value of k and other performance parameters, we use the Elbow heuristic as a benchmark.
The simulation results show that the proposed algorithm fulfills the MNO’s requirements on the target
deployment area in km2 and highest traffic density MB/km2 with significant cost savings and achieves
higher network utilization compared to the Elbow heuristic. In brief, the proposed algorithm provides a
more meaningful interpretation of the underlying data in the context of clustering performed for network
planning.

INDEX TERMS 5G, network planning, machine learning, network clustering, network data acquisition,
cluster analysis, elbow method.

I. INTRODUCTION
The 5G and beyond is ideated for the provisioning of use
cases defined by 3GPP, from ultra-reliable low latency com-
munication (URLLC) services to enhanced mobile broad-
band (eMBB) and massive machine type communications
(mMTC) [1]. These use cases are offered as services that
should be capable to sustain the tight requirements needed
by applications like virtual reality, vehicle-to-all (V2X)
and mission critical communications. Inevitably, network
infrastructures supporting 5G services are being planned.
In this respect, network planning assisted by real network
data is of utmost importance as the process of identify-
ing the highest traffic region (per km2) at cluster level,
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determining the appropriate number of clusters and to provide
lower cost per bit. Network planning not only provides the
intended coverage and capacity to the subscribers [2], [3]
but it is also an effective way to reduce capital and opera-
tional expenditure (CAPEX and OPEX, respectively) for the
MNOs [4], [5].

A substantial attention has been devoted to network plan-
ning for 3G/4G networks [6]–[10], though it is confronted
with several challenges for new 5G deployments [11], includ-
ing the cost-efficiency [12], the service and electromagnetic
fields (EMFs) constraints [13], the adoption of numerol-
ogy and bandwidth part (BWP) using new radio (NR)
[14]–[16], identification of highest traffic region in
ultra-dense networks (UDNs) [17], [18], machine learn-
ing (ML) and data-driven decision making capabilities of 5G
networks (see for instance [19]–[22]).
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Traditionally, network planning utilizes forecast data or
estimated traffic demand, to provide extended coverage or
capacity enhancements in the target area [23]–[25]. However,
the requirements of new 5G use-cases demand data-driven
network planning to deliver ultra-low latency, higher data
rates, ultra-reliable network deployments [26] with lower cost
per bit. The network data acquisition for traffic and infras-
tructure information of an MNO endows network planning to
deploy network with lower cost per bit [27] by identifying
the densest traffic region. Therefore, the proposals for 5G
network planning should not only explore how to deal with
data acquisition but also include data-driven decision making
by adopting appropriate ML techniques.

Different studies investigate ML and big data aspects for
next generation networks (NGNs) [28]–[30]. The NGNs are
expected to be highly complex systems due to heterogeneity
in devices, networks, services and application requirements.
ML techniques have versatile accomplishments in adapt-
ing big data analytics, data-driven decision making, correct
parameter estimation and multi-objective optimization prob-
lems [31], [32]. Both ML and big data approaches can be
applied to NGN scenarios and techniques including mas-
sive multiple-input multiple-output (mMIMO), machine to
machine (M2M), vehicular ad-hoc networks (VANETs) or
internet of things (IoT) [33]. At the same time,ML techniques
can play a very important role in bringing new frameworks
of data analytics for efficient control, operation, optimization
and network planning of 5G and beyond [34], [35]. In par-
ticular, clustering techniques have received much interest in
the academic community to handle network problems in a
variety of settings, like CR [36], mobile ad-hoc networks [37],
VANETs [38], [39], wireless sensor networks [40], [41],
IoT [42], [43], fog computing alongside with small cells [44],
[45] and 5G [46].

In this work, we propose a network planning algorithm
to perform network clustering and provide highest traffic
cluster (HTC) as a deployment area for new 5G services
fulfilling the MNO’s requirements of the traffic density and
lower cost per bit. We utilize available real mobile data [47]
with an unsupervised clustering technique to identify the
HTC of minimum cost per bit. This study contains substantial
contributions that distinguish it from the existing work on
clustering-based network planning. In the first place, real
open data are used with the k-means clustering technique to
clusterize the MNO’s area into k clusters. Second, an algo-
rithm is proposed to identify the HTC and appropriate value
of k , based on MNO’s requirements which are not previously
investigated in the existing literature.

The manuscript is organized as follows. In Section II,
we provide the state of the art for clustering techniques
adopted in several network problems. Consequently, we con-
textualize clustering for network planning in Section III.
In Section IV, we develop our approach of proposed frame-
work for clustering and analysis to determine appropriate
value of k and to identify the HTC. Section V contains a
detailed explanation of the developed algorithm while the

traditional Elbow method is discussed in Section VI. Finally,
we present our results and conclusions in Sections VII
and VIII, respectively.

II. RELATED WORK AND CONTRIBUTION
In mobile communication networks, clustering has been
mainly applied from two viewpoints, namely to associate
users and BSs according to a defined criterium to clus-
ter them. These criteria may range from interference mini-
mization to throughput maximization and spectral efficiency
improvement. In this section we compile the most relevant
areas for network-related clustering.

From a user-centric perspective, a number of works have
addressed throughput maximization [48]–[50]. The authors
of [48] study resource allocation tomaximize user throughput
and the clusters are formed by taking into account the phys-
ical distance and social ties between the users, also ensuring
fairness among the clusters. In [49], a joint clustering plus
scheduling algorithm is proposed to maximize throughput
by limiting the cluster size. The cluster size is associated
with the increase in the number of users in terms of fairness
and throughput degradation. To balance the trade-off between
throughput and fairness a dynamic power optimization and
user allocation problem is investigated in [50] with a limit of
two users per cluster to enhance throughput, resulting in fixed
members and a large number of clusters.

