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Abstract The hunting phenomenon is an intrinsic

swaying motion appearing in railway vehicles due to

the vehicle’s forward speed and the wheel–rail contact

forces. Hunting motion consists of wheelset and other

vehicle’s components oscillations that arise above a

certain vehicle’s speed known as critical or hunting

speed. These oscillations are of unstable nature and

represent a safety hazard as they could lead to the

vehicle’s derailment. This article analyses the stability

of a bogie nonlinear model for a Spanish high-speed

train when this is travelling at speeds near the hunting

speed. The vehicle’s stability is studied by means of

root loci methods, and the value of the critical speed is

found. In addition to this, the behaviour of the vehicle

is studied in both stable and unstable regions and the

existence of limit cycles is discussed in this work.

Finally, a sensitivity analysis of the axle load and

suspension parameters is performed. The results show

that the axle load, the vertical stiffness of the primary

suspension and the lateral damping of the secondary

suspension have a significant influence on the value of

the critical speed.

Keywords Nonlinear system � High-speed train �
Vehicle stability dynamics � Numerical simulation

Abbreviations

HST High-speed train

a Semiaxis of contact ellipse in longitudinal

direction

b Semiaxis of contact ellipse in lateral direction

b1 Lateral distance between bogie frame centre of

gravity and primary suspension longitudinal

springs and dampers

b2 Lateral distance between bogie frame centre of

gravity and secondary suspension longitudinal

springs

b3 Lateral distance between bogie frame centre of

gravity and secondary suspension longitudinal

springs

c11 Kalker’s coefficient

c22 Kalker’s coefficient

c23 Kalker’s coefficient

c33 Kalker’s coefficient
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Cpx Longitudinal primary suspension damping

Cpy Lateral primary suspension damping

Cpz Vertical primary suspension damping

Csx Longitudinal secondary suspension damping

Csy Longitudinal secondary suspension damping

e Half of the track gauge

f11 Lateral creep force coefficient

f12 Lateral/spin creep force coefficient

f22 Spin creep force coefficient

f33 Longitudinal creep force coefficient

FLxi Longitudinal creep force of the left wheel of

the wheelset i

FLyi Lateral creep force of the left wheel of the

wheelset i

FLzi Vertical creep force of the left wheel of the

wheelset i

FRxi Longitudinal creep force of the right wheel of

the wheelset i

FRyi Lateral creep force of the right wheel of the

wheelset i

FRzi Vertical creep force of the right wheel of the

wheelset i

Fsyb Secondary suspension forces

Fszi Force of the secondary suspension in vertical

direction

Fti Flange contact forces

G Shear modulus of steel

g Ratio of contact axes

h1 Vertical distance between the wheelset and the

secondary suspension damper

h2 Vertical distance between the wheelset and the

secondary suspension spring

i Wheelset index (i = 1 for front wheelset, i = 2

for rear wheelset)

Ibz Moment of inertia of the bogie frame around

yaw axis

Iwx Moment of inertia of the wheelset inertia

around roll axis

Iwy Moment of inertia of the wheelset inertia

around pitch axis

Iwz Moment of inertia of the wheelset inertia

around yaw axis

Kpx Longitudinal primary suspension stiffness

Kpy Lateral primary suspension stiffness

Kpz Vertical primary suspension stiffness

Kr Rail stiffness

Ksx Longitudinal secondary suspension stiffness

Ksy Lateral secondary suspension stiffness

L1 Longitudinal distance between bogie frame

centre of gravity and primary suspension

lateral springs

L2 Longitudinal distance between bogie frame

centre of gravity and primary suspension

lateral dampers

mb Bogie frame mass

MLxi Creep torque at left wheel of wheelset i along

longitudinal direction

MLzi Creep torque at left wheel of wheelset i along

vertical direction

MRxi Creep torque at right wheel of wheelset i along

longitudinal direction

MRzi Creep torque at right wheel of wheelset i along

vertical direction

Mszb Secondary suspension torques

Mszi Suspension torque of wheelset i along vertical

direction

mw Wheelset mass

NLyi Lateral component of the normal force at left

wheel of wheelset i

NLzi Vertical component of the normal force at left

wheel of wheelset i

NRyi Lateral component of the normal force at right

wheel of wheelset i

NRzi Vertical component of the normal force at right

wheel of wheelset i

r0 Wheel radius

rL Rolling radius of left wheel

RLxi Longitudinal component of position vector on

left wheel of wheelset i

RLyi Lateral component of position vector on left

wheel of wheelset i

RLzi Vertical component of position vector on left

wheel of wheelset i

rR Rolling radius of right wheel

RRxi Longitudinal component of position vector on

right wheel of wheelset i

RRyi Lateral component of position vector on right

wheel of wheelset i

RRzi Vertical component of position vector on right

wheel of wheelset i

V Forward speed of bogie

Wpa Axle load

yi Lateral displacement of wheelset i

zi Vertical displacement of wheelset i

a Creepage saturation coefficient

d Flange clearance
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dL Contact angle of left wheel

dR Contact angle of right wheel

k Wheel conicity

m Poisson ratio of steel

ui Roll angle of wheelset i

wi Yaw angle of wheelset i

1 Introduction

Railway transport plays a key role in the worldwide

economy. The last available data from the European

Union show that railway transport made a turnover of

more than 68 billion € in 2017 and transported 407

billion passengers per kilometre in 2018 [1]. Over the

decades, in many cases, the development of the high-

speed rail has made the train a convenient alternative

to the aircraft for journeys up to 1000 km long [2].

