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1. Introduction

Topological indices have become an important research topic associated with the study of their
mathematical and computational properties and, fundamentally, for their multiple applications to
various areas of knowledge (see, e.g., [1–3]). Within the study of mathematical properties, we will
contribute to the study of inequalities and optimization problems associated with topological indices.
Our main goals are the Sombor indices, introduced by Gutman in [4].

In what follows, G = (V (G) , E (G)) will be a finite undirected graph, and we will assume that each
vertex has at least a neighbor. We denote by dw the degree of the vertex w, i.e., the number of neighbors
of w. We denote by uv the edge joining the vertices u and v (or v and u). For each graph G, its Sombor
index is

SO(G) =
∑

uv∈E(G)

√
d2

u + d2
v .
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In the same paper is also defined the reduced Sombor index by

SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2.

In [5] it is shown that these indices have a good predictive potential.
Also, the modified Sombor index of G was proposed in [6] as

mSO(G) =
∑

uv∈E(G)

1√
d2

u + d2
v

. (1.1)

In addition, two other Sombor indices have been introduced: the first Banhatti-Sombor index [7]

BSO(G) =
∑

uv∈E(G)

√
1
d2

u
+

1
d2

v
(1.2)

and the α-Sombor index [8]
SOα(G) =

∑
uv∈E(G)

(dαu + dαv )1/α, (1.3)

here α ∈ R \ {0}. In fact, there is a general index that includes most Sombor indices listed above: the
first (α, β) – KA index of G which was introduced in [9] as

KAα,β(G) = KA1
α,β(G) =

∑
uv∈E(G)

(
dαu + dαv

)β , (1.4)

with α, β ∈ R. Note that SO(G) = KA2,1/2(G), mSO(G) = KA2,−1/2(G), BSO(G) = KA−2,1/2(G), and
SOα(G) = KAα,1/α(G). Also, we note that KA1,β(G) equals the general sum-connectivity index [10]
χβ(G) =

∑
uv∈E(G)(du + dv)β. Reduced versions of SO(G), mS O(G) and KAα,β(G) were also introduced

in [4, 6, 11], e.g., the reduced (α, β) – KA index is

redKAα,β(G) =
∑

uv∈E(G)

(
(du − 1)α + (dv − 1)α

)β
.

If α < 0, then redKAα,β(G) is just defined for graphs without pendant vertices (recall that a vertex is
said pendant if its degree is equal to 1).

Since I. Gutman initiated the study of the mathematical properties of Sombor index in [4], many
papers have continued this study, see e.g., [12–18].

Our main aim is to obtain new bounds of Sombor indices, and to characterize the graphs where
equality occurs. In particular, we have obtained bounds for Sombor indices relating them with the first
Zagreb index, the forgotten index and the first variable Zagreb index. Also, we solve some extremal
problems for Sombor indices.

2. Inequalities for the Sombor indices

The following inequalities are known for x, y > 0:

xa + ya < (x + y)a ≤ 2a−1(xa + ya) if a > 1,
2a−1(xa + ya) ≤ (x + y)a < xa + ya if 0 < a < 1,

(x + y)a ≤ 2a−1(xa + ya) if a < 0,
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and the second, third or fifth equality is attained for each a if and only if x = y. These inequalities
allow to obtain the following result relating KA indices.

Theorem 1. Let G be any graph and α, β, λ ∈ R \ {0}. Then

KAαβ/λ, λ(G) < KAα,β(G) ≤ 2β−λKAαβ/λ, λ(G) if β > λ, βλ > 0,
2β−λKAαβ/λ, λ(G) ≤ KAα,β(G) < KAαβ/λ, λ(G) if β < λ, βλ > 0,

KAα,β(G) ≤ 2β−λKAαβ/λ, λ(G) if β < 0, λ > 0,
KAα,β(G) ≥ 2β−λKAαβ/λ, λ(G) if β > 0, λ < 0,

and the second, third, fifth or sixth equality is attained for each α, β, λ if and only if all the connected
components of G are regular graphs.