Users clustering has also been investigated to improve
spectral and energy network efficiency [51]–[53]. In [51],
a two-step clustering scheme first divides small cells into
disjoint cell clusters according to the neighboring relationship
and then the UEs in each cell cluster are further grouped into
UE groups with the target of minimizing intra-cluster inter-
ference. A final two-step power allocation schememaximizes
the network energy efficiency. A statistical framework has
been proposed in [52] to improve both spectral and energy
efficiency, being the cluster size sensitive to changes in user
and BS densities. In [53], the authors propose users clustering
to enhance energy efficiency by lowering signaling overhead.
In this work, the user with the best channel quality will com-
municate with the cellular BS on behalf of the whole cluster
to reduce overhead and minimize energy consumption. How-
ever, as a large cluster size means high intra-cluster signaling
overhead, the cluster size is bounded by the overhead gen-
erated inside the cluster. Besides, VANETs offer a suitable
scenario to study vehicles clustering to face some challenges
that characterize vehicular networks. The clustering of vehi-
cles is explored in [54] based on their moving speeds, the
number of hops and road conditions where provisioning of
desired data rates is achieved by serving users with different
clusters. In [55], the authors propose vehicle clustering up
to three hops to get stable clusters in terms of low latency
and high packet delivery. By limiting the number of clus-
ters, they overcome the handover problem and achieve better
connectivity. In [56], an SDN-based scenario is investigated
where the clustering technique is adapted to cluster vehicles
based on data acquisition of real-time road conditions. The
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results show that the packet delivery significantly improves
by forming clusters based on real-time road conditions.

Interference management has long been a popular issue
investigated in the context of BS clustering. The authors
of [57] propose a clustering strategy to mitigate inter and
intra-cluster interference. It is investigated that the higher
threshold interference formulates smaller-size clusters and
also minimizes the overhead and network latency. In [58],
a greedy approach is used to form clusters by randomly
selecting an initial BS as a cluster head and adding nearby
BSs until the cluster size threshold is reached. The analysis
shows lower interference when the cluster sizes are small
and a higher cluster size can be seen as a compromise with
the inter-cell interference. The optimization technique of BS
clustering proposed in [59] makes use of antenna down-tilt to
limit the interference to a small number of cells where the BSs
that are jointly serving the users are clustered together. The
authors conclude to recommend smaller tilt of the antennas
residing in the same cluster and large tilt for antennas of the
other clusters.

Transversal to clustering areas is how to determine the ideal
cluster size or number of clusters, a critical factor for solving a
particular network problem. For instance, the problem of con-
gestion due to large scale data communication is addressed
in [60]. The appropriate number of clusters is determined
by simulation and analyzing the variations in packet delay,
packet loss and the number of vehicles in corresponding
clusters. Increasing the number of clusters reduces the num-
ber of collisions, lowers the packet loss ratio and prevents
congestion. The authors of [61] propose a novel scheme to
adjust the size and the number of clusters in a large-scale
cloud radio access network (C-RAN) where the processing
and computational complexity of large scale channel metrics
is enhanced by clustering. In [62], a clustering technique
is proposed to regulate cluster size such that users need to
take permission from BS before joining the cluster. When
the cluster size is small, there is insufficient multichannel
diversity, which reduces the transmitter’s gain. When the
cluster size increases, the multichannel diversity improves,
and thus enhances the retransmission efficiency.

Foregone in review of the above literature, our question
remains unanswered, that is what should be the appropriate
size or number of clusters from a network planning perspec-
tive. Though some works have addressed clustering-based
network planning in the past [63]–[66], they cannot be
straightforwardly applied to 5G networks due to the very
different requirements. Some previous studies have incorpo-
rated clustering to network planning [67]–[70]. The authors
of [67] used clustering approach for cell planning such that
the signaling overhead is minimized. In [68], a clustering
approach is used to automate the 5G network planning by
identifying the appropriate geographical locations for BS
placements based on service quality targets and regulatory
constraints. Another work in [69], proposes a network plan-
ning tool based on a clustering algorithm to optimize service
quality in order to meet the desired targets. The work of [70]

proposes a framework to process input data from several
sources and perform learning-based clustering to enhance
self-planning, self-healing and self-optimization capabilities
of 5G networks. However, traffic density, network utiliza-
tion, MNO’s requirements and cost per bit discussions in
the context of BS clustering are not jointly addressed in the
present-day literature. In the next subsections, the takeaways
from the literature review are provided followed by authors’
contributions.

A. TAKEAWAYS
Based on the above discussion, we find that clustering for
users and BSs is being conducted on many performance
measures like throughput, spectral and energy efficiency,
interference, latency and high packet delivery concerning
particular use cases. The same performance indicators reg-
ulate the cluster size or number of clusters. Traditionally, the
clustering techniques have been examined in diverse network
problems, though, disclosing insights from real network data
such as traffic load and infrastructure information of the
BSs is not addressed. To overcome the gaps we consider
real network data and new performance metrics to cater
the cost minimization and regulate the number of clusters.
The new technological knowledge sought in this study is the
correlation of clustering, network planning and performance
metrics like target area (km2), traffic density (MB/km2), cost
per MB ($) and network utilization (%). These performance
metrics are considered in the context of MNO’s financial and
technical requirements in the proposed clustering framework.

