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Abstract: Since environmental studies have shown that a constant quantity of prey become refuges
from the predator at low densities and become accessible again for consumption when they reach
a higher density, in this work we propose a discontinuous mathematical model, Lesli-Gower type,
which describes the dynamics between prey and predators, interacting under the same environment,
and whose predator functional response, of linear type, is altered by a refuge constant in the prey
when below a critical value. Assuming that predators can be captured and have alternative food, the
qualitative analysis of the proposed discontinuous model is performed by analyzing each of the vector
fields that compose it, which serves as the basis for the calculation of the bifurcation curves of the
discontinuous model, with respect to the threshold value of the prey and the harvest rate of predators.
It is concluded that the perturbations of the parameters of the model leads either to the extinction of
the predators or to a stabilization in the growth of both species, regardless of their initial conditions.
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1. Introduction

The behavior between two species, predator and prey coexisting in the same environment, is a
subject of study in ecology and several researchers have proposed mathematical models that describe
the dynamics of both species. These models are usually described by systems of continuous ordinary
differential equations

u̇ = f (u, α), (1.1)

where u ∈ R2 is the size for each population, measured in number of individuals or density per unit area
or volume at any instant t ≥ 0, α ∈ Rp, with p ≥ 1 and non-negative inputs, a vector of parameters and

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022653


14030

f : Ω ⊂ R2 × Rp → R2 a continuous and differentiable function. The qualitative analysis of the model
(1.1) determines the conditions in its parameters to achieve a possible stabilization in both species, or
an extinction of at least one of them. This process is called bifurcation, where its possible cases were
listed in [1].

In particular, Leslie-Gower models have been used to describe the dynamics of both species, which
assumes that, in addition to the carrying capacity of the environment for the intrinsic growth of prey,
the environmental carrying capacity in predators should be proportional to the abundance of prey [2].
However, several researchers have made modifications to the Leslie-Gower model, considering, for
example, alternative food for predators, various functions describing the predator functional response,
or harvesting for one or both species [3–7].

In the simplest case, if x(t), y(t) ≥ 0 are the population sizes of prey and predators, respectively,
whitch prey growth is subject to the carrying capacity of the environment K > 0 and, the growth of
predators under the quality of the utilization of consumed prey n > 0 and of the possible alternative
food available c > 0 in the environment for new births, the dynamics of prey x(t) and predators y(t) is
given by:

W(x, y) :


ẋ = rx

(
1 −

x
K

)
− axy

ẏ = sy
(
1 −

y
nx + c

)
− qEy,

(1.2)

where r, s > 0 are the intrinsic growth rates of prey and predators, respectively, q > 0 is the harvest
coefficient, E > 0 the harvest effort, and a > 0 the hunting success rate of the predator affecting
the prey. In this case, it is assumed that predators can consume the prey without any limitation or
resistance, so the predator functional response is linear [8], that is, h(x) = ax.

On the other hand, the effort of prey refuge from predators could play an important role in the
stabilization of an ecological system, which generates an additional interest on the part of ecologists,
and of which the effect of the reduction in the quantity of prey that will not be consumed by the predator
is analyzed with respect to the different dynamics that could be presented by the model proposed.

In general, there are two types of prey refuge: the quantity of refuge is proportional to the population
size of the prey [9–11] or it is a fixed quantity [12, 13]. However, the qualitative analysis in predator-
prey models when considering a proportion of refuged prey is equivalent to the model with no refuge
[9,10], as opposed to considering a fixed quantity of refuge in the prey [14]. In particular, if 0 < m < K
denotes a fixed quantity of refuge for the prey, the model (1.2) is modified by:

X(x, y) :


ẋ = rx

(
1 −

x
K

)
− a(x − m)y

ẏ = sy
[
1 −

y
n(x − m) + c

]
− qEy,

(1.3)

where the initial prey condition x(0) must be greater than m, that is, m < x(0) ≤ K.
However, if x(0) ≤ m, prey and predators do not interact in the environment, so predators must feed

only on resources provided by the environment and the growth of both species must be modeled by
logistic differential equations of the form

Y(x, y) :


ẋ = rx

(
1 −

x
K

)
ẏ = sy

(
1 −

y
c

)
− qEy.

(1.4)
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In particular, the model (1.3) for m < x ≤ K and the model (1.4) for 0 ≤ x ≤ m can be generalized by
systems of discontinuous differential equations, generally known as Filippov’s planar systems [15,16],
described by 

u̇ = f1(u, α), u ∈ S 1,
...

u̇ = fk(u, α), u ∈ S k,

(1.5)

where fi : S i × R
p → R2, with 1 ≤ i ≤ k, are continuous functions in an open and non-overlapping

region S i, separated from S j by a differentiable curve Σi j. The discontinuous models (1.5) are called
Filippov systems, whose bifurcation cases, which in addition to the possible cases shown in [1] for
vector fields fi, were listed by Kuznetsov [15].

In addition, since there are species, such as cardumens [17, 18], that hide from the predator when their
population size is critical, so that the predator is forced to change its diet to avoid extinction [19–21] , and
when the desired population size is exceeded again, they leave their hiding place to search for food
or explore the environment, and become accessible to the predator again [22–24], researchers have
focused additional interest in proposing mathematical models that describe such interaction between
prey and predators, when the predator functional response is deactivated if the population size of prey
is below a threshold value M > 0 [25–29].

However, and in contrast to discontinuous models proposed [25–29], by assuming that there are a
quantity of prey that do not hide from the predator when it is below its critical population size M > 0,
for example, because they move away from other species to explore the environment undetected, we
are interested in analyzing the behavior between prey and predators when a fixed quantity of prey
m > 0 is protected by being below its critical value M > 0. Therefore, and given that there are species
with a linear predator functional response [8, 30], in this paper we propose, and perform a local and
global qualitative analysis, a discontinuous Lesli-Gower model of the form,

V(x, y) :


ẋ = rx

(
1 −

x
K

)
− a(x − ϵm)y

ẏ = sy
[
1 −

y
n(x − ϵm) + c

]
− qEy,

(1.6)

where

ϵ =


0, if x > M,
1, if m < x < M,
x
m if x < m,

and 0 < m < M < K. In this case, if m < x < M then the prey is protected by a refuge constant m > 0,
and from which they become accessible to the predator if x > M. However, if x < m, prey are totally
protected from the predator, so predators must subsist on alternative food provided by the environment.

For this purpose, the Section 2 presents the necessary tools to carry out a qualitative analysis of a
Filippov system [15, 16, 28, 29]. In Sections 3–5, a qualitative and bifurcation analysis is performed
on the models (1.3), when m ∈ (0,K) and m = 0, and (1.4) respectively, and whose results are used
to perform the local and global analysis of the Filippov systems (1.6), shown in Section 6. A contrast
to the Filippov systems (1.6) is performed with a bifurcation analysis with respect to the parameters
M, E > 0.
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2. Preliminaries

Let a planar Filippov system Z = (X,Y) a vector field in an open set U ⊂ R2 defined by

Z(x, y) =
{

X(x, y), (x, y) ∈ Σ+

Y(x, y), (x, y) ∈ Σ−,

where X,Y are vector fields of class Cr, with r > 1, and Σ = {(x, y) ∈ U : f (x, y) = 0, grad f (x, y) , 0},
with f : U → R a function of class Cr, is a differentiable curve that divides U into two open regions

Σ+ = {(x, y) ∈ U : f (x, y) > 0} and Σ− = {(x, y) ∈ U : f (x, y) < 0}.

If p = (x, y) ∈ Σ+, the local trajectory φZ(t, p) in Z = (X,Y), with initial point in p, is defined by
trajectory φX(t, p) in the vector fields X. Analogously, if p = (x, y) ∈ Σ−, then φZ(t, p) = φY(t, p), where
φY(t, p) is the trajectory in the vector fields Y .

