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ABSTRACT

Over the last two decades, there has been growing interest among economists in
nonfundamental univariate processes, generally represented by noncausal and non-
invertible time series. These processes have become increasingly popular due to
their ability to capture nonlinear dynamics such as volatility clustering, asymmetric
cycles, and local explosiveness - all of which are commonly observed in Macroeco-
nomics and Finance. In particular, the incorporation of both past and future com-
ponents into noncausal and noninvertible processes makes them attractive options
for modeling forward-looking behavior in economic activities. However, the classical
techniques used for analyzing time series models are largely limited to causal and
invertible counterparts. This dissertation seeks to contribute to the field by provid-
ing theoretical tools robust to noncausal and noninvertible time series in testing and
estimation.

In the first chapter, "Quantile Autoregression-Based Non-causality Testing", we
investigate the statistical properties of empirical conditional quantiles of non-causal
processes. Specifically, we show that the quantile autoregression (QAR) estimates
for non-causal processes do not remain constant across different quantiles in con-
trast to their causal counterparts. Furthermore, we demonstrate that non-causal
autoregressive processes admit nonlinear representations for conditional quantiles
given past observations. Exploiting these properties, we propose three novel testing
strategies of non-causality for non-Gaussian processes within the QAR framework.
The tests are constructed either by verifying the constancy of the slope coefficients
or by applying a misspecification test of the linear QAR model over different quan-
tiles of the process. Some numerical experiments are included to examine the finite
sample performance of the testing strategies, where we compare different specifica-
tion tests for dynamic quantiles with the Kolmogorov-Smirnov constancy test. The
new methodology is applied to some time series from financial markets to investi-
gate the presence of speculative bubbles. The extension of the approach based on
the specification tests to AR processes driven by innovations with heteroskedasticity
is studied through simulations. The performance of QAR estimates of non-causal
processes at extreme quantiles is also explored.

In the second chapter, "Estimation of Time Series Models Using the Empirical
Distribution of Residuals", we introduce a novel estimation technique for general
linear time series models, potentially noninvertible and noncausal, by utilizing the
empirical cumulative distribution function of residuals. The proposed method relies
on the generalized spectral cumulative function to characterize the pairwise depen-
dence of residuals at all lags. Model identification can be achieved by exploiting



the information in the joint distribution of residuals under the iid assumption. This
method yields consistent estimates of the model parameters without imposing strin-
gent conditions on the higher-order moments or any distributional assumptions on
the innovations beyond non-Gaussianity. We investigate the asymptotic distribu-
tion of the estimates by employing a smoothed cumulative distribution function to
approximate the indicator function, considering the non-differentiability of the orig-
inal loss function. Efficiency improvements can be achieved by properly choosing
the scaling parameter for residuals. Finite sample properties are explored through
Monte Carlo simulations. An empirical application to illustrate this methodology
is provided by fitting the daily trading volume of Microsoft stock by autoregressive
models with noncausal representation. The flexibility of the cumulative distribution
function permits the proposed method to be extended to more general dependence
structures where innovations are only conditional mean or quantile independent.

In the third chapter, "Directional Predictability Tests", joint with Carlos Ve-
lasco, we propose new tests of predictability for non-Gaussian sequences that may
display general nonlinear dependence in higher-order properties. We test the null of
martingale difference against parametric alternatives which can introduce linear or
nonlinear dependence as generated by ARMA and all-pass restricted ARMA mod-
els, respectively. We also develop tests to check for linear predictability under the
white noise null hypothesis parameterized by an all-pass model driven by martin-
gale difference innovations and tests of non-linear predictability on ARMA residuals.
Our Lagrange Multiplier tests are developed from a loss function based on pairwise
dependence measures that identify the predictability of levels. We provide asymp-
totic and finite sample analysis of the properties of the new tests and investigate
the predictability of different series of financial returns.

viii



CONTENTS

1. CHAPTER I: QUANTILE AUTOREGRESSION-BASED NON-CAUSALITY
TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Mixed Causal and Non-causal Autoregressions . . . . . . . . . . . . . . . . 3

1.3. QAR-based Non-causality Tests . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1. Benchmark model: MAR(r, s) . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4. Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5. Empirical Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.1. Some Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.2. Perspective from Extreme Quantiles . . . . . . . . . . . . . . . . . . . . 30

1.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8. Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.8.1. Some Properties of Non-causal Autoregressive Processes . . . . . . . . 32

1.8.2. Asymptotic Properties of QAR Estimates . . . . . . . . . . . . . . . . . 35

1.8.3. Proof to Theorem 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.8.4. Simulations of Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2. CHAPTER II: ESTIMATION OF TIME SERIES MODELS USING THE
EMPIRICAL DISTRIBUTION OF RESIDUALS . . . . . . . . . . . . . . . . . . 39

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2. Pairwise dependence measures based on residuals . . . . . . . . . . . . . . 42

2.3. Model estimation under serial independence . . . . . . . . . . . . . . . . . . 46

2.3.1. Model identification under serial independence . . . . . . . . . . . . . . 46

2.3.2. Estimates of model parameters under serial independence . . . . . . . 48

2.3.3. Asymptomatic distribution of estimates under serial independence . . 50

2.3.4. Standard error calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4. Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1. Indicator approach: h = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



2.4.2. Smooth cdf approach: h > 0 . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5. Empirical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5.1. Clustering volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6. Discussion: Measures of dependence under a martingale difference as-
sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7. Appendix A: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7.1. Proof of Lemma 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7.2. Proof of Lemma 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7.3. Truncation effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7.4. Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.7.5. Proof of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.7.6. Proof of Theorem 2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.7.7. Proof of Theorem 2.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.8. Appendix B: Numerical Calculus . . . . . . . . . . . . . . . . . . . . . . . . 89

2.8.1. Calculations of Sample Objective Function . . . . . . . . . . . . . . . . 89

3. CHAPTER III: DIRECTIONAL PREDICTABILITY TESTS . . . . . . . . 91

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2. Predictability, linear and nonlinear dependence . . . . . . . . . . . . . . . . 93

3.2.1. Predictability introduced by all-pass filters on mds sequences . . . . . 94

3.2.2. Higher order dependence introduced by all-pass filters . . . . . . . . . 97

3.3. Directional Predictability Hypothesis Tests . . . . . . . . . . . . . . . . . . 98

3.3.1. Tests of the mds hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.2. Tests of the AP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4. Directional Nonlinear Dependence Tests for Residuals . . . . . . . . . . . . 106

3.5. Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6. Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.8. Appendix A: Proofs of Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.9. Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.9.1. General ARMA(p,p) model . . . . . . . . . . . . . . . . . . . . . . . . . . 121

x



3.9.2. Technical Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.9.3. Proofs of Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.9.4. Tests based on iid dependence measures . . . . . . . . . . . . . . . . . . 127

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



LIST OF FIGURES

1.2.1 Trajectories of MAR(1, 1) processes with different parameters (ϕ, ψ),
T=500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 QAR(1) estimates of a pair of AR(1) processes . . . . . . . . . . . . . 11

1.4.1 Four cases of QAR(1) on MAR(1, 0) and MAR(0, 1), T=500, ϕ(ψ) =
0.6 : asymmetric distributions . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Three cases of QAR(1) on MAR(1, 0) and MAR(0, 1), T=500, ϕ(ψ) =
0.6: symmetric distributions . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Financial series trajectories . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.2 Sample partial autocorrelation functions of six financial series . . . . 27

1.8.1 conditional density of Yt given different x . . . . . . . . . . . . . . . . 35

2.1.1 Simulated processes from causal and noncausal AR(1) models . . . . 42

2.6.1 Microsoft daily trading volume from 6/3/1993 to 5/26/1999 . . . . . 63

2.6.2 Diagnostics of residuals from both causal and non-causal models: a
comparison in ACF of residuals in squared values . . . . . . . . . . . 64

xii



LIST OF TABLES

1.4.1 Empirical size and power of non-causality test using constancy⋆ test
in QAR in various cases . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.2 Empirical size and power of non-causality test using constancy test
with different trimmed quantile interval . . . . . . . . . . . . . . . . . 22

1.4.3 Empirical size and power of non-causality test using EV test in QAR
in various cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.4 Empirical size and power of non-causality test using EG test in QAR
in various cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.5 Comparison of QAR-based non-causality tests . . . . . . . . . . . . . 25

1.5.1 Non-causality tests for six financial series in Fries and Zakoïan (2019) 28

1.8.1 Empirical size and power of non-causality tests for AR-ARCH models
with known heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Comparison of estimates using empirical cdf and standard normal cdf
under different distributions of innovations: study in AR(1) case . . . 62

2.6.2 Estimates of AR(2) generated by innovations following χ2
5 . . . . . . . 62

2.6.3 Performance of the estimates by approximating the indicator func-
tion using smoothed cdf with different convergence rates of h: AR(1)
driven by χ2

5 innovations . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Rejection rates of 5% LM tests: ARMA(1, 1) models, εt ∼ χ2
4. . . . . 109

3.5.2 Rejection rates of 5% LM tests: ARMA(1, 1) models, εt ∼ t4. . . . . . 110

3.6.1 iid estimation and tests for quarterly returns. . . . . . . . . . . . . . 112

3.6.2 mds estimation and tests for quarterly returns. . . . . . . . . . . . . . 113

xiii



1. CHAPTER I: QUANTILE
AUTOREGRESSION-BASED NON-CAUSALITY

TESTING

1.1. Introduction

A stationary autoregressive moving-average (ARMA) process is defined as causal
concerning the specified innovation sequence if all roots of the autoregressive poly-
nomials are outside of the unit circle, so it can be represented by an infinite sum of
past innovations. However, non-causal autoregressive (AR) processes, due to their
ability to display various non-linear dynamics, have been drawing increasing atten-
tion in the econometrics literature during the last two decades. The same concept
has been fully exploited as non-minimum phase stochastic systems with applications
to natural sciences. Unlike the causal AR process in the classical time series con-
text, mixed causal and non-causal AR processes do not impose presumptions on the
location of the lag polynomial roots except for the exclusion of the unit root, which
allows these stationary processes to be dependent on past and future innovations at
the same time. Breidt et al. (2001) showed that non-causal AR processes can capture
stylized facts like clustering volatility in financial data, which usually is associated
with GARCH models. The same argument is made in the paper by Lanne et al.
(2013), where they derived a closed-form expression for the correlation of squared
values in levels in the ARMA(1, 1) case. Fries and Zakoïan (2019); Gouriéroux and
Zakoïan (2017) and Cavaliere et al. (2020) proposed to model speculative bubbles
with non-causal AR or mixed causal and non-causal AR processes generated by
heavy-tailed innovations because they can display local explosive behavior. Regard-
ing forecasting, Lanne et al. (2012) and Hecq and Voisin (2021) argued that there
is a gain in forecasting performance after introducing non-causality into the model-
ing procedure. Moreover, Lanne and Luoto (2013) pointed out that non-causal AR
processes can be an alternative to non-invertible processes for forward-looking be-
havior, see Alessi et al. (2011) for a comprehensive survey of empirical applications
of non-invertible (non-fundamental) processes to Macroeconomics and Finance.

The emerging applications of non-causal AR processes promote an interest in
testing non-causality in practice, given that autocorrelation functions fail to dis-
criminate non-causal processes from their causal counterparts. Needless to say, the
non-causality check can be naturally achieved through testing classical linear hy-
potheses under robust estimation techniques applicable to possibly non-causal pro-
cesses. These estimation methods have been developed by Breid et al. (1991) and Lii
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and Rosenblatt (1992, 1996) through non-Gaussian maximum likelihood schemes or
minimum distance estimation exploiting information contained in higher order mo-
ments/cumulants or characteristic/cumulative distribution functions of residuals,
see Velasco and Lobato (2018), Velasco (2022), and Jin (2022). With this approach,
the test procedure is confined to the assumptions required for the corresponding
estimates, which can be somehow stringent. Apart from that, a factorization of the
coefficients is necessary for disentangling the roots, which becomes rather compli-
cated as the order of the AR process increases. Therefore, a testing strategy before
the estimation, which can potentially work as a model selection, needs investigation.
Besides, the testing can serve as a detection tool for the existence of speculative bub-
bles in empirical time series for the ability of non-causal processes with heavy tails
to exhibit local explosive behavior.

However, except for the robust estimation techniques introduced before, little
has been done on the theory of testing non-causality in AR processes. Neverthe-
less, all the estimation techniques above deliver the same message that additional
information beyond second-order moments is required to identify non-causality. Fol-
lowing this message, we propose some testing strategies for the non-causality of time
series within the quantile autoregressions framework (QAR hereafter) (Koenker and
Xiao (2006)), which allows us to make use of the complete distribution to measure
dependence. Similarly, Hecq and Sun (2021) applied QAR to the target process
and entertained the sum of rescaled absolute residuals as an information criterion to
select between purely causal and non-causal models. The approach of Hecq and Sun
(2021) obtains the proposed test statistic by running QAR in direct and reserved
time, respectively. This approach can bring up ambiguity in the model selection
when the complexity of the causality structure escalates as the order of the AR
model increases. Thereby, this strategy may yield misleading results when the time
series is mixed causal and non-causal.

In this paper, we propose three testing procedures based on the well-developed
inference for QAR estimates exploiting the non-linear characteristics of non-causal
processes. Recall that the coefficients in the conditional quantile regression for the
location model1 are quantile-invariant except for the intercept. When the process
is causal, the independence of the current innovation with past observations con-
tributes to the invariant property of coefficients in the QAR model across different
quantiles. However, under non-causality the true conditional quantile of a non-
Gaussian AR process exhibits non-linearity in the past information. Induced from
this, the best linear approximation to the true conditional quantile is expected to
show varying coefficients across distinct quantiles. Using this feature, we introduce

1The location model is any model of the form Y = µ(X) + σ · u, where u is independent of X.
Throughout this paper, we refer to Yt = µ (Yt−1, Yt−2, . . . ) + ut, where µ(·) is a linear functional
form, and ut is a sequence of iid innovations, when it comes to the location model.

2



our first strategy for the objective of testing non-causality by carrying out the con-
stancy test over the entire quantile interval. Its easy-to-implement attribute makes
it a perfect candidate for a preliminary check of non-causality. The other approach
to detect non-causality is achieved through a specification test of the linear func-
tional form for the conditional quantile. With this specification-based approach,
no distributional knowledge of the innovations beforehand is required, nor does the
correct specification of the conditional quantile need to be spelled out.

The testing strategies introduced in this paper fill a gap in the theory of testing
non-causality. Apart from that, they share an appealing property of retaining power
when the AR process is higher-order with a mixture of causal and non-causal rep-
resentation. Like the significant advantage of quantile regression over conditional
mean regression, our approach is robust to outliers, making it suitable for heavy-
tailed processes commonly employed in finance. Our specification-based approach
can also be tentatively extended to an AR process with conditional heteroskedastic-
ity. The tests achieve considerable power in relatively small samples. In addition,
some Monte Carlo simulation results suggest that the estimates in linear quantile
models approach the true parameters for non-causal processes as the quantile esti-
mand approaches to either extremum (0 or 1), which can be a potential viewpoint
to investigate the nonlinear features of non-causal processes in future research.

The rest of the paper is organized as follows. Section 1.2 introduces mixed causal
and non-causal Autoregressions and some of their statistical properties. Section 1.3
investigates the non-causality testing within the QAR framework. Section 1.4 dis-
cusses the finite sample performance of our proposed testing procedures through
Monte Carlo Simulations. Section 1.5 illustrates the tests using financial data with
the possible existence of speculative bubbles. Section 1.6 presents some extensions
of the proposed tests. Section 1.7 closes the paper with conclusions

1.2. Mixed Causal and Non-causal Autoregressions

In the context of classical time series analysis, it is customary to restrict atten-
tion to the causal representation of autoregressive processes while modeling sta-
tionary univariate time series. The reason is mentioned in (Brockwell and Davis,
2009, p. 105). Every non-causal autoregressive process is a stationary solution to a
future-independent autoregressive process with explosive roots. It provides the same
second-order structure as its causal counterpart. However, to feature higher-order
dynamics, a general framework of autoregressive processes named mixed causal and
non-causal autoregressive processes (MAR(r, s) hereafter)2 is proposed where tem-

2Mixed causal and non-causal autoregressive processes have been previously categorized into
general non-causal autoregressive processes in the past literature. The notation MAR(r, s) was

3



poral dependence in both past and future is introduced in the processes, defined
by

ϕ(L)ψ(L−1)Yt = ut (1.2.1)

where ϕ(L) = 1−ϕ1L−ϕ2L
2−· · ·−ϕrLr and ψ(L−1) = 1−ψ1L

−1−ψ2L
−2−· · ·−ψsL−s

are polynomials with backward and forward operators, respectively. {ut}t∈Z is a
sequence of independent identically distributed (iid) innovations with zero mean.
p = r + s is the total order encompassing both causal and non-causal polynomials
with ϕr ≠ 0 and ψs ≠ 0. An equivalent expression of equation (1.2.1) in moving
average can be given by

Yt = ϕ(L)−1ψ(L−1)−1ut =
∞∑︂

j=−∞
ρjut−j, (1.2.2)

where Yt may depend on both future and past innovations. The stationarity of Yt is
assured by the absolute summability of ρj,

∑︁∞
j=−∞ |ρj| < ∞ and E |ut|1+δ < ∞ for

δ > 0. The former condition is guaranteed once the roots of both polynomials ϕ(z)
and ψ(z) are confined to locate outside the unit circle.

When ψ(z) = 1 for all z, the process is reduced to a purely causal process
MAR(r, 0) like in conventional studies. While if ϕ(z) = 1 for all z, the process
becomes purely non-causal. Below, we attach several examples to illustrate the
statistical properties of a general autoregressive process MAR(r, s).

Example 1.2.1 (Second-order Property). Define a purely non-causal MAR(0, 1)
sequence (1 −ψL−1)Yt = ut starting from an iid sequence of innovations ut of zero-
mean and finite variance σ2. The autocovariance function of Yt is provided by

Cov (Yt+h, Yt) =Cov
⎛⎝ ∞∑︂
j=0

ψjut+h+j,
∞∑︂
j=0

ψjut+j

⎞⎠
=

∞∑︂
j=0
Cov

(︂
ψjut+h+j, ψ

j+hut+h+j
)︂

= ψh

1 − ψ2σ
2 for h = 0, 1, 2, . . .