B. CONTRIBUTIONS
This study proposes a clustering methodology in the context
of network planning. In brief, this paper brings the following
contributions:

1) We propose the utilization of an unsupervised cluster-
ing technique assisted by real network data to deter-
mine the 5G deployment area.

2) In contrast to the conventional method, a new method-
ology is proposed that incorporates the MNO’s crite-
ria in computing the appropriate number of clusters
denoted by k .

3) We develop and propose a learning based network clus-
tering algorithm to identify the highest traffic density
cluster (HTC) which serves as 5G deployment area to
offer new services with minimum cost per MB.

III. CLUSTERING FOR NETWORK PLANNING
The advent of 5G in recent years suggests that the new
network deployments will be carried out by identifying the
densest traffic area per km2 in order to minimize cost per
bit by achieving higher network utilization. We consider the
cost per bit metric that is being utilized in several disciplines
e.g., electronics, information theory, satellite systems, optical
and communication networks to model and analyze the cost
associated with the delivery or transfer of data (see [71]–[75]
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for details) in order to decide cost-effective solutions. It is
an efficient metric to model different parameters and con-
duct comparisons across MNO’s network, technologies and
spectrum. The cost per bit values are usually considered as
absolute e.g., $15 perMB or GB depending on the considered
model and scenario. In this study, we consider delivery of data
between user and BSwhose associated cost perMB is consid-
ered corresponding to the geographical area of cluster (km2)
based on an appropriate value of k , traffic density MB/km2

and the network utilization (%). The network utilization is
based on the MNO’s traffic density which reveals different
traffic loads with respect to geography. The MNO’s traffic
and infrastructure information can be acquired through the
network data with the aim to determine the highest traffic
region at cluster level. The utilization of the legacy network
data in this regard can be beneficial to reveal traffic and
infrastructure correlations. As an alternative to conventional
data sources, crowdsourced real network data of the MNO
can be utilized for planning of 5G and beyond to infer about
network traffic and infrastructure.

When the data is available, the following step is to choose
which learning technique is best suited to the data’s labeled
or unlabeled nature. Supervised learning is defined by its
use of labeled datasets for classification or regression prob-
lems [76]. Given the unlabeled nature of the crowdsourced
data, we believe that unsupervised clustering assisted by
real network data can reveal insights into the highest traffic
density area. In unsupervised learning, clustering refers to
revealing unseen patterns from the unlabeled data in the form
of k clusters [77]. It consists of the organization of data in
a way that there is high similarity in intra-cluster compared
to lower inter-cluster similarity [78]. For clustering problems,
the k-means clustering technique is widely adopted for traffic
analysis, network analytics, data mining and pattern recogni-
tion [79].When compared to the algorithms of the same class,
k-means ensures convergence, reconfigurability, automation,
scalability, high computing efficiency and low computational
complexity with large datasets [80]. Researchers show that
the k–means clustering provides exceptional results in net-
work traffic classification with a precision of up to 90% [81].
However, choosing the right value for k i.e., the total number
of required clusters plays a significant role in revealing the
accurate insights from the considered data.

The widely used legacy method to determine the value of
k is Elbow method [82], [83] that does not interpret the data
insights while suggesting the k value. However, we believe
that determining the value of k is subjective in the context of
what one is trying to achieve with the given targets and con-
straints. Therefore, considering the crowdsourced network
data, we scrutinize the value of k determined by Elbow
method in the context of achieving the MNO’s requirements.
The appropriate value of k has two fold importance for the
MNO. First, the value of k corresponds to the coverage area
of the clusters that compromises the deployment cost related
to the adequate number of radio sites. Second, the number
of clusters k correlates with the traffic density MB/km2

FIGURE 1. Illustration of clustering for network planning with smaller
(a) and larger (b) value of k clusters in 7× 7 km2 boundary. The dots in
the figure represent the legacy BSs where solid boundaries represent
clusters. To simplify the HTC identification, we consider that a unit traffic
sample is captured per BS and each BS provides coverage in a unit area.

which decides the potential network utilization of the newly
deployed gNBs (Next Generation Node-B).

Consider the illustration of small and large values of k as
provided in Fig.1(a & b), respectively. In the case of smaller
value for k = 3, the corresponding clusters (C1 to C3) are
bigger in size as compared to the clusters (C1 to C6) for
k = 6. For k = 3, the accumulative traffic samples of BSs in
C3 is 21 which identifies it as an HTC compared to C2 and
C3. On the other hand, for k = 6 the total number of traffic
samples for HTC C4 is 12. The HTC of k = 3, namely C3,
has a larger coverage area compared to HTC of k = 6, namely
C4, as shown in Fig.1(a & b), respectively. Therefore, a large
number of gNBs will be required for C3 to deploy new 5G
services which will result in a higher deployment cost and
the network may be over-budgeted if the financial limit of
the MNO is exceeded. Besides, traffic density MB/km2 will
be lowered which may yield to the under-utilization of the
network. As a result, the under-utilization of the network will
eventually raise the cost per MB for the MNO. In contrast,
C4 of Fig.1(b) has a smaller coverage area which means that
MNO will be offering its new 5G services to a very limited
area with a smaller number of deployed gNBs compared to
C3 of Fig.1(a). However, the traffic density MB/km2 of C4
will be higher, which means traffic demand is higher and may
result in an over-utilized network. In this case, the deployment
cost may be under-budgeted and the cost per MB will be
decreased but at the same time, MNO will not be able to
reach a larger number of subscribers due to the smaller cov-
erage area. Therefore, clustering for network planning should
be incorporated in terms of cost-effectiveness and improved
network utilization. An adequate strategy is required to han-
dle not only the MNO’s budgetary limits, but also network
over/under-utilization. The proposed clustering framework is
developed on real mobile data to ensure that the network
utilization is improved and the cost per MB is minimized.