However, a trajectory φZ(t, p) must also be defined for p = (x, y) ∈ Σ. The following result deter-
mines a division of Σ that depends on the behavior of the vector fields X and Y .

Definition 1. Let X f (p) =
〈
X(p), grad f (p)

〉
and Y f (p) =

〈
Y(p), grad f (p)

〉
, with p = (x, y) ∈ Σ, then Σ

is divided into three disjoint regions given by:

• Crossing region: Σc = {p ∈ Σ : X f (p) · Y f (p) > 0},
• Sliding region: Σs = {p ∈ Σ : X f (p) < 0,Y f (p) > 0},
• Escaping region: Σe = {p ∈ Σ : X f (p) > 0,Y f (p) < 0}.

By the Definition 1, for the case in which there exists p ∈ Σ such that X f (p) = 0 or Y f (p) = 0, the
following result defines the tangent point at Z = (X,Y).

Definition 2. If p ∈ ∂Σc∪∂Σs∪∂Σe such that X f (p) = 0 or Y f (p) = 0, where ∂Σc,e,s are the boundaries
of the regions Σc,e,s, the point p is called tangency point, and it can be classified as:

• quadratic if X f (p) = 0 and X2 f (p) =
〈
X(p), gradX f (p)

〉
, 0, or Y f (p) = 0 and Y2 f (p) =〈

Y(p), gradY f (p)
〉
, 0. A quadratic tangency p ∈ Σ is regular if X f (p) = 0, X2 f (p) , 0 and

Y f (p) , 0; or Y f (p) = 0, Y2 f (p) , 0 and X f (p) , 0. For the first case, a regular quadratic
tangency is visible if X2 f (p) > 0 and invisible if X2 f (p) < 0. For the second case, p ∈ Σ is visible
if Y2 f (p) < 0 and invisible if Y2 f (p) > 0.
• cubic if X f (p) = X2 f (p) = 0 and X3 f (p) =

〈
X(p), gradX2 f (p)

〉
, 0 or Y f (p) = Y2 f (p) = 0 and

Y3 f (p) =
〈
Y(p), gradY2 f (p)

〉
, 0.

We will now define the trajectory φZ(t, p) for a initial point p in Σc, Σs or Σe. According to Filippov’s
method [15,16,28,29], the trajectory φZ(t, p) with p ∈ Σs ∪Σe is given by a convex combination of the
vector fields X and Y tangent to Σ, that is,

Z s(p) = λ(p)X(p) + [1 − λ(p)]Y(p).

In view of the Figure 1, the sliding vector field Z s is defined below.
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Y (p)

Σ

Σ+

Σ−

X(p)

Zs(p)

gradf(p)

p

Figure 1. Construction of trajectories Z s(p).

Definition 3. The sliding vector field Z s is given by

Z s(p) =
Y f (p)X(p) − X f (p)Y(p)

Y f (p) − X f (p)
, (2.1)

defined in Σe ∪ Σs. For p ∈ Σe ∪ Σs, the local trajectory φZ(t, p) of p is given by this vector field. The
point p ∈ Σs ∪ Σe is called pseudo-equilibrium if Z s(p) = 0.

Keeping in mind this background, the trajectory φZ(t, p) in Z = (X,Y) is defined as follows.

Definition 4. Let φX and φY the trajectories in the vector fields X and Y defined for t ⊂ I ∈ R,
respectively. The local trajectory φZ in Z = (X,Y) through a point p is defined as follows:

• For p ∈ Σ+ or p ∈ Σ− such that X(p) , 0 or Y(p) , 0 respectively, the trajectory is given by
φZ(t, p) = φX(t, p) or φZ(t, p) = φX(t, p) respectively, for t ⊂ I ∈ R.
• For p ∈ Σc such that X f (p),Y f (p) > 0, and taking the origin of time at p, the trajectory is defined

as φZ(t, p) = φY(t, p) for t ⊂ I ∩ {t ≤ 0} and φZ(t, p) = φX(t, p) for t ⊂ I ∩ {t ≥ 0}. For the
case X f (p),Y f (p) < 0, the trajectory is defined as φZ(t, p) = φY(t, p) for t ⊂ I ∩ {t ≥ 0} and
φZ(t, p) = φX(t, p) for t ⊂ I ∩ {t ≤ 0}.
• For p ∈ Σe ∪ Σs such that Z s(p) , 0, the trajectory is given by φZ(t, p) = φZ s(t, p) for t ∈ I ⊂ R,

where Z s is the sliding vector field given in (2.1).
• For p ∈ ∂Σc ∪ ∂Σs ∪ ∂Σe such that the definitions of trajectories for points in Σ in both sides of

p can be extended to p and coincide, the trajectory through p is this common trajectory. We will
call these points regular tangency points.
• For any other point φZ(t, p) = {p} for all t ∈ I ⊂ R. This is the case of the tangency points in
Σ which are not regular and which will be called singular tangency points and are the critical
points of X in Σ+, Y in Σ− and Z s in Σe ∪ Σs.
• As observed in Figure 2(a), a regular periodic trajectory is a trajectory Γ = {φZ(t, p) : t ∈ R},

which therefore belongs to Σ+ ∪ Σ− ∪ Σc such that φZ(t + T, p) = φZ(t, p) for some T > 0.
• A limit cycle in Σ+, or in Σ−, is a limit cycle in Z = (X,Y) which is represented in Figure 2(b).
• A cycle in Z = (X,Y) is a limit cycle formed by the union of a sequence of curves γ1, · · · , γn, such

that γ2k ⊂ Σ
s and γ2k+1 ⊂ Σ

+ ∪ Σ−, where the arrival and departure points belong to the closures
of γ2k and γ2k+1, respectively. Figure 2(c) is an example of a cycle where n = 2.
• A pseudo-cycle is the union of a set of trajectories γ1, · · · , γn, contained in Σ+ or Σ−, such that

the end point of some γi coincides with the end point of the next curve and the initial point of γi

coincides with the initial point of the previous curve. Figure 2(d) shows a pseudo-cycle.
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Σc

Σ+

Σ−

Γ

(a) Periodic trajectory

Σ+

Σ−

Σ

(b) Limit cycle

A B
Σ

Σ+

Σ−

γ1

(c) Cycle

Σ+

Σ−

Σ

γ1

γ2

(d) Pseudo-cycle

Figure 2. Examples of a periodic orbit, limit cycle, cycle, and a pseudo-cycle in Z = (X,Y)
represented by the purple curve. The black curves are trajectories that are not periodic.

With the basic notions for Filippov systems, we can perform the qualitative analysis for the model
(1.6). For this purpose, the qualitative analysis of the vector fields W, X and Y will be performed,
the results of which are used to analyze the dynamics of the discontinuos model (1.6), where the
discontinuity in the vector fields W and X will be analyzed, and subsequently the discontinuity of X
and Y .

3. Prey refuge model

Let x(t) ≥ 0 and y(t) ≥ 0 the population sizes of prey and predator, respectively, whose dynamics
are represented by the model (1.3) and defined in the region of biological sense

Ωm =
{
(x, y) ∈ R2 : m ≤ x ≤ K, 0 ≤ y ≤ n(K − m) + c

}
.

Before performing a mathematical analysis to determine possible behaviors in the dynamics of prey
and predators, one must verify that the model (1.3) is mathematically correct and biologically feasible.
Indeed,

Lemma 1. The model (1.3) has a unique trajectory φX, with initial condition (x(0), y(0)) ∈ Ωm. More-
over, Ωm is invariant.