It is worth noting, after some simple calculation, that {Yt}t∈Z shares the same auto-
covariance function as the MAR(1, 0) sequence {Ỹ t}t∈Z defined by (1 −ψL)Ỹ t = ut,
which is its causal counterpart. A general conclusion can be drawn for MAR(r, s)
through the autocovariance generating function (ACGF). The ACGF of a stationary

first adopted by Hecq et al. (2017) to describe this class of processes.
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autoregression is given by

G(L) = 1
|ϕ(L)ψ(L−1)|2

σ2 = 1
ϕ(L)ϕ(L−1)ψ(L−1)ψ(L)σ

2

= 1
ϕ(L)ψ(L)ϕ(L−1)ψ(L−1)σ

2

= 1
|ϕ(L)ψ(L)|2

σ2,

from where it is clear that MAR(r, s) takes the identical form of ACGF with MAR(r′, s′)
as long as the total order r + s = r′ + s′ is satisfied and the roots to all polynomials
match.

This second-order property explains the failure to distinguish non-causal pro-
cesses from causal processes based on the ACF. Moreover, it implies that non-
Gaussianity of innovations is required for identifying non-causal processes since
second-order properties are sufficient to characterize a Gaussian probabilistic struc-
ture but not to other distributions.

Example 1.2.2 (Local Explosiveness). Define a MAR(1, 1) process by

(1 − ϕL)(1 − ψL−1)Yt = ut, where ut ∼ Lognormal(0, 2) − exp(2)

A MAR(r, s) process with heavy-tailed innovations can generate multiple phases
of local explosiveness, which can be employed to model speculative bubbles. A
detailed investigation of probabilistic properties of a MAR process driven by α-stable
non-Gaussian innovations is provided by Fries and Zakoïan (2019), where they show
the properties of the marginal and conditional distributions of a stable MAR(r, s).
But in a general situation, there is no closed-form solution to either the marginal
or the conditional distribution of a non-causal AR process. Here we illustrate the
potential applications of MAR(r, s) processes in modeling speculative bubbles with
some simulated trajectories. In this example, we plot four distinct scenarios by
varying the parameters of both causal and non-causal components of the MAR(1, 1)
process with log-normal distributed innovations3. Generally, with non-causality,
the processes can mimic bubbles by repetitive phases of upward trends followed
by a sharp drop; see the lower panel in Figure 1.2.1. The upper panel in the same
figure indicates more complicated dynamics can be generated by incorporating more

3A log-normal distribution is a heavy-tailed continuous distribution defined on the positive
domain, whose density function is characterized by the location parameter µ and scale parameter
σ. The mean and variance are represented by exp(µ + σ2/2) and

(︁
exp(σ2) − 1

)︁
exp

(︁
2µ+ σ2)︁,

respectively. In this example, we employ centered log-normal distribution to be compatible with
our setup of mean zero.
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causal/non-causal components in the data-generating process regarding the number
and magnitude of bubbles.

Figure 1.2.1: Trajectories of MAR(1, 1) processes with different parameters (ϕ, ψ),
T=500

Note: the upper panel exhibits two MAR(1, 1) processes with different parameters on the
causal/non-causal components; the lower panel exhibits a purely non-causal AR(1) process (left)
and a purely causal AR(1) process (right) when one of the parameters degenerates to zero.

Example 1.2.3 (Conditional heteroskedasticity). Here we exemplify the applicabil-
ity of MAR(r, s) in characterizing clustering volatility as an alternative to ARCH
or other stochastic volatility models with a simple MAR(1, 1) process. This argu-
ment is originally made by Breidt et al. (2001) in an empirical application to New
Zealand/US exchange rate. Lanne et al. (2013) elaborate on it by deriving explicitly
the expression of the autocorrelation of Y 2

t in an all-pass model of order 1. However,
no formal justification for the higher-order dependence structure has been made on
general non-causal processes. Nevertheless, we present the following example that a
non-causal process can exhibit higher-order dependence.

Continued with data generating process MAR(1, 1), it can be reexpressed by an
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AR(2) with the 1−ψL
1−ψL−1 filter on the innovations,

(1 − ϕL)(1 − ψL−1)Yt = ut ut ∼ IID(0, σ2)
⇐⇒(1 − ϕL)(1 − ψL)Yt = ũt

with ũt = 1 − ψL

1 − ψL−1ut =
∞∑︂

j=−∞
ρjut+j

with ρj =

⎧⎪⎪⎨⎪⎪⎩
0 if j < −1
−ψ if j = −1
ψj − ψj+2 if j ≥ 0.

The 1−ψL
1−ψL−1 filter introduces higher-order dependence to an iid innovation se-

quence4 preserving its uncorrelatedness. By simple algebra, we can obtain the for-
mula of the autocorrelation function of ũ2

t ,

Corr
(︂
ũ2
t , ũ

2
t+h

)︂
=
κ4(ut)

(︂∑︁∞
j=−∞ ρ2

jρ
2
j+h

)︂
+ 2σ4

(︂∑︁∞
j=−∞ ρjρj+h

)︂2

κ4(ut)
(︂∑︁∞

j=−∞ ρ4
j

)︂
+ 2σ4

(︂∑︁∞
j=−∞ ρ2

j

)︂2 ,

which, in general, does not vanish5. This property demonstrates the capability of
non-causal processes to exhibit volatility clustering, which is commonly observed in
financial data. The higher-order dependence analysis of ũt is relegated to Appendix
1.8.1, indicating the possibility of accommodating higher-order nonlinear dynamics
with a general MAR(r, s) model.

As shown in the preceding examples, MAR(r, s) models can display various non-
linear characteristics with a linear process generation scheme. This deviation from
"linearity" can be employed as a crucial feature to detect non-causality in linear time
series. A fundamental result is formalized by Rosenblatt (2000) on the best one-step
predictor in the mean square for a general AR process, where he demonstrates that
the conditional expectation must be nonlinear in the past if there is non-causality
involved in the non-Gaussian AR processes with finite variance. This statement
provides us with the critical theoretical result where our tests for non-causality are
grounded, which will be elaborated on in the next section. The extension to a
general VARMA process framework has been developed by Chen et al. (2017) and
applied to a test for non-invertibility. Afterward, Fries and Zakoïan (2019) consider
the case when the MAR(1, s) process is driven by symmetric α-stable innovations
with infinite variance. They surprisingly find that the conditional expectation can
be explicitly expressed by a linear function of the past information, in contrast to

4Actually, ũt is an all-pass time series model, where all roots of the autoregressive polynomial
are reciprocals of roots in the moving average polynomial and vice versa.

5κ4(X) is the fourth cumulant of the random variable X, defined by κ4(X) =
E
(︂

(X − E(X))4
)︂

− 3E2
(︂
E (X − E(X))2

)︂
.
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a MAR(r, s) model with finite variance. However, no study has yet been done on
the distributional characterization of a MAR(r, s) process due to no closed-form so-
lution. Following a simulation-based approach, we perform a preliminary analysis
of the conditional density function of a process given the past observations, see Ap-
pendix 1.8.1. In short, in the presence of non-causality, the shape of the conditional
distribution of the process, say f(Yt|Yt−1 = y), is y-dependent. Still, the dependence
pattern is hard to characterize since it varies across different distributions.

1.3. QAR-based Non-causality Tests

1.3.1. Benchmark model: MAR(r, s)

In this section, we formalize the test procedures for non-causality. The null hypoth-
esis of interest is Yt being a causal process, i.e.

H0 : ψ1 = · · · = ψs = 0 in (1.2.1) (1.3.1)

against the alternative hypothesis denoted by HA, which is {Yt} is non-causal,

HA : ψk ≠ 0 for some k ∈ {1, 2, . . . , s} in (1.2.1). (1.3.2)

A primitive strategy is to take it as a joint significance test for the coefficients of
leads {Yt+j}j=1,2,...,s in (1.2.1). This approach would call for the identification of
models and robust inference for the estimates under both hypotheses. In this paper,
we propose a test for H0 employing the linearity property of {Yt} based on the QAR,
which is easy to implement empirically and does not require consistent estimates for
general autoregressive progresses.

Denoting the information set generated by the observations up to period t by It =
σ (Yt, Yt−1, ...) and the τ−th quantile of Yt conditional on the past by QYt (τ |It−1),
the following result on the linearity of {Yt} justifies our approach.

Assumption 1.1. Let {ut}t∈Z be a non-Gaussian iid sequence with (k+ 1)th order
moment finite and (k + 1)th cumulant nonzero for some k ≥ 2.

Theorem 1.3.1. Under Assumption 1.1, a stationary MAR(r, s) process {Yt} has
a non-degenerated non-causal component, i.e., s ≠ 0 if and only if QYt (τ |It−1) is
nonlinear in {Yt−j}j≥1 for at least one τ ∈ (0, 1).

As discussed in Example 1.2.1, there is no meaning to discuss non-causality in
a Gaussian structure as there is always an equivalent causal representation of a
Gaussian AR process for its non-causal counterpart. The finiteness of the moment
condition and nonzero cumulants are also required in Rosenblatt (2000). Theorem
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1.3.1 is deduced from the nonlinearity of the best predictor of Yt in the mean square
criterion for non-causal processes. The nonlinearity in the conditional mean implies
dependence in the conditional distribution beyond the linear correlation. Note that
the theorem does not point out the quantile(s) where this nonlinear relationship
occurs, nor the manners in which this nonlinearity is expressed. Another remark
is that the information set considered in the theorem can be replaced by σ-field
generated by Yt−1 up to Yt−p due to the Markovian property of MAR(r, s), which
avoids the infinite-dimensional issue arising from It−1. The total number of the lags
and leads of Yt included to explain the conditional quantile of MAR(r, s) processes,
p, is determined by the partial autocorrelation function (PACF) of Yt.

This theorem prompts us to adopt QAR as a medium to detect non-causality.
QAR is a comprehensive analysis tool in the time series context, providing robust
statistical analyses against outliers in the measurement of the response variable,
which has proven to be rather prevailing in recent decades. Given a MAR(r, s)
process of order p defined by (1.2.1), if the non-causal component degenerates to 1,
i.e., s = 0, r = p, the conditional quantile of Yt can be expressed by

QYt (τ | It−1) =Qut (τ) + ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕpYt−p

=θ0(τ) + θ1(τ)Yt−1 + θ2(τ)Yt−2 + · · · + θp(τ)Yt−p
=X ′

tθ(τ) ∀τ ∈ (0, 1),
(1.3.3)

where Qut(τ) denotes the τ -quantile of innovations ut, and ϕj’s are the coefficients of
corresponding Yt−j in the polynomial expansion of (1.2.1). Therefore, after imposing
pure causality, the conditional quantile of Yt can be fully characterized by a linear
function of past observations, X ′

tθ(τ) with X t = (1, Yt−1, Yt−2, . . . , Yt−p)
′
and θ(τ) =

(θ0(τ), . . . , θp(τ))
′

= (Qut(τ), ϕ1, . . . , ϕp)
′
. The QAR estimates of coefficients θ(τ)

in this linear quantile model can be obtained by minimizing the following problem
for each τ ,

θ̂(τ) = argmin
θ∈Rp+1

T∑︂
t=1

ρτ (Yt − X ′
tθ), (1.3.4)

with the check function ρτ (u) = u (τ − I(u < 0)). The asymptotic properties of
linear QAR estimates were first established by Koenker and Xiao (2006). A brief
review of QAR estimates (1.3.4) can be found in Appendix 1.8.2. However, if Yt
has a non-degenerated non-causal component, the linear dynamic model (1.3.3) for
its conditional quantile is misspecified for at least one τ ∈ (0, 1), following Theorem
1.3.1.

Within the linear QAR framework, Hecq and Sun (2021) consider a statistic
aggregating the information of the residuals over quantiles, which they employ as a
model selection criterion between purely causal AR models and purely non-causal
AR models. Given that the calculation of residuals is done either by running QAR
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with direct or reversed time, this methodology may provide misleading conclusions
regarding MAR(r, s) in presence of causality and non-causality at the same time.
By contrast, our approaches address more the correctness of the linear specifica-
tion of the conditional quantile through the QAR. For non-causal autoregressive
processes, no closed form of the nonlinear conditional quantile of Yt is required.
Consequently, our approach is robust to the general MAR(r, s) setting. Before we
carry out the tests for non-causality, the following assumptions are imposed in the
QAR framework.

Assumption 1.2. The distribution function of innovations ut, F (u), admits a con-
tinuous density function f(u) away from zero on the domain U = {u : 0 < F (u) <
1}.

Assumption 1.3. Denote the family of conditional distribution {P (Yt < y|X t = x) , y ∈
R, x ∈ Rr+s} as Fx(y) and its Lebesgue density as fx(y), that is uniformly bounded
on the space of y × x ⊆ R× Rr+s and uniformly continuous.

Corollary 1.3.1.1. Under Assumptions 1.1-1.3 and null hypothesis H0, the coeffi-
cients except for the intercept of the conditional quantile are constant across different
quantiles in (0, 1).

Corollary 1.3.1.1 is a consequence of the independence between ut and Yt−j

for j = 1, 2, . . . , p when the MAR(r, s) is purely causal. As shown in the equa-
tion (1.3.3), the slope coefficients {θj(τ)}j=1,...,p are constant over τ ∈ (0, 1) and
uniquely determined by the expansion of autoregressive polynomials of Yt. Instead,
the performance of the QAR estimates is more complicated in the mixed causal and
non-causal autoregressive processes since the linear model is under misspecification.
Angrist et al. (2006) demonstrated in their paper that quantile regression is essen-
tially an approximation to the true conditional quantile function in a weighted mean
squared criterion, with weights associated with the densities of Yt ranging from the
linear approximation (1.3.3) to the true conditional quantile QYt(τ |Yt−1, . . . , Yt−p).
Their statement presents a rough idea of how well the linear function fits the true
conditional quantile.

Constancy Test Our first approach for detecting non-causality comes along with
the constancy test of QAR coefficients over the entire quantile range. As stated in
Corollary 1.3.1.1, if the process is causal, the constancy should hold for all θj(τ) for
all j = 1, 2, ..., p and τ ∈ (0, 1). Whereas for a non-causal process, the estimated co-
efficients of Yt−j in the quantile regression may vary across different quantiles much
likely for the following intuitions: i) non-causal processes display highly nonlinear
dynamics, one of which is asymmetric dynamics; ii) linear quantile model is mis-
specified; iii) the conditional distribution of Yt varies both in the location and shape
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at different values of past observations. For instance, Figure 1.3.1 depicts the dy-
namic performance of QAR(1) estimates of the slope parameter across the quantiles
for a non-Gaussian autoregressive process, including causal and non-causal cases in
different colors. The QAR(1) estimates in the non-causal processes (solid blue lines)
exhibit a trendy pattern over the quantile domain. However, since a general solution
for the true conditional quantile function of Yt is infeasible, we do not attempt to
provide a detailed characterization of the varying coefficient property in the non-
causal situation. The test for non-causality based on the constancy test can only be
used to check the necessary condition of AR processes being causal. Nevertheless,
the accessibility and straightforwardness of this method make it a touchstone for
non-causality testing in practice.

Figure 1.3.1: QAR(1) estimates of a pair of AR(1) processes

(a) estimates of the slope of Yt−1 over
(0, 1): exponential distribution

(b) estimates of the slope of Yt−1 over
(0, 1): chi-square distribution

Note: The figure displays the QAR(1) estimates of a pair of AR(1) processes. One is causal,
and the other is non-causal. The left part of the figure is applied to the processes generated by
exponential innovations, and the right part is to the processes generated by chi-square innovations.
The true parameter is 0.6(1/0.6) for the causal(non-causal) case.

To implement the constancy test of coefficients under the QAR framework, we con-
sider the approach developed by Koenker and Xiao (2006), where the hypothesis is
formulated in the manner analog to the classical linear hypothesis:

H1
0 : Rθ(τ) = ϕ with R =

(︄
0p×1

... Ip

)︄
for all τ ∈ (0, 1)

with the unknown τ -invariant parameter vector ϕ = (ϕ1, ϕ2, . . . , ϕp)′ which needs
to be estimated6. Naturally, the naive test for this hypothesis is constructed on the
quantile process

VT (τ) =
√
T
[︃
RΣ̂

−1
1 Σ̂0Σ̂

−1
1 R′

]︃−1/2 (︂
Rθ̂(τ) − ϕ̂

)︂
6For purely causal processes, the constant vector consists of the parameters in the autoregressive

polynomials, i.e., ϕ1, ϕ2, . . . , ϕp in (1.3.3)
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and the Kolmogorov-Smirnov (KS) type of test statistic is adopted for the interest
of testing a compact set of quantiles

KSVT = sup
τ∈Υ⊂(0,1)

VT (τ) , where Υ is a compact interval,

where θ̂(τ) is the linear QAR estimate, and Σ̂1, Σ̂0 are the corresponding estimates
of the asymptotic variance, see Appendix 1.8.4. ϕ̂ is a

√
T consistent estimator

of ϕ and a simple choice is the QAR estimator θ̂(τ ∗) at any τ ∗ ∈ Υ.7 A closed
interval [ϵ1, 1 − ϵ2] with trivial numbers ϵ1, ϵ2 is proposed for Υ to avoid missing
much information from the entire quantile interval (0, 1). Under the hypothesis of
constancy H1

0,

VT (τ) =⇒ Bp(τ) − f
(︂
F−1(τ)

)︂ [︂
RΣ−1

0 R′
]︂−1/2

Z⏞̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Drift

,

where Bp(τ) is a p-dimensional standard Brownian bridge, and Z, the limiting be-
havior of ϕ̂, is a Gaussian component brought up by the estimation of the nuisance
parameter ϕ. As stated, the drift compels the final distribution of the original statis-
tic VT (τ) to be data-dependent. To annihilate this non-trivial effect, a martingale
transformation K was introduced into VT (τ) to retrieve the distribution-free merit
of the KS test. Denote the derivative of the density function by ḟ and define

g(x) =
(︂
1,
(︂
ḟ
(︂
F−1(x)

)︂
/f
(︂
F−1(x)

)︂)︂)︂′
and

C(z) =
∫︂ 1

z
g(x)g(x)′dx,

and the martingale transformation K on the process VT (τ) is constructed as follows

Ṽ T (τ) =KVT (τ)

=VT (τ) −
∫︂ τ

0

[︃
g′
T (x)C−1

T (x)
∫︂ 1

x
g(s)dVT (s)

]︃
dx,

where gT (x) and CT (x) are uniformly consistent estimators of g(x) and C(x) in the
considered domain, respectively. The proposed KS-type norm on the transformed
process becomes

KSṼ T = sup
τ∈Υ

⃦⃦⃦
Ṽ T (τ)

⃦⃦⃦
.