IV. NETWORK CLUSTERING FRAMEWORK
In this section, we introduce the vision of network clustering
which will be fully developed in Sections IV-A to IV-D
following the scheme of Fig.2. In this study, we use network
data from OpenCellID [47] database to reveal insights of the
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FIGURE 2. Network clustering framework with Network Data Acquisition entity along with Clustering and Radio
Network Dimensioning algorithms to provide corresponding parameters for Cluster Analysis to provide 5G
deployment area (5GDA).

MNO’s network related to traffic density and infrastructure.
In our previous study [27], we address the acquisition, selec-
tion, cleaning, features, size and format of the database. The
database matrix D for Spain contains the raw data, being E
the number of samples in millions, and each row de of D
represents a data point de = (re,me, te, ne, le, se). Hence,
D := {de}Ee=1 ∀ de ∈ Rv, where v = 6 represents the number
of data variables:

D =



r1 m1 t1 n1 l1 s1
r2 m2 t2 n2 l2 s2
...

...
...

...
...

...

re me te ne le se
...

...
...

...
...

...

rE mE tE nE lE sE


,

• re: radio access technology (RAT) of row e.
• me: mobile network code (MNC) of row e.
• te: tracking area code (TAC) of row e.
• ne: cell ID (CID) of row e.
• le: bi-dimensional location of the cell with latitude and
longitude le = (l1e , l

2
e ).

• se: number of samples of row e.

The network data acquisition entity of Fig.2 processes
the database D through two phases, i.e., Pre-Selection and
Post-Selection. The Pre-Selection phase acquires the MNO’s
data while the Post-Selection phase ensures reliability of the
acquired data. Consisting of these two phases, the network
data D of the MNO m is processed by the NetDataDrilling
Algorithm (see [27] for details) to find h (highest traffic TAC
ID), as shown in Fig.2. The corresponding geographical area
of the TAC ID h is represented by Ah. The network data
corresponding to h is then fed to the clustering algorithm
which is used to divide the area Ah into k clusters. For cluster-
ing we used the k-means learning algorithm, to be discussed
in Section IV-A. The clusters obtained from the k-means
technique are evaluated based on the traffic samples to deter-
mine the HTC (labeled as v), described in Section IV-B.

Next, we perform radio network dimensioning to determine
relevant parameters of the HTC (see Fig.2). The conventional
radio network dimensioning (CRND) is performed for HTC
to determine the site range Rv and the area Av covered by the
HTC, to be discussed in Section IV-C. At the same time, net-
work dimensioning for new 5G services is performed for the
area under HTC with the objective to determine the offered
capacity βv, minimum offered data rate rmin and the required
radio sites Zv. Finally, cluster analysis is performed that is the
nucleus of our study to determine the appropriate k fulfilling
the MNO’s requirements of coverage area Av and the highest
traffic density Dv MB/km2, to be discussed in Section IV-D.
TheMNO’s requirements are provided as bounds on coverage
area (al, au) and the traffic density (dl, du). In cluster analysis,
we formulate the problem of estimating the potential network
utilization Pv and the cost per MB Cv of the HTC given that
theMNO’s requirements are fulfilled. The result of the cluster
analysis is the 5G deployment area Av (km2) and the traffic
density MB/km2 of the HTC (see Fig.2) with lowest cost per
MB Cv and highest network utilization Pv.

The different entities of this framework are developed in
the subsequent sections.

A. CLUSTERING ALGORITHM
The k-means clustering is an efficient and unsupervised ML
algorithm widely used to clusterize data into k clusters [84].
The k-means method consists of a twofold mechanism; first,
it selects k data points known as centroids and other data
points are assigned to the corresponding closest centroids
based on Euclidean distance. Second, once the clusters are
formed, re-computations are performed for the centroids of
each cluster. This mechanism iterates until the cluster forma-
tion converges. The k-means algorithm tends to minimize the
following objective function:-

k∑
j=1

E∑
i=1

||x(j)i − cj||
2, (1)
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where ||x(j)i − cj||
2 represents the distance between data point

x(j)i and the centroid cj of the jth cluster. In our study, there
are E data points that represent the geographical coordinates
of the cell towers inside the area Ah. In the database D,
x(j)i represents the latitudes and longitudes (l1e , l

2
e ) of the cell

tower i inside the jth cluster. The latitudes and longitudes
(l1e , l

2
e ) of the cell towers are fed to the k-means to clusterize

the area Ah with respect to the Euclidean distance.

B. HIGHEST TRAFFIC CLUSTER
The HTC refers to the cluster with the highest number of traf-
fic samples corresponding to the cell towers residing inside
that cluster. The objective to find the HTC is to determine
the geographical area of the subscribers with the highest
traffic demands. Thus, when the clusters are obtained from
the clustering algorithm we aim to find the HTC among the
k clusters. Compared to other clusters, HTC carries highest
traffic density MB/km2 which maximizes the network uti-
lization and decreases the cost per MB for the MNO. The
computation of the HTC is based on the aggregated number
of samples of all the existing cell towers as:-

v = argjmaxV j,

V j
=

E∑
i=1

sj,i, ∀j = 1, . . . , k, (2)

where v is the cluster label of the HTC which contains a
unique set of cell towersN = {n1, . . . , ne, . . . , nE }, where ne
represents the CID andN = |N | is the total number of towers
in HTC. The term sj,i refers to the traffic samples of the cell
tower i inside the cluster jwhere as the variable V j represents
the total number of traffic samples of the jth cluster.