Proof. Since the vector field (1.3) is continuously differentiable for all (x, y) ∈ Ωm, the existence and
uniqueness of the trajectory φX is satisfied. On the other hand, it must be guaranteed that the trajectories
φX of the model (2.1) do not escape from Ωm. For this purpose, the change in the trajectories φX of
the model (1.3) on the boundary is analyzed. Indeed, if x = m then ẋ = rm

(
1 − m

K

)
≥ 0 for all y ≥ 0.

Similarly, if x = K then ẋ = −a(K − m)y ≤ 0 for all y ≥ 0. On the other hand, if y = 0 then ẏ = 0 for
all x ≥ 0. If y = n(K − m) + c, we have that ẏ ≤ −qE[n(K − m) + c] ≤ 0 for all 0 ≤ x ≤ K. Therefore,
the trajectories φX do not cross the boundary of Ωm.

Lemma 2. The trajectories φX of the model (1.3) are uniformly bounded.

Proof. Note that

ẋ = rx
(
1 −

x
K

)
− a(x − m)y ≤ rx

(
1 −

x
K

)
,

which corresponds to a logistic differential equation, that is,

x(t) ≤
Kx(0)ert

K + x(0)(ert − 1)
,
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with x(0) ∈ Ωm the initial condition of the solution x(t). Consequently, x(t) ≤ K for all t ≥ 0.
On the other hand, note that,

ẏ = sy
[
1 −

y
n(x − m) + c

]
− qEy ≤ sy

[
1 −

y
n(K − m) + c

]
.

If S = n(K − m) + c, we have that y(t) ≤ S . Thus, when considering the function W(t) : R+ → R+
given by

W(t) = x(t) + y(t)

then 0 ≤ W(t) ≤ K + S and the trajectories φX of the model (1.3) are uniformly bounded.

3.1. Local and global qualitative analysis

The equilibrium in the model (1.3) on the x-axis is given by P1 = (K, 0) ∈ Ωm. Moreover, the model
(1.3) could have a maximum of two interior equilibriums P3,4 = (x1,2, y1,2), with

y1,2 =
(s − qE)(nx1,2 + c − mn)

s
, (3.1)

and x1,2 as positive solutions of the polynomial Ax2 + Bx +C = 0, with

A = rs + aKn(s − qE),
B = aK(c − 2mn)(s − qE) − rsK,
C = −aKm(c − mn)(s − qE),

(3.2)

that is,

x1,2 =
−B ±

√
B2 − 4AC

2A
. (3.3)

To determine the number of interior equilibrium, we proceed by analyzing the following cases.

• Case c − mn > 0: If s − qE ≤ 0, the model (1.3) does not exhibit interior equilibriums, since
y1,2 < 0. If s − qE > 0, then A > 0 and C < 0, so the model (1.3) has an interior equilibrium
P3 = (x1, y1).
• Case c − mn = 0: The model (1.3) has an interior equilibrium P3 = (x1, y1) if s − qE > 0 and

B < 0.
• Case c − mn < 0: If ẋ = 0, the model (1.3) has as an isocline

y =
rx(x − K)
aK(m − x)

, (3.4)

which is a positive and decreasing function for m < x < K, with asymptote at x = m.

If ẏ = 0, the model (1.3) has as isoclines y = 0,

y =
(s − qE) [nx + (c − mn)]

s
, (3.5)

and
x = −

c − mn
n
. (3.6)
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Note that the function (3.5) intercepts with (3.6) at y = 0, so the functions (3.4) and (3.5) do not
intercept if s−qE ≤ 0, and implies that the model (1.3) has no interior equilibriums. On the other
hand, if s − qE > 0, then the functions (3.4) and (3.5) intercept at a single point P3 = (x1, y1).
Figure 3 shows the behavior of the isoclines for the case where c − mn < 0.

− c−mn
n

m

(s−qE)(c−mn)
s

y

x
K

(a) s − qE < 0

− c−mn
n

m

y

x
K

P3

(b) s − qE > 0

Figure 3. Isoclines of the model (1.3) for the case c − mn < 0. Red curve: Isocline ẋ = 0.
Yellow lines: Isoclines ẏ = 0.

Therefore, the existence of the interior equilibrium P3 ∈ Ωm is summarized in the following result.

Lemma 3. If s − qE ≤ 0, the model (1.3) has no interior equilibrium. If s − qE > 0, the model (1.3)
has a unique interior equilibrium P3 ∈ Ωm.

On the other hand, the following result determines the conditions on the local stability of the equi-
librium on the model (1.3).

Lemma 4. Local stability of equilibriums P1 and P3 in the model (1.3).

1) If s − qE > 0 then P1 is a saddle point. If s − qE < 0, then P1 is a locally stable node.

2) If P3 is an interior equilibrium, then P3 is locally stable.

Proof. Indeed,

1) As the eigenvalues of the Jacobian matrix J(x, y) of the model (1.3) calculated in P1,

J(P1) =
[
−r −a(m − K)

0 s − qE

]
,

are given by λ1 = −r < 0 and λ2 = s − qE. If s − qE < 0 then P1 is a locally stable node. For
s − qE > 0, then P1 is a saddle point.

2) From the Jacobian matrix J(x, y) of the model (1.3) calculated in P3,

J(P3) =

 −2rx1+K(ay1−r)
K a(x1 − m)

nsy2
1

(nx1+c−mn)2 −(s − qE)

 ,
Mathematical Biosciences and Engineering Volume 19, Issue 12, 14029–14055
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we have that

tr J(P3) = −
x1(A + rs) + B + sK(s − qE)

sK
> 0,

det J(P3) =
(s − qE)

√
B2 − 4AC

Ks
> 0,

where A > 0 and C < 0 if c − mn > 0 and, A, B,C > 0 if c − mn < 0, with A, B and C as described
in (3.2). Let △m := tr J(P3)2 − 4det J(P3). If △m < 0, then P3 is locally a stable focus. If △m > 0, P3

is locally a stable node.

Before calculating and determining the global stability of the possible equilibrium points of the
model (1.3), the following result shows the non-existence of limit cycles in Ωm.

Lemma 5. The model (1.3) has no limit cycles in Ωm.

Proof. Let

f (x, y) = rx
(
1 −

x
K

)
− a(x − m)y,

g(x, y) = sy
[
1 −

y
n(x − m) + c

]
− qEy

(3.7)

and
h(x, y) =

K + x
xy
. (3.8)

Since
∂h f
∂x
+
∂hg
∂y
= −

{
2rx3 + aKx2y + aK2my

Kx2y
+

s(x + K)
x [n(x − m) + c]

}
< 0,

for all (x, y) ∈ Ωm, that is, for m ≤ x, by the Bendixon - Dilac criterion [31], the model (1.3) has no
limit cycles in Ωm.

Consequently, since the model (1.3) has no limit cycles in Ωm invariant, as observed in Lemmas 1
and 5, in view of the Poincare - Bendixson Theorem [31] and the local stability of the equilibriums on
the model (1.3), shown in Lemma 4, the following result shows conditions for establishing the global
stability of the equilibriums P1 or P3 in Ωm.

Theorem 1. If s − qE < 0, then P1 is a globally asymptotically stable node in Ωm. If s − qE > 0, then
P3 is a globally asymptotically stable equilibrium in Ωm.

3.2. Existence of a transcritical bifurcation

The model (1.3) has a transcritical bifurcation when P3 and P1 collide, which P1 transforms from
a saddle point to a stable node and P3 changes from stable to non-existent at Ωm. The existence of the
bifurcation is characterized by the existence of a null eigenvalue in the Jacobian matrix J(P1), that is,
when s − qE = 0, shown in the following result.