Corollary 1.3.1.2 (Constancy test for non-causality). Under Assumptions 1.1-1.3
7Another appropriate choice is the estimator from the ordinary least square of ϕj , j = 1, 2, . . . , p

in (1.2.1).
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and the causality hypothesis H0,

Ṽ T (τ) ⇒ W p(τ)
KSṼ T ⇒ sup

τ∈Υ
∥W p(τ)∥ ,

where W p(τ) represents a p-dimensional standard Brownian motion.

The related discussion on the estimation of density and score functions is given
in Koenker and Xiao (2002), providing suggestions on the choice of bandwidth in
detail. In the command KhmaladzeTest implemented in R studio, Hall/Sheather
bandwidth (Hall and Sheather (1988)) for sparsity estimation is set as default. The
critical values are obtained through approximating W p(τ) by a Gaussian random
walk, and the corresponding values at different significance levels can be found in
tables in the Appendix of Koenker and Xiao (2002). One remark on the quantile
interval in the corollary, typically a symmetric interval [ϵ, 1 − ϵ] trimmed by a small
number ϵ close to 0 is considered for simplicity in practice. Monte Carlo experiments
have evidenced that an appropriate trimming in the entire quantile interval alleviates
the over-rejection of the null hypothesis ascribable to the instability of estimation
at extremal quantiles without sacrificing the power.

Specification test-based approach Another direction to test non-causality is
based on Theorem 1.3.1, where non-causality in the linear processes is translated
into the misspecification of conditional quantiles of non-causal processes by linear
dynamic quantile models (1.3.3). Equivalently, we aim to test

E (Ψτ (Yt − X ′
tθ0) |Yt−1, . . . , Yt−p) = 0 a.s. for some θ0 ∈ B and ∀τ ∈ Υ ⊂ (0, 1),

(1.3.5)
where Ψτ (·) = I (· ≤ 0) − τ , and B is a family of uniformly bounded functions from
Υ ⊂ (0, 1) to Θ ⊂ Rp+1.8 Both Υ and Θ are compact sets. Escanciano and Velasco
(2010) (hereafter EV) characterize this restriction by unconditional moments

E (Ψτ (Yt − X ′
tθ0) exp (ix′X t)) = 0, ∀x ∈ Rp+1, for some θ0 ∈ B and ∀τ ∈ Υ ⊂ (0, 1),

(1.3.6)
where i =

√
−1. Following the strategy of the EV test, we consider the statistic

based on the residual processes indexed by quantiles τ , θ ∈ B and x ∈ Rp+1

REV
T

(︂
x, τ ; θ̂

)︂
= T−1/2

T∑︂
t=1

Ψτ

(︂
Yt − X ′

tθ̂
)︂

exp (ix′X t) (1.3.7)

8In our case, actually only θ0(τ) is required to be a uniformly bounded function from Υ ⊂ (0, 1)
to Θ ⊂ R, and the rest θj(τ) are mapped to a constant for j = 1, 2, . . . , p. ∀τ ∈ (0, 1).
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with true parameters θ0 replaced by QAR estimates θ̂ from a given sample
(︂
Yt,X

′

t

)︂
t=1,2,...,T

.
X t is composed by a constant and the lags of Yt up to order p. T−1/2REV

T approaches
zero when T goes to infinity for any x ∈ Rp+1 if X ′

tθ0(τ) is the correct specifica-
tion for QYt(τ |It) and θ̂(τ) is a

√
T -consistent estimator of θ0(τ) for τ ∈ Υ. Thus,

the distance between the process REV
T defined in (1.3.7) and zero naturally turns

into a measure of the deviation of X ′
tθ0(τ) from the true QYt(τ |It). The suggested

Cramér-von Mises (CvM) norm on (1.3.7) is defined by∫︂
τ∈Υ,x∈Rp+1

⃓⃓⃓
REV
T

(︂
x, τ ; θ̂

)︂⃓⃓⃓2
dΦ(x)dW (τ), (1.3.8)

where Φ(x) and W (τ) are weighting functions defined on Rp+1 and Υ, respectively
with positive derivative in the corresponding domain. This CvM norm permits us
to consider model specifications for conditional quantiles at all τ ’s of interest. Other
possible options of norms aggregating the information over the quantiles and x,
for instance, Kolmogorov-type, are also applicable here. The following proposition
presents the asymptotic behavior of the EV test applied for testing non-causality.

Corollary 1.3.1.3 (EV Test for non-causality). Under H0 and Assumptions 1.1-1.3,
let E (X tX

′
t) be nonsingular in a neighborhood of θ(τ) = θ0(τ) for all τ ∈ Υ,

REV
T

(︂
x, τ ; θ̂

)︂
=⇒ R̃

EV

∞ (x, τ) ,

and∫︂
τ∈Υ,x∈Rp+1

⃓⃓⃓
REV
T

(︂
x, τ ; θ̂

)︂⃓⃓⃓2
dΦ(x)dW (τ) −→d

∫︂
τ∈Υ,x∈Rp+1

⃓⃓⃓
R̃
EV

∞ (x, τ)
⃓⃓⃓2
dΦ(x)dW (τ)

where R̃EV

∞ = R∞ − ∆R. R∞ is a Gaussian process with mean zero and covariance
function defined by

Cov (x1, x2; τ1, τ2) = (τ1 ∧ τ2 − τ1τ2)E (exp (i(x1 − x2)′X0))

and the drift ∆R is introduced due to the asymptotic effect from estimation error of
θ̂,

∆R(x, τ) = G′(x,θ0(τ))Q(τ),

where G(x,θ0(τ)) = E [X tf (Qut(τ)) exp(ix′X t)] and Q(·) is Σ−1/2
0 Bp+1/f [F−1(·)] .

Bp+1 is a (p + 1)-dimensional standard Brownian bridge. f and F are the density
and cumulative distribution functions of the innovation ut, respectively, and Σ0 =
E (X tX

′
t).

The result immediately follows from Escanciano and Velasco (2010), where they
develop the result for a general class of quantile estimates covering various linear and
nonlinear models with corresponding assumptions. Those conditions are satisfied
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under Assumptions 1.1-1.3 in the context of MAR(r, s) processes under the null
hypothesis. The limiting distribution of the test statistic is no longer distribution-
free due to the estimation of nuisance parameters. Hence, a subsampling method
is proposed to approximate the critical value. The operation for calculating the
residual process (1.3.7) and the test statistic (1.3.8) is applied to a given subsample
(Yt, . . . , Yt+b) of size b, denoted by REV

b,t (x, τ ; θ̂b,t) and Γ
(︂
REV
b,t

)︂
respectively, and

repeated for t = 1, 2, . . . , T − b + 1. The cdf of the limiting distribution of the
proposed statistic is approximated by the empirical cdf across resamples, i.e.,

P̂
[︂
Γ
(︂
REV
b,t

)︂
≤ ω

]︂
= 1
T − b+ 1

T−b+1∑︂
t=1

I
(︂
Γ
(︂
REV
b,t

)︂
≤ ω

)︂
.

Therefore, the 1 − αth sample quantile, cEVT,b (α) defined as

cEVT,b (α) = inf
{︂
ω : P̂

[︂
Γ
(︂
REV
b,t

)︂
≤ ω

]︂
≥ 1 − α

}︂
,

intuitively serves as the critical value for this test at the α-level of the significance.
The validity of this subsampling approach has been verified by Escanciano and
Velasco (2010), who suggest an appropriate choice for bandwidth b = ⌊kT 2/5⌋ for the
sake of optimal minimax accuracy9. Some numerical evidence has demonstrated that
a diverse range of values of k, like 4, 5, and 6 provide reasonably good performance
in finite samples. A centering strategy can be adopted for the resampling statistic to
achieve better performance power-wise in finite samples. Alternatively, Escanciano
and Goh (2014) (hereafter EG) translate the restriction (1.3.5) into

E [Ψτ (Yt − X ′
tθ0) I (X t ≤ x)] = 0 ∀x ∈ Rp+1, for some θ0 ∈ B and for all τ ∈ Υ ⊂ (0, 1).

(1.3.9)
Naturally, a new test statistic can be constructed on the sample analog of moment
conditions (1.3.9) with the replacement of θ0 by their QAR estimates θ̂,

T−1/2
T∑︂
t=1

Ψτ

(︂
Yt − X ′

tθ̂
)︂
I (X t ≤ x) τ ∈ Υ, x ∈ Rp+1. (1.3.10)

Unlike the approach in the EV test, where the asymptotic behavior of the test
statistic is derived by incorporating the non-negligible effect from the estimates of
nuisance parameters into the final limiting distribution, Escanciano and Goh (2014)
introduce a variant of weighting functions I (X t ≤ x) satisfying the orthogonality
condition for the Taylor expansion of the process (1.3.10) around the true parameter

9⌊z⌋ denotes the largest integer that does not exceed z.
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θ0. With this consideration, the modified process becomes

REG
T

(︂
x, τ ; θ̂

)︂
= T−1/2

T∑︂
t=1

⎧⎨⎩Ψτ

(︂
Yt − X ′

tθ̂
)︂⎛⎝I (X t ≤ x) − D̂

′
T

(︂
x, θ̂(τ)

)︂(︄
T−1

T∑︂
t=1

δ̂t,τ δ̂
′
t,τ

)︄−1

δ̂t,τ

⎞⎠⎫⎬⎭
(1.3.11)

with D̂T

(︂
x, θ̂(τ)

)︂
= T−1∑︁T

t=1 δ̂t,τ I (X t ≤ x) and

δ̂t,τ = f̂
(︂
X ′

tθ̂(τ) | X t

)︂
X t,

where f̂ (y | X t) is a consistent estimator of the conditional density function of Yt
given the past information, f (y | X t). One suggested kernel estimator is proposed
by Escanciano and Goh (2012), defined by

f̂
(︂
X ′

tθ̂(τ) | X t

)︂
= 1
MhM

M∑︂
j=1

K

⎛⎝X ′
tθ̂(τ) − X ′

tθ̂(τj)
hM

⎞⎠ , (1.3.12)

where {τj}Mj=1 is a sequence randomly selected from Υ following the uniform dis-
tribution with M −→ ∞ as well as T −→ ∞. K(·) is a kernel function, and hM

denotes a smoothing parameter which may depend on the data and the quantiles
considered for the estimation. Compared to other density estimator candidates, this
estimator is computationally less cumbersome but still preserves the same conver-
gence rate as Rosenblatt estimator when the following assumption is imposed for
the kernel function and the corresponding smoothing parameter.

Assumption 1.4. 1. For kernel function K(s):

(a) K(s) is continuously differentiable;

(b)
∫︁∞

−∞ K(s) = 1;

(c) K(s) is uniformly bounded;

(d) K(s) is of second order, i.e.
∫︁∞

−∞ sK(s) = 0,
∫︁∞

−∞ s2K(s)ds ∈ (0,∞) and∫︁∞
−∞ K2(s)ds ∈ (0,∞).

2. The convergence rate of smoothing parameter hM to 0 satisfies P (aM ≤ hM ≤ bM) →
1, for some deterministic sequences of positive numbers aM and bM such that
bM −→ 0 and ap+2

M M/logM → ∞ as T → ∞.

These regularity conditions for kernel functions apply to commonly used options
in practice, for instance, the Gaussian kernel.

Corollary 1.3.1.4 (EG Test for non-causality). Under H0 and Assumptions 1.1-
1.4, let the matrix E

(︂
δt,τδ

′
t,τ

)︂
be nonsingular in a neighborhood of θ(τ) = θ0(τ) for

all τ ∈ Υ,
REG
T

(︂
x, τ ; θ̂

)︂
=⇒ REG

∞ (x, τ) ,
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and∫︂
τ∈Υ,x∈Rp+1

⃓⃓⃓
REG
T

(︂
x, τ ; θ̂

)︂⃓⃓⃓2
dΦ(x)dW (τ) −→d

∫︂
τ∈Υ,x∈Rp+1

⃓⃓⃓
REG

∞ (x, τ)
⃓⃓⃓2
dΦ(x)dW (τ),

where REG
∞ is a Gaussian process with mean zero and covariance function charac-

terized by
(τ1 ∧ τ2 − τ1τ2)E {Πτ1I (X t ≤ x1) Πτ2I (X t ≤ x2)} ,

with the so-called orthogonal projection operator on the weighting function

Πτ I (X t ≤ x) ≡ I (X t ≤ x) −D′ (x,θ0(τ))E−1 (δt,τδt,τ ) δt,τ ,

and δt,τ = f (X ′
tθ0(τ) | X t) X t, D (x,θ0(τ)) = E (δt,τ I (X t ≤ x)).

As stated before, the main advantage of the EG test is the limiting distribu-
tion of the test statistic being invariant to the estimation effect of θ̂(τ). Therefore,
compared to the asymptotic distribution of the EV test, there is no "drift" term
subtracted from a Gaussian process. However, this asymptotic distribution still de-
pends on the data-generating process. Consequently, we cannot tabulate the critical
values for the considered test statistic. This is coped with the aid of a multiplier
bootstrap approach. The approximation based on a transformation on REG

T

(︂
x, τ ; θ̂

)︂
is obtained by multiplying by a sequence of iid random variables {Wt}Tt=1 with zero
mean and unit variance, independent on X t,

R̃
EG

T

(︂
x, τ ; θ̂

)︂
=T−1/2

T∑︂
t=1

⎧⎨⎩Ψτ

(︂
Yt − X ′

tθ̂
)︂⎛⎝I (X t ≤ x) − D̂

′
T

(︂
x, θ̂(τ)

)︂(︄
T−1

T∑︂
t=1

δ̂t,τ δ̂
′
t,τ

)︄−1

δ̂t,τ

⎞⎠⎫⎬⎭Wt.

(1.3.13)

One common choice of {Wt}Tt=1 is⎧⎪⎨⎪⎩P (W = 1 − ω) = ω/
√

5
P (W = ω) = 1 − ω/

√
5, with ω =

(︂√
5 + 1

)︂
/2.

(1.3.14)

This transformation has been proven by Escanciano and Goh (2014) to restore the
limiting distribution of the original statistic. It allows us to use the empirical dis-
tribution of any continuous functional, including CvM form, Γ

(︂
R̃
EG

T

)︂
, i.e.,

P̂
[︂
Γ
(︂
R̃
EG

T

)︂
≤ ω | {Wt}Tt=1

]︂
= 1
N

N∑︂
i=1

I
(︂
Γ
(︂
R̃
EG

T

)︂
≤ ω

)︂

to consistently estimate the limiting distribution of the original statistic Γ
(︂
REG
T

)︂
,
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where N is the number of the replication of sequences {Wt}Tt=1 for the calculation
of the critical value in the multiplier bootstrap. Likewise, the (1 − α)-th empirical
quantile of the transformed statistic,

cEGT (α) = inf
{︂
ω : P̂

[︂
Γ
(︂
R̃
EG

T

)︂
≤ ω | {Wt}Tt=1

]︂
≥ 1 − α

}︂
,

will is a consistent estimate of the critical value at α significance level.

In the presence of non-causality, ψ(L−1) does not vanish from general MAR(r, s)
processes. Then, by Corollary 1.3.1.1,

E (Ψτ (Yt − X ′
tθ1(·)) exp (i · X t)) ≠ 0

and
E (Ψτ (Yt − X ′

tθ1(·)) I (X t ≤ ·)) ≠ 0

in a set with a positive Lebesgue measure on Rp+1 × Υ, provided that Φ and W are
absolutely continuous on Rp+1 × Υ with respect to the Lebesgue measure. Corre-
spondingly, under the alternative,

Γ
(︂
REV
T

)︂
=
∫︂
τ∈Υ,x∈Rp+1

⃓⃓⃓
REV
T

(︂
x, τ ; θ̂

)︂⃓⃓⃓2
dΦ(x)dW (τ) →p ∞

and
Γ
(︂
R̃
EG

T

)︂
=
∫︂
τ∈Υ,x∈Rp+1

⃓⃓⃓
R̃
EG

T

(︂
x, τ ; θ̂

)︂⃓⃓⃓2
dΦ(x)dW (τ) →p ∞,

so both specification-based tests are consistent.

1.4. Monte Carlo Simulations

In this section, we study the performance of the three proposed tests in finite samples
and compare them with each other in terms of size and power.

Constancy Test In the first experiment, we focus on the approach based on the
constancy test. In the simulation, we consider a pair of MAR(1, 0) and MAR(0, 1)
models ⎧⎪⎨⎪⎩(1 − ϕL)Yt = ut

(1 − ψL−1)Y ∗
t = ut,

(1.4.1)

which are generated from 11 non-Gaussian distributed innovations, which cover a
variety of distributions commonly used in the empirics, ranging from symmetric to
asymmetric, bounded to unbounded support, with mixed types of tail behavior. The
parameters (ϕ, ψ) with values (0.3, 0.6, 0.9) enable us to investigate the sensitivity
of the method responding to data-generating processes with different persistence.
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The sample sizes are 200 and 500 with 500 replications. ϵ = 0.05 is the default
choice for the quantile interval Υ = [ϵ, 1 − ϵ] ⊂ (0, 1). The empirical size and
power of rejecting the constancy hypothesis to detect non-causality under the QAR
framework are summarized in Table 1.4.1.