C. RADIO NETWORK DIMENSIONING
Radio network dimensioning (RND) is an essential phase of
network planning process to determine the required number
of radio sites and cell range such that the coverage and capac-
ity requirements are fulfilled depending on path loss, transmit
power, data rates and frequencies [27]. For 4GBSs the CRND
approach is used where the corresponding 4G frequency
bandwidth and related data rate are considered to obtain
coverage area of legacy sites. We determine 4G coverage
area based on CRND as the current users are being provided
coverage by 4G. In this way, determination of required radio
sites is achieved in order to provide coverage by new gNBs.

In this study, RND is performed for the HTC in order
to calculate its area based on the coverage provided by the
4G cells. The coverage area of the HTC enables network
planners to decide the radio and capacity requirements of the
new network deployments. Since, the network data belongs
to the legacy network we use the CRND approach of LTE.
We perform CRND to determine the site range Rv of the cell
tower inside the HTC. We compute the site range Rv in order
to estimate the coverage area Av of the HTC based on LTE

service model [6], [8], [27] as:-

Av = Waux · A · R2v, (3)

whereWaux is the number of cell towers within the HTC and
A = 1.95 is the area coefficient.

On the other hand, we perform service-based network
dimensioning (SBND) with NetDimensioning algorithm [27]
for the HTC area Av based on frequency and data rates of
5G. In contrast to CRND, 5G SBND is performed with the
NR parameters to obtain the required gNB sites to provide
coverage in Av and to determine the required capacity in the
area. The SBND algorithm [27] provides the capacity β of a
gNB, minimum data rate rmin and the number of radio sites
Zv required in HTC area. Thus, the cost Yv associated with the
deployment of gNB sites under the HTC area is determined
as:-

Yv = Zv · ϑ, (4)

where ϑ is the cost of deployment per gNB in dollars [85].
The aggregated network capacity of the HTC βv in MB can
be determined in the same manner as:-

βv = rmin · β · Zv, (5)

where rmin is the minimum data rate offered by the designed
capacity β when all the users per gNB are active in the HTC.
The designed capacity β is obtained by probabilistically
characterizing the 5G radio resource control (RRC) states
such that the data rates are guaranteed for MNO’s defined
percentage of time (see the capacity model of [27]).

D. CLUSTER ANALYSIS
The cluster analysis is the core of our framework to determine
the network parameters and adapt the appropriate value of
k such that the MNO’s requirements of the traffic density
MB/km2 and deployment area km2 are fulfilled. The MNO’s
requirements are not only considered to cater for the financial
constraint but also to improve the efficiency in the context
of network utilization. The financial constraint controls the
deployment cost of the target area where new 5G services
will be deployed. At the same time, these services likely to be
offered within the area of highest traffic density in MB/km2,
thus, achieving the higher network utilizationwith lowest cost
per MB for the MNO.

We define traffic density of the HTC as Dv in MB/km2.
The traffic density Dv depends on the number of samples sj,i

of the cell tower i of cluster j and the coverage area Av of the
cluster. Thus traffic density Dv is computed as:-

Dv =

∑E
i=1 s

j,i

Av
, ∀j = 1, . . . , k. (6)

Next, we compute the network utilization which is a very
important parameter in determining the cost per MB of the
HTC. Supported by SBND, each user in the HTC will expe-
rience data rate equal to rmin. Hence, we consider that the
minimum volume of traffic transferred between user and the
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BS is represented by the conversion of traffic samples (sj,i)
into current network utilization Tv in MB as:-

Tv = α · rmin ·
E∑
i=1

sj,i, ∀j = 1, . . . , k, (7)

where there are α = 0.125 bytes in a bit which is used to
convert bits into bytes and the term

(∑E
i=1 s

j,i
)
represents

the total number of samples of cluster j. Thus, the cost Cv per
MB of the HTC is a function of the total deployment cost Yv
of the gNBs and the current network utilization Tv as:-

Cv = Yv/Tv. (8)

To determine the potential network utilization Pv percent-
age of the HTC, we can use the aggregated network capacity
βv in (5) as:-

Pv =
(
Tv
βv

)
· 100 (9)

where Tv is the current network utilization in (7).
The two relevant metrics in the proposed framework are

the coverage area Av and the traffic densityDvMB/km2 of the
HTC. The constraints to determine the appropriate value of k
are translated as MNO’s requirements for new 5G deploy-
ments which are controlled by bounds on the deployment
area (al 6 Av 6 au) km2 and on the traffic density (dl 6
Dv 6 du) MB/km2 of the HTC, respectively. These upper and
lower bounds are imposed qualitatively but not quantitatively,
though, the translation may not be obvious. The coverage
area Av in km2 is constrained by the MNO to control the
financial aspect of the deployment as larger clusters imply
higher deployment cost. Therefore, over or under-budgeting
for the new 5G deployments is handled with the introduction
of Av. On the other hand, traffic density Dv in MB/km2 is the
second requirement of the MNO to achieve adequate level
of network utilization to handle cost per MB. As the higher
Dv, the higher the traffic and the lower the cost per MB, and
vice versa. We need to ensure that the network is not under
or over-utilized, thus bounds on Dv are imposed accordingly.
To introduce these MNO’s requirements within the proposed
framework a network clustering algorithm is introduced that
is to be discussed in the next section.