Proof. If a = β/λ, x = dαu and y = dαv , then the previous inequalities give

dαβ/λu + dαβ/λv < (dαu + dαv )β/λ ≤ 2β/λ−1(dαβ/λu + dαβ/λv ) if β/λ > 1,
2β/λ−1(dαβ/λu + dαβ/λv ) ≤ (dαu + dαv )β/λ < dαβ/λu + dαβ/λv if 0 < β/λ < 1,

(dαu + dαv )β/λ ≤ 2β/λ−1(dαβ/λu + dαβ/λv ) if β/λ < 0,

and the second, third or fifth equality is attained if and only if du = dv.
Hence, we obtain

(dαβ/λu + dαβ/λv )λ < (dαu + dαv )β ≤ 2β−λ(dαβ/λu + dαβ/λv )λ if β/λ > 1, λ > 0,
2β−λ(dαβ/λu + dαβ/λv )λ ≤ (dαu + dαv )β < (dαβ/λu + dαβ/λv )λ if β/λ > 1, λ < 0,
2β−λ(dαβ/λu + dαβ/λv )λ ≤ (dαu + dαv )β < (dαβ/λu + dαβ/λv )λ if 0 < β/λ < 1, λ > 0,
(dαβ/λu + dαβ/λv )λ < (dαu + dαv )β ≤ 2β−λ(dαβ/λu + dαβ/λv )λ if 0 < β/λ < 1, λ < 0,

(dαu + dαv )β ≤ 2β−λ(dαβ/λu + dαβ/λv )λ if β < 0, λ > 0,
(dαu + dαv )β ≥ 2β−λ(dαβ/λu + dαβ/λv )λ if β > 0, λ < 0,

and the equality in the non-strict inequalities is tight if and only if du = dv.
If we sum on uv ∈ E(G) these inequalities, then we obtain (1). �

Remark 2. Note that the excluded case β = λ in Theorem 1 is not interesting, since KAαβ/λ, λ(G) =

KAα,β(G) if β = λ.

The argument in the proof of Theorem 1 also allows to obtain the following result relating reduced
KA indices.

Theorem 3. Let G be any graph and α, β, λ ∈ R \ {0}. If α < 0 or αβλ < 0, we also assume that G
does not have pendant vertices. Then

redKAαβ/λ, λ(G) < redKAα,β(G) ≤ 2β−λredKAαβ/λ, λ(G) if β > λ, βλ > 0,
2β−λredKAαβ/λ, λ(G) ≤ redKAα,β(G) < redKAαβ/λ, λ(G) if β < λ, βλ > 0,

redKAα,β(G) ≤ 2β−λredKAαβ/λ, λ(G) if β < 0, λ > 0,

redKAα,β(G) ≥ 2β−λredKAαβ/λ, λ(G) if β > 0, λ < 0,

and the second, third, fifth or sixth equality is attained for each α, β, λ if and only if all the connected
components of G are regular graphs.
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If we take β = 1/α and µ = 1/λ in Theorem 1, we obtain the following inequalities for the α-Sombor
index.

Corollary 4. Let G be any graph and α, µ ∈ R \ {0}. Then

SOµ(G) < SOα(G) ≤ 21/α−1/µSOµ(G) if µ > α, αµ > 0,
21/α−1/µSOµ(G) ≤ SOα(G) < SOµ(G) if µ < α, αµ > 0,

SOα(G) ≤ 21/α−1/µSOµ(G) if α < 0, µ > 0,

and the second, third or fifth equality is attained for each α, µ if and only if all the connected
components of G are regular graphs.

Recall that one of the most studied topological indices is the first Zagreb index, defined by

M1(G) =
∑

u∈V(G)

d2
u.

If we take µ = 1 in Corollary 4, we obtain the following result.

Corollary 5. Let G be any graph and α ∈ R \ {0}. Then

M1(G) < SOα(G) ≤ 21/α−1M1(G) if 0 < α < 1,
21/α−1M1(G) ≤ SOα(G) < M1(G) if α > 1,

SOα(G) ≤ 21/α−1M1(G) if α < 0,

and the second, third or fifth equality is attained for each α if and only if all the connected components
of G are regular graphs.

If we take α = 2, β = −1/2 and λ = 1/2 in Theorem 1, we obtain the following inequality relating
the modified Sombor and the first Banhatti-Sombor indices.