Theorem 2. If s − qE = 0, then model (1.3) has a transcritical bifurcation around P1.
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Proof. Let F(x, y, s) and Fs(x, y, s) as the vector field Y and its derivative with respect to s, respectively,
that is,

F(x, y, s) =


rx

(
1 −

x
K

)
− a(x − m)y

sy
[
1 −

y
n(x − m) + c

]
− qEy

 , Fs(x, y, s) =

 0

y
[
1 −

y
n(x − m) + c

]  ,
and V , W as the eigenvectors associated with the null eigenvalue in the Jacobian matrix J(P1) and
J(P1)T , that is,

V =

 a(K − m)
r
1

 , W =
(

0
−1

)
.

If s = s0 := qE, by the transcritical bifurcation Theorem [32], three conditions must be guaranteed:

1) WT Fs(P1, s0) = 0: Since Fs(P1, s0) = (0, 0)T , the result is guaranteed.

2) WT [DFs(P1, s0)V] , 0: Since DFs(P1, s0)V = (0,−1)T , then WT [DFs(P1, s0)V] = 1 > 0.

3) WT [D2F(P1, s0)(V,V)] , 0, where V = (v1, v2)T : Since

D2F(P1, s0)(V,V) =


∂2F1

∂x2 v1v1 + 2
∂2F1

∂x∂y
v1v2 +

∂2F1

∂y2 v2v2

∂2F2

∂x2 v1v1 + 2
∂2F2

∂x∂y
v1v2 +

∂2F2

∂y2 v2v2



=


2a2(m − 2K)(K − m)

Kr
−

2
n(K − m) + c

 ,
then WT [D2F(P1, s0)(V,V)] = 2

n(K−m)+c > 0.

Therefore, the model (2.1) has a transcritical bifurcation at s = qE.

3.3. Bifurcation diagram

We analyze the cases in which the parameters m and E can modify the phase diagrams of the
model (1.3) using the results found by the qualitative analysis presented in Subsection 3.1. Indeed,
in Figure 4 we observe all possible dynamics of the model (1.3) in Ωm with respect to the bifurcation
curve in the plane (m, E), shown in Figure 4(a).

In this case, and as observed in Figure 4(b)–(d), the phase portraits in Ωm representing each bifur-
cation region, shown in Figure 4(a), are given by:

• In region I, the trajectories φX, regardless of the initial condition (x(0), y(0)) ∈ Ωm, converge to
the equilibrium P1 in Ωm. Note that P3 < Ωm as seen in Figure 4(b).
• In regions II and III, the equilibrium P3 ∈ Ωm and the trajectories φX converge to P3, where P3 is

a node in region II and a focus in region III. Figure 4(c) and (d) show the dynamics of the model
(1.3) in Ωm for regions II and III, respectively.
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I

III

E

m
(0,0)

s
q

Unrealistic
values△m = 0 II

K

(a) Bifurcation curves in the plane (m, E)

(b) Region I (c) Region II (d) Region III

Figure 4. Bifurcation diagram of the model (1.3) in the plane (m, E) and phase portraits in
Ωm characterizing each region, with fixed parameters: a = 1.5, c = 0.1, K = q = 1, n = 0.7,
r = 0.09 and s = 0.07. Turquoise point: P1. Gray point: P3. Region I: P1 is a globally
asymptotically stable in Ωm. Region II: P3 is a globally asymptotically stable node in Ωm.
Region III: P3 is a globally asymptotically stable focus in Ωm.

4. Non-constant refuge of prey

If the refuge constant for prey to be consumed by the predator is removed, i.e., when m = 0, the dy-
namics of prey x(t) and predators y(t) is given by the model (1.2) defined in the biological sense region

Ω0 =
{
(x, y) ∈ R2 : 0 ≤ x ≤ K, 0 ≤ y ≤ nK + c

}
.

The following result determines that the model (1.2) is mathematically correct and biologically
feasible, and that the trajectories φW are uniformly bounded, whose proof is equivalent to that shown
in Lemmas 1 and 2 and will be omitted for brevity.

Lemma 6. The model (1.2) has a unique trajectory φW , with initial condition (x(0), y(0)) ∈ Ωm. More-
over, Ω0 is invariant and the trajectories φW of the model (1.2) are uniformly bounded.

4.1. Local and global qualitative analysis

Before calculating and determining the local and global stability of the possible equilibrium points
of the model (1.2), the following result shows the non-existence of limit cycles in Ω0.

Lemma 7. The model (1.2) has no limit cycles in Ω0.
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Proof. Let

f (x, y) = rx
(
1 −

x
K

)
− axy,

g(x, y) = sy
(
1 −

y
nx + c

)
− qEy

(4.1)

and h(x, y) defined in (3.8). Since

∂h f
∂x
+
∂hg
∂y
= −

[
2rx + aKy

Ky
+

s(x + K)
nx2 + cx

]
< 0,

for all (x, y) ∈ Ω0, by the Bendixon-Dilac criterion, the model (1.2) has no limit cycles in Ω0.

On the other hand, the equilibriums in the model (1.2) on the (x, y) axes are given by: P0 = (0, 0),
P1 = (K, 0) and P2 =

(
0, c(s−qE)

s

)
if s − qE > 0. Let

ϕ =
rs

ac(s − qE)
, (4.2)

if s − qE > 0 and 1 < ϕ, the model (1.2) has an interior equilibrium P3 = (x, y) ∈ Ω0, with

x =
K(ϕ − 1)

aKn(s − qE) + rs
and y =

(s − qE)(nx + c)
s

. (4.3)

The following result determines the conditions on the local stability of the equilibrium on the
model (1.2).

Lemma 8. Local stability of equilibriums P0, P1, P2 and P3 in the model (1.2).

1) If s − qE > 0, then P0 is a locally unstable node. If s − qE < 0, then P0 is a saddle point.

2) If s − qE > 0, then P1 is a saddle point. If s − qE < 0, then P1 is a locally stable node.

3) Let s − qE > 0. If ϕ < 1, then P2 is locally a stable node. If 1 < ϕ, then P2 is a saddle point.

4) If P3 is an interior equilibrium, then P3 is locally stable.

Proof. Indeed,

1) From the Jacobian matrix J(x, y) of the model (1.2) calculated at P0, that is,

J(P0) =
[

r 0
0 s − qE

]
,

we have as eigenvalues: λ1 = r > 0 and λ2 = s − qE. Consequently, if s − qE > 0 then P0 is a
locally unstable node. However, for s − qE < 0, then P0 is a saddle point.

2) As the eigenvalues of the Jacobian matrix J(x, y) of the model (1.2) calculated in P1,

J(P1) =
[
−r −aK

0 s − qE

]
,

are given by λ1 = −r < 0 and λ2 = s − qE. If s − qE < 0 then P1 is a locally stable node. If
s − qE > 0, then P1 is a saddle point.
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3) From the Jacobian matrix J(x, y) of the model (1.2) calculated in P2,

J(P2) =
 ϕ−1

s 0
n(s−qE)2

s −(s − qE)

 ,
we have as eigenvalues: λ1 =

ϕ−1
s and λ2 = −(s − qE) < 0. Therefore, if ϕ < 1, then P2 is locally a

stable node. If 1 < ϕ, then P2 is a saddle point.

4) From the Jacobian matrix J(x, y) of the model (1.2) calculated in P3,

J(P3) =
 −2rx+(ay−r)

k −ax
n(s−qE)2

s −(s − qE)

 ,
we have that

tr J(P3) =
r(1 − ϕ) − [anK(s − qE) + rs](s − qE)

rs + anK(s − qE)
< 0,

det J(P3) =
(s − qE)(ϕ − 1)

s
> 0.

Therefore, P3 is locally stable. Let △ := tr J(P3)2 − 4det J(P3). If △ < 0, then P3 is locally a stable
focus. If △ > 0, P3 is locally a stable node.

Consequently, and equivalently to what is shown by Theorem 1, the following result shows condi-
tions for establishing the global stability of the equilibriums P1, P2 or P3.