V. NETWORK CLUSTERING ALGORITHM
This section presents the network clustering algorithm which
is the implementation of the proposed framework presented
in Fig.2 and whose pseudocode is given in Algorithm 1.
We recall that, to the best of our knowledge, this is the
first network clustering proposal taking into account radio
dimensioning, MNO’s requirements of coverage area Av and
traffic density Dv MB/km2 assisted by real network data.
In this section, we develop the proposed algorithm, named as
NetClustering, to clusterize Ah and to determine the appro-
priate value of k according to the MNO’s requirements. First,
we use k-means to clusterize the geographical area Ah in
to k clusters and identify the HTC. We perform the CRND

Algorithm 1: Network Clustering

1 procedure NetClustering(D, α, ϑ, rc, al, au, bl, bu)
2 Vaux ← 0
3 Waux ← 0
4 result ← 0
5 [h]← NetDataDrilling(D)
6 D(te) = h
7 for all k← Kmin to Kmax do
8 [L]← k-means(k,D(te, le))
9 for all ne ∈ L

10 p← q : ne = L(q) do
11 if ne = D(ne) then
12 Vaux(p)← Vaux(p)+ se
13 Waux(p)← Waux(p)+ ne
14 end
15 end
16 Find index v : maxVaux
17 Lv← L(v)
18 [Rv]← CRND(rc)
19 Av← Waux(v) · 1.95 · R2v
20

[
Zv, β, rmin

]
← NetDimensioning(Av)

21 Yv← Zv · ϑ
22 Tv← α · rminx · Vaux(v)
23 Dv← Vaux(v)/Av
24 βv← rmin · β · Zv
25 Cv← Yv/Tv
26 Pv← (Tv/βv) · 100
27 if (al 6 Av 6 au) ∧ (dl 6 Dv 6 du) then
28 update result;
29 end
30 end
31 result ← [Cv,Pv,Lv]

technique to determine LTE site range Rv and compute the
area Av of the HTC. We also perform SBND technique by
NetDimensioning algorithm to get the required number of
radio sites Zv, gNB site capacity β and the minimum data
rate rmin for the HTC. We develop the mechanism to ana-
lyze the clusters and corresponding network traffic from real
mobile data following the MNO’s requirement to determine
the appropriate value of k .

The proposed NetClustering (Algorithm 1) is developed to
work out two problems. First, it performs the data acquisition
by the NetDaraDrilling procedure and determines the area
Ah. Second, based on MNO’s requirements it acquires the
appropriate value of k and determines the HTC for new 5G
deployments. It requires the following inputs:

• The network database D
• The conversion constant α
• The deployment cost ϑ of a gNB
• The peak datarate rc for LTE
• The lower and upper bounds on Av as (al, al)
• The lower and upper bounds on Dv as (dl, dl)
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The proposed algorithm is designed to be evaluated on a
range of k = [Kmin,Kmax]. We introduce some auxiliary
variables to store intermediate results. Vaux represents the
summation of the samples of those cells within HTC for each
k , then having a dimension equal to k . Waux represents the
summation of cell towers inside the HTC (with dimension
equal to the number of cells forming the HTC).

First, we call the NetDataDrilling procedure [27] to obtain
the TAC ID h of the highest traffic TAC area Ah (step 5).
The data points corresponding to h are represented inD(te) in
step 6. Next, network clustering is performed for each k (for
loop in step 7). In step 8, clustering is performed by calling
the algorithm for the corresponding value of k . We pass the
coordinates of the cell towers (le = (l1e , l

2
e )) of the area Ah as

D(te, le). The output of the k-means algorithm is given by the
set of cluster’s label inL having dimension equal to k . To sum
the traffic samples per cluster, we begin the loop) in step 9,
keeping in p the index of the ne CIDs (step 10) belonging to
the k clusters. In step 11, if CID ne belongs to D(ne) we save
the aggregated traffic samples per cluster inVaux (step 12) and
the number of cell towers per clusters are provided in Waux
(step 13). In step 16, we find the index v of the HTC and the
corresponding label is represented by Lv (step 17).
Next, CRND procedure is called (step 18) to obtain the cell

tower range Rv in the HTC area. Based on Rv, coverage area
Av of the HTC is computed in step 19. In step 20, the HTC
area Av is provided to NetDimensioning algorithm [27] to get
the required number of radio sites Zv, the gNB capacity β
and rmin for HTC. In step 21, we compute the total cost of
deployment Yv for Zv radio sites to be deployed in the HTC
area Av. Next, in step 22 we compute the current traffic Tv
of the HTC. To obtain the traffic density Dv of the HTC we
utilize (6) in step 23. Next, we compute network capacity βv
(step 24) of the HTC based on the required number of radio
sites Zv and the data rate rmin. Based on the previous computa-
tions, we then determineCv (the estimated cost per MB of the
HTC) in step 25 along with the potential network utilization
percentage Pv in step 26. Finally, the MNO’s criterion is
introduced (in step 27) along with bounds [(al, au), (dl, du)]
on Av and Dv, respectively. Given that the MNO’s criterion is
fulfilled, the results are updated in step 28. Finally, the results
of the HTCs for the range of k = [Kmin,Kmax] are compiled
in step 30.