This has a beneficial impact on CO2 and greenhouse

gas reduction due to the electric nature of high-speed

trains (HST) [3].

A key aspect to guaranteeing the comfort and the

safety of a railway vehicle is to ensure its stability at all

stages of travel. For this, it is necessary to determine

the velocity at which the train’s motion becomes

unstable. The conic shape of the wheels rigidly

mounted on the axle leads to an inherent lateral

displacement on rail vehicles called hunting motion.

At low speeds, hunting motion consists of well-

damped small amplitude oscillations. However, when

the speed is increased up to a certain value, this

oscillation (hunting motion) becomes unstable with

growing amplitude oscillations. The lowest speed at

which this phenomenon occurs is called critical speed

[4]. When this happens, the contact between the wheel

flanges and the rails limits the amplitude of the

oscillations, keeping the bogie within the track. If the

motion is too violent, the oscillations amplitude

increases and the flange–rail contact may become

insufficient to maintain the railway vehicle on the

track and a derailment can happen.

According to Polach [5], bogie stability can be

determined by three methods according to the values

analysed: wheelset displacement, forces between

wheelset and track, and lateral acceleration on the

bogie frame. The two latter require actual measures on

track, while the first method can be applied from both

track measurements or simulation results. The com-

bination of wheelset displacement with other mathe-

matical methods is the preferred method for

establishing the critical speed in the scientific litera-

ture. For example, Schupp [6] studies the critical speed

of a high-speed train by analysing its lateral displace-

ment with the help of bifurcation analysis, root locus

and limit cycles. A similar approach is used by

Zboinski and Dusza [7] for investigating the perfor-

mance of two 4-axle rail vehicles on curved tracks.

Rezvani and Mazraeh [8] study the effects of varying

the axle box clearances, the wheel–rail friction

coefficient and the curve radius on the critical speed

of a freight wagon. They also use the wheelset lateral

displacement as a parameter to establish the critical

speed.

The use of commercial software (as the three

previous works do) makes easier the task of modifying

the rail vehicles and analysing the impact of these

changes in the critical speed. However, most pub-

lished researches use algorithms developed by the

authors to study rail vehicles. Both linear [9–12] and

nonlinear models [13, 14] can be found in the

literature. It is a standard practice that linear models

have as a starting point a set of nonlinear equations

that are linearized around an equilibrium point. This is

the case of the approach used by Lee et al. [15] and

[16], where the authors present the nonlinear equations

of a complex bogie model and then linearize them to

investigate the influence of several parameters on the

bogie’s performance in straight and curved tracks.

Linear models are also used to study the behaviour of

rail bogies in non-standard conditions. For example,

Yao et al. [17] use a linear model of a bogie equipped

with an active mass inertial actuator that controls

lateral vibration improving the bogie’s hunting stabil-

ity. Sun et al. [18] analyse the effect of a defective yaw

damper on the critical speed of the bogie and, hence,

its stability. Other models although being represented

by linear equations, use nonlinear expressions to

describe the contact forces [11, 19, 20]. In this way, the

performance of the railway vehicle as a function of the

wheel–rail contact model can be studied accurately.

On the other hand, full nonlinear models take into

account the couplings existing between the different

DOF and nonlinear effects derived from mechanical

elements. Bosso et al. [21] perform a stability analysis

of a bi-dimensional model of the friction dampers used

in the Y25 freight bogie. Molatefi [22] proposes a
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mathematical model for studying the stability of a

freight wagon which includes several nonlinear effects

such as nonlinear springs and clearances. It is well-

known and has been proved that for any given bogie

model, if a linear approximation is used to determine

the critical speed, the result is always higher than the

critical speed that would be determined by using a

nonlinear representation of the model [7, 23, 24]. This

phenomenon is an important issue to consider when

designing and implementing control methods for

bogie stability as a linear model can lead to overcon-

fident estimations of the stability limits on the vehicle.

In this paper, a 10-DOF nonlinear model of a high-

speed bogie is developed and analysed as the first step

for the development of a digital twin (DT) of a bogie

for maintenance purposes. As Cerutti et al. highlight in

[25], the stages to be covered in a DT are the modelling

and simulation of the physical system to create a

virtual model, data fusion obtained from different

sensors on the physical system, interaction and

collaboration between the physical system and the

DT through sensors and actuators and application in

service. In this sense, in order to develop a DT of the

rolling stock, a previous parameterized model is

needed and developed in this research. First, the

dynamic behaviour of the bogie is analysed for a wide

speed range. The critical speed is computed and then a

sensitivity analysis is performed to understand the

influence of the axle load and primary and secondary

suspension parameters in the critical speed. Based on

this sensitivity analysis, those suspension components

which may have the greatest influence on the stability

of the bogie, and therefore are more likely to

compromise the safety of the high-speed train, shall

be identified. The analysis methods used in this work

study the stability of a nonlinear model by means of

the frozen eigenvalues approach. This is an exten-

sively used approach in the research community due to

various advantages: nonlinear systems stability can be

approached by linear methods, more straight forward

implementation and is more computationally efficient.