Theorem 3. If s − qE < 0, then P1 is a globally asymptotically stable node. If s − qE > 0 and ϕ < 1
then P2 is a globally asymptotically stable node. If s − qE > 0 and 1 < ϕ, then P3 is a globally
asymptotically stable equilibrium.

In particular, model (1.2) has two transcritical bifurcations as observed in the following result,
whose proof is analogous to Theorem 2.

Theorem 4. Existence of transcritical bifurcation in the model (1.2).

1) If s − qE = 0, the model has a bifurcation around P1.

2) If ϕ = 1 and s − qE > 0, the model has a bifurcation around P2.

4.2. Bifurcation diagram

We analyze the cases in which the parameters K and E can alter the behaviors in the trajectories of
the model (1.2). Indeed, Figure 5 we observe all possible dynamics of the model (1.2) with respect
to the bifurcation curve in the plane (K, E), shown in Figure 5(a), whose phase portraits representing
each bifurcation region are described as follows:

• In region I, as observed in Figure 5(b), P2,3 < Ω0 and the trajectories φW , regardless of the initial
condition (x(0), y(0)) ∈ Ω0, converge to the equilibrium P1 ∈ Ω0.
• In regions II and III, the equilibriums P2,3 ∈ Ω0 but φW converges to P3, where P3 is a node in

region II and a focus in region III as observed in Figure 5(c) and (d), respectively.
• In region IV, P3 < Ω0 and φW converges to P2 as seen in Figure 5(e).
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I

II

III

IV

E

K

s
q

ϕ = 1

△ = 0

(a) Bifurcation curves in the plane (m, E) (b) Region I

(c) Region II (d) Region III (e) Region IV

Figure 5. Bifurcation diagram of the model (1.3) in the plane (m, E) and phase portraits
characterizing each region, with fixed parameters: a = 1.5, c = 0.1, K = q = 1, n = 0.7,
r = 0.09 and s = 0.07. Yellow point: P0. Purple point: P1. Green point: P2. Black point:
P3. Region I: P1 is a globally asymptotically stable in Ω0 and P2,3 < Ω0. Region II: P3 is a
globally asymptotically stable node in Ω0. Region III: P3 is a globally asymptotically stable
focus in Ω0. Region IV: P3 < Ω0 and P2 is a globally asymptotically stable node.

5. Non-predatory model

In contrast to the assumptions made for the formulation of the model (1.3) with x(0) < m, if the
prey x(t) are protected at all times from being consumed by the predator, the dynamics between the
two species is given by the model (1.4) defined in the biological sense region

Ω̃ =
{
(x, y) ∈ R2 : 0 ≤ x ≤ K, 0 ≤ y ≤ c

}
.

The following result, without proof, shows the non-existence of limit cycles in the model (1.4), so
there are no periodic trajectories in the dynamics of x(t) and y(t).

Lemma 9. In the model (1.4) there are no limit cycles on Ω̃.

On the other hand, the model (1.4) has as equilibriums P̃0 = (0, 0) and P̃1 = (K, 0). However,
if s − qE > 0, the model (1.4) has two additional equilibrium given by P̃2 =

(
0, c(s−qE)

s

)
and P̃3 =(

K, c(s−qE)
s

)
. Local and global stability of each equilibrium point are shown in the following results,

whose phase portraits are observed in Figure 6.
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(a) s − qE < 0 (b) s − qE > 0

Figure 6. Phase portraits in the model (1.4) with fixed parameters: K = q = 1, c = 0.2,
r = 0.09 and s = 0.07. Orange point: P̃0. Pink point: P̃1. Blue point: P̃2. Dark red point: P̃3.
If s − qE < 0, φY → P̃1 when t → ∞. If s − qE > 0, φY → P̃3 when t → ∞.

Lemma 10. If s − qE < 0, that is, if P̃2,3 < Ω̃, the equilibrium P̃0 is locally a saddle point and P̃1 is
locally a stable node. If s − qE > 0 we have that P̃1,2 are locally a saddle point, P̃3 and P̃0 are locally
a stable and unstable node, respectively.

Theorem 5. If s − qE > 0, then P̃3 in the model (1.4) is globally asymptotically stable. If s − qE < 0
then P̃1 is globally asymptotically stable.

6. Protection of prey subject to the threshold value

From the hypotheses proposed to relate the growth and interaction of prey and predators given in
Sections 3–5, if a constant quantity of prey m > 0 take refuge, which avoids being consumed by the
predator, when its population size is lower than its critical value M > 0, where 0 < m < M < K, and
does not maintain contact with the predator if x < m, the final dynamics between prey and predators is
described by the discontinuous model (1.6), equivalent to:

V(x, y) =



W(x, y) =

 rx
(
1 −

x
K

)
− axy

sy
(
1 −

y
nx + c

)
− qEy

 , x > M

X(x, y) =


rx

(
1 −

x
K

)
− a(x − m)y

sy
[
1 −

y
n(x − m) + c

]
− qEy

 , m < x < M

Y(x, y) =

 rx
(
1 −

x
K

)
sy

(
1 −

y
c

)
− qEy

 , x < m

(6.1)

where
Σ+ =

{
(x, y) ∈ R2 : M < x ≤ K, 0 ≤ y ≤ nK + c

}
,

Σ1 = {(M, y) ∈ R2 : 0 ≤ y ≤ nK + c},
Σ∗ = {(x, y) ∈ R2 : m < x < M, 0 ≤ y ≤ nK + c},
Σ2 = {(m, y) ∈ R2 : 0 ≤ y ≤ nK + c},
Σ− = {(x, y) ∈ R2 : 0 ≤ x < m, 0 ≤ y ≤ nK + c}.
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To perform a qualitative analysis of the discontinuous model (6.1) we must calculate the equilibrium
points, the regions Σs,e,c

1,2 that divide Σ1,2 and, the sliding segment Z s
1,2 in Σ1,2.

6.1. Local stability of equilibrium points

From the equilibrium in the vector fields W, X, Y , as observed in Section 4, 3 and 5 respectively,
we have that the equilibriums of the discontinuous model (6.1) on the coordinate axes (x, y) are given
by: P̃0 = (0, 0) ∈ Σ−, P̃2 =

(
0, c(s−qE)

s

)
∈ Σ− if s − qE > 0 and, P1 = (0,K) ∈ Σ+.

Moreover, if s− qE > 0 and m < x1 < M, the discontinuous model (6.1) has an interior equilibrium
given by P3 = (x1, y1) ∈ Σ∗, with x1 and y1 as described in (3.3) and (3.1), respectively. Also, if 1 < ϕ
and M < x, the discontinuous model (6.1) has another interior equilibrium given by P3 = (x, y) ∈ Σ+,
with x and y as described in (4.3). The local stability of each equilibrium is shown in the Lemmas 4, 8
and 10.

However, the interior equilibriums P3 and P3 do not coexist in the discontinuous model (6.1), as
shown in the following result.

Lemma 11. If s − qE > 0 and 1 < ϕ, then P3 and P3 do not coexist in the discontinuous model (6.1).

Proof. Since ac(s − qE) > a(c − 2m)(s − qE), if 1 < ϕ then ac(s − qE) > rs > a(c − 2m)(s − qE) or
ac(s − qE) > a(c − 2m)(s − qE) > rs. In either case, x < x1. Therefore, if M < x then P3 ∈ Σ

+ and
P3 < Σ

∗. If x < M < x1, then P3 < Σ
+ and P3 < Σ

∗. If x1 < M then P3 < Σ
+ and P3 ∈ Σ

∗.

6.2. Existence of pseudo-equilibrium and tangent points in Σ1

If f1(x, y) = x − M, then for all p ∈ Σ1,

W f1(p) =
〈
W(p), grad f1(p)

〉
= rM

(
1 −

M
K

)
− aMy,

X f1(p) =
〈
X(p), grad f1(p)

〉
= rM

(
1 −

M
K

)
− a(M − m)y.