The complexity of Algorithm 1 is mainly based on three
aspects. First, it depends on the size of the database D
represented by the number of samples E in millions. The
NetDataDrilling procedure in step 5 process D with a finite
number of iterations (see [27] for details). Thus the complex-
ity term for NetDataDrilling can be represented as O(E) +
O(E×|te|)+O(|D(te)|), where |D(te)| represents the number
of TACs in D. Second aspect of complexity reclines on the k-
means algorithm (step 8) to cluster the area Ah in k clusters
with a finite number of iterations given by the for loop in
step 7. Thus the complexity term is represented as O(k ×
|D(te)|+|1K |), where1K represents the granularity to incre-
ment k for the next iteration, respectively. The third aspect

is subject to the complexity of the RND algorithm given by
O(B × |1P| + |1Q|). The term B represent the bandwidth
where cellular services are configured and evaluated for the
transmit power 1P and cell load 1Q granularities for next
iteration [27]. Note that the RND algorithms are indepen-
dently executed for CRND (step 18) and NetDimensioning
(step 20), respectively.

VI. ELBOW METHOD
The Elbow method is primarily based on k-means learning
technique that computes the sum of squared distances (distor-
tions) from each point to its assigned centroid as a function
of k [86]. The appropriate value of k is selected by running
the k-means algorithm across a range of k . The method plots
the distortion as a function of k and choses the k at the point
where distortion drops drastically forming the smallest angle.
The distortions can be calculated using (1) as explained in
the Section IV-A. The pseudocode of the Elbow heuristic is
given in Algorithm 2. We start by initializing the value of
k = 2 in step 1 and clustering is performed for a range
of k = [Kmin,Kmax] (for loop in step 3). We measure the
distortions by using (1) and values are stored in Vk having
dimension equal to k (step 4). In step 5, all the distortion
values are updated to the result for each k and finally result
is returned in step 7.

Algorithm 2: Elbow Heuristic

1 k ← 2
2 result ← 0
3 for all k← Kmin to Kmax do
4 [Vk ]← Calculate distortions with (1)
5 update result;
6 end
7 result ← [Vk ]

The complexity of Algorithm 2 is similar to the k-means
as the distortion values are computed independently by finite
number of iterations of the for loop in step 3. Thus, the com-
plexity of Elbow heuristic is given asO(k × |D(te)| + |1K |),
where 1K represents the granularity of k .

VII. RESULTS AND ANALYSIS
This section presents the results and the corresponding anal-
ysis of the considered parameters of our study, i.e., cost per
MB Cv, potential network utilization Pv (%), traffic density
Dv (MB/km2) and the 5G deployment area Av (km2). The
simulation results of the proposed NetClustering algorithm
are presented and compared with the Elbow heuristic.

The simulation includes the area Ah shown in Fig.3
obtained from the NetDataDrilling procedure [27], where
LTE cell towers are located across the area. The simulation
curves presented in this section have been obtained by aver-
aging the results from 1,000 executions, each corresponding
to one independent, random and uniform users distribution.
In this study, we investigate two scenarios with different
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FIGURE 3. Highest traffic TAC area Ah obtained from NetDataDrilling
procedure [27] where the blue circles represent cell towers corresponding
to their longitudes and latitudes, respectively.

TABLE 1. Simulations parameters.

bandwidth B = {30, 50}MHz, while other simulation param-
eters are provided in Table 1.

Reference to the Algorithm 1, the NetDataDrilling proce-
dure [27] provides the TAC ID h of the area Ah. The database
corresponding to the ID h is fed to the Elbow heuristic, the
Elbow heuristic suggests the number of clusters k = 3,
as shown in the elbow curve of Fig.4. These three clusters
are obtained from the clustering algorithm and are shown
in Fig.5, where HTC is shown with the towers presented
with white circles. On the other hand, the same database
corresponding to the ID h feeds to the proposedNetClustering
algorithm for a range of clusters Kmin to Kmax . The curves
of cost per MB (Cv) and potential network utilization (Pv)
are presented in Fig.6. The network utilization curve has

FIGURE 4. Sum of squared distances or distortion curve obtained from
Elbow heuristic where marked point forming the smallest angle shows
the recommended value of k = 3.

FIGURE 5. Clustering performed in the area Ah for recommended value of
k = 3 by Elbow heuristic, where white circles shows the HTC and big
circles are the centroids.

FIGURE 6. Cost per MB (Cv ) and potential network utilization (Pv ) as a
function of k for two bandwidth scenarios of B = [30, 50], respectively.
The appropriate range of k (21 to 29) is shown by the dotted lines.

a non-decreasing behavior with the increase in number of
clusters from 2 to 100. As k increases, the area Ah tends to
divide into smaller coverage areas per cluster thus increases
both the traffic density Dv MB/km2 and network utilization
Pv, as the services are offered in a limited area within a
smaller cluster size. However, the overall achievable value of
Pv is not more than 20% and 17.4% for B = {30, 50} MHz,
respectively.

The reason for a lower percentage value of Pv is due to the
fact that the designed bandwidth provides more capacity than
the current requirement of the subscribers per cluster. On the
other hand, cost per MB Cv curves tend to decrease with
smaller size clusters as the coverage is provided into a more
concentrated area of subscribers with higher traffic demands.
When the k value is large, it means that the area is divided into
multiple smaller regions, therefore, it becomes convenient
for the MNOs to deploy an adequate number of radio sites
fulfilling the current requirement of the subscriber’s traffic.
The smaller size cluster means that the MNO has to deploy
new radio sites in a smaller area, thus decreases the deploy-
ment cost Yv. Network planning driven on the cluster level
minimizes Cv for the MNOs, however, the opportunity cost is
paid in offering new services within the limited geographical
area. Besides, if the traffic density Dv and Pv are not consid-
ered while deciding the appropriate k , the deployed network
may become over-utilized over time for larger values of k as
more number of subscribers will be acquiring new services
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FIGURE 7. Clusters of the area Ah based on the value of k = 29 provided
by the NetClustering algorithm where towers in HTC are shown with
white circles.

within a smaller concentrated area. In contrast, the deployed
network may become under-utilized with the smaller values
of k , as can be seen in the trend followed by the Pv curves for
both bandwidth scenarios in Fig.6.