The structure of the paper is as follows: The

following section describes the specific trailer bogie

and wheelset under study. Section 3 details the

mathematical model used for the analysis. It consists

of a 10 DOF model yielding a set of nonlinear

differential equations. Section 4 studies the stability

limits of the vehicle and determines the hunting speed

for this type of train. Section 5 shows the hunting

speed sensitivity to axle load, primary and secondary

suspension changes. Section 6 contains the conclu-

sions of this work as well as further research

suggestions.

2 Bogie description

The trailer bogie under study in this work belongs to a

Spanish high-speed train (HST) that started to operate

in 1992. The type of bogie studied is widely used in

HSTs across Europe and other countries. Around the

world, more than 450 trainsets use this type of bogie. It

is designed to withstand axle loads of up to 17 tons at

speeds exceeding 300 km/h.

Each trainset is composed of two power cars (M1

and M2) and eight passenger cars (R1-R8). Each

power car seats on two bogies and each passenger car

seats on two shared bogies (Fig. 2).

The distance between the bogie axles is 3000 mm,

which provides the train with a considerably high

critical speed and good stability properties for a wide

range of running conditions. The bogie under study is

shown in Fig. 3, and its position within the trainset is

shown in Fig. 2.

Each wheelset contains a solid axle, two wheels of

nominal diameter 920 mm and four disc brakes. The

primary suspension of the trailer bogies consists of

concentric helical springs and a vertical damper

between the axle box and the bogie frame. The main

secondary suspension is pneumatic, although it alsoFig. 1 Spanish high-speed train, Atocha Station, Madrid, Spain

[author’s repository]
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has hydraulic dampers in the longitudinal, lateral and

vertical directions.

The parameters of Table 1 are used to create the

bogie model. These data have been obtained from the

manufacturers’ technical documentation within the

joint research project in which the authors participate.

3 Mathematical model

In order to carry out stability studies for the high-speed

train bogie mentioned in the previous section, a ten-

degree-of-freedom (DOF) model following the

approach presented in [15, 26] is derived. This model

considers both the frame and wheelsets’ dynamics:

lateral and vertical motions, yaw and roll angles for

each of the two wheelsets, and the lateral displacement

and yaw angle of the bogie frame. A schematic

configuration of the bogie is shown in Figs. 4 and 5.

The forces and moments acting on each wheelset

‘‘i’’ are shown in the free body diagram in Fig. 6: Fsy

and Fsz are the forces due to the primary suspension,

and Msx and Msz are the torques due to the primary

suspension too. Wi is the wheelset weight, NR and NL

are the normal forces in the wheel–rail contact point,

and FR and FL are the creep forces generated on the

wheel–rail contact.

The bogie’s frame lateral motion yb and yaw angle

wb are given in Eqs. (1) and (2). mb is the frame mass,

Ibz is the moment of inertia around the yaw axis, Fsyb

is the total balance of forces acting on the bogie’s y-

axis, and Mszb represents the total balance of moments

acting on the bogie around the z-axis:

mb €yb ¼ Fsyb ð1Þ

Ibz €wb ¼ Mszb ð2Þ

Equations (3)–(6) describe the lateral yi, and ver-

tical zi displacements, yaw wi and roll /i angles for

each wheelset. The subscript i refers to the front and

rear wheelsets on each bogie and takes values i = 1 for

the front wheelset and i = 2 for the rear wheelset [11].

mw €yi ¼ FLyi þ FRyi þ NLyi þ NRyi þ Fsyi � Fti ð3Þ

mw€zi ¼ FLzi þ FRzi þ NLzi þ NRzi þ Fszi �Wpa ð4Þ

Iwz €wi ¼ �Iwy
V

r0

_/i þ RRxiFRyi � RRyiFRxi

� �
þ RLxiFLyi � RLyiFLxi

� �

þ RRxiNRyi � RLxiNLyi

� �
þMLzi þMRzi þMszi

ð5Þ

Iwx €/i ¼�Iwy
V

r0

_wi þ RRyiFRzi �RRziFRyi

� �

þ RLyiFLzi �RLziFLyi

� �
þ RLyiNLzi þRRyiNRzi

� �

� RRziNRyi þRLziNLzi

� �
þMLxi þMRxi þMsxi

ð6Þ

mw, Iwz and Iwx are the wheelset mass and the wheelset

moments of inertia about the z and x-axis, respectively.

V is the bogie’s forward speed, and Wpa is the axle

load. Note that there are two wheelsets i = {1,2};

therefore, the mathematical model consists of frame

dynamics Eqs. (1)–(2), and two sets of Eqs. (3)–(6),

being this a total of ten second-order differential

equations. The parameters in Eqs. (1)–(6) will be

derived in the following lines.