Regarding the size, the constancy test has an empirical size close to the nominal
level in most cases but suffers from a severe over-rejection for heavy-tailed distribu-
tions. This corresponds to the estimation of conditional quantiles of these processes
when τ is extremely close to 0 or 1, which generally calls for a larger sample size
to produce less biased and more stable estimates. The volatility of QAR estimates
of extremal quantiles triggers the over-rejection of the constant coefficients under
the causality hypothesis. Therefore, as seen in Figures 1.4.1c and 1.4.1d, where
innovations follow truncated Cauchy distribution10 and log-normal distribution, re-
spectively, the QAR estimates at quantiles close to 0 and 1 turn rather volatile
compared to the estimates at other levels in (0, 1). To alleviate this issue, we pro-
pose to check different trimming strategies in the quantile interval for the test.
There is an obvious trade-off in the selection of truncation of the quantile inter-
val: over-trimmed, the power of the test will decrease due to the loss of valuable
information; under-trimmed, the volatile estimate of extremal quantiles is not ex-
cluded, so the distortion in size will remain as before. Consequently, we conduct
some experiments to analyze the sensitivity of the constancy test in response to
truncated intervals; see Table 1.4.2. The results suggest a trimmed quantile interval
[0.10, 0.90] would be appropriate for the sample size considered because the power
remains relatively high while the size is close to the nominal level. Another possible
reason highlighted by Koenker and Xiao (2002) is that the default smoothing pa-
rameter selection for estimating the density function of innovations, which comprises
the test statistic in the KhmaladzeTest command in R studio, produces satisfactory
performance for the class of distributions considered there, but is not designed for
heavy-tailed distributed innovations. A more adaptive bandwidth choice of density
function estimation of heavy-tailed distributions at extreme quantiles needs further
investigation.

From the perspective of power, the test achieves a significant leap in power as
the sample size increases from 200 to 500 in most scenarios. More particularly, the
method provides favorable performance in the presence of asymmetry in the distri-
butions of innovations with rejection rates of 40% ∼ 90% in 200-sized samples and
70% ∼ 90% in 500-sized samples, respectively. This finding coincides with the idea
shared in Velasco and Lobato (2018), where the third-order moments contribute
most to the identification of non-causal AR processes. This phenomenon is excep-
tionally well-illustrated in the first four cases (Exponential, Gamma, Beta, and F

10Truncated at a sufficiently large value to ensure the existence of variance.
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distributions) when the distribution of innovations is skewed but has no heavy tails.
However, in the cases where innovations do not display skewness or heavy-tailedness,
the test can barely distinguish non-causal processes from their causal counterparts,
see Figure 1.4.2. The point of the failure is illustrated in the same figure. The QAR
estimates for non-causal AR(1) with symmetric innovations appear to be indistin-
guishable from the ones for the causal counterparts, even under misspecification.

Table 1.4.1: Empirical size and power of non-causality test using constancy⋆ test in QAR
in various cases

Distribution test T=200 T=500
ut ϕ(ψ) = 0.3† ϕ(ψ) = 0.6 ϕ(ψ) = 0.9 ϕ(ψ) = 0.3 ϕ(ψ) = 0.6 ϕ(ψ) = 0.9

Exp(1)-1 size 4.20% 4.00% 4.80% 6.40 % 6.80% 4.80%
power 33.80% 38.80% 40.20% 65.40% 69.60% 72.40%

Gamma(1,1)-1 size 4.40% 3.00% 3.80% 5.00 % 5.80% 4.40%
power 34.40% 37.00% 42.20% 64.40% 68.40% 70.20%

Beta(5,1)-5/6 size 6.80% 6.60% 5.40% 6.80 % 9.40% 6.40%
power 15.40% 27.20% 39.00% 24.80% 65.00% 77.20%

F(5,5)-5/3 size 5.00% 6.60% 3.40% 8.40 % 6.00% 4.20%
power 80.00% 81.80% 70.00% 97.20% 98.20% 96.20%

χ2
5 − 5 size 5.00% 4.40% 4.00% 4.00 % 4.80% 5.20%

power 11.40% 11.40% 8.80% 27.40% 35.60% 17.40%

skewed normal size 5.20% 6.60% 7.40% 9.80 % 7.40% 9.60%
power 8.00% 7.80% 10.60% 25.40% 20.00% 12.80%

truncated Cauchy size 26.60% 34.80% 43.00% 20.80 % 19.20% 33.20%
power 70.00% 96.40% 92.40% 80.00% 99.80% 91.80%

log normal size 21.20% 19.60% 23.60% 23.20 % 26.40% 26.60%
power 98.20% 99.00% 99.60% 100.00% 100.00% 100.00%

t3
size 5.40% 4.00% 5.00% 4.00 % 6.80% 4.80%

power 9.80% 13.00% 15.80% 11.60% 20.00% 25.80%

uniform size 6.20% 7.60% 6.00% 6.00 % 6.80% 5.80%
power 13.40% 8.00% 13.20% 40.40% 7.80% 48.80%

Laplace size 3.40% 4.00% 4.60% 2.60 % 3.80% 4.60%
power 8.40% 5.60% 17.00% 10.80% 8.60% 29.00%

⋆: constancy test over the quantile interval [0.05, 0.95].
†: ϕ(ψ) = 0.3 means the coefficient in the lag polynomial of the MAR(1, 0) process (purely causal) is
0.3; the coefficient in the lead polynomial of the MAR(0, 1) process (purely non-causal) is 0.3 as well, for
comparison.

EV Test With the same setting as the one in the Constancy Test, we take the
case with the coefficient ϕ(ψ) = 0.6 for MAR(1, 0) (MAR(0, 1)) as the representative
to examine the performance of EV test in discriminating non-causal processes from
their causal alternatives. The sample size varies from 100 to 200 and 500. The
number of replications is 500. Regarding the bandwidth for the subsampling scheme
to approximate the critical value, we choose b = ⌊4T 2/5⌋. As for the weighting
functions involved in the expression (1.3.8), a uniform distribution is applied to
W (τ) defined on the evenly discretized quantile interval Υ = [0.01, 0.99] and 2-
dimensional standard normal distribution to Ψ(x) for the sake of simplicity in the
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Figure 1.4.1: Four cases of QAR(1) on MAR(1, 0) and MAR(0, 1), T=500, ϕ(ψ) = 0.6 :
asymmetric distributions

(a) χ2
5 − 5 distribution (b) skewed normal distribution

(c) truncated Cauchy distribution (d) log normal distribution

Figure 1.4.2: Three cases of QAR(1) on MAR(1, 0) and MAR(0, 1), T=500, ϕ(ψ) = 0.6:
symmetric distributions

(a) t3 distribution (b) uniform distribution

(c) Laplace distribution
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Table 1.4.2: Empirical size and power of non-causality test using constancy test with
different trimmed quantile interval

Sample size [0.05, 0.95] ϕ(ψ) = 0.3 ϕ(ψ) = 0.6 ϕ(ψ) = 0.9 ϕ(ψ) = −0.4 ϕ(ψ) = −0.6 ϕ(ψ) = −0.8

T=100 size 2.40% 2.20% 2.60% 2.80% 2.00% 2.40%
power 22.40% 24.60% 22.00% 4.80% 32.80% 26.60%

T=200 size 3.60% 3.60% 4.00% 5.00% 2.80% 4.40%
power 40.80% 38.60% 41.80% 8.40% 48.00% 44.00%

T=500 size 3.40% 6.20% 4.80% 6.60 % 4.80% 3.40%
power 67.20% 67.00% 72.40% 14.20% 66.00% 72.20%

Sample size [0.10, 0.90] ϕ(ψ) = 0.3 ϕ(ψ) = 0.6 ϕ(ψ) = 0.9 ϕ(ψ) = −0.4 ϕ(ψ) = −0.6 ϕ(ψ) = −0.8

T=100 size 3.40% 3.20% 3.20% 3.80% 2.40% 3.40%
power 28.00% 25.40% 22.80% 6.00% 32.80% 28.20%

T=200 size 3.20% 2.80% 5.00% 3.00% 4.20% 4.00%
power 37.40% 43.40% 43.20% 5.80% 49.40% 48.80%

T=500 size 4.80% 5.40% 6.00% 4.60 % 3.80% 5.00%
power 71.20% 67.80% 69.20% 14.60% 65.40% 72.80%

Sample size [0.15, 0.85] ϕ(ψ) = 0.3 ϕ(ψ) = 0.6 ϕ(ψ) = 0.9 ϕ(ψ) = −0.4 ϕ(ψ) = −0.6 ϕ(ψ) = −0.8

T=100 size 4.40% 2.60% 3.60% 5.00% 3.00% 3.00%
power 27.80% 28.20% 21.80% 8.80% 37.60% 30.20%

T=200 size 5.60% 3.80% 3.60% 6.60% 3.40% 4.40%
power 39.00% 40.00% 42.40% 9.60% 51.60% 46.60%

T=500 size 5.40% 4.40% 5.00% 4.20 % 4.80% 5.40%
power 64.80% 65.80% 69.00% 21.80% 68.00% 71.60%

The innovations follow an exponential distribution.

calculation. The results of the empirical size and power are displayed in Table 1.4.3.
Concerning size, the results present some fluctuations around the nominal level. The
test tends to under-reject the correct null hypothesis in the light-tailed scenarios
while over-rejects in the heavy-tailed scenarios. This comes from the subjective
choice in the subsampling size, whose performance can be sensitive to the quantile
interval included in the test and the data-generating process. Nevertheless, the
distortion in size is not so significant, and we believe this can be eased by choosing
different subsampling schemes. As for power, the test achieves reasonably good
performance generally. From the simulation results, we observe that the power of
detecting non-causality is close to 100% in most cases when the sample size is 500,
which is as expected. It is worth noting that the convergence rate of power towards
100% varies across different distributions. The numerical evidence indicates that
the further the innovations depart from Gaussianity, the faster the convergence rate
is. In such log-normal and uniform distributions, a reasonably high power, like 86%
or 92%, has been obtained in relatively small samples. While others (chi-square)
may need larger samples to reach the same level of power.

EG Test The setup of DGP keeps unchanged, like in the EV test. The sample size
varies from 50 to 100 and 200. The weighting functions Ψ(x) and W (τ) in the CvM
form of REG

T

(︂
x, τ ; θ̂

)︂
are chosen to be the empirical distribution of X t and uniform

distribution over the grid of quantiles from Υ = [0.01, 0.99] considered in the esti-
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Table 1.4.3: Empirical size and power of non-causality test using EV test in QAR in
various cases

Distribution parameter: ϕ(ψ) = 0.6
ut T: 100 200 500

Gaussian size 2.20% 3.40% 3.40%
power 0.40% 0.60% 2.60%

exponential size 4.40% 1.80% 2.00%
power 29.20% 43.20% 97.20%

Gamma size 1.80% 3.00% 2.80%
power 10.60% 41.60% 97.60%

Beta size 3.20% 3.20% 3.40%
power 26.40% 67.80% 99.00%

F size 3.60% 5.80% 3.40%
power 24.00% 67.60% 99.00%

χ2
5 − 5 size 4.80% 4.40% 3.60%

power 13.40% 22.20% 68.40%

log normal size 5.40% 4.60% 6.80%
power 54.00% 92.40% 100.00%

t3
size 6.20% 7.00% 6.40%

power 13.80% 42.40% 93.40%

Uniform size 5.00% 6.00% 3.40%
power 44.00% 86.80% 100.00%

Laplace size 4.40% 4.80% 4.40%
power 14.00% 47.20% 98.20%

EV test: the choice of size for subsampling is ⌊4T 2/5⌋.

mation. The critical value is obtained through the multiplier bootstrap introduced
in the methodology section. The number of iid sequences of multipliers {Wt}Tt=1 is
200. Implementing the multiplier bootstrap avoids computing the estimates for each
subsample. The results are summarized in Table 1.4.4. Regarding the empirical size
performance, this approach delivers stable rejection frequencies under the null hy-
pothesis associated with their nominal level in all cases considered in the simulation
exercise. This is anticipated in accordance with the argument in the previous section
that there is no subjective choice involved in the approximation of the critical value.
In terms of power, the EG test has an increasing trend as the sample is enlarged.
Similar to the EV test, the EG approach outperforms in the presence of skewness
and excess kurtosis (regardless of negative or positive), with a rejection probability
over 70% in relatively small samples (200). For the cases where the performance is
less satisfactory, such as t3 and Laplace distributions, power still increases when the
sample size becomes larger. An overall comparison of the three methods is exhibited
in Table 1.4.5. Size-wise, the EG test has an appealing attribute of undistorted size
in general scenarios compared to the other two approaches. On the contrary, the
constancy test suffers from over-rejection in heavy-tailed cases, and the EV test de-
livers less accuracy than the EG test in some cases. Power-wise, the EG test is the
most robust one as it produces relatively good results in all situations but is extraor-
dinarily competent for asymmetric distributions. By contrast, the EV test achieves
the highest power among the three in the symmetric cases. In comparison, the con-
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Table 1.4.4: Empirical size and power of non-causality test using EG test in QAR in
various cases

Distribution parameter: ϕ(ψ) = 0.6
ut T: 50 100 200

Gaussian size 6.00% 5.00% 4.00%
power 4.80% 5.60% 5.80%

exponential size 5.20% 4.60% 6.00%
power 24.80% 49.20% 76.40%

Gamma size 5.00% 5.60% 5.00%
power 23.80% 45.80% 75.80%

Beta size 6.40% 5.80% 6.00%
power 24.20% 42.20% 75.80%

F size 4.40% 5.00% 5.40%
power 22.60% 37.40% 67.00%

χ2
5 − 5 size 6.60% 5.40% 4.60%

power 12.80% 22.60% 41.60%

log normal size 5.60% 5.40% 4.00%
power 32.00% 60.60% 85.80%

t3
size 4.40% 6.60% 7.00%

power 6.80% 14.80% 36.20%

Uniform size 4.80% 6.60% 6.60%
power 10.20% 25.40% 64.80%

Laplace size 5.60% 5.00% 6.80%
power 8.20% 14.40% 41.60%

EG test: critical value obtained from multiplier bootstrap.

stancy test can be a powerful tool in detecting non-causality in processes with heavy
tails. However, given that the consistency of the constancy test for non-causality is
not guaranteed and the size is distorted, it may give misleading conclusions in em-
pirical analysis. Thus, the constancy test can only be considered a preliminary test
to check whether the process is likely non-causal, followed by the implementation of
the EV or EG tests, which serve as the formal tests for non-causality. In practice, a
combination of the constancy test and EV (EG) test is suggested.

1.5. Empirical Applications

In this section, we apply our non-causality tests to six financial series studied in Fries
and Zakoïan (2019): cotton price, soybean price, sugar price, coffee price, Hang Seng
Index (HSI), and Shiller Price/Earning ratio (Shiller PE), where single or multiple
spikes and asymmetric dynamics are exhibited. Fries and Zakoïan (2019) found
numerical evidence in favor of MAR(r, s) models in fitting time series with local
explosiveness phases compared to purely causal AR models. The frequency of data
is quarterly for the Shiller PE series and monthly for the rest11. The trajectories of
these series are displayed in Figure 1.5.1.

11The access of the replication data can be found in Fries and Zakoïan (2019)
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Table 1.4.5: Comparison of QAR-based non-causality tests

Distribution test type: constancy test EV test EG test
ut T: 100 200 100 200 100 200

Gaussian size 2.80% 5.40% 2.20% 3.40 % 5.00% 4.00%
power 4.20% 3.40% 0.40% 0.60% 5.60% 5.80%

exponential size 3.20% 4.00% 4.40% 1.80% 4.60% 6.00%
power 25.40% 38.80% 29.20% 43.20% 49.20% 76.40%

Gamma size 3.80% 3.00% 1.80% 3.00% 5.60% 5.00%
power 26.60% 37.00% 10.60% 41.60% 45.80% 75.80%

Beta size 4.20% 6.60% 3.20% 3.20% 5.80% 6.00%
power 18.60% 27.20% 26.40% 67.80% 42.20% 75.80%

F size 6.80% 6.60% 3.60% 5.80% 5.00% 5.40%
power 62.40% 81.80% 24.00% 67.60% 34.70% 67.00%

χ2
5

size 5.80% 4.40% 4.80% 4.40% 5.40% 4.60%
power 9.60% 11.40% 13.40% 22.20% 22.60% 41.60%

log normal size 20.20% 19.60% 5.40% 4.60% 5.40% 4.00%
power 78.80% 99.60% 54.00% 92.40% 60.60% 85.80%

t3
size 3.40% 4.00% 6.20% 7.00% 6.60% 7.00%

power 10.20% 13.00% 13.80% 42.40% 14.80% 36.20%

Uniform size 6.80% 7.60% 5.00% 6.00% 6.60% 6.60%
power 7.40% 8.00% 44.00% 86.80% 25.40% 64.80%

Laplace size 5.80% 4.00% 4.40% 4.80% 5.00% 6.80%
power 5.20% 5.60% 14.00% 47.20% 14.40% 41.60%

Constancy test: with trimmed quantile interval [0.05, 0.95]

Before proceeding to our testing strategies, we must ensure that the series is
stationary. The augmented Dickey-Fuller tests indicate no unit roots in the cotton,
soybean, sugar, and coffee price. Neither the evidence of unit root is found in the
series of HSI after a linear trend is subtracted. The stationarity of the Shiller PE
series is secured after the first difference in the levels. The sample partial autocorre-
lation function for each series is computed, see Figure 1.5.2, to determine the order
of the lag orders: cotton: 2; soybean: 2; sugar: 4; coffee: 3; HSI: 1; Shiller PE: 7.
Three non-causality testing procedures: the constancy test, the EV test, and the EG
test, are applied to each series, respectively. The corresponding results are reported
in Table 1.5.1. For the constancy test, we consider two trimmed quantile intervals:
[0.05, 0.95] and [0.10, 0.90] to mitigate the instability effect on the power from the
subjective choice in the quantiles. Both in the cases of cotton and sugar series, a
significant fluctuation in the coefficients is observed. Yet no strong evidence against
linear quantile specification is found based on the EV or EG test. The strong rejec-
tion in the constancy test for these series may result from the over-rejection issue
in heavy-tailed scenarios, which makes the results from the EV or EG tests more
reliable. This does not deviate much from the results obtained by Fries and Za-
koïan (2019), where they found one non-causal root (0.94) in the cotton series and a
root (0.92) in the sugar series. As seen in the numerical experiments, a non-causal

25



Figure 1.5.1: Financial series trajectories

AR model with coefficients near the unity makes it harder to distinguish from its
causal counterpart, as well as generates less distinct dynamics than its causal coun-
terpart. For three series (soybean, coffee, and Shiller PE), the tests show strong
evidence favoring non-causal processes at 5% or even 1% level from all three testing
strategies. For HSI, the test shows mild evidence of non-causality at the significance
level of 10% based on the EG test. This result is compatible with the conclusion
drawn in Fries and Zakoïan (2019), where mixed models with nontrivial non-causal
components12 are selected.