Since r(K−M)
aK < rM(K−M)

aK(M−m) , then

Σs
1 =

{
(M, y) ∈ R2 : r(K−M)

aK < y < rM(K−M)
aK(M−m)

}
,

Σc
1 =

{
(M, y) ∈ R2 : 0 < y < r(K−M)

aK or rP(K−M)
aK(M−m) < y < n(K − m) + c

}
,

Σe
1 = ∅.

In addition, the sliding segment Σs
1 has two tangent points given by:

T =

(
M,

r(K − M)
aK

)
and T =

(
M,

rM(K − M)
aK(M − m)

)
,

where the tangent point T is visible if W2 f (T ) =
〈
W(T ), gradW f1(T )

〉
> 0, that is,

rs(K − M) > aK(nM + c)(s − qE),

and invisible if
rs(K − M) < aK(nM + c)(s − qE).
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Similarly, the tangent point T is visible if X2 f1(T ) =
〈
X(T ), gradX f1(T )

〉
< 0, that is,

rsM(K − M) < aK[c + n(M − m)](M − m)(s − qE)

and invisible if
rsM(K − M) > aK[c + n(M − m)](M − m)(s − qE).

The following result summarizes the behavior of the tangent points on the model, whose proof will
be omitted.

Lemma 12. Let T and T tangent points of the discontinuous model (6.1), with ϕ as described in (4.2).

1) If s − qE < 0 then T is visible and T is invisible to all m < M < K.

2) For s − qE > 0,

(a) If ϕ < 1, T is invisible to all m < M < K. If 1 < ϕ, T is invisible if P3 < Σ
+, and visible if

P3 ∈ Σ
+.

(b) The tangent point T is visible if P3 ∈ Σ
∗, and invisible if P3 < Σ

∗.

On the other hand, the vector field of the sliding segment Z s
1(p) = (Z s

1x,Z
s
1y)

T , with p ∈ Σs
1, is given by

Z s
1(p) =

 0
y {aK(nM + c)[n(M − m) + c](s − qE) − asKy[n(2M − m) + c] + nrsM(K − M)}

aK(nM + c)[n(M − m) + c]

 ,
with pseudo-equilibrium PN = (M, yp) ∈ Σs

1, where

yp =
aK(nM + c)[n(M − m) + c](s − qE) + nrsM(K − M)

asK[n(2M − m) + c]
,

which corresponds to a stable pseudo-node because Z s
1y > 0 if y < yp and Z s

1y < 0 if y > yp.
The following result shows conditions for the existence of the stable pseudo-node PN.

Lemma 13. Conditions for the existence of the stable pseudo-node PN in the discontinuous model
(6.1), with ϕ as described in (4.2).

1) If s − qE < 0 then PN < Σs
1.

2) For s − qE > 0,

(a) If ϕ < 1, then PN ∈ Σs
1 if, and only if, P3 < Σ

∗.

(b) If 1 < ϕ, the pseudo-nodo PN ∈ Σs
1 if, and only if, P3 < Σ

∗ and P3 < Σ
+.

Proof. Note that PN ∈ Σs
1 if, and only if, r(K−M)

aK < yp <
rM(K−M)
aK(M−m) , that is, rs(K−M) < aK(nM+c)(s−qE)

and rsM(K − M) > aK[n(M − m) + c](M − m)(s − qE). In this case, if s − qE < 0, then PN < Σs
1.

However, if s − qE > 0, PN ∈ Σs
1 if, and only if,

K[ϕ − 1]
anK(s − qE) + rs

< M, (6.2)
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and

M <
−B +

√
B2 − 4AC

2A
, (6.3)

with A, B and C as described in (3.2).
Therefore, if ϕ < 1 then (6.2) is obtained for all M > 0 and (6.3) is satisfied if, and only if, P3 < Σ

+.
However, if 1 < ϕ, then PN ∈ Σs

1 if, and only if, x < M < x1, that is, P3 < Σ
∗ and P3 < Σ

+.

In summary, and in view of the results shown in Lemmas 12 and 13 it follows that if P3 ∈ Σ
+, then

T is visible, T is invisible and Σs
1 =
−−→
TT . On the other hand, if P3 ∈ Σ

∗, then T is invisible, T is visible

and Σs
1 =
←−−
TT . Conversely, if PN ∈ Σs

1, then T and T are invisible and Σs
1 =
−−−→
T PN

←−−−
PNT .

6.3. Non-existence of pseudo-equilibrium and tangent points in Σ2

In this case, if f2(x, y) = x − m, then for all p ∈ Σ2,

X f2(p) = Y f2(p) = rm
(
1 −

m
K

)
> 0,

and Σ2 = Σ
c
2, that is, the trajectories φV with initial condition (x(0), y(0)) ∈ Σ− must cross Σ2 and reach

Σ∗, so there are no pseudo-equilibriums and tangent points in Σ2.

6.4. Global stability of equilibrium and pseudo-equilibrium

It is important to determine the global stability of the equilibriums P1, P3, P3 and of the pseudo-
equilibrium PN. Indeed, for the case where the pseudo-equilibrium PN ∈ Σs

1, the trajectories φV of
the discontinuous model (6.1) converge to PN for all (x(0), y(0)) ∈ Σ− ∪ Σ2 ∪ Σ

∗ ∪ Σ1 ∪ Σ
+, and thus

PN is globally asymptotically stable, as observed in the following result, whose proof was inspired
by [28, 33, 34].

Theorem 6. If PN ∈ Σs, then PN is globally asymptotically stable.

Proof. Since PN ∈ Σs
1 is locally stable, P̃0 ∈ Σ

− is unstable, P1 ∈ Σ
+ and P̃2 ∈ Σ

− are saddle points,
P3 < Σ

∗ and P3 < Σ
+, to guarantee the global asymptotic stability of PN five conditions must be proved:

1) There are no limit cycles in Σ+, Σ∗ and Σ−: By the Lemmas 7, 5 and 9 the non-existence of limit
cycles in Σ+, Σ∗ and Σ−, respectively, is guaranteed.

2) There is no periodic trajectory for discontinuous model (6.1) which contains a part of Σs
1: Since

the pseudo-equilibrium PN ∈ Σs
1 is stable, there is not closed orbit for discontinuous model (6.1)

containing a part of Σs
1.

3) There is no periodic trajectory which contains Σ− and Σ∗: Since Σ2 = Σ
c
2 and from the dynamics

of the vector field Y , formed by systems of autonomous and independent differential equations, no
closed trajectory can be formed by unions of trajectories in Σ∗ and Σ−.

4) There is no periodic trajectory which contains Σ−, Σ∗, Σs
1 and Σ+ : Analogous to the previous

reasoning.
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5) There is no closed trajectory which contains Σ∗, Σs
1 and Σ+: Indeed, if it is assumed that there is

a closed trajectory Γ of discontinuous model (6.1), which passes through Σ1 and encloses Σs
1, let

Q and N as the intersection points of Γ and Σ1, respectively, as observed in Figure 7. Similarly,
let Q1 = Q + a1(θ) and N1 = N − a2(θ), with intersection points of Γ and the line x = M − θ,
respectively, and Q2 = Q + b1(θ) and N2 = N − b2(θ) as the intersection points of Γ and x = Q + θ,
where θ > 0 is sufficiently small. Moreover, a1,2(θ) and b1,2(θ) are continuous with respect θ and
a1,2(θ), b1,2(θ)→ 0 when θ → 0.

y

x

Q

PN

M

N

M − θ M + θ

Q1

N1 N2

Q2

Γ1 Γ2

m

Figure 7. Limit cycle Γ of discontinuous model (6.1).