In order to compute the contact forces that exist

between the wheel and the rail, the authors make use of

Kalker’s linear theory yielding Eqs. (7)–(10):

f11 ¼ abGc22 ð7Þ

f12 ¼ abð Þ3=2Gc23 ð8Þ

f22 ¼ abð Þ2Gc33 ð9Þ

f33 ¼ abGc11 ð10Þ

Parameters a and b are the semi-axes of the contact

ellipse obtained following Hertz’s theory [27, 28]. G is

the steel’s shear modulus and, c11, c22, c23 and c33 are

the Kalker’s coefficients (see [29] for further details):

Fig. 2 Trainset diagram with the studied bogie circled in R8
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c11 ¼ 2:39 þ 2:338tþ 1:014gþ 2:736t2 � 0:0728tg
� 0:0139g2

ð11Þ

c22 ¼ 2:353 � 0:0212tþ 1:074gþ 1:163 � 0:0319g2

ð12Þ

c23 ¼ 0:2866 þ 0:4467tþ 1:049gþ 0:038tg
� 0:0177g2 þ 0:005g3 þ 0:1479g2t ð13Þ

c33 ¼ 0:7375 � 1:177tþ 0:4506gþ 1:076tg
� 0:023g2 ð14Þ

Fig. 3 HST bogie CAD 3D view

Table 1 Model parameters

Parameter Symbol Value

Bogie frame mass mb 1610 kg

Bogie frame moment of inertia around yaw axis Ibz 2.82 9 103 kg m2

Wheelset mass mw 1570 kg

Wheelset moment of inertia around roll axis Iwx 693 kg m2

Wheelset moment of inertia around pitch axis Iwy 121 kg m2

Wheelset moment of inertia around yaw axis Iwz 693 kg m2

Long. distance between bogie frame CG and primary suspension lateral springs L1 1.5 m

Long. distance between bogie frame CG and primary suspension lateral dampers L2 1.5 m

Lateral distance between bogie frame CG and primary suspension longitudinal springs /dampers b1 1.02 m

Lateral distance between bogie frame CG and secondary suspension longitudinal springs b2 1.04 m

Lateral distance between bogie frame CG and secondary suspension longitudinal springs b3 1.34 m

Vertical distance wheelset and secondary suspension damper H1 0.42 m

Vertical distance wheelset and secondary suspension spring H2 0.14 m

Axle load Wpa 15 9 103 kg

Half of the track gauge e 0.7175 m

Wheel radius r0 0.46 m

Wheel conicity k 0.025

Longitudinal primary suspension stiffness Kpx 5.8 9 107 N/m

Lateral primary suspension stiffness Kpy 1.6 9 107 N/m

Vertical primary suspension stiffness Kpz 5.4 9 105 N/m

Longitudinal primary suspension damping Cpx 0 Ns/m

Lateral primary suspension damping Cpy 0 Ns/m

Vertical primary suspension damping Cpz 5 kNs/m

Longitudinal secondary suspension stiffness Ksx 105 N/m

Lateral secondary suspension stiffness Ksy 105 N/m

Longitudinal secondary suspension damping Csx 1.3 9 104 Ns/m

Longitudinal secondary suspension damping Csy 3 9 104 Ns/m

Rail stiffness Kr 1.617 9 107 N/m

Flange clearance d 0.009 m
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where m is the steel Poisson ratio and g is the ratio

between the semi-axes of the contact ellipse, a/b.

On the other hand, the conical wheel seating on a

knife-edge rail is modelled as a linear constraint

function relating the wheel and rail geometries:

dL ¼ dR ¼ k;
1

2
rL � rRð Þ ¼ kyi;

1

2
rL þ rRð Þ ¼ r0

ð15Þ

dL; dR are the respective left and right wheels’ conicity

angles and k is the approximated conicity angle

obtained by small-angle approximation. rL; rR are the

left and right cone radius, r0 is the wheel’s nominal

radius and yi is the corresponding wheelset ‘‘i’’ lateral

displacement.

Creep forces and moments for each wheelset can be

calculated following the approach in Garg and

Dukkipati [26] where creepage saturation [28, 30]

introduces nonlinearities in the model. Equa-

tions (16)–(20) represent the creep forces along the

x, y and z axes and moments around the x and z axes for

the left wheel (L) on each wheelset i:Fig. 4 Bogie model (top view)

Fig. 5 Bogie model (front view)

Fig. 6 Free body diagram

of a wheelset
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FLxi ¼ � aif33

V
V 1 � rL

r0

� �
� e _wi

� �

� � aif11

V
_yi þ rL _/i � Vwi

h i
� aif12

V
wi �

V

r0

dL

� �� �
wi

ð16Þ

FLyi ¼ � aif33

V
V 1 � rL

r0

� �
� e _wi

� �
wi

þ � aif11

V
_yi þ rL _/i � Vwi

h i
� aif12

V
wi �

V

r0

dL

� �� �

ð17Þ

FLzi ¼ � aif11

V
_yi þ rL _/i � Vwi

h i
� aif12

V
wi �

V

r0

dL

� �� �
dL þ /ið Þ

ð18Þ

MLxi ¼
aif12

V
_yi þ rL _/i � Vwi

h i
� aif22

V
_wi �

V

r0

dL

� �� �
dL þ /ið Þwi

ð19Þ

MLzi ¼
aif12

V
_yi þ rL _/i � Vwi

h i
� aif22

V
_wi �

V

r0

dL

� �
ð20Þ

Similarly, creep forces and moments appearing on

the right wheel (R) of each wheelset i are given in the

following expressions (21)–(25):