Corollary 6. Let G be any graph. Then

mSO(G) ≤
1
2

BSO(G)

and the bound is tight if and only if all the connected components of G are regular graphs

In [19–21], the first variable Zagreb index is defined by

Mα
1 (G) =

∑
u∈V(G)

dαu ,

with α ∈ R.
Note that Mα

1 generalizes numerous degree–based topological indices which earlier have
independently been studied. For α = 2, α = 3, α = −1/2, and α = −1, Mα

1 is, respectively, the
ordinary first Zagreb index M1, the forgotten index F, the zeroth–order Randić index 0R, and the
inverse index ID [2, 22].

The next result relates the KAα,β and Mα+1
1 indices.

AIMS Mathematics Volume 7, Issue 5, 8330–8343.



8334

Theorem 7. Let G be any graph with maximum degree ∆, minimum degree δ and m edges, and α ∈
R \ {0}, β > 0. Then

KAα,β(G) ≥
(Mα+1

1 (G) + 2∆α/2δα/2m
√

2 (∆α/2 + δα/2)

)2β
if 0 < β < 1/2,

KAα,β(G) ≥
(Mα+1

1 (G) + 2∆α/2δα/2m
√

2 (∆α/2 + δα/2)

)2β
m1−2β if β ≥ 1/2,

and the second equality is attained for some α, β if and only if G is a regular graph.

Proof. If uv ∈ E(G) and α > 0, then
√

2 δα/2 ≤
√

dαu + dαv ≤
√

2 ∆α/2.

If α < 0, then the converse inequalities hold. Hence,( √
dαu + dαv −

√
2 δα/2

)(√
2 ∆α/2 −

√
dαu + dαv

)
≥ 0,

√
2 (∆α/2 + δα/2)

√
dαu + dαv ≥ dαu + dαv + 2∆α/2δα/2.

Since ∑
uv∈E(G)

(
dαu + dαv

)
=

∑
u∈V(G)

du dαu =
∑

u∈V(G)

dα+1
u = Mα+1

1 (G),

If 0 < β < 1/2, then 1/(2β) > 1 and∑
uv∈E(G)

√
dαu + dαv =

∑
uv∈E(G)

(
(dαu + dαv )β

)1/(2β)

≤
( ∑

uv∈E(G)

(dαu + dαv )β
)1/(2β)

= KAα,β(G)1/(2β).

Consequently, we obtain

KAα,β(G)1/(2β) ≥
Mα+1

1 (G) + 2∆α/2δα/2m
√

2 (∆α/2 + δα/2)
.

If β ≥ 1/2, then 2β ≥ 1 and Hölder inequality gives∑
uv∈E(G)

√
dαu + dαv =

∑
uv∈E(G)

(
(dαu + dαv )β

)1/(2β)

≤
( ∑

uv∈E(G)

(dαu + dαv )β
)1/(2β)( ∑

uv∈E(G)

12β/(2β−1)
)(2β−1)/(2β)

= m(2β−1)/(2β)KAα,β(G)1/(2β).

Consequently, we obtain

KAα,β(G)1/(2β) ≥
Mα+1

1 (G) + 2∆α/2δα/2m
√

2 (∆α/2 + δα/2)
m(1−2β)/(2β).
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If G is regular, then

(Mα+1
1 (G) + 2∆α/2δα/2m
√

2 (∆α/2 + δα/2)

)2β
m1−2β =

(2∆αm + 2∆αm
√

2 2∆α/2

)2β
m1−2β

=
(√

2 ∆α/2m
)2β

m1−2β

=
(
2∆α)βm = KAα,β(G).

If the second equality is attained for some α, β, then we have dαu + dαv = 2δα or dαu + dαv = 2∆α for
each uv ∈ E(G). Also, the equality in Hölder inequality gives that there exists a constant c such that
dαu +dαv = c for every uv ∈ E(G). Hence, we have either dαu +dαv = 2δα for each edge uv or dαu +dαv = 2∆α

for each edge uv, and hence, G is regular. �

If we take α = 2 and β = 1/2 in Theorem 7 we obtain:

Corollary 8. Let G be any graph with maximum degree ∆ and minimum degree δ, and m edges. Then

SO(G) ≥
F(G) + 2∆δm
√

2 (∆ + δ)
,

and the bound is tight if and only if G is regular.

In order to prove Theorem 10 below we need an additional technical result. A converse of Hölder
inequality appears in [23, Theorem 3], which, in the discrete case, can be stated as follows [23, Corollay
2].