1.6. Extensions

1.6.1. Some Extensions

So far, the preceding discussion has been confined to MAR(r, s) driven by iid innova-
tions. Within this framework, the only possible source of non-linearity in MAR(r, s)
is non-causality, which contributes to the consistency of the test in the aforemen-
tioned methods. However, stylized nonlinear dynamics like conditional heteroskedas-

12The coefficients of the non-causal components in the MAR(r, s) models are not closed to the
unity.
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Figure 1.5.2: Sample partial autocorrelation functions of six financial series
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Table 1.5.1: Non-causality tests for six financial series in Fries and Zakoïan (2019)

Financial series test type: constancy test EV test EG test
total AR order(r + s) [0.05, 0.95]† [0.10, 0.90]

Cotton 2 statistic 6.897∗∗ 4.738∗∗ 0.012 0.025
critical valuea (3.393) (3.287) (0.046) (0.032)

Soybean 2 statistic 4.703∗∗ 4.445∗∗ 0.209∗∗ 0.027∗∗

critical value (3.393) (3.287) (0.158) (0.021)

Sugar 4 statistic 306.043∗∗ 144.025∗∗ 0.009 0.065
critical value (5.560) (5.430) (0.102) (0.100)

coffee 3 statistic 8.457∗∗ 6.992∗∗ 0.149∗∗ 0.044∗∗

critical value (4.523) (4.383) (0.089) (0.025)

Hang Seng Index 1 statistic 0.017 0.012 0.168 0.078∗

critical value (2.140) (2.102) (0.176) (0.083)

Shiller’s P/E ratio 7 statistic 15.105∗∗ 9.027∗∗ 0.197∗∗ 0.135∗∗

critical value (8.578) (8.368) (0.189) (0.066)

† the trimmed quantile interval considered in the constancy test.
∗∗ stands for significance at level 5% and ∗ stands for significance at 10%.
the critical value at 10% significance level for the EG test in the case of Hang Seng Index is 0.061.

athe default level of significance is 5%

ticity or asymmetric dynamics are prevalently observed in the financial and macroe-
conomic data, which renders it more demanding to detect non-causality in a time
series process. A more robust methodology applicable to AR models accommodat-
ing non-linear features needs investigation. The critical point is how to disentangle
non-linearity induced by non-causality from the other alternatives. If these non-
linear features can be captured by a parametric model, one plausible solution is to
incorporate these non-linear terms into the baseline model (1.2.1). Below we list
some possible extensions where this strategy is employed.

Asymmetric Dynamics This can be solved by allowing varying coefficients in
the MAR(r, s) model in the spirit of the random coefficient model, defined by

ϕ̃(L)ψ̃(L−1)Yt = ut (1.6.1)

where ϕ̃(L) = 1−ϕ1(Ut)L−· · ·−ϕr(Ut)Lr and ψ̃ = 1−ψ1(Ut)L−1 −· · ·−ψs(Ut)L−s,
Ut is an iid sequence of random variables following standard uniform distribution,
and ut is an iid innovation sequence satisfying Assumptions 1.1. Denote

Ωc =
⎛⎝ϕ1(Ut) . . . ϕr−1(Ut) ϕr(Ut)

Ir−1 0(r−1)

⎞⎠
and

Ωnc =
⎛⎝ψ1(Ut) . . . ψs−1(Ut) ψs(Ut)

Is−1 0(s−1)

⎞⎠ .
Similar to the p-th order autoregressive process, which is designed to accommodate
asymmetric dynamics in Koenker and Xiao (2006) for linear QAR model, we need
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to assume E (Ωc ⊗ Ωc) and E (Ωnc ⊗ Ωnc) have eigenvalues with moduli less than
one. This equation (1.6.1) is able to mimic asymmetric dynamics since ϕj, ψj’s
are functions [0, 1] → R. The definition of non-causality in this context will be
adapted to that ψ̃(L−1) does not decline to constant. In the causal situation, this
model (1.6.1) works like a random coefficient model with lags. The linearity of the
conditional mean is restored, and the linear quantile dynamic model with varying
coefficients over different quantiles remains the correct specification for conditional
quantiles of Yt. On the other hand, when the process is non-causal, it is conceivable
that linearity will not hold anymore. Therefore, the methodology relying on the
specification tests is applicable here.

Volatility Clustering Concerning volatility clustering, which is routinely mod-
eled by the quadratic ARCH/GARCH model in squared residuals. Another popular
choice is to replace the squared value with the absolute value suggested by Taylor
(2008) and make the model a linear ARCH.

ϕ(L)ψ(L−1)Yt = vt where vt = σtut,

σt = γ0 + γ1|vt−1| + · · · + γq|vt−q|,
(1.6.2)

and ϕ(L) and ψ(L−1) are defined following (1.2.1), and ut is a sequence of iid inno-
vations. The linear ARCH model is able to capture the correlation in the variance
and meanwhile preserves a relatively simple linear specification compared to other
alternatives like GARCH. Under the H0 where ψ(L−1) degenerates to 1, the linear-
ity of conditional quantile specification still holds after adding {|vt−j|}qj=1 into the
regression equation.

QYt (τ |Yt−1, Yt−2, . . . ) = ϕ1Yt−1 + · · · + ϕrYt−r +Qut(τ) (γ0 + γ1|vt−1| + · · · + γq|vt−q|)
= Qut(τ)γ0⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

γ̃0(τ)

+Qut(τ)γ1⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
γ̃1(τ)

|vt−1| + · · · +Qut(τ)γq⏞̄ ˉ̄ ˉ̄ ˉ̄ ⏟̄⏟̄ ˉ̄ ˉ̄ ˉ̄ ⏞̄
γ̃q(τ)

|vt−q| + ϕ1Yt−1 + · · · + ϕrYt−r

= γ̃0(τ) + γ̃1(τ)|vt−1| + · · · + γ̃q(τ)|vt−q| + ϕ1Yt−1 + · · · + ϕrYt−r,

(1.6.3)

where |vt−j| can be recovered by Yt−j − ϕ1Yt−j−1 − · · · − ϕrYt−j−r. Under non-
causality, the explicit expression of the conditional quantile of Yt remains unclear.
Nevertheless, it cannot be characterized by encompassing linear combinations of
residuals in the model. Consequently, the linear dynamic quantile model would not
be the correct specification conceivably.

Overall, these two possible extensions to cases with nonlinear dynamics are ten-
tative since the statistical properties of conditional quantiles of Yt defined by (1.6.1)
and (1.6.2) require further investigation, which opens a couple of lines for future
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research. Some simulation trials in Appendix 1.8.4 have shown the validity of the
proposed strategies.

1.6.2. Perspective from Extreme Quantiles

One intriguing observation from the simulation is that QAR estimates at extreme
quantiles might be informative for identifying the true models even though linear
quantile specification is incorrect for the conditional quantile of non-causal processes.
As depicted in Figure 1.4.1, for MAR(0, 1) processes with coefficient 0.6 driven from
asymmetric innovations,

(︂
1 − 0.6L−1

)︂
Yt = ut ⇔ Yt = (0.6)−1Yt−1 − (0.6)−1ut−1.

The estimated slope of Yt−1 approaches (0.6)−1 when the quantile gets close to 0 or
1. Somehow it indicates that the linear correlation at extreme quantiles between Yt
and Yt−1 can help to discriminate causality and non-causality. A similar idea has
been adopted for model selection based on the extreme clustering of residuals by
Fries and Zakoïan (2019), but the method is restricted to α−stable distributions.
Rich data is required for further analysis to get a less biased estimator for conditional
quantiles close to 0 or 1. This opens a possible avenue for future research in line
with identifying causal and non-causal processes using tail information of processes.

1.7. Conclusion

This paper introduces three novel testing strategies for non-causality in linear time
series within the quantile regression framework. The tests exploit the non-linearity
of autoregressive processes with non-causality and achieve the objective of detecting
non-causality based on the well-developed inference under the QAR framework. The
constancy test shares the simplicity of implementation but lacks consistency since
the behavior of linear quantile autoregression for non-causal processes is not clear
yet. This issue from the constancy test is tackled by testing the specification of
linear conditional quantile models to detect non-causality. Specification-based non-
causality testing procedures like EV and EG tests yield stable size at a nominal
level and fairly satisfactory power. On the one hand, the EV test outperforms
the EG test in platykurtic and leptokurtic situations or symmetric distributions.
On the other hand, the EG test is less computationally cumbersome and shows
better performance when the process is skewed. However, no method is placed in a
dominating situation. Thus, a combined testing procedure with the constancy test
as a preliminary check complemented with either EV or EG test is suggested for
practitioners.
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Some possible extensions to accommodate different dependence in model inno-
vations, which might bring obstacles in detecting non-causality, are proposed at the
end of the paper. Some simulation results in QAR estimates at extreme quantiles
indicate the possibility of identifying non-causal processes by employing information
from the tails of processes.
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1.8. Appendices

1.8.1. Some Properties of Non-causal Autoregressive Processes

Higher-order Dependence of All-pass Time Series Models Following the
same setup in Example 1.2.3,

ũt = 1 − ψL

1 − ψL−1ut =
∞∑︂

j=−∞
ρjut+j.

The skewness of ũt is

E
(︂
ũ3
t

)︂
=

∞∑︂
j=−∞

ρ3
j E

(︂
u3
t

)︂
=
(︄

1 − 3ψ2(ψ + 1)
ψ2 + ψ + 1

)︄
E
(︂
u3
t

)︂
, |ψ| < 1,

where −1 <
(︂
1 − 3ψ2(ψ+1)

ψ2+ψ+1

)︂
< 1. From the above expression, it is easy to tell that

the all-pass filter preserves the symmetry of the innovations if the original ones are
not skewed but might alter the direction of skewness if ut is asymmetric by varying
values of ψ. Apart from the correlation in the squared value of ũt that has been
explicitly shown in Example 1.2.3, here we derive the closed form solution for the
dependence at order 3. It suffices to show Cov

(︂
ũ3
t , ũ

3
t+h

)︂
is nonzero for h ≠ 0.

E
(︂
ũ3
t ũ

3
t+h

)︂
= E

⎛⎝ ∞∑︂
j=−∞

∞∑︂
i=−∞

∞∑︂
m=−∞

∞∑︂
n=−∞

∞∑︂
l=−∞

∞∑︂
k=−∞

ρjρiρmρnρlρkut+jut+iut+mut+h+nut+h+kut+h+l

⎞⎠
=
⎛⎝ ∞∑︂
j=−∞

ρ3
jρ

3
j+h

⎞⎠(︂E(u6
t ) − 15E(u4

t )E(u2
t ) − 10E2(u3

t ) − 15E3(u2
t )
)︂

+ 3
⎛⎝ ∞∑︂
j=−∞

(︂
ρj+hρ

3
j + ρ3

j+hρj
)︂⎞⎠E(u4

t )E(u2
t )

+

⎛⎜⎝
⎛⎝ ∞∑︂
j=−∞

ρ3
j

⎞⎠2

+ 9
⎛⎝ ∞∑︂
j=−∞

ρ2
j+hρj

⎞⎠⎛⎝ ∞∑︂
j=−∞

ρj+hρ
2
j

⎞⎠
⎞⎟⎠E2(u3

t )

after using ∑︁∞
j=−∞ ρjρj+h = 0 (coincides with no correlation property of all-pass

time series process) and ∑︁∞
j=−∞ ρ2

j = 1 (variance preserving property),

Cov
(︂
ũ3
t , ũ

3
t+h

)︂
= E

(︂
ũ3
t ũ

3
t+h

)︂
− E

(︂
ũ3
t

)︂
E
(︂
ũ3
t+h

)︂
generally is not zero. For instance, h = 1, after simplification

Cov
(︂
ũ3
t , ũ

3
t+1

)︂
= α1 E(u6

t ) +
(︂
α2 E(u4

t ) + α4 E
2(u2

t )
)︂
E(u2

t ) + α3 E
2(u3

t )
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with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 = −3ψ5(1−ψ2)3

ψ4+ψ2+1

α2 = −3ψ3(1 − ψ2)3 + 45ψ5(1−ψ2)3

ψ4+ψ2+1

α3 = 30ψ5(1−ψ2)3

ψ4+ψ2+1 − 9(1−ψ2)3(2ψ+1)ψ2

(ψ2+ψ+1)2

α4 = 45ψ5(1−ψ2)3

ψ4+ψ2+1

where zeros are not attained at the same value of ψ ∈ (−1, 1) \ {0}.

Conditional Density Function of Non-causal Autoregressions In this sec-
tion, we try to study the properties of the conditional density function of the response
variable in the presence of non-causality in the autoregressive process through sim-
ulations. Consider a pair of MAR(1, 0) and MAR(0, 1) processes generated from iid

innovations following the same distribution with the density function fu(·),⎧⎪⎨⎪⎩Yt = 0.6Yt−1 + ut

Ỹ t = 0.6−1Ỹ t−1 + ut = 0.6Ỹ t+1 − 0.6ut+1.
(1.8.1)

One is purely causal, and the other is purely non-causal with a coefficient of 0.6.
We start by analyzing f (Yt ≤ y|Yt−1 = x) in the causal case.

f (Yt = y|Yt−1 = x) = dP (Yt ≤ y|Yt−1 = x)
dy

= dP (0.6Yt−1 + ut ≤ y|Yt−1 = x)
dy

= dP (ut ≤ y − 0.6x|Yt−1 = x)
dy

= fu (y − 0.6x) = fu (y − 0.6Yt−1) ,

(1.8.2)

It is not difficult to conclude from equation 1.8.2 that the conditional density of Yt
given Yt−1 is shifting horizontally as the value of Yt−1 varies. Despite the change
in the location of the density function, the rest remains the same across different
values of Yt−1.
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Similarly, we derive the conditional density function for the non-causal case,

f
(︂
Ỹ t = y|Ỹ t−1 = x

)︂
=
f
(︂
Ỹ t−1 = x|Ỹ t = y

)︂
f
(︂
Ỹ t = y

)︂
f(Ỹ t−1 = x)

by Bayes rule

=
f
(︂
0.6Ỹ t − 0.6ut = x | Ỹ t = y

)︂
f
(︂
Ỹ t = y

)︂
f (Yt−1 = x) by definition of Ỹ t−1

=
fu (y − 0.6−1x) f

(︂
Ỹ t = y

)︂
f (Yt−1 = x) by the independence of ut and Ỹ t

=
fu (y − 0.6−1x) f

(︂
Ỹ t = y

)︂
∫︁∞

−∞ f
(︂
Ỹ t−1 = x|Ỹ t = s

)︂
f
(︂
Ỹ t = s

)︂
ds

law of total probability

=
fu (y − 0.6−1x) f

(︂
Ỹ t = y

)︂
∫︁∞

−∞ fu (s− 0.6−1x) f
(︂
Ỹ t = s

)︂
ds
.

(1.8.3)

There is no general closed-form solution to this expression. Note that no x plays a
role in f(Yt = y), and the denominator is x−dependent but highly nonlinear due
to the integration. If we assign additive property13 to the marginal distribution of
Yt. This nonlinearity can be shown more clearly. Say ut follows an exponential
distribution with rate λ, then the equation (1.8.3) has the explicit form

f (Yt = y|Yt−1 = x)

=

(︂∫︁∞
−∞ e−isy∏︁∞

j=0
λ

λ−is(0.6)j ds
)︂
λe−(x−0.6y)(︂∫︁∞

−∞ e−isx∏︁∞
j=0

λ
λ−is(0.6)j ds

)︂ I (x− 0.6y ≥ 0) .

This suggests that the shape (functional form) of the density function would differ,
corresponding to the choice of x. The following simulation experiment demonstrates
this argument. In this simulation, we generate two AR(1) processes (1.8.1) by
exponentially distributed innovations with rate 1. The sample size is 500. Estimated
conditional density functions f (y|Yt−1 = x) are plotted in Figure 1.8.1, given five
choices of x: 10%, 30%, 50%, 70%, and 90% percentiles of Yt−1 sample. The density
function is estimated by akj command in R Studio, which is a univariate adaptive
kernel estimation used by Portnoy and Koenker (1989). The left panel displays the
result for the causal case. As shown in (1.8.2), density functions in different colors
(values of x) share the same shape but the location. Whereas in the right panel,
where the estimated density is plotted, five estimated conditional density functions
present distinct modes, skewness, and kurtosis.

13Additive property states the sum of independent variables from the same distribution would
follow the distribution from the same family. The common distributions which share this property
are α-stable distribution, exponential distribution, geometric distribution, etc.
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Figure 1.8.1: conditional density of Yt given different x

(a) conditional density of Yt in the
causal case

(b) conditional density of Ỹ t in the
non-causal case

1.8.2. Asymptotic Properties of QAR Estimates

QAR is first proposed by Koenker and Xiao (2006) to study the conditional quantile
functions of the following pth-order AR process,

Yt = θ0(Ut) + θ1(Ut)Yt−1 + · · · + θp(Ut)Yt−p, (1.8.4)

where Ut is an iid sequence distributed as a standard uniform. This expression
can be regarded as an AR(p) process allowing coefficients of lags to be random but
somewhat dependent on each other. By the property of monotone transformation,
our target, the conditional quantile at each τ ∈ (0, 1), can be written as

QYt (τ |Yt−1, . . . , Yt−p) = θ0(τ) + θ1(τ)Yt−1 + · · · + θp(τ)Yt−p, τ ∈ (0, 1). (1.8.5)

The estimates of θ(τ) = (θ0(τ), θ1(τ), . . . , θp(τ))′ are obtained by minimizing the
following objective function,

θ̂(τ) = argmin
θ∈Rp+1

T∑︂
t=1

ρτ (Yt − X ′
tθ), (1.8.6)

where X ′
t = (1, Yt−1, . . . , Yt−p) and check function ρτ (u) = u (τ − I(u < 0)). A

vectorized form of (1.8.4) is introduced to facilitate the asymptotic analysis of the
estimates θ̂(τ),

Y t = AtY t−1 + V t,

with

At =
⎛⎝θ1(Ut) θ2(Ut) . . . θp(Ut)

Ip−1 0(p−1)×1

⎞⎠ and V t =
⎛⎝ ϵt

0(p−1)×1

⎞⎠
where ϵt = θ0(Ut)−E (θ0(Ut)) and Y t = (Yt, Yt−1, . . . , Yt−p+1)′. The study of asymp-
totic properties is based on the following conditions
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1. {ϵt} are iid innovations with mean 0 and finite variance σ2 < ∞. The distri-
bution function of ϵt, F, admits a continuous density f(ϵ) away from zero on
E = {ϵ : 0 < F (ϵ) < 1}.