FRxi ¼ � aif33

V
V 1 � rR

r0

� �
þ e _wi

� �

þ aif11

V
_yi þ rR _/i � Vwi

h i
þ aif12

V
wi þ

V

r0

dR

� �� �
wi

ð21Þ

FRyi ¼ � aif33

V
V 1 � rR

r0

� �
þ e _wi

� �
wi

� aif11

V
_yi þ rR _/i � Vwi

h i
þ aif12

V
wi þ

V

r0

dR

� �� � ð22Þ

FRzi ¼ � � aif11

V
_yi þ rL _/i � Vwi

h i�

� aif12

V
wi þ

V

r0

dL

� ��
dR � /ið Þ

ð23Þ

MRxi ¼ � aif12

V
_yi þ rR _/i � Vwi

h i�

� aif22

V
_wi þ

V

r0

dR

� ��
dR � /ið Þwi

ð24Þ

MRzi ¼
aif12

V
_yi þ rR _/i � Vwi

h i
� aif22

V
_wi þ

V

r0

dR

� �

ð25Þ

ai is the saturation coefficient for each wheelset and it

is found as follows:

ai ¼
1

bi
bi �

1

3
b2
i þ

1

27
b3
i

� �
for bi � 3

bi for bi [ 3

8
<

:
ð26Þ

and bi is used to calculate saturation for the creep

forces as stated by Eqs. (27)–(30):

Fig. 7 HST bogie root loci from initial speed vi = 300 km/h

(') up to vf = 600 km/h (h)

Fig. 8 HST bogie root loci from initial speed vi = 300 km/h

(') up to vf = 600 km/h (h)
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bi ¼
biL þ biR

2
ð27Þ

bij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
xlin�ij þ F2

ylin�ij

q

lN
; j ¼ L;Rf g ð28Þ

Fxlin�ij ¼ �f33nx�ij ð29Þ

Fylin�ij ¼ �f11ny�ij � f12nsp�ij ð30Þ

nx, ny and nsp are the longitudinal, lateral and spin

creepages, respectively, calculated for left and right

wheels as follows:

Left wheel :nxL ¼ 1

V
V 1 � rL

r0

� �
� e _w

� �
;

nyL ¼ 1

V
_yþ rL _/� Vw

h i
; nspL ¼ 1

V
_w� V

r0

dL

� �

Right wheel : nxR ¼ 1

V
V 1 � rR

r0

� �
þ e _w

� �
;

nyR ¼ 1

V
_yþ rR _/� Vw

h i
; nspR ¼ 1

V
_wþ V

r0

dR

� �

The position vectors of the contact points are

indicated in Eqs. (31–36) assuming the displacements

from the equilibrium position are small enough and are

equal to the half of the track gauge:

RRxi ¼ ewi ð31Þ

RRyi ¼ �eþ rR/i ð32Þ

RRzi ¼ �e/i � rR ð33Þ

RLxi ¼ �ewi ð34Þ

RLyi ¼ eþ rL/i ð35Þ

RLzi ¼ e/i � rL ð36Þ

The normal forces of the left and right wheels in the

vertical direction are:

NLzi ¼ NRzi ¼
1

2
Wpa ð37Þ

The normal forces of the left and right wheels in the

lateral direction are:

NLyi ¼ �NLzi tan dL þ /ið Þ � � 1

2
Wpa dL þ /ið Þ

ð38Þ

NRyi ¼ NRzi tan dL þ /ið Þ � 1

2
Wpa dR � /ið Þ ð39Þ

Therefore, the forces and moments acting on the

wheelsets are now given by Eqs. (40)–(43):

Fsyi ¼ �2Kpyyi � 2Cpy _yi þ 2Kpyyb

þ 2Cpy _yb � �1ð ÞiKpyL1wb � �1ð ÞiCpyL1
_wb

ð40Þ

Fszi ¼ �2Kpzzi � 2Cpz _zi ð41Þ

Mszi ¼ �2Kpxb
2
1wi þ�2Cpxb

2
1
_wi þ 2b2

1Kpxwb

þ 2Cpxb
2
1
_wb ð42Þ

Msxi ¼ �2Ksyh1yb � 2Csyh2 _yb � 2b2
1Kpz/i

� 2b2
1Cpz

_/i ð43Þ

The forces and moments acting on the bogie frame

can now be written:

Fsyb ¼ 2Kpyy1 þ 2Cpy _y1 þ 2Kpyy2 þ 2Cpy _y2

� 4Kpy þ 2Ksy

� �
yb � 4Cpy þ 2Csy

� �
_yb

ð44Þ

Mszb ¼ 2KpyL1y1 þ 2CpyL2 _y1 þ 2Kpxb
2
1w1 þ 2Cpxb

2
1
_w1

� 2KpyL1y2 � 2CpyL2 _y2 þ 2Kpxb
2
1w2 þ 2Cpxb

2
1
_w2

� 4KpyL
2
1 þ 4Kpxb

2
1 þ 2Ksxb

2
2

� �
wb

� 4CpyL
2
2 þ 4Cpxb

2
1 þ 2Csxb

2
3

� �
_wb

ð45Þ

The wheelset contact flange forces, Fti, are mod-

elled as a piecewise linear function, being d the

existing clearance between the wheel flange and the

rail and Kr is rail stiffness.