Proposition 9. Consider constants 0 < α ≤ β and 1 < p, q < ∞ with 1/p + 1/q = 1. If wk, zk ≥ 0
satisfy αzq

k ≤ wp
k ≤ βzq

k for 1 ≤ k ≤ n, then

( n∑
k=1

wp
k

)1/p( n∑
k=1

zq
k

)1/q
≤ Cp(α, β)

n∑
k=1

wkzk,

where

Cp(α, β) =


1
p

(α
β

)1/(2q)
+

1
q

(β
α

)1/(2p)
, when 1 < p < 2,

1
p

(β
α

)1/(2q)
+

1
q

(α
β

)1/(2p)
, when p ≥ 2.

If (w1, . . . ,wn) , 0, then the bound is tight if and only if wp
k = αzq

k for each 1 ≤ k ≤ n and α = β.

Recall that a bipartite graph with X and Y partitions is called (a, b)-biregular if all vertices of X have
degree a and all vertices of Y have degree b.

The next result relates several KA indices.

Theorem 10. Let G be any graph, α, β, µ ∈ R and p > 1. Then

Dp
p KAα,p(β−µ)(G)KAα,pµ/(p−1)(G)p−1 ≤ KAα,β(G)p ≤ KAα,p(β−µ)(G) KAα,pµ/(p−1)(G)p−1

AIMS Mathematics Volume 7, Issue 5, 8330–8343.



8336

where

Dp =


Cp

(
(2δα)p(β−µ p

p−1 ), (2∆α)p(β−µ p
p−1 ))−1

, if α(β − µ p
p−1 ) ≥ 0,

Cp
(
(2∆α)p(β−µ p

p−1 ), (2δα)p(β−µ p
p−1 ))−1

, if α(β − µ p
p−1 ) < 0,

and Cp is the constant in Proposition 9. The equality in the upper(lower) bound is tight for each
α, β, µ, p if G is a biregular graph (with α(β − µ p

p−1 ) , 0 if and only if G is a regular graph.)

Proof. Hölder inequality gives

KAα,β(G) =
∑

uv∈E(G)

(
dαu + dαv

)β−µ(dαu + dαv
)µ

≤
( ∑

uv∈E(G)

(
dαu + dαv

)p(β−µ)
)1/p( ∑

uv∈E(G)

(
dαu + dαv

)pµ/(p−1)
)(p−1)/p

,

KAα,β(G)p ≤ KAα,p(β−µ)(G) KAα,pµ/(p−1)(G)p−1.

If G is a biregular graph with m edges, we obtain

KAα,p(β−µ)(G) KAα,pµ/(p−1)(G)p−1 = (∆α + δα)p(β−µ)m
(
(∆α + δα)pµ/(p−1)m

)p−1

= (∆α + δα)p(β−µ)(∆α + δα)pµmp =
(
(∆α + δα)βm

)p
= KAα,β(G)p.

Since (
dαu + dαv

)p(β−µ)(
dαu + dαv

)pµ/(p−1) =
(
dαu + dαv

)p(β−µ p
p−1 )
,

if αp(β − µ p
p−1 ) ≥ 0, then

(
2δα

)p(β−µ p
p−1 )
≤

(
dαu + dαv

)p(β−µ)(
dαu + dαv

)pµ/(p−1) ≤
(
2∆α)p(β−µ p

p−1 )
,

and if αp(β − µ p
p−1 ) < 0, then

(
2∆α)p(β−µ p

p−1 )
≤

(
dαu + dαv

)p(β−µ)(
dαu + dαv

)pµ/(p−1) ≤
(
2δα

)p(β−µ p
p−1 )
.

Proposition 9 gives

KAα,β(G) =
∑

uv∈E(G)

(
dαu + dαv

)β−µ(dαu + dαv
)µ

≥ Dp

( ∑
uv∈E(G)

(
dαu + dαv

)p(β−µ)
)1/p( ∑

uv∈E(G)

(
dαu + dαv

)pµ/(p−1)
)(p−1)/p

,

KAα,β(G)p ≥ Dp
p KAα,p(β−µ)(G) KAα,pµ/(p−1)(G)p−1.