As shown in Figure 7, the Γ1 and
−−−−→
N1Q1 is locate in the region Σ∗. Similarly, the Γ2 and

−−−−→
Q2N2 is

locate in the region Σ+. Furthermore, the dynamics of discontinuous model (6.1) in region Σ+ is
represented by (4.1) If ∂Σ+ denote the boundary of Σ+, by using Green’s Theorem [31], with h(x, y)
as in (3.8), we have "

Σ+

∂h f
∂x
+
∂hg
∂y

 dσ =

"
Σ+

∂h f
∂x

dσ +
"
Σ+

∂hg
∂y

dσ

=

∮
∂Σ+

h f dy −
∮
∂Σ+

hgdx

=

(∫
Γ2

h f dy +
∫
−−−−→
Q2N2

h f dy
)

−

(∫
Γ2

hgdx +
∫
−−−−→
Q2N2

hgdx
)

=

∫
−−−−→
Q2N2

h f dy,

(6.4)

where dx = f (x, y)dt, dy = g(x, y)dt, and there is no change of x in
−−−−→
Q2N2, then∫

−−−−→
Q2N2

hgdx =
∫ M+θ

M+θ
hgdx = 0.

Similarly, if the dynamics in Σ∗ is represented by (3.7), by Green’s Theorem,"
Σ∗

(
∂h f
∂x
+
∂hg
∂y

)
dσ =

∫
−−−−→
N1Q1

h f dy. (6.5)

Suppose that Σ∗10 ⊂ Σ
∗ and
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ϵ =

"
Σ∗10

(
∂h f
∂x
+
∂hg
∂y

)
dσ =

∮
∂Σ∗10

(h f dy − hgdy) > 0. (6.6)

From Lemma 5, and based in (6.6), we have

0 < ϵ <
∫
−−−−→
Q2N2

h f dy +
∫
−−−−→
N1Q1

h f dy. (6.7)

As observed in Figure 7, if θ → 0 in the sum of (6.4) and (6.5) we have that

lim
θ→0

(∫
−−−−→
Q2N2

h f dy +
∫
−−−−→
N1Q1

h f dy
)
= lim

θ→0

∫ Q+b1(θ)

N−b2(θ)

{
k + M

My

[
rM

(
1 −

M
K

)
− aMy

]}
dy

− lim
θ→0

∫ Q+a1(θ)

N−a2(θ)

{
k + M

My

[
rM

(
1 −

M
K

)
− a(M − m)y

]}
dy

=
am(K + M)

M
(N − Q) < 0.

(6.8)

Then (6.7) holds, which contradicts to (6.8). Thus there is no closed trajectory containing Σs
1 and

PN. Therefore, PN is globally asymptotically stable.

Similarly, if P3 ∈ Σ
+, by Theorem 3 and Lemmas 11 and 13, it follows that the trajectories φV of

the Filippov system (6.1) converge to P3 for all (x(0), y(0)) ∈ Σ− ∪ Σ2 ∪ Σ
∗ ∪ Σ1 ∪ Σ

+. Therefore,
the following result shows that the equilibrium P3 is globally asymptotically stable, whose proof was
inspired by [28, 33, 34].

Theorem 7. If P3 ∈ Σ
+, then P3 is globally asymptotically stable.

Proof. Since PN < Σs, P̃0 is unstable, P1 and P̃2 are saddle points and P3 < Σ
∗, to determine that P3 is

globally asymptotically stable five conditions must be proved:

1) There are no limit cycles in Σ+, Σ∗ and Σ−: By the Lemmas 7, 5 and 9 we guarantee the non-existence
of limit cycles in Σ+, Σ∗ and Σ−, respectively.

2) There is no closed trajectory for discontinuous model (6.1) which contains a part of Σs
1: Since

Σ2 = Σ
c
2, T is visible and T is invisible, any trajectory φV , with initial condition (x(0), y(0)) ∈ Σs

1,
slides over Σs

2 to T and escapes Σ+, therefore, we will prove that the trajectory φV of discontinuous
model (6.1) starting from the tangent point T cannot enter the Σs

1 again. Indeed, if the trajectory
φV starting at T , encircles P3 and intercepts with T forming a periodical trajectory Γ, then any
φV with initial condition outside Γ will not be able to cross Γ, and certainly cannot converge to the
equilibrium P3, which contradicts the stability of P3. Similarly, if the φV starting at T and encircling
the equilibrium P3, intercepts Σs

1 at some point other than T , then P3 must be unstable, which also
contradicts to the statement that P3 is a stable equilibrium. Therefore, there is no closed trajectory
of discontinuous model (6.1) containing part of Σs

1.
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3) There is no periodic trajectory which contains Σ− and Σ∗: Analogous to that shown by the Theorem
6.

4) There is no periodic trajectory which contains Σ−, Σ∗, Σs
1 and Σ+ : Analogous to that shown by the

Theorem 6.

5) There is no closed trajectory which contains Σ∗, Σs
1 and Σ+: This step is similar to that of Theorem

6, and we omit it here for brevity.

If s − qE < 0 and ϕ < 1, that is, if P3 < Σ
∗ and P3 < Σ

+, by Theorem 1 and Lemmas 12 and 13, the
trajectories φV of the discontinuous model (6.1) converge to P1 ∈ Σ

+ as shown in the following result.

Theorem 8. If s − qE < 0, then P1 ∈ Σ
+ is globally asymptotically stable.

Proof. A similar procedure to that of Theorem 7 can be used to prove this theorem, and we omit it here
for brevity.

6.5. Bifurcation diagram

Finally, we analyze the cases in which the parameters M and E can modify the phase diagrams of the
discontinuous model (6.1) using the results found by the qualitative analysis presented in Subsection
6.1. Indeed, in Figure 8(b)–(g) show the changes in their phase portraits of the discontinuous model
(6.1) with respect to the bifurcation curves in the plane (M, E), represented in Figure 8(a), described as
follows:

• In region I, P1 ∈ Σ
+ is globally asymptotically stable, this is, φV converge to P1, regardless of the

initial condition (x(0), y(0)) ∈ Σ− ∪ Σ2 ∪ Σ
∗ ∪ Σ1 ∪ Σ

+, as observed in Figure 8(b).
• In regions II and III, represented in Figure 8(c) and (d) respectively, shows that φV converge to

P3 ∈ Σ
+, where P3 is node in region II and a focus in region III.

• In region IV, shown in Figure 8(e), we have that φV → PN ∈ Σs
1 when t → ∞.

• In regions V and VI, represented in Figure 8(f) and (g) respectively, shows that P3 ∈ Σ
∗ is a

globally asymptotically stable equilibrium, which is a node in region V and a focus in region VI.

7. Conclusions

Since many researchers assume the existence of prey that completely hide from the predator when
their population size is below a critical threshold, the proposed discontinuous predator-prey models
focus on completely deactivating the predator functional response, which is generally assumed to be
nonlinear to enrich the qualitative analysis of the model, if the population size of prey is below the
critical threshold [25–29]. However, it could be the case that a constant population size of prey does
not manage to hide from the predator, because, for example, they escape from the prey group unno-
ticed to explore the environment, so the predator functional response should not be deactivated, but
modified in such a way that it considers the interaction between the population size of the predator
and the unrefuged quantity of prey, where the predator functional response should not necessarily be
considered as nonlinear [8, 30].
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I

II

III
IV

V

V I

Unrealistic
values

Unrealistic
values

m K M

E

ϕ = 1

△m = 0

△ = 0

M = x

M = x1

(a) Bifurcation curves in the plane (M, E)

(b) Region I (c) Region II (d) Region III

(e) Region IV (f) Region V (g) Region VI

Figure 8. Bifurcation diagram of the discontinuous model (6.1) in the plane (E, P) and phase
portraits characterizing each region, with fixed parameters: a = K = q = 1, c = 0.2, m = 0.1,
n = 0.7, r = 0.09 and s = 0.07. Green vector field: Y . Red vector field: X. Gray vector
field: W. Orange point: P̃0. Purple point: P1. Blue point: P̃2. Black point: P3. Gray point:
P3. Red point: PN. Blue line: Σs

2. Region I: P1 is a globally asymptotically stable and
P̃2 < Σ

−. Region II: P3 is a globally asymptotically stable node. Region III: P3 is a globally
asymptotically stable focus. Region IV: PN is a globally asymptotically stable node. Region
V: P3 is a globally asymptotically stable node. Region VI: P3 is a globally asymptotically
stable focus.