Fti ¼
Kr yi � dð Þ; yi � d
0; �d\yi\d
Kr yi þ dð Þ; yi � � d

8
<

:
ð46Þ

Finally, by introducing Eqs. (16)–(25) and (37)–

(43) into Eqs. (3)–(6) the explicit equations that define

the dynamics of the wheelsets are nonlinear and their

expressions are as follows:
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mw €yi ¼ � 2aif11

V
_yi þ 2aif11wi �

2aif12

V
_wi �Wpa/i

� 2r0aif11

V
_/i � 2Kpyyi � 2Cpyyi þ 2Kpyyb

þ 2Cpyyb � �1ð Þi2KpyL1wb � �1ð Þi2CpyL2
_wb � Fti

ð47Þ

mw€zi ¼ � 2aif11k
2

V
_/iyi �

2aif11

V
/i _yi �

2aif12

V
/i

_wi

� 2aif11r0

V
/i

_/i þ
2aif12k

2

r0

� 2Kpzzi � 2Cpz _zi

ð48ÞIwz €wi ¼
�2eaif33k

r0

yi þ
2aif12

V
_yi þ eWpak� 2aif12

� �
wi

þ �2e2aif33 � 2aif22ð Þ
V

_wi þ � IwyV

r0

þ 2r0aif12

V

� �
_/i

� 2Kpxb
2
1wi � 2Cpxb

2
1
_wi þ 2b2

1Kpxwb þ 2Cpxb
2
1
_wb

.

(49)

¼ 2aif12k
4Wpa

r0

yi �
2aif11 r0 þ ekð Þ

V
_yi

þ 2aif11 r0 þ ekð Þ þ 2aif22k
2

r0

� �
wi

þ IwyV

r0

� 2f12r0

V
� 2f12ak

V

� �
_wi

þ 2k2aif12 þ ekWpa

� �
/i �

2aif11r0 ekþ r0ð Þ
V

_/i

� 2Ksyh1yb � 2Csyh2 _yb � 2b2
1Kpz/i � 2b2

1Cpz
_/i

ð50Þ

Finally, the equations governing the dynamics of

the bogie frame are obtained by substituting

Eqs. (44)–(45) into Eqs. (1)–(2):

mb €yb ¼ 2Kpyy1 þ 2Cpy _y1 þ 2Kpyy2 þ 2Cpy _y2

þ �4Kpy � 2Kpy

� �
yb þ �4Cpy � 2Cpy

� �
_yb

ð51Þ

Ibz €wb ¼ 2KpyL1y1 þ 2CpyL2 _y1 þ 2Kpxb
2
1w1

þ 2Cpxb
2
1
_w1 � 2KpyL1y2 � 2CpyL2 _y2 þ 2Kpxb

2
1w2

þ 2Cpxb
2
1
_w2 � 4KpyL

2
1 þ 4Kpxb

2
1 þ 2Ksxb

2
2

� �
wb

� 4CpyL
2
2 þ 4Cpxb

2
1 þ 2Csxb

2
3

� �
_wb:

ð52Þ

The set of Eqs. (47)–(52) represent the coupled

dynamics of the system under study.

4 Stability analysis

The EN 14363:2016 ? A1:2018 standard [31] sets the

acceptable running characteristics and stability stan-

dards for railway vehicles. For trains whose maximum

running speed is higher than 100 km/h and less or

equal to 300 km/h, stability should be kept for all

speeds up to at least 10% above the maximum running

speed. In the case of trains with a maximum running

speed above 300 km/h, stability should be guaranteed

(at least) up to speeds 30 km/h above the maximum

running speed. In this case, as the maximum speed of

this HST is 300 km/h, the train should be stable at least

up to V = 330 km/h.

Determining the hunting stability of a railway bogie

is key to defining the maximum operating speed of the

vehicle. Stability characteristics have a direct impact

on ride performance, comfort and, ultimately, safety of

these types of vehicles. The hunting speed for the HST

is obtained and the stability boundaries are determined

by means of time-domain response, eigenvalue anal-

ysis and limit cycle characterization.

The ten second-order nonlinear Eqs. (47)–(52) are

transformed into a 20th-dimensional system of first-

order nonlinear equations of the form:

_X ¼ f Xð Þ ¼ A Xð Þ ð53Þ

where An�n, n = 20, is the system’s matrix containing

couplings and nonlinear terms and Xn�1 is the vector

of state’s variables and velocities:

XT ¼ y1; _y1; z1; _z1;w1;
_w1;/1;

_/1; y2; _y2; z2; _z2;
	

w2;
_w2;/2;

_/2; yb; _yb;wb;
_wb


T

Note that expression (53) consists of eight equa-

tions corresponding to wheelset 1, eight equations

corresponding to wheelset 2 and four equations

describing the frame’s dynamics, therefore X is a

vector of ten state variables and ten generalized

speeds.

Equations (53) are solved using the Runge–Kutta

method implemented in MATLAB� and make use of

the HST bogie reference parameters given in Table 1.

The function chosen to solve the differential equations

is ODE45, it implements the Dormand-Prince method

(member of the Runge–Kutta family), and it offers the

best relation between accuracy and computation time

for this problem.
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Initial conditions were chosen to represent a bogie

travelling at an initial forward speed vi = 300 km/h

slowly increased by a positive acceleration a = 0.1 m/

s2 up to a final speed vf = 600 km/h. In this way,

although the model is nonlinear, at each forward speed

the system can be considered as quasi-static and

approximated by a matrix A of constant values. At

each time step of the simulation, the system eigenval-

ues are found, and its complex plane representation is

analysed.