Proposition 9 gives that the equality is tight in this last bound for some α, β, µ, p with α(β−µ p
p−1 ) , 0

if and only if
(2δα)p(β−µ p

p−1 ) = (2∆α)p(β−µ p
p−1 )

⇔ δ = ∆,

i.e., G is regular. �
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If we take β = 0 in Theorem 10 we obtain the following result.

Corollary 11. Let G be any graph with m edges, α, µ ∈ R and p > 1. Then

KAα,−pµ(G) KAα,pµ/(p−1)(G)p−1 ≥ mp.

The equality in the bound is tight for each α, µ, p if G is a biregular graph.

If we take α = 2, β = 0, p = 2 and µ = 1/4 in Theorem 10 we obtain the following result.

Corollary 12. Let G be any graph with maximum degree ∆, minimum degree δ and m edges, then

m2 ≤ mSO(G) SO(G) ≤
(∆ + δ)2

4∆δ
m2.

The equality in the upper bound is tight if and only if G is regular. The equality in the lower bound is
tight if G is a biregular graph.

Note that the following result improves the upper bound in Corollary 5 when α > 1.

Theorem 13. Let G be any graph with minimum degree δ, and α ≥ 1. Then

21/α−1M1(G) ≤ SOα(G) ≤ M1(G) − (2 − 21/α)δ,

and the equality holds for some α > 1 in each bound if and only if G is regular.

Proof. The lower bound follows from Corollary 5. Let us prove the upper bound.
First of all, we are going to prove that

(xα + yα)1/α ≤ x + (21/α − 1)y (2.1)

for every α ≥ 1 and x ≥ y ≥ 0. Since (2.1) is direct for α = 1, it suffices to consider the case α > 1.
We want to compute the minimum value of the function

f (x, y) = x + (21/α − 1)y

with the restrictions g(x, y) = xα + yα = 1, x ≥ y ≥ 0. If (x, y) is a critical point, then there exists λ ∈ R
such that

1 = λα xα−1,

21/α − 1 = λα yα−1,

and so, (y/x)α−1 = 21/α − 1 and y = (21/α − 1)1/(α−1)x; this fact and the equality xα + yα = 1 imply(
1 + (21/α − 1)α/(α−1)) xα = 1,

x =
(
1 + (21/α − 1)α/(α−1))−1/α

,

y = (21/α − 1)1/(α−1)(1 + (21/α − 1)α/(α−1))−1/α
,

f (x, y) =
(
1 + (21/α − 1)α/(α−1))−1/α

+ (21/α − 1)(21/α − 1)1/(α−1)(1 + (21/α − 1)α/(α−1))−1/α

=
(
1 + (21/α − 1)α/(α−1))−1/α

+ (21/α − 1)α/(α−1)(1 + (21/α − 1)α/(α−1))−1/α

=
(
1 + (21/α − 1)α/(α−1))(α−1)/α

> 1.
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If y = 0, then x = 1 and f (x, y) = 1.
If y = x, then x = 2−1/α = y and

f (x, y) = 2−1/α + (21/α − 1)2−1/α = 1.

Hence, f (x, y) ≥ 1 and the bound is tight if and only if y = 0 or y = x. By homogeneity, we have
f (x, y) ≥ 1 for every x ≥ y ≥ 0 and the bound is tight if and only if y = 0 or y = x. This finishes the
proof of (2.1).

Consequently,
(dαu + dαv )1/α ≤ du + (21/α − 1)dv = du + dv − (2 − 21/α)dv

for each α ≥ 1 and du ≥ dv. Thus,

(dαu + dαv )1/α ≤ du + dv − (2 − 21/α)δ

for each α ≥ 1 and uv ∈ E(G), and the equality holds for some α > 1 if and only if du = dv = δ.
Therefore,

SOα(G) ≤ M1(G) − (2 − 21/α)δ,

and the equality holds for some α > 1 if and only if du = dv = δ for every uv ∈ E(G), i.e., G is
regular. �

Corollary 14. Let G be any graph with minimum degree δ. Then

2−1/2M1(G) ≤ SO(G) ≤ M1(G) −
(
2 −
√

2
)
δ,

and the equality holds in each bound if and only if G is regular.

The upper bound in Corollary 14 appears in [14, Theorem 2.7]. Hence, Theorem 13 generalizes [14,
Theorem 2.7].