2. The eigenvalues of E (At ⊗ At) have moduli within unity.

3. The conditional distribution function P (Yt < ·|Yt−1, Yt−2, . . . ) denoted by
Ft−1(·) has a density function ft−1(·) uniformly integrable on E.

Under these three assumptions,

Σ−1/2
√
T
(︂
θ̂(τ) − θ(τ)

)︂
→d Bp+1(τ)

where Bk(τ) is a k-dimensional Brownian bridge. By definition it can be written
as N (0, τ(1 − τ)Ik) for any given τ . Σ is a matrix characterized by density and
distribution function of ϵt. Let Σ0 = E (X tX

′
t) and Σ1 = E

(︂
ft−1

(︂
F−1
t−1(τ)

)︂
X tX

′
t

)︂
.

Then Σ is defined as Σ−1
1 Σ0Σ−1

1 .

In the special case where the data generating process is a conventional causal
AR model with fixed coefficients, the conditional density would be independent of
X t. We will have Σ1 = f(F−1(τ))E (X tX

′
t). Further we can simplify the Σ to

f−2(F−1(τ))E−1 (X tX
′
t).

1.8.3. Proof to Theorem 1.3.1

Non-causality ⇒ Nonlinear conditional quantile We prove this statement
by contradiction. Consider a stationary MAR(r, s) with innovations satisfying As-
sumption 1.1 and s > 0. Assume all conditional quantiles of Yt are linear in
(Yt−1, Yt−2, . . . , Yt−p), where p = r + s. That is,

QYt (τ |Yt−1, Yt−2, . . . , Yt−p) = θ0(τ)+θ1(τ)Yt−1+· · ·+θp(τ)Yt−p for any given τ ∈ (0, 1).

By aggregating QYt (τ |Yt−1, Yt−2, . . . , Yt−p) over the entire quantile range, the linear-
ity is maintained for the aggregation. Therefore, we have
∫︂ 1

0
QYt (τ |Yt−1, Yt−2, . . . , Yt−p) dτ =

∫︂ 1

0
θ0(τ)dτ+

∫︂ 1

0
θ1(τ)dτYt−1+· · ·+

∫︂ 1

0
θp(τ)dτYt−p

(1.8.7)
Equivalently, we can yield

E (Yt|Yt−1, Yt−2, . . . , Yt−p) = θ0 + θ1Yt−1 + · · · + θpYt−p,

which contradicts the statement in Corollary 5.2.3 by Rosenblatt (2000) on the
nonlinearity of conditional expectation in past information with the presence of

36



non-causality. Thus, the presumed statement is not valid. That is to say, there
exists a conditional quantile of Yt which is nonlinear in the past information for at
least one τ ∈ (0, 1) if s > 0.

Nonlinear conditional quantile ⇒ Non-causality This can be demonstrated
equivalently by its contrapositive statement: an AR process Yt being causal implies
its conditional quantile QYt (τ | It−1) is linear for all τ ∈ (0, 1).

If a MAR(r, s) is purely causal, i.e., s=0 and r=p. Then we have

Yt = ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕrYt−r + ut,

where ut is independent of past observations. The conditional quantile of the re-
sponse variable can be directly expressed as a linear combination of {Yt−j}j=1,...,r,

QYt (τ |Yt−1, . . . , Yt−r) = Qut (τ |Yt−1, . . . , Yt−r) + ϕ1Yt−1 + ϕ2Yt−2 + · · · + ϕrYt−r for ∀τ ∈ (0, 1)
= Qut(τ)⏞̄ ˉ̄ ˉ̄⏟⏟̄ ˉ̄ ˉ̄⏞

θ0(τ)

+ ϕ1⏞⏟⏟⏞
θ1(τ)

Yt−1 + ϕ2⏞⏟⏟⏞
θ2(τ)

Yt−2 + · · · + ϕr⏞⏟⏟⏞
θr(τ)

Yt−r.

1.8.4. Simulations of Extensions

In this section, we present some simulation results of non-causality testing strategies
extended to the autoregressive processes with heteroskedasticity. In this stage, we
assume the form of heteroskedasticity is known.

Consider a pair of MAR(1, 0)-ARCH(1) and MAR(0, 1)-ARCH(1) processes de-
fined by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt = 0.7Yt−1 + vt

Y ∗
t = 0.7−1Y ∗

t−1 + vt = 0.7Y ∗
t+1 − 0.7vt+1

vt = σtut

σt = 0.2 + 0.8 |vt−1| where ut ∼ IID(0, 1).

(1.8.8)

As explained in the extension section, we want to detect non-causality by check-
ing whether the coefficients (except the intercept) in the following linear dynamic
quantile model are τ -invariant

QYt (τ |Yt−1, vt−1) = θ0(τ) + θ1(τ)Yt−1 + θ2(τ)|vt−1|, τ ∈ Υ ⊂ (0, 1) (1.8.9)

provided that vt−1 is recovered with 100% accuracy.
Another approach is to check whether the linear model (1.8.8) is the correct spec-
ification for the conditional quantile of Yt and Y ∗

t . The innovation ut varies from
exponential to t student and Laplace distributions. The sample size in this trial is
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100, 200, 500, and 1000. The trimmed quantile interval for the constancy test is
[0.05, 0.95] and Υ = [0.01, 0.99] for the specification-based test (here in this exper-
iment, we only apply the EV test to see its performance). The empirical size and
power of non-causality tests for cases with heteroskedasticity are displayed in Table
1.8.1. It is clear that both methods have fairly good performance, even in relatively
small samples. Regarding the empirical size, both approaches have a slight distor-
tion compared to the nominal level. In the case of the EV test, a different bandwidth
can be applied to adjust the empirical size to the expected level. Concerning the
empirical power, the specification-based approach dominates the constancy test in
most cases. Except in the case of asymmetric distribution, the constancy test out-
performs the EV test in small samples (T=100 and 200). It is conceivable that when
we replace vt by its estimate v̂t, the asymptotic effect of the estimation needs to be
taken into account when we construct test statistics. This is beyond the scope of
this paper.

Table 1.8.1: Empirical size and power of non-causality tests for AR-ARCH models with
known heteroskedasticity

Distribution test type T=100 T=200 T=500 T=1000
ut size power size power size power size power

Exponential constancy test 3.60% 39.00% 4.40% 54.60% 6.00% 75.80% 7.00% 90.80%
EV test 5.20% 16.80% 4.40% 34.80% 4.60% 82.80% 5.00% 97.80%

t student constancy test 5.20% 24.60% 6.60% 39.40% 6.00% 63.60% 7.80% 78.00%
EV test 8.20% 51.00% 7.20% 83.20% 8.20% 99.80% 7.20% 100.00%

Laplace constancy test 4.40% 14.40% 3.80% 25.00% 7.60% 38.80% 4.40% 55.00%
EV test 7.00% 45.40% 6.40% 82.60% 8.60% 99.20% 7.20% 10.00%

The bandwidth for approximating the critical value using subsampling for the EV test is b = ⌊7T 2/5⌋.
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2. CHAPTER II: ESTIMATION OF TIME SERIES
MODELS USING THE EMPIRICAL DISTRIBUTION OF

RESIDUALS

2.1. Introduction

Time series models with nonfundamental solutions have drawn considerable atten-
tion in the econometrics literature during the last two decades. They are represented
by noncausal and noninvertible time series models. In Macroeconomics, nonfunda-
mentalness arising from the moving average part, namely, noninvertibility, has been
interpreted as economic agents’ information sets being larger than econometricians’
limited observations (Hansen and Sargent, 1991, p. 77-116). Lippi and Reichlin
(1993, 1994) pointed out the importance of exploration of noninvertible moving av-
erage representations for the analysis of impulse-response functions with empirical
applications in GNP-unemployment and interest rate-inflation. Leeper et al. (2013)
explained noninvertibility as a recurrent consequence of an agent’s foresight from
the perspective of the information flows with an analytical case in tax news. More
empirical examples of noninvertible processes applied to modeling forward-looking
behavior can be found in Alessi et al. (2011). Noncausal processes have been widely
exploited in Engineering from the perspective of random stochastic systems; as dis-
cussed by Tekalp et al. (1986) and Gaeta et al. (1997). The interest in noncausal
processes in Economics and Finance stems from their ability to replicate nonlin-
ear dynamics like locally explosive behavior and asymmetric cycles in time series.
Noncausal autoregressive (AR) processes with heavy-tailed innovations, for exam-
ple, can simulate the trajectory of phases of repetitive upward trends followed by
an instantaneous drop, which is opposite to the pattern followed by a causal pro-
cess, see Figure 2.1.1, where simulated AR(1) processes with roots equal to 0.9 and
(0.9)−1 are depicted. This feature is useful in modeling speculative bubbles in stock
markets, as demonstrated by Gouriéroux and Zakoïan (2017) and Hecq and Voisin
(2021). Noncausal processes can also display clustering volatility like autoregressive
conditional heteroskedasticity (ARCH) behavior, which is commonly observed in
financial data (Breidt et al. (2001)). Lof and Nyberg (2017) incorporate noncausal-
ity into linear AR models to improve the forecast accuracy of commodity prices.
Hecq et al. (2020) propose a mixed causal-noncausal AR model that includes exoge-
nous regressors and demonstrate the benefits of such models in ex-post forecasting.
Noncausal AR processes can also be used to explain forward-looking behavior, as
an alternative to noninvertible moving-average processes (MA), as shown by Lanne
and Luoto (2013).
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However, conventional time series analysis is generally restricted to causal and
invertible representations without valid arguments for excluding nonfundamental
solutions. The standard estimation techniques based on second-order moments, like
OLS, fail to distinguish causal (invertible) from noncausal (noninvertible) processes
since all weakly stationary processes admit a casual and invertible representation
with identical autocorrelation structures. The information in the variance-covariance
matrix of residuals is not sufficient to characterize the serial independence of non-
Gaussian innovations under the iid assumption. There are linear transformations on
iid data that generate white noise sequences with the same second-order moment
structure but not serially independent, like an all-pass filter14. The logic behind
pseudo-Gaussian maximum likelihood (ML) estimation is that second-order mo-
ments suffice to identify the Gaussian probabilistic structure but are not adequate
for other non-Gaussian models whose dynamic properties can not be identified using
only autocorrelations. Hence Gaussian ML estimation does not apply to noncausal
and noninvertible processes driven by non-Gaussian innovations, and alternative es-
timation techniques of general time series models resorting to non-Gaussianity are
required.

Breid et al. (1991) and Lii and Rosenblatt (1992) introduce approximate ML
procedures for noncausal/noninvertible processes given complete knowledge of the
distribution of innovations. ML estimation achieves efficiency but imposes restric-
tive assumptions since, in most empirical cases, the distribution of innovations is not
known. To circumvent this stringent distributional condition, Huang and Pawitan
(2000) and Lanne and Saikkonen (2011) adopt the Laplacian and t-student density
functions to approximate the likelihood function, respectively, which yield consistent
estimates of model parameters for ARMA models without imposing causality and
invertibility. In a similar fashion, Fries and Zakoïan (2019) derive the loss function
from α-stable distributions for mixed causal-noncausal AR processes which can ac-
commodate heavy tails. In parallel, some progress has been made in the estimation
techniques of all-pass models using the non-Gaussian likelihood functions or rank-
based residuals dispersion function, see Breidt et al. (2001) and Andrews et al. (2006,
2007). These methods can be employed to estimate general noncausal and nonin-
vertible time series models through a two-step procedure: first, obtain the residuals
from a causal and invertible ARMA model applied to the original data by Gaussian
ML; second, fit the residuals by a purely noncausal/noninvertible all-pass model. In
this approach, the validity of the second step depends on whether the residuals from
the first step are white noise but dependent sequences. In addition, the asymptotic
analysis of the estimates remains open since the estimation is carried out on the
residuals rather than the raw data directly. In contrast to the approaches resorting

14That is, an autoregressive moving average model where all of the roots of autoregressive poly-
nomials are the reciprocals of the roots of moving average polynomials.
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to density functions, Gospodinov and Ng (2015) and Velasco and Lobato (2018)
develop estimation methods based on the higher-order cumulants of non-Gaussian
innovations in the time domain and frequency domain, respectively. Still, these two
methodologies require at least a finite sixth-order moment of innovations to achieve
the global identification of ARMA model parameters. To relax the assumptions
on higher-order moments, Velasco (2022) propose to estimate general time series
models using a serial dependence measure of residuals through the characteristic
functions under iid/mds assumptions.

In this paper, we employ a general dependence measure based on the distance
between the joint distribution function and the product of marginal distribution
functions of random variables. This intuitive measure was initially proposed by Ho-
effding (1948) and has been extended to m-dimensional random vectors by Blum
et al. (1961). Later on, Skaug and Tjøstheim (1993) and Delgado (1996) consider
tests of first-order and p serial dependence in the time series context using this mea-
sure. Hong (1998) proposes a consistent test against all pairwise dependence via
the empirical distribution function by taking all lags into account. Throughout this
paper, following Hong (2000), we adopt a generalized spectral distribution function
based on the Fourier transform of the aforementioned measure to capture the serial
dependence of a given random sequence at all lags. In the estimation method, we
consider a minimum distance estimate based on the loss function equal to the L2

distance between the proposed dependence measure in the unrestricted case and
the restricted one applied to the empirical cumulative distribution function of resid-
uals. Our one-step estimation technique has some appealing attributes compared
to other alternatives. First, it achieves the identification of the model parameters
without imposing causality and invertibility. Second, only some regular smoothness
conditions on the distribution of the innovations are required instead of stringent
conditions on moments or parametric distributional knowledge. Unlike other pro-
cedures using spectral densities, it does not involve any subjective choices of lag
windows or trimming parameters. Moreover, compared to the approach based on
characteristic functions, the cumulative distribution function is more robust to out-
liers and less computationally cumbersome without complex quantities. Owing to
the flexibility of the cumulative distribution function, the method can be tentatively
extended to time series models with different dependence structures for innovations,
for example, quantile independence or conditional mean independence.

The rest of the paper is organized as follows. Section 2.2 introduces the measure
of pairwise dependence based on the cumulative distribution function. Section 2.3
investigates the identification of the model, consistency, and asymptotic properties
of the proposed estimator under the serial independence condition on innovations.
Section 2.4 presents results from some Monte Carlo experiments and discusses the
finite sample performance of estimates. Section 2.5 illustrates the merits of this
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Figure 2.1.1: Simulated processes from causal and noncausal AR(1) models

(a) Causal AR(1) process: (0.9) and log-
normal innovations

(b) Noncausal AR(1) process: (0.9)−1 and
log-normal innovations

method through an empirical application. Finally, Section 2.6 concludes and dis-
cusses some possible extensions of our estimates in the procedure.

2.2. Pairwise dependence measures based on residuals

Consider a time series generated by

Yt =
∞∑︂

j=−∞
φjut−j, (2.2.1)

where {ut}t∈Z is a sequence of independent identically distributed (iid) innovations
with zero mean. Double-sided summation in the representation of infinite moving
average (2.2.1) allows the process to be noncausal or/and noninvertible. The sta-
tionarity of Yt is guaranteed under the conditions like φj being absolutely summable
and E |ut| < ∞. The operator φ (θ, L) = ∑︁∞

j=−∞ φj (θ)Lj with coefficients φj(θ)
and lag operator L defines the generation of Yt in terms of parameter θ ∈ Θ ⊂ Rd

so that φj(θ0) = φj for all j.

A common example is the autoregressive moving average process of order (p, q),
abbreviated as ARMA(p, q),

α (L)Yt = β (L)ut, (2.2.2)

where α (L) = 1 −∑︁p
j=1 αjL

j is an autoregressive polynomial of order p and β (L) =
1+∑︁q

j=1 βjL
j is a moving average polynomial of order q. We allow the roots of both

polynomials to lie inside and outside the unit circle, while α(z) and β(z) have no com-
mon zeroes. The parameters of interest in (2.2.2) are θ = (α1, . . . , αp, β1, . . . , βq)′ ⊂
{θ ∈ Rp+q : α(z)β(z) ≠ 0 for all z ∈ C such that |z| = 1, αp ≠ 0, βq ≠ 0}. The
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restriction defined on the parameter space guarantees the existence of the Laurent
expansion of α−1(L)β(L), from which the coefficients φj in the infinite moving av-
erage representation are determined.

The residuals evaluated at any value θ under the correct specification are com-
puted by

ut(θ) = φ−1(θ, L)Yt = φ−1(θ, L)φ(θ0, L)ut = ϕ (θ;L)ut, (2.2.3)

where φ(θ, L) = ∑︁∞
j=−∞ φj(θ)Lj, φ−1(θ, L) = ∑︁∞

j=−∞ φ
(−1)
j (θ)Lj and the linear fil-

ter on the true innovations ϕ (θ;L) = φ−1(θ, L)φ(θ0, L). Evaluation of ϕ(θ;L) at
the true value of the parameter allows to retrieve the sequence of innovations, i.e.,
ut(θ0) = ut when θ = θ0.

Before proceeding to the estimation method based on the dependence measure
of residuals, we introduce some notation. Let Θ be a compact set containing the
true parameter θ0. I(A) is the indicator function of the event A, and P(A) is the
probability measure of the event A. C is a generic positive constant that may vary
in different situations.