Figure 7 shows the evolution of the system’s modes

that are near the unstable region when the speed is

increased from vi up to vf. The modes are seen to have

different frequencies and all of them are well-damped

except for one that crosses the imaginary axis into the

unstable region at a speed slightly above 400 km/h,

more specifically at 427 km/h. This speed value is the

hunting speed (or critical speed vc). When the bogie

forward speed reaches vc, this mode becomes

undamped and the system is prone to behave in an

unstable manner.

Figure 8 shows a closer view of the mode under

discussion when it crosses the unstable region. At the

lower speed, vi = 300 m/s (triangle) this mode is on

the left-hand side of the complex plane, the system is

stable and it becomes less when speed is increased and

crosses the imaginary axis at vc = 427 km/h.

Figure 9 shows the lateral displacement of the

bogie when the initial speed is increased. It is clearly

seen how the amplitude of this lateral oscillation

increases once the critical speed is reached at 427 km/

h. Even more, the amplitude shows an increasing

tendency which is supported by the mode found to

become unstable at that same speed (Fig. 7). The

zoomed image between 415 and 445 km/h highlights

the instants in which the lateral displacement becomes

Fig. 9 Lateral bogie

displacement from initial

speed vi = 300 km/h and

zoomed-in details of the

unstable region onset
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unstable. It is seen how the constant amplitude

oscillations start increasing in amplitude until these

clearly become unstable.

The value of the critical speed vc can also be

determined by looking at the real part of the root loci

modes. There is only one mode whose real part

becomes positive (blue trajectory) as can be seen in

Fig. 10. The speed at which this mode crosses into the

unstable region is 427 km/h. The rest of the modes

remain stable (real parts negative) although they show

fluctuations in their real part values at speeds just

slightly above the hunting speed. This phenomenon is

due to the creepage saturation and the reaching of the

limit cycle. These fluctuations begin at 450 km/h. At

this forward speed, the bogie is experiencing the

hunting motion and moving laterally from one rail to

the other (see Figs. 9 and 10).

The phase portrait is shown in Fig. 11. It is clearly

visible that the system is stable at speeds below the

critical speed as the trajectory moves from the initial

condition to a stable point located in (0,0). Above the

critical speed vc = 427 km/h, the system describes

limit cycles and, therefore, becomes unstable. How-

ever, the trajectory of the limit cycles is not well

defined until exceeding 450 km/h.

5 Sensitivity analysis

This section studies the influence of the axle load and

suspension parameters on the critical speed of the

bogie. To that end, axle load, primary suspension

stiffness (longitudinal, lateral and vertical), primary

suspension vertical damping, secondary suspension

stiffness (longitudinal and lateral) and secondary

Fig. 10 HST bogie real part

of root loci from initial

speed vi = 300 km/h up to

vf = 600 km/h and zoom of

the transition to the

unstable region
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suspension damping are modified ± 50% from their

nominal values.

The critical speed is determined by finding the

speed at which the real part of the root locus becomes

positive.

Figure 12 shows the evolution of the critical speed

as a function of the axle load. It becomes noticeable

that the critical speed has a strong dependence on the

axle load. The highest critical speed (427 km/h) is

reached near the nominal axle load (1.5�105 -

N * 15 tons). The lowest critical speed (375 km/h)

is obtained when the axle load is low. Increasing the

axle load from the nominal value has a similar effect

and the critical speed reduces as the axle load

increases. Hence, and according to the results, the

bogie is optimized for the nominal axle load.

The influence of the primary suspension parameters

is plotted in the graphs in Fig. 13. According to the

graphs of the longitudinal and lateral stiffness of the

primary suspension, the influence of these parameters

on the critical speed value is limited. When varying the

longitudinal stiffness (see Fig. 13a), the highest crit-

ical speed is obtained for the nominal value. In the

lateral stiffness case (see Fig. 13b), the maximal

critical speed is achieved for the largest stiffness

value.

On the other hand, the vertical stiffness of the

primary suspension has a strong influence on the

Fig. 11 HST bogie phase

portrait from initial speed

vi = 300 km/h up to

vf = 600 km/h. It is split into

two for clarity: from v = 300

to 450 km/h (a) and from

427 to 600 km/h (b)
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critical speed (see Fig. 13c). Larger stiffness values

lead to higher critical speeds (up to 466 km/h). As the

trend is to increase the critical speed, exceptionally the

sensitivity analysis is enlarged up to 2.5 times the

nominal value of the vertical stiffness in order to better

analyse the behaviour. Doing this, it is seen that the

maximum critical speed (467 km/h) is reached when

the stiffness is 9.1 9 105 N/m. Then, the critical speed

begins to drop.

Increasing the vertical damping of the primary

suspension (see Fig. 13d) has a negative effect on the

bogie’s critical speed: it is lower as the damping

becomes larger. However, the speed variation is

within 15 km/h, so the influence of the vertical

damping is limited.

Fig. 13 Evolution of the critical speed as a function of primary suspension parameters

Fig. 12 Evolution of the critical speed as a function of the axle

load
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The influence of the secondary suspension on the

critical speed is plotted in Fig. 14. The longitudinal

and lateral stiffnesses, as well as the longitudinal

damping, have a small effect on the critical speed (see

Fig. 14a–c). Increasing the longitudinal stiffness and

damping increases the critical speed while increasing

the lateral stiffness decreases the critical speed.

However, the maximum critical speed variation

observed is about 10 km/h, which is negligible in

practice.