A family of topological indices, named Adriatic indices, was put forward in [24, 25]. Twenty of
them were selected as significant predictors in Mathematical Chemistry. One of them, the inverse
sum indeg index, ISI, was singled out in [25] as a significant predictor of total surface area of octane
isomers. This index is defined as

ISI(G) =
∑

uv∈E(G)

du dv

du + dv
=

∑
uv∈E(G)

1
1
du

+ 1
dv

.

In the last years there has been an increasing interest in the mathematical properties of this index. We
finish this section with two inequalities relating the Sombor, the first Zagreb and the inverse sum indeg
indices.

Theorem 15. Let G be any graph, then
√

2
(
M1(G) − 2ISI(G)

)
≥ SO(G) > M1(G) − 2ISI(G)

and the upper bound is tight if and only if all the connected components of G are regular graphs.
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Proof. It is well-known that for x, y > 0, we have

x2 + y2 < (x + y)2 ≤ 2(x2 + y2),√
x2 + y2 < x + y ≤

√
2
√

x2 + y2 ,

and the equality √
d2

u + d2
v

√
d2

u + d2
v + 2dudv = (du + dv)2

give

(du + dv)
√

d2
u + d2

v + 2dudv > (du + dv)2,√
d2

u + d2
v +

2dudv

du + dv
> du + dv,

SO(G) + 2ISI(G) > M1(G).

In a similar way, we obtain

1
√

2
(du + dv)

√
d2

u + d2
v + 2dudv ≤ (du + dv)2,√

d2
u + d2

v +
√

2
2dudv

du + dv
≤
√

2 (du + dv),

SO(G) + 2
√

2 ISI(G) ≤
√

2 M1(G).

The equality in this last inequality is tight if and only if 2(d2
u + d2

v ) = (du + dv)2 for each edge uv,
i.e., du = dv for every uv ∈ E(G), and this happens if and only if all the connected components of G are
regular graphs. �

3. Optimization problems

We start this section with a technical result.

Proposition 16. Let G be any graph, u, v ∈ V(G) with uv < E(G), and α, β ∈ R \ {0} with αβ > 0. Then
KAα,β(G ∪ {uv}) > KAα,β(G). If α > 0, then redKAα,β(G ∪ {uv}) > redKAα,β(G). Furthermore, if α < 0
and G does not have pendant vertices, then redKAα,β(G ∪ {uv}) > redKAα,β(G).

Proof. Let {w1, . . . ,wdu} and {w1, . . . ,wdv} be the sets of neighbors of u and v in G, respectively. Since
αβ > 0, the function

U(x, y) =
(
xα + yα

)β
is strictly increasing in each variable if x, y > 0. Hence,

KAα,β(G ∪ {uv}) − KAα,β(G) =
(
(du + 1)α + (dv + 1)α

)β
+

+

du∑
j=1

( (
(du + 1)α + dαw j

)β
−

(
dαu + dαw j

)β )
+

dv∑
k=1

( (
(dv + 1)α + dαwk

)β
−

(
dαv + dαwk

)β )
>

(
(du + 1)α + (dv + 1)α

)β
> 0.
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The same argument gives the results for the redKAα,β index. �

Given an integer number n ≥ 2, let Γ(n) (respectively, Γc(n)) be the set of graphs (respectively,
connected graphs) with n vertices.

We study in this section the extremal graphs for the KAα,β index on Γc(n) and Γ(n).

Theorem 17. Consider α, β ∈ R \ {0} with αβ > 0, and an integer n ≥ 2.
(1) The complete graph Kn is the unique graph that maximizes KAα,β on Γc(n) or Γ(n).
(2) Any graph that minimizes KAα,β on Γc(n) is a path.
(3) If n is even, then the union of n/2 paths P2 is the unique graph that minimizes KAα,β on Γ(n). If

n is odd, then the union of (n − 3)/2 paths P2 with a path P3 is the unique graph that minimizes KAα,β

on Γ(n).
(4) Furthermore, if α, β > 0, then the three previous statements hold if we replace KAα,β with

redKAα,β.