To capture the general serial dependence of the residual sequence {ut(θ)} without
imposing moment conditions at higher orders, we consider the distance between the
joint cumulative distribution function of any pair of residuals (ut(θ), ut−j(θ)) and
the product of marginal distribution functions at any given (x, y) ∈ R2,

σ∗
θ,j(x, y) : = P (ut(θ) ≤ x, ut−j(θ) ≤ y) − P (ut(θ) ≤ x)P (ut−j(θ) ≤ y)

= E (I(ut(θ) ≤ x, ut−j(θ) ≤ y)) − E (I(ut(θ) ≤ x))E (I(ut−j(θ) ≤ y))
= Cov (I(ut(θ) ≤ x), I(ut−j(θ) ≤ y)) , j = 0,±1, . . . ,

(2.2.4)

which can also be interpreted as a generalization of the standard covariance be-
tween ut(θ) and ut−j(θ) by applying an indicator transformation on the given pair
of random variables. It is worth noting that σ∗

θ,−j(x, y) = σ∗
θ,j(y, x) for all j, so that,

without losing generality, we can define our measure of generic pairwise dependence
by

σθ,j(x, y) = σ∗
θ,|j|(x, y) for j = 0,±1,±2, . . . ∀(x, y) ∈ R2. (2.2.5)

This measure allows us to capture all pairwise dependence between ut(θ) and ut−j(θ)
by varying x and y over the entire real coordinate space, without specifying any func-
tional forms or the order of moments in the "type of dependence". If σθ,j(x, y) = 0
for all (x, y) ∈ R2, then ut(θ) and ut−j(θ) are independent. A closely related con-
cept can be constructed by replacing the residual sequences with the corresponding
cumulative distribution functions of residuals, namely, copula covariance,

σcθ,j(x1, x2) = Cov (I {F (ut(θ)) ≤ x1} , I {F (ut−j(θ)) ≤ x2})
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where F (ut(θ)) is the cdf of ut(θ) and (x1, x2) ∈ [0, 1]2, see Lee and Rao (2011). This
measure also exploits the same distributional information in any pair of residuals
as σθ,j(x1, x2). In addition, the copula covariance has an appealing property of
being invariant to monotonic transformations of ut(θ), compared to the general
dependence measure based on the characteristic function (Velasco (2022)) or our
proposed one. However, the non-trivial effect of estimating F (ut(θ)) excessively
complicates the asymptotic analysis in the model estimation, which is out of the
scope of this paper. More commonly, the copula covariance has been employed
to characterize nonlinear sequential dependence in the levels of economic variables
that cannot be fully captured by correlations of higher-order moments in Hagemann
(2011), Kley et al. (2016) and Baruník and Kley (2019).

If the dependence decays fast enough as j increases in the sense that,

sup
(x,y)∈R2

∞∑︂
j=−∞

|σθ,j(x, y)| < ∞,

we can define the generalized spectral density based on the measure (2.2.5) at any
frequency ω in [−π, π] with i =

√
−1, by

hθ(x, y;ω) := 1
2π

∞∑︂
j=−∞

σθ,j(x, y)e−ijω, ω ∈ [−π, π],

and the associated generalized spectral distribution function by

Hθ(x, y;λ) = 2
∫︂ λπ

0
hθ(x, y;ω)dω = σθ,0(x, y)λ+ 2

∞∑︂
j=1

σθ,j(x, y)sin jπλ
jπ

λ ∈ [0, 1].

(2.2.6)
The spectral approach facilitates the description of all pairwise dependence in a
random sequence by incorporating the general pairwise dependence at all lags into
one statistic. The same approach has been considered by Hong (2000) for testing
the hypothesis of serial independence against all possible pairwise dependence al-
ternatives and by Du and Escanciano (2015) for a distribution-free test for serial
independence of residuals.

Under the independent assumption on ut(θ),

hθ(x, y;ω) = hiidθ (x, y;ω) := 1
2πσθ,0(x, y) ∀(x, y) ∈ R2 (2.2.7)

at any frequency ω since σθ,j(x, y) = 0 for all j ≠ 0 and any given pair (x, y) ∈ R2.
Moreover, the associated generalized spectral distribution function, under the state
specification, becomes

Hθ(x, y;λ) = H iid
θ (x, y;λ) := σθ,0(x, y)λ, λ ∈ [0, 1]. (2.2.8)
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All pairwise dependence degenerates to zero except for the self-dependence for ut(θ).
The following assumption is introduced to formalize the investigation of the depen-
dence structure of the residual sequence ut(θ).

Assumption 2.1. For compact Θ and µ0 > 1,

sup
θ∈Θ

|φj(θ)| + sup
θ∈Θ

⃓⃓⃓
φ

(−1)
j (θ)

⃓⃓⃓
≤ C|j|−µ0 , j = ±1,±2, . . .

In Assumption 2.1, we impose a uniform upper bound on the coefficients at
each order j of the polynomial φ(θ, L) and its inverse φ−1(θ, L) by a sequence of
constants converging to zero when j goes to infinity. The condition contributes to the
absolute summability of the coefficients in the linear filter ϕ (θ;L) defined in (2.2.3),
ensuring the stationarity of residual sequences indexed by θ ∈ Θ together with
E |ut| < ∞. This allows us to analyze some time-invariant statistical properties of
ut(θ). The classical mixing conditions have been investigated for one-sided moving
average sequences. Some classes of two-sided moving averages that do not fulfill
the mixing conditions are listed in Sidorov (2010). Nevertheless, with the following
smoothness condition on the innovations, we can show that ut(θ) and ut−j(θ) behave
more similarly to pairwise independent variables the further they depart from each
other, which characterizes the weak dependence of residual sequences.

Assumption 2.2. The innovation ut admits a density f(u) with first-order deriva-
tive f (1)(u) that is Lebesgue integrable and has a bounded moment of order ath, i.e.∫︁
R

⃓⃓⃓
f (1)(u)

⃓⃓⃓
du < ∞ and

∫︁
R

⃓⃓⃓
uaf (1)(u)

⃓⃓⃓
du < ∞.

Lemma 2.2.1. Assume ut is iid, mean zero, E |ut| < ∞, then, under Assumption
2.1-2.2 with a = 1, we have

|σθ,j(x, y)| ≤ Cj1−µ0

uniformly in (x, y) ∈ R2 and θ ∈ Θ, for µ0 > 1 and C < ∞

Lemma 2.2.1 provides a decaying rate of the covariance at any percentile in the
distribution of residuals similar to the mixing condition. With a = 1, Assumption
2.2 implies the finiteness of E

⃓⃓⃓
f (1)(ut)
f(ut)

⃓⃓⃓
and E

⃓⃓⃓
utf (1)(ut)
f(ut)

⃓⃓⃓
, which restricts the tail be-

havior of f(u). From that perspective, the condition on the derivative of the density
functions can be regarded as a slightly stronger version of uniform boundedness of
f(u) and E |ut| < ∞ to control the "thickness" of the tail of the distributions. Most
distributions employed in practice are compatible with this condition.
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2.3. Model estimation under serial independence

In this section, we study the identification of general linear time series models and
investigate the asymptotic properties of the proposed estimate based on the gener-
alized spectral distribution function introduced in Section 2.2.

2.3.1. Model identification under serial independence

To achieve global identification of θ ∈ Θ based on the residual sequences ut(θ)
for a general linear time series model without imposing causality and invertibility,
we propose a criterion using a quadratic distance between the generalized spectral
distribution function Hθ(x, y;λ) of residuals ut(θ) and the counterpart under iid-
ness.

The linear filter ϕ(θ;L) in (2.2.3) plays a crucial role in the dependence of se-
quence of ut(θ). If ut follows a non-Gaussian distribution, ut(θ) will be serially
dependent as long as ϕ(θ;L) ≠ 1. The conventional methods based on second-order
moments fail to discriminate noncausal and noninvertible processes from causal and
invertible counterparts, as this linear filter can generate uncorrelated but not in-
dependent sequences like all-pass models, see, e.g., Breidt et al. (2001). In the
Gaussian probabilistic structure, being uncorrelated implies independence. There-
fore, to achieve identification, we need to impose the following assumption to rule
out this possibility.

Assumption 2.3. 1. Given a compact Θ ⊂ Rd, for any θ ≠ θ0, ϕ(θ; z) ≠ a0z
j0

for any j0 and any nonzero constant a0 in a subset of positive measure of C
such that |z| = 1.

2. If |ϕ(θ; z)|2 = 1 a.e. for z ∈ C such that |z| = 1 for some θ ≠ θ0, then ut is
non-Gaussian.

Assumption 2.3.1 guarantees that the true iid innovation sequence can be only
recovered at θ0. Assumption 2.3.2 controls for the special case when the model and
the parametric space permit non-unique serially uncorrelated solutions. If such a
linear filter generating an uncorrelated sequence exists with ϕ(θ; z) ≠ 1 for some
θ ≠ θ0, then the non-Gaussianity is needed for the innovation. Given Assumption
2.3, when θ ≠ θ0, ut(θ) is not pairwise independent. This implies σθ,j(x, y) ≠ 0 for
some j ≠ 0 and (x, y) ∈ R2 since there must exist at least one dependent pair of
I (ut(θ) ≤ x) and I (ut−j(θ) ≤ y) by definition. To exploit all information contained
in the distribution of ut(θ), the L2 distance defined on the generalized spectral
distribution function is aggregated over (x, y) and frequency λ in Cramér-von Mises
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criterion,

Q0 (θ) :=L2
(︂
Hθ(x, y;λ), H iid

θ (x, y;λ)
)︂

=
∫︂
R2

∫︂ 1

0

⃓⃓⃓⃓
⃓⃓2 ∞∑︂

j=1
σθ,j(x, y)sin jπλ

jπ

⃓⃓⃓⃓
⃓⃓
2

dλdW (x, y)

=2
∞∑︂
j=1

1
(jπ)2

∫︂
R2
σ2
θ,j(x, y)dW (x, y),

(2.3.1)

where the last equality comes immediately from Parseval’s identity and for any
weighting function W which satisfies the following condition:

Assumption 2.4. W (x, y) = W (x,∞)W (∞, y) where W is a probability distribu-
tion defined on R2, absolutely continuous and strictly increasing.

The unboundedness of the support of W is required for the full characterization
of pairwise independence of (ut(θ), ut−j(θ)) at any j. The continuous weighting func-
tion rules out the special case in which σθ,j(x, y) ≠ 0 but Q0(θ) = 0, see Hoeffding
(1948). The factorization of the weighting functions simplifies the subsequent anal-
ysis of estimates based on this population function without sacrificing any power
of detecting pairwise dependence. In fact, the weight function W is not necessarily
limited to probability functions but can be extended to any continuous function with
W (∞,∞) − W (−∞,−∞) < C < ∞, but Assumption 2.4 simplifies the subjective
choice of the weighting function in practice without losing much of generality.

It is worth noting that the population distance function (2.3.1) can be interpreted
as an infinite weighted sum of pairwise dependence measure

∫︁
R2 σ2

θ,j(x, y)dW (x, y),
which is a generalization of the test statistic proposed by Skaug and Tjøstheim
(1993) by replacing the joint distribution of ut(θ) and ut−j(θ) by any function sat-
isfying Assumption 2.4 as a weighting function. The summand is naturally down-
weighted for higher-order lags by the factor (jπ)−2, which avoids subjective choices
in the weighting functions, by contrast to the approach based on the spectral density
function.

Remark. Boldin et al. (1997) introduce a sign-based estimation method of causal
AR models where the information is exploited from the generalized autocovariance

E (sgn (ut(θ)) sgn (ut−j(θ))) = E ((2I (ut(θ) > 0) − 1) (2I (ut−j(θ) > 0) − 1))

at any lag j ≥ 1 with the condition that F (0) = 1/2. The proposed approach in this
paper can be viewed as an extension of the sign-based estimator in the sense it takes
into account all the percentiles of the distribution rather than only the median, by
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replacing (0, 0) by any (x, y) ∈ R2

∫︂
R2
E (sgn (ut(θ), x) sgn (ut−j(θ), y)) dW (x, y),

where

sgn (ut(θ), x) = 2I (ut(θ) > x) − 2 (1 − E (I (ut(θ) ≤ x)))
= −2I (ut(θ) ≤ x) + E (I (ut(θ) ≤ x)) ,

with E (I (ut(θ) ≤ x)) replaced by its sample counterpart and the weighting factors
arising from the score of the population generalized covariance. Further analysis
compared to the proposed method in this paper can be carried out on the basis of this
adaptation.

Under Assumptions 2.1, 2.3 and 2.4, ut being iid with zero mean and E |ut| < ∞,

Q0(θ) > 0 when θ ≠ θ0

due to some non-degenerated term σ2
θ,j(x, y). By the Weierstrass theorem, the con-

tinuous non-negative function Q0(θ) admits its minimum at 0 in the compact set
Θ. Assumption 2.3 guarantees that the minimum can be uniquely attained when
θ = θ0, and thus, the identification of the parameter θ0 in Θ is achieved.

2.3.2. Estimates of model parameters under serial independence

The population loss function Q0(θ) is approximated by its sample counterpart in a
given sample. In this subsection, we introduce the estimates of model parameters
derived from the sample loss function and discuss the consistency of the proposed
estimates. In practice, the computed residuals are approximated by a truncated
moving average representation due to the limited observations in a given sample of
length T ,

ût(θ) = φ−1(θ, L)YtI{1 ≤ t ≤ T},

where the information loss,

δT (θ) =: ut(θ) − ût(θ) =
⎛⎝ ∞∑︂
j=t

φ
(−1)
j (θ) +

t−T−1∑︂
j=−∞

φ
(−1)
j (θ)

⎞⎠Yt−j,
can be shown to be asymptotically negligible as Assumption 2.1 guarantees that
coefficients φ(−1)

j (θ) decay at a sufficient rate when j → ∞ uniformly in θ, see
Appendix 2.7.3. Based on the sequence of residuals ût(θ) for any θ, the sample loss

48



function is constructed as

Q̂T (θ) = 2
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
(jπ)2

∫︂
R2
σ̂2
θ,j(x, y)dW (x, y), (2.3.2)

where

σ̂θ,j(x, y) = F̂ θ,j(x, y) − F̂ θ,j(x,∞)F̂ θ,j(∞, y), (2.3.3)

with
F̂ θ,j(x, y) = 1

T − j

T∑︂
t=j+1

I (ût(θ) ≤ x) I (ût−j(θ) ≤ y) (2.3.4)

as a sample analogue of Fθ,j(x, y) = E (I (ut(θ) ≤ x) I (ut−j(θ) ≤ y)) and
(︂
1 − j

T

)︂
is

a finite sample correction. The proposed estimator of θ0 is defined as the minimum
of Q̂T (θ),

θ̂T = argmin
θ∈Θ

Q̂T (θ).

The objective function remains continuous in θ thanks to the integration, albeit
the indicator functions I (ût(θ) ≤ x) introduces non-smoothness into the sample
covariance, see Appendix 2.8.1. The consistency of the estimates follows from the
identifiable uniqueness of the true model parameter θ0 ∈ Θ for Q0(θ) and the uniform
convergence of the sample loss function to the population one. The latter condition
is shown by Theorem 2.1 in Newey (1991) with the assistance of the following Lemma
2.3.1.

Lemma 2.3.1. Assume ut is iid with zero mean, E (u2
t ) < ∞, then, under Assump-

tion 2.1-2.2 with a = 2, for θ ∈ Θ, µ0 > 1 and C < ∞, j = 1, 2, . . . ,

E
⃓⃓⃓
F̂ θ,j(x, y) − Fθ,j(x, y)

⃓⃓⃓2
≤ C

(︄
1 ∧ j

T − j

)︄
+ C

j2−µ0

T − j
+ C

log T
(T − j)µ0−1

uniformly in (x, y).

Lemma 2.3.1 provides the convergence of the empirical cumulative distribution
function to its theoretical counterpart, which further implies the mean square con-
vergence of the sample covariance to the general covariance. Together with the
previous assumptions, then, consistency is established in the following theorem.

Theorem 2.3.2. Assume {ut} is iid with zero mean and E (u2
t ) < ∞, under As-

sumption 2.1-2.4 with a = 2, θ0 ∈ Θ, µ0 > 3, µ1 > 1, as T → ∞,

θ̂T −→p θ0.
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2.3.3. Asymptomatic distribution of estimates under serial independence

The non-differentiability of the objective function hinders the classical approach of
deriving a CLT for the estimates using scores and Hessian matrices15. Neither is the
convex analysis approach adopted in the quantile regression able to mitigate the issue
since our proposed loss function may attain multiple local minima. To investigate
the asymptotic distribution of the proposed estimates, we first approximate the
indicator function with a smoothed cumulative distribution function Λ(u) indexed
by a smoothing parameter h such that

Λ
(︃
z

h

)︃
→ I (z > 0) for |z| > 0 when h → 0.

The following assumption formalizes the conditions of the smoothed cdf

Assumption 2.5. The smoothed cdf Λ(u) admits uniformly bounded positive Lebesgue
pdf λ(u) with differentiable first-order and second-order derivatives, λ̇(u) and λ̈(u),
respectively, uniformly bounded by some constants C.

The positiveness of the pdfλ(u) ensures no loss of information in the transforma-
tion procedure. The uniform boundedness of higher-order derivatives of the density
function λ, together with their smoothness are not required for the model identifi-
cation but for the convergence of the score and Hessian matrix for the subsequent
asymptotic analysis. The new smoothed loss function is obtained by replacing the
indicator function with the smoothed cdf in the original formula,

Q̃T (θ;h) = 2
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
(jπ)2

∫︂
R2
σ̃2
θ,j(x, y;h)dW (x, y),

where

σ̃θ,j(x, y;h) = F̃ θ,j (x, y;h) − F̃ θ,j (x,∞;h) F̃ θ,j (∞, y;h)

F̃ θ,j (x, y;h) = 1
T − j

T∑︂
t=j+1

Λ
(︄
x− ût(θ)

h

)︄
Λ
(︄
y − ût−j(θ)

h

)︄
.

The corresponding estimator from the smoothed version is defined by

θ̃
h

T = argmin
θ∈Θ

Q̃T (θ;h) .