On the other hand, modifying the lateral damping of

the secondary suspension changes significantly the

critical speed (see Fig. 14d). This is reduced to only

376 km/h for the lowest damping and increased up to

482.5 km/h for the largest damping. Therefore, and

according to these results, the largest available lateral

damping should be set when designing a high-speed

train.

The nine parameters mentioned at the beginning of

this section are also analysed in pairs, which lead to 36

possible parameter combinations. For readability

reasons, they will be only discussed the results of

crossing the axle load with the primary suspension

parameters, the stiffness and damping coefficients

when available and the primary suspension vertical

stiffness with the secondary suspension lateral damp-

ing, as these parameters have the strongest influence

on the critical speed.

Figure 15 shows the performance of the critical

speed when the axle load and the parameters of the

primary suspension are changed at the same time.

Fig. 14 Evolution of the critical speed as a function of secondary suspension parameters
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As was mentioned above when examining the

parameters individually, the longitudinal and lateral

stiffness and the vertical damping of the primary

suspension have a small effect on the critical speed.

Therefore, the shape of the resulting surface is driven

basically by the axle load. The highest critical speeds

are obtained for medium values of the axle load and

the largest longitudinal stiffness in one case (see

Fig. 15a), and the lowest lateral stiffness (Fig. 15b)

and vertical damping (Fig. 15d), in the other two.

On the other hand, the result of changing simulta-

neously the axle load and the vertical stiffness leads to

a great increase in the critical speed as both parameters

become larger (see Fig. 15c). Consequently, and

according to the results, the best strategy to increase

the critical speed of the bogie will be to raise the axle

load and stiff the vertical springs of the primary

suspension as much as possible.

Figure 16 displays the results of changing at the

same time the stiffnesses and dampings of the

suspension.

The simultaneous variation of the longitudinal

parameters (see Fig. 16a) of the secondary suspension

results in a maximum critical speed of 432.7 km/h

when the larger stiffness and damping are used, which

is near the nominal critical speed and, therefore, there

is no strong effect on the critical speed.

However, varying the vertical primary suspension

and the lateral secondary suspension alters signifi-

cantly the value of the critical speed. Regarding the

lateral secondary suspension, it is observed a constant

increment of the critical speed as the damping

Fig. 15 Evolution of the critical speed as a function of axle load and primary suspension parameters
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becomes greater. Indeed, the highest critical speed is

achieved for the largest damping and the lowest

stiffness (Fig. 16b). What concerns the vertical pri-

mary suspension, the main contribution to increasing

the critical speed is due to the stiffness. The maximum

critical speed is achieved for the biggest stiffness and

the lowest damping (Fig. 16c).

The combination of the vertical stiffness of the

primary suspension and the lateral damping of the

secondary suspension (Fig. 16d) allows achieving the

highest critical speed of all possible combinations.

This is reached when the biggest value of both the

vertical stiffness and lateral damping is selected.

Hence, the best way to obtain a higher critical speed

for a given axle load would be to increase the stiffness

of the vertical springs in the primary suspension and

the damping of the secondary suspension lateral

dampers as much as possible.

The specific values at which the highest or maxi-

mum critical speed is achieved are summarized in

Table 2.

6 Conclusions

The paper presents a nonlinear model of a high-speed

bogie with 10 degrees of freedom. The model will be

the first step in the development of a Digital Twin of

the high-speed train for maintenance purposes. Sim-

ulations are performed at travelling speeds from 300

up to 600 km/h. The stability of the system is studied

using the root loci criterion and verified through the

lateral displacement of the wheelset and the phase

Fig. 16 Evolution of the critical speed as a function of suspension parameters
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portrait. The critical speed is established by identify-

ing the travelling speed at which one of the modes of

the root loci crosses into the unstable region.

For nominal conditions, the behaviour of the system

is as follows:

• The system is stable below the critical speed

• The system becomes unstable after exceeding the

critical speed, but the lateral displacements of the

bogie are small between the critical speed

(427 km/h) and 447 km/h.

• Above 450 km/h, the lateral displacements

become larger in amplitude and the bogie experi-

ences hunting motion.

In addition to the above, a sensitivity study is also

carried out in order to determine which suspension

components have the greatest effect on the bogie’s

stability and, hence, on safety. The results of this study

show that the axle load, the primary suspension

vertical stiffness and the secondary suspension lateral

damping have a significant influence on the critical

speed: the variation exceeds 100 km/h in some cases.

Clearly, these parameters should be constantly mon-

itored to ensure that potential degradation of primary

vertical springs and secondary lateral dampers do not

yield a considerable low critical speed that could

compromise the safety of the high-speed train. The

remainder of the parameters studied in this work has

been found to barely influence the critical speed

(variations of less than 15 km/h).

The influence of the axle load on the critical speed

has a great interest too. The suspension parameters are

parameters that in the case of suffering any variation, it

happens slowly. On the other hand, the axle load is a

variable parameter that is highly dependent on the

passengers and luggage carried. Under extreme

conditions, a stable railway vehicle could become

unstable if there were too many or too few passengers

inside the vehicle.

Simulation results obtained are consistent with the

performance of the high-speed train, as the achieved

critical speed (427 km/h for nominal parameters) is

beyond the speed at which the train was homologated

(300 km/h) and the maximum speed it reached during

tests (356 km/h). Roller rig test bench experiments

will be carried out in the future to validate the current

model.
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