The accuracy of NetClustering is evaluated for (20≤ Av ≤
25) and (50 ≤ Dv ≤ 100). Under these bounds the algorithm
reveals the appropriate value of k under the range of 21 to 29,
as shown with dotted lines in Fig.6. The algorithm fulfills the
MNO’s requirements of Av andDv under this range according
to the values provided in Table 1. Within this range, the
highest potential network utilization and the lowest cost per
MB cluster is provided by k = 29 (see dotted lines in Fig.6)
for both bandwidth cases. The clustered area Ah for k = 29 is
presented in Fig.7, with cell towers plotted with white circles.
It is clear that larger value of k = 29 results in smaller
size clusters (Fig.7) compared to larger size clusters for k =
3 (Fig.5). However, the geographical region of the highest
traffic remains the same under the HTC obtained from both
Elbow heuristic and NetClustering algorithm, respectively.
The comparison between appropriate values of k suggested

by Elbow method and NetClustering algorithm is based on
cost per MB Cv, potential network utilization Pv, traffic
density Dv MB/km2 and the deployment area Av (km2) is
provided in Fig.8 for the given bandwidths. The deployment
area Av of HTC is independent of the bandwidth, thus reveals
Av = 123.97 km2 for both bandwidth cases as shownwith the
green bars in Fig.8. In case of NetClustering, the deployment
area is Av = 20.19 km2 and is under the bounds provided
by the MNO. The results (for k = 3, Elbow heuristic) show
under-utilization of the network because coverage is provided
in a larger area while the potential network utilization is lower
with Pv = 5.11% and Pv = 4.28% for B = [30, 50]
MHz cases, respectively. On the other hand, HTC (for k=29,
NetClustering) has better network utilization of Pv = 11.2%
and Pv = 9.42%.
The traffic density values for the Elbow heuristic based

HTC are very low i.e., Dv = 38.17 MB/km2 for both
bandwidth cases, respectively. The lower Dv value uncov-
ers the fact that the formation of the large size clusters
(for k = 3) are not suitable in this region as the traffic

FIGURE 8. Comparison of different parameter’s values of the HTCs
obtained from Elbow heuristic (k = 3) and NetClustering algorithm
(k = 29) for B = [30, 50] MHz cases.

FIGURE 9. Elbow method vs. proposed NetClustering computational
complexity in terms of CPU time (seconds).

load is not much. On the other hand, the HTC obtained by
NetClustering has better traffic density with Dv = 85.16
MB/km2 (for k = 29) as shown in Fig.8 by sky blue bars,
for both bandwidth cases. Moreover, the cost per MB values
Cv = [16.52, 15.65] from NetClustering algorithm are lower
compared to Cv = [36.52, 34.52] values obtained from the
Elbow heuristic, as shown in Fig.8. The lower cost per MB
is due to the fact that the appropriate value of k = 29 results
in smaller size clusters which saves deployment cost of the
MNO and provides cheaper clusters in terms of cost per MB.
Deploying the new 5G gNBs within the smaller size clusters
for k = 29 seems to be a better choice for the MNOs. It saves
the deployment cost Yv and at the same time a lower cost
Cv per MB is achieved with better network utilization Pv
and higher traffic density Dv MB/km2. However, the price
paid is the computational complexity in terms of CPU time,
as shown in Fig.9. The complexity curves are presented by
increasing the number of samples E or data points de by 1
up to 10 million. The NetClustering algorithm consumes
more CPU time, but it is still linear with E. In this case, the
computational complexity is significantly less essential than
the cost, as clustering can be performed off-line on non-real-
time basis.

VIII. CONCLUSION
Revealing insights about the current traffic loads from the
existing network infrastructure assist the network planning
to reduce the cost for the MNOs. In this paper, we show
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the network planning problem of identifying the HTC area
Av of the highest traffic density Dv MB/km2 by employ-
ing clustering based on ML. The appropriate value of k
and corresponding HTC is identified by the NetClustering
algorithm fulfilling the MNO’s requirements on Av and Dv.
We show that the proposed algorithm determines the value
of k such that the potential network utilization Pv is higher
while the cost per MB Cv is minimized. The performance
comparison is evaluated based on cost per MB Cv, traffic
density Dv, deployment area Av and the network utilization
Pv of the HTC. We compare these parameters and observe
that the NetClustering algorithm not only attains up to 45%
cost savings per MB but achieves higher network utilization
Pv compared with the Elbow heuristic. We have evaluated
our proposed algorithm on the two bandwidth scenarios
of 30 and 50 MHz and our algorithm shows consistent
performance.

As future research lines, we are committed to exploring
the ML applications in the context of network data combined
with radio dimensioning of mmWave for 5G and beyond.
In sixth-generation (6G), one of the primary use cases is
ultra-massive machine type communication (umMTC) with
a density of 107 devices per km2. The proposed clustering
framework can be evolved to optimize spectrum and energy
efficiency in large-scale IoT scenarios for newly defined
MNO’s requirements.
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