Proof. Let G be a graph with order n, minimum degree δ and m edges.
Items (1) and (2) follow directly from Proposition 16.
(3) Assume that n is even. It is well known that the sum of the degrees of a graph is equal to twice the
number of edges of the graph (handshaking lemma). Thus, 2m ≥ nδ ≥ n. Since αβ > 0, the function

U(x, y) =
(
xα + yα

)β
is strictly increasing in each variable if x, y > 0. Hence, for any graph G ∈ Γ(n), we have

KAα,β(G) =
∑

uv∈E(G)

(
dαu + dαv

)β
≥

∑
uv∈E(G)

(
1α + 1α

)β
= 2βm ≥ 2β

n
2

= 2β−1n,

and the equality is tight in the inequality if and only if du = 1 for all u ∈ V(G), i.e., G is the union of
n/2 path graphs P2.

Finally, assume that n is odd. Fix a graph G ∈ Γ(n). If du = 1 for every u ∈ V(G), then handshaking
lemma gives 2m = n, a contradiction (recall that n is odd). Therefore, there exists a vertex w with
dw ≥ 2. By handshaking lemma we have 2m ≥ (n − 1)δ + 2 ≥ n + 1. Recall that the set of neighbors
of the vertex w is denoted by N(w). Since U(x, y) is a strictly increasing function in each variable, we
obtain

KAα,β(G) =
∑

u∈N(w)

(
dαu + dαw

)β
+

∑
uv∈E(G),u,v,w

(
dαu + dαv

)β
≥

∑
u∈N(w)

(
1α + 2α

)β
+

∑
uv∈E(G),u,v,w

(
1α + 1α

)β
≥ 2

(
1 + 2α

)β
+ 2β(m − 2)

≥ 2
(
1 + 2α

)β
+ 2β

(n + 1
2
− 2

)
= 2

(
1 + 2α

)β
+ 2β

n − 3
2

,
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and the bound is tight if and only if du = 1 for all u ∈ V(G) \ {w}, and dw = 2. Hence, G is the union of
(n − 3)/2 path graphs P2 and a path graph P3.

(4) If α, β > 0, then the same argument gives the results for the redKAα,β index. �

We deal now with the optimization problem for redKAα,β when α, β < 0.
Given an integer number n ≥ 3, we denote by Γwp(n) (respectively, Γ

wp
c (n)) the set of graphs

(respectively, connected graphs) with n vertices and without pendant vertices.

Theorem 18. Consider α, β < 0, and an integer n ≥ 3.
(1) The cycle graph Cn is the unique graph that minimizes redKAα,β on Γ

wp
c (n).

(2) The union of cycle graphs are the only graphs that minimize redKAα,β on Γwp(n).
(3) The complete graph Kn is the unique graph that maximizes redKAα,β on Γ

wp
c (n) or Γwp(n).

Proof. Let G be a graph with order n, minimum degree δ and m edges. Since a graph without pendant
vertices satisfies δ ≥ 2, handshaking lemma gives 2m ≥ nδ ≥ 2n. Since α, β < 0, the function

U(x, y) =
(
xα + yα

)β
is strictly increasing in each variable if x, y > 0. Hence, for any graph G ∈ Γwp(n), we have

KAα,β(G) =
∑

uv∈E(G)

(
dαu + dαv

)β
≥

∑
uv∈E(G)

(
2α + 2α

)β
= 2(α+1)βm ≥ 2(α+1)βn,

and the inequality is tight if and only if du = 2 for all u ∈ V(G), i.e., the graph G is the union of cycle
graphs. If G is connected, then it is the cycle graph Cn.

Item (3) follows from Proposition 16. �

4. Conclusions

In this paper, we contributed to the study of inequalities and optimization problems associated with
topological indices. In particular, we obtained new lower and upper optimal bounds of general Sombor
indices, and we characterized the graphs where equality occurs.

Specifically, we have obtained inequalities for these indices relating them with other indices: the
first Zagreb index, the forgotten index and the first variable Zagreb index. Finally, we solve some
extremal problems for general Sombor indices
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Sigarreta was supported by a grant from Agencia Estatal de Investigación (PID2019-106433GB- ´
I00/AEI/10.13039/501100011033), Spain. The research of Jose M. Rodrı́guez is supported by the
Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in
the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT
(Regional Programme of Research and Technological Innovation).

AIMS Mathematics Volume 7, Issue 5, 8330–8343.



8342

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim,
2009.

2. I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361.
https://doi.org/10.5562/cca2294
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