Therefore, in this work a mathematical model was proposed, by means of a system of discontinuous
differential equations, which represents the scientifically observable behavior between a pair of species,
prey and predator. From the qualitative analysis of the models (1.2), (1.3) and (1.4), it is determined that
the general behavior of the species described in the discontinuous model (1.6) remain in equilibrium
over time and no extinction of any species occurs.
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Regarding the qualitative analysis of model (1.2), the extinction of predators is determined when the
intrinsic birth rate is less than or equal to the product between the harvest coefficient and the capture
effort, that is s − qE < 0. If this condition among its parameters is not met, the predator species
does not become extinct and converges to an equilibrium. However, if the model (1.2) has no internal
equilibrium for s − qE > 0, the prey should become extinct over time. Moreover, the model (1.2)
has two transcritical bifurcations, characterized by the collision of the interior equilibrium with respect
to one of its equilibriums located on the coordinate axes, and subsequently, it causes a change in the
stability of the equilibrium on the coordinate axis and the disappearance of the interior equilibrium inΩ0.

On the other hand, and with respect to the qualitative analysis of the model (1.3), this model makes
biological sense if the initial population size of prey is greater than or equal to the quantity of refugia,
i.e., m ≤ x(0). However, for the hypothetical case where x(0) < m, the initial condition in the model
(1.3) is not constrained if c − mn ≤ 0, otherwise, if the initial population size of prey is less than
−

(c−mn)
n , the population size of predators grows exponentially, which is biologically absurd. To mitigate

this problem, if the initial prey population size is less than m > 0, the interaction between prey and
predators ceases, and both species attain carrying capacity by logistic growth (1.4), with harvesting
for predators, and in that case, the model (1.3) should be applicable when the growth of prey, without
interaction with the predator, exceeds the constant refuge of prey.

Unlike the cases of bifurcations in the model (1.2), the model (1.3) has a transcritical bifurcation,
associated by the collision, and subsequent change of stability, of the interior equilibrium and the only
equilibrium located on the x-axis. The non-existence of the equilibrium on the y-axis in the model (1.3)
is associated with the parameter of constant prey refuge m > 0, which guarantees the non-extinction
of prey. However, the predators described in the model (1.3) could become extinct if the condition of
the parameters associated with the model (1.2) are satisfied. In addition, the bifurcation cases for the
models (1.2) and (1.3) disagree on an additional bifurcation region in the model (1.2), characterized by
prey extinction, that is s − qE > 0 and ϕ < 1, since m > 0 prey refuge is not considered in the model
(1.3). However, in both models, the predator may become extinct over time if s − qE ≤ 0.

On the other hand, the transcritical bifurcation in the model (1.3) is transferred to the cases of
bifurcations in the discontinuous model (1.6), so the predators, in the same way as in models (1.2)
and (1.3), could become extinct if s − qE ≤ 0, but the value of m > 0 guarantees the non-extinction
of prey in the discontinuous model (1.6), unlike the model (1.2) in which prey can become extinct
over time if s − qE > 0 and ϕ < 1. For the case where the equilibrium P3 or P3 collides with Σ, a
Σ-node bifurcation occurs and the pseudo-equilibrium PN ∈ Σs

1. Note that regardless of the parameter
conditions in the discontinuous model (1.6), same as models (1.2) and (1.3), there are no limit cycles,
so that both species could stabilize their growth over time. In addition, a sliding segment is formed
in the discontinuous model (1.6) regardless of the alteration of its parameters, so there are trajectories
that slide along the sliding segment and converge to equilibrium or pseudo-equilibrium.

Comparing the models (1.2) and (1.3) with the discontinuous model (1.6), we have that the bifur-
cation cases for the models (1.2) and (1.3) are added to the bifurcations in the discontinuous model
(1.6) whenever s− qE > 0 and P3, or P3, is the unique interior equilibrium in the discontinuous model
(1.6), that is, when x1 < M, or 1 < ϕ and M < x, which guarantees that both species subsist over time.
Furthermore, if P3 is the only equilibrium in the discontinuous model (1.6), then the population size
of prey is below the critical value M > 0. Similarly, if P3 is the only interior equilibrium, then the
population size of prey is above the critical value M > 0. However, if s − qE > 0, ϕ < 1 and x1 > M,
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Prey consumed

m M(0,0)

Figure 9. Predator functional response in the discontinuous model (1.6).

we have that PN exists, so the population size of prey converges to the critical value M. Similarly, if
s−qE > 0, 1 < ϕ, x1 > M and x < M, then P3 and P3 are not interior equilibriums in the discontinuous
model (1.6), so the population size of prey converges to the critical value M > 0.

Note that the predator functional response described in the discontinuous model (1.6), shown in
Figure 9, could be viewed as a kind of sigmoid, or Holing III type, if we ignore the discontinuity
at x = M. Although predator-prey models with Holing III predator functional response have limit
cycles [35, 36], it does not give guarantee to assume the existence of limit cycles in the discontinuous
model (1.6). A possible formation of limit cycles in Filippov systems arises from the existence of limit
cycles in one of the conforming vector fields, together with the possible collision of these limit cycles
with the sliding segment Σs, or cycles crossing Σc, as observed in Figure 2. Similarly, and naturally for
continuous dynamical systems, the existence of at least one stable limit cycle could be deduced when
all equilibriums of the discontinuous model are unstable [26, 29].

For the case where all prey take refuge from the predator when they are below the threshold value
M > 0, the predators cannot consume the prey and the discontinuous model (1.6) is re-formulated by

V(x, y) :


ẋ = rx

(
1 −

x
K

)
− aϵxy

ẏ = sy
(
1 −

y
nϵx + c

)
− qEy,

(7.1)

where

ϵ =

{
1, if x > M,
0, if x < M,

of which has a single tangent point T and a stable pseudo-equilibrium PN. Moreover, the bifurca-
tion cases are equivalent to that shown in Figure 8(a), in which region IV is interposed over regions
V and VI, so that there are only 4 different behaviors in the dynamics between prey and predators.
In this case and independent of the alterations on the parameters in the discontinuous model (7.1),
the population size of prey could not be below the critical value M > 0 and the predators would lead
to extinction if s − qE < 0.

Similarly, if there are a population size of prey m > 0 that is refugeed from the predator at all times,
the predator, upon consuming the remaining prey, must subsist solely on alternative food provided by
the environment. Thus, the discontinuous model (1.6) is modified by:

Ṽ(x, y) :


ẋ = rx

(
1 −

x
K

)
− aϵ(x − m)y

ẏ = sy
[
1 −

y
nϵ(x − m) + c

]
− qEy,

(7.2)
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where

ϵ =

{
1, if x > m,
0, if x < m,

and the bifurcation cases are equivalent to those shown in Figure 4. Unlike the model (1.3), the dis-
continuous model (7.2) does not provide any constraint with respect to the behavior between the initial
prey population size and quantity of prey refuges, i.e., m < x(0) or x(0) > m.
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4. E. González-Olivares, C. Arancibia-Ibarra, A. Rojas, B. González-Yañez, Dynamics of a modified
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