We start analyzing the simple case when h is fixed and positive. The identification of
the parameter in the model is fulfilled for any given h > 0 as Λ( ·

h
) is a transformation

15Though a linear expansion on the expectation of the indicator function is possible to be derived,
where the remainder is shown to converge at a slower rate than Op(T−1/2), see Kim and Pollard
(1990). However, whether or not the methodology can be applied to our problem is unclear and
even if it does, it can be very difficult technically.
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from the class that is totally revealing, implying the dependence structure of the
residual sequences remains unchanged after this smooth transformation. There are
many feasible choices, like exponential or trigonometric functions, see Stinchcombe
and White (1998). The consistency of this class of estimates θ̃hT is formalized by the
following theorem after the introduction of Assumption 2.6.

Assumption 2.6. The filter ϕ(θ; z) is differentiable with the first order derivative
ϕ(1)(θ; z) := ∂

∂θ
ϕ(θ; z) = ∑︁∞

j=−∞ ϕ
(1)
j (θ)zj such that there exists a µ1 > 1,

sup
θ∈Θ

⃦⃦⃦
ϕ

(1)
j (θ)

⃦⃦⃦
≤ C|j|−µ1 , j = ±1,±2, . . .

Theorem 2.3.3. Let {ut} be iid with zero mean, E |ut| < ∞, θ0 ∈ Θ, under As-
sumptions 2.1, 2.3, 2.4, 2.5 and 2.6, with µ0 > 3, µ1 > 1, as T → ∞,

θ̃
h

T −→p θ0 for any fixed h > 0.

The proof of the consistency for θ̃hT given any fixed positive h is similar to the
consistency theorem in Velasco (2022) by replacing the characteristic function with
our proposed smoothed cdfΛ. Assumption 2.6 imposes further restrictions on the
smoothness of the linear filter ϕj(θ) to achieve uniform boundedness of the derivative
of σ̃θ,j(x, y;h), leading to the uniform consistency of QT (θ;h)˜ to its population
counterpart. Thus, unlike the original approach based on the indicator function,
Assumption 2.2 is not needed for consistency of the estimates after transformation.
In addition, the choice of non-zero smoothing parameter h does not affect consistency
once it is fixed.

Prior to analyzing the asymptotic distribution of θ̃hT , we define the following
variables to simplify notation,

eht :=
∫︂
R

(︃
Λ
(︃
x− ut
h

)︃
− φh(x)

)︃
λh(x)dW (x)

νht :=
∫︂
R

(︃
Λ
(︃
x− ut
h

)︃
− φh(x)

)︃
µh(x)dW (x)

Eh
t−1 :=

∞∑︂
j=1

1
j2ϕ

(1)
−j(θ0)eht−j

V h
t−1 :=

∞∑︂
j=1

1
j2ϕ

(1)
j (θ0)νht−j,

where

φh(x) := E
(︃

Λ
(︃
x− ut
h

)︃)︃
, λh(x) := 1

h
E
(︃
λ
(︃
x− ut
h

)︃)︃
, µh(x) := E

(︃
utΛ

(︃
x− ut
h

)︃)︃
.

It is easy to notice that {eht }, {νht } are iid sequences with mean zero as they are
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measurable functions of true iid innovations ut. The corresponding variance and
covariance are denoted by {σ2

e;h, σ
2
ν;h} and σ2

eν;h, respectively. From the indepen-
dence of ut with {ut−j}j≥1, {eht V h

t−1}, {νht Eh
t−1} are martingale difference sequences

conditional on the σ-field generated by {ut−j}j≥1. Let

Σ0,a :=
∞∑︂
j=1

j−2aϕ
(1)
j (θ0)ϕ(1)

j (θ0)′, Σ∗
0,a :=

∞∑︂
j=1

j−2aϕ
(1)
−j(θ0)ϕ(1)

−j(θ0)′

and Σ†
0,a := ∑︁∞

j=1 j
−2aϕ

(1)
j (θ0)ϕ(1)

−j(θ0)′ for a = 1, 2, and

H1,h := σ2
e;hσ

2
ν;h

(︂
Σ0,2 + Σ∗

0,2

)︂
+ σ2

eν;h

(︂
Σ†

0,2 + Σ†′

0,2

)︂
H0,h := ρh1ρ

h
2

(︂
Σ0,1 + Σ∗

0,1

)︂
+
(︂
ρh12

)︂2 (︂
Σ†

0,1 + Σ†′

0,1

)︂
,

where

ρh1 :=
∫︂
R

(︂
µh(x)

)︂2
dW (x), ρh2 :=

∫︂
R

(︂
λh(x)

)︂2
dW (x), ρh12 :=

∫︂
R
µh(x)λh(x)dW (x).

Finally, two further assumptions are imposed for asymptotic normality.

Assumption 2.7. The filter ϕ(θ; z) = ∑︁∞
j=−∞ ϕj(θ)zj with three derivatives ϕ(a)(θ; z)

satisfies following condition:

sup
θ∈Θ

⃦⃦⃦
ϕ

(a)
j (θ)

⃦⃦⃦
< C |j|−ηa with ηa > 1

for a = 1, 2, 3 and C < ∞.

Assumption 2.8. H0,h is positive definite.

Stronger conditions on the smoothness of the linear filter ϕ(θ; z) and the cdf

Λ are imposed for the analysis of the score and the Hessian matrix of Q̃T (θ;h).
The local identification condition Assumption 2.8.2 ensures the components of the
covariance-variance matrix are invertible.

Theorem 2.3.4. Let {ut} be iid with zero mean, E |ut|3 < ∞ and µ0 > 3, µ1 >

1, θ0 ∈ Θ, Under Assumptions 2.1, 2.3, 2.4, 2.5 and 2.7-2.8, as T → ∞,

T 1/2
(︃
θ̃
h

T − θ0

)︃
−→d N

(︂
0, H−1

0,hH1,hH
−1
0,h

)︂
.

This intermediate result on the asymptotic distribution of θ̃hT by fixing h provides
a rough description of the limiting behavior of the original estimate based on the in-
dicator transformation of the residuals. To numerically approximate the asymptotic
distribution of θ̂T , we set h appropriately close to zero with h → 0 as T → ∞.
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Then, as h → 0,
φh(x) → F (x), λh(x) → f(x),

and µh(x) → µ(x) ≡ E (utI (ut ≤ x)). Correspondingly, the asymptotic variance
becomes

H1 := σ2
eσ

2
ν

(︂
Σ0,2 + Σ∗

0,2

)︂
+ σ2

eν

(︂
Σ†

0,2 + Σ†′

0,2

)︂
H0 := ρ1ρ2

(︂
Σ0,1 + Σ∗

0,1

)︂
+ (ρ12)2

(︂
Σ†

0,1 + Σ†′

0,1

)︂
,

with {σe, σν , σeν , ρ1, ρ2, ρ12} described below, as the limits of {σe;h, σν;h, σeν;h, ρ
h
1 , ρ

h
2 , ρ

h
12}

when h → 0,

σ2
e :=

∫︂
R

∫︂
R
F (x ∧ y) f(x)f(y)dW (x)dW (y) −

(︃∫︂
R
F (x)f(x)dW (x)

)︃2

σν :=
∫︂
R

∫︂
R
F (x ∧ y)µ(x)µ(y)dW (x)dW (y) −

(︃∫︂
R
F (x)µ(x)dW (x)

)︃2

σeν :=
∫︂
R

∫︂
R
F (x ∧ y) f(x)µ(y)dW (x)dW (y) −

∫︂
R
F (x)f(x)dW (x)

(︃∫︂
R
F (y)µ(y)dW (y)

)︃
,

and

ρ1 :=
∫︂
R
µ2(x)dW (x), ρ2 :=

∫︂
R
f 2(x)dW (x), ρ12 :=

∫︂
R
µ(x)f(x)dW (x).

The loss function Q0(θ;h) still identifies θ0 under the same structure as h goes to
zero. This immediately follows from

Q0(θ;h) = Q0(θ) +O(h2) uniformly in θ ∈ Θ.

Some extra care needs to be taken on the smoothing parameter h to preserve the
classical rate T 1/2 in the application of CLT when h → 0 with T → ∞. In effect,
the rate of convergence of ∂

∂θ
σ̃θ,j(x, y;h) needs to be controlled unchanged as h → 0.

Based on our analysis of the mean squared error of the covariance derivative of
estimates,

E

⃦⃦⃦⃦
⃦ ∂∂θ σ̃θ0,j(x, y;h) − ∂

∂θ
σθ0,j(x, y)

⃦⃦⃦⃦
⃦

2

= O
(︂
h4 + h−1(T − j)−1

)︂
,

where ∂
∂θ
σ̃θ0,j(x, y;h) := ∂

∂θ
σ̃θ,j(x, y;h)|θ=θ0 and ∂

∂θ
σθ0,j(x, y) := ∂

∂θ
σθ,j(x, y)|θ=θ0 , we

can conclude that for the approximation effect to be asymptotically negligible, the
value of h must approach zero, but at a rate not faster than T−1. Another important
consideration is the non-centering error of the residual covariance as h → 0,

φh(x)φh(y) = F (x)F (y) +O(h2),

uniformly in (x, y), which imposes one further restriction. The bias must be o(T−1/2)
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to be negligible in the asymptotic distribution of the estimates θ̃hT when h converges
to zero. Hence, h cannot go to zero too slowly, implying that it must approach zero
at a rate of o(T−1/4). Some of these rates can be possibly improved with higher-
order kernels, but since h has no direct effect on the first-order asymptotics, we do
not pursue this.

The following conditions in parallel with Assumption 2.8 are imposed for the
analysis of the limiting behavior of θ̃hT as h → 0.

Assumption 2.9. 1. The innovation ut admits uniformly bounded probability
density function f(u) with differentiable derivatives f (a)(u) of order a uni-
formly bounded by some constants C < ∞ for a = 1, 2.

2. H0 is positive definite.

Theorem 2.3.5. Under Assumptions 2.1, 2.3, 2.4 and Assumptions 2.7-2.9, ut iid
with zero mean, E |ut|3 < ∞, θ0 ∈ Θ, µ0 > 3, µ1 > 1, as T → ∞, h−1T−1 + h4T → 0

T 1/2
(︃
θ̃
h

T − θ0

)︃
−→p N

(︂
0, H−1

0 H1H
−1
0

)︂
.

Theorem 2.3.5 presents the asymptotic distribution of the estimates based on
the smoothed cdf when Λ approaches the indicator function as T → ∞. We expect
that this also represents the asymptotic behavior of θ̂T obtained from the sample
loss function based on the empirical cdf , as numerical experiments show that the
difference between both estimates in magnitude is trivial as h → 0, see the evidence
in Simulation 2.4.2.

The asymptotic variance in the causal and invertible models can be simplified to

κΣ−1
0,1Σ0,2Σ−1

0,1

with κ = σ2
eσ

2
ν(ρ1ρ2)−2 since some components like Σ∗

0,a and Σ†
0,a are degenerated to

zero for a = 1, 2. There are potential gains in the efficiency of the estimates by re-
placing the spectral cdf with the spectral pdf in the loss function, in which the natu-
ral down weights j−2 on the higher lags are not imposed. In such case, the asymptotic
variance of estimates becomes κΣ−1

0,0, and it can be shown that Σ−1
0,1Σ0,2Σ−1

0,1 − Σ−1
0,0 is

positive semidefinite.

2.3.4. Standard error calculation

As shown in Theorems 2.3.4 and 2.3.5, the asymptotic variance of the proposed esti-
mates crucially depends on the data-generating processes (DGP), resulting in a lack
of closed-form expressions ofH0 andH1 in general. Cavaliere et al. (2020) have inves-
tigated several bootstrapping schemes for the inference study of noncausal processes
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with heavy-tailed innovations. In this section, we outline a method for constructing
the approximated standard errors of the estimator θ̂T based on natural estimates
of the unknown quantities depending on the DGP. In comparison to bootstrap-
ping methods, our approach involves estimating the components in the asymptotic
variance directly, which reduces computational expenses by avoiding repetitive cal-
culations. Using the definitions of et and νt, we can substitute them by their sample
counterparts:

êt :=
∫︂
R

(︂
I
(︂
ût(θ̂T ) ≤ x

)︂
− F̂ T (x)

)︂
f̂T (x)dW (x)

ν̂t :=
∫︂
R

(︂
I
(︂
ût(θ̂T ) ≤ x

)︂
− F̂ T (x)

)︂
µ̂T (x)dW (x)

where

F̂ T (x) = 1
T

T∑︂
t=1

I
(︂
ût(θ̂T ) ≤ x

)︂

f̂T (x) = F̂ T (x+ a) − F̂ T (x− a)
2a for a properly chosen value of a

or = 1
Th

T∑︂
t=1

K

⎛⎝x− ût(θ̂T )
h

⎞⎠ for a sufficiently small h and kernel function K

µ̂T (x) = 1
T

T∑︂
t=1

ût(θ̂T )I
(︂
ût(θ̂T ) ≤ x

)︂
.

The estimation of the density function can be obtained using a naive estimator
or any consistent kernel density estimator. To calculate the integration in êt and
ν̂t, a numerical integration algorithm will be employed with weighting functions
W (x). Then, {σ̂2

e, σ̂
2
ν , σ̂

2
eν} are the elements of the sample variance-covariance ma-

trix of (êt, ν̂t). The estimates of {ρ1, ρ2, ρ12} also require numerical integration
of {(µ̂T (x))2 ,

(︂
f̂T (x)

)︂2
, µ̂T (x)f̂T (x)} with respect to x over a chosen W (x). The

derivatives of the linear filter can be obtained from the model once the order is
determined and {Σ0,a,Σ∗

0,a,Σ
†
0,a}a=1,2 are estimated by plugging θ̂T in the corre-

sponding expressions. Alternatively, to avoid numerical integration, one can choose
the empirical cdf as a weighting function to replace integration by averages at data
points, in such case, the estimators can be computed as follows:

êt := 1
T

T∑︂
s=1

(︂
I
(︂
ût(θ̂T ) ≤ ûs(θ̂T )

)︂
− F̂ T

(︂
ûs(θ̂T )

)︂)︂
f̂T (ûs

(︂
θ̂T )

)︂

ν̂t := 1
T

T∑︂
s=1

(︂
I
(︂
ût(θ̂T ) ≤ ûs(θ̂T )

)︂
− F̂ T

(︂
ûs(θ̂T )

)︂)︂
µ̂T
(︂
ûs(θ̂T )

)︂
.

The rest components can be easily adapted in accordance with the empirical cdf .

Remark. When computing the standard error of the estimate θ̃hT for any fixed h, the
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procedures are similar, with some modifications. In particular, the indicator function
in the formula is replaced by Λ(·) index by h and the corresponding density function
by λ(·), as the smoothed distribution function is determined at the outset, and other
kernel functional forms would not be a better fit compared to its real functional form.

2.4. Simulations

In this section, we conduct Monte Carlo simulations to investigate the finite sample
properties of the proposed estimates. Our methods are robust to the choice of
weighting functions W as long as it satisfies Assumption 2.4. However, in practice,
the finite sample performance can vary over different options. Since the indicator
function in the loss function is not scale-invariant, the weights imposed on σ̂θ,j(x, y)
may change before and after the rescaling of residuals ut(θ). For example, if W is
selected to be the standard normal distribution, residuals ut(θ) that fall outside the
interval (−3, 3) will be assigned very small weights due to the 3-σ rule of thumb.
This could lead to decreased efficiency of the estimates as they do not fully utilize the
information in the extremes (distribution tails) of the residuals, which may be more
informative than the median for detecting noncausality in some cases, as discussed
in Jin (2023). To address this issue, we propose two solutions.

The first approach involves standardizing the residuals by dividing the original
sequence by its standard deviation

u∗
t (θ) := ut(θ)√︃

1
T

∑︁T
t=1

(︂
ut(θ) − u(θ)

)︂2
,

where u(θ) is the sample mean of the residual sequence. The standard normal
distribution is chosen to beW .16 The detailed calculation of the loss function in finite
samples can be found in Appendix 2.8.1. It can be shown that this standardization
does not change the asymptotic properties of the proposed estimates but improves
finite sample performance. The second approach relies on fitting the weighting
function using the empirical distribution function of residuals, which plays a role as
an automated rescaling scheme for each sequence of residuals correspondingly. In
such case, the loss function can be simplified to

2
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
(jπ)2

T∑︂
s=1

T∑︂
t=1

σ̂2
θ,j(us(θ), ut(θ)).

Both approaches avoid numerical integration and subjective choice of rescaling pa-
16Logistic distribution can also be a good candidate and it does not make much difference

compared with the Gaussian distribution.
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rameters.

2.4.1. Indicator approach: h = 0

In the first experiment, we examine the finite sample performance of the estimates
based on the indicator function, i.e., θ̂T , under different processes and sample sizes.
The first example is designed to evaluate the robustness of the methodology in AR(1)
processes with different types of innovations. We consider iid innovations distributed
by uniform distribution U[−5,5], t-distribution t3 and centered chi-square distribution
χ5 for the generation of AR(1) processes, including basic non-Gaussian distributions
with symmetry and asymmetry (κ3 = 0, 0 and

√︂
8
5), bounded support, and heavy-

tailed property (κ4 = −6
5 ,∞ and 12

5 ).17 The sample sizes T are 100 and 200 and
the parameters of the AR(1) models are chosen to be 0.4 (0.4−1) and 0.9 (0.9−1) in
the causal (noncausal) cases. The results, based on 100 replications, are reported in
Table 2.6.1 in terms of the percentage of correct root identification (PCI), the bias
of the estimates (Bias), and the mean squared errors (MSE) given the sample size,
the distribution of innovations and the true parameters of the AR(1) models using
both weighting schemes.

The results of our proposed method show that the method performs better when
the innovation exhibits either heavy tails or asymmetry. This is because we are able
to gain more information from high skewness and kurtosis, which are commonly
employed to measure non-Gaussianity. Our findings are in line with the estimation
technique proposed by Velasco and Lobato (2018), which also leverages informa-
tion from higher-order moments. As the sample size increases, the percentage of
correct root identification improves and the mean squared error (MSE) of the esti-
mates decreases. Both standardization and weighting by the empirical cumulative
distribution function (cdf) demonstrate good performance. However, when the inno-
vation follows t3 or χ5 distribution, the standard normal cdf approach outperforms
the empirical cdf approach. Conversely, when the innovation follows a uniform dis-
tribution, the empirical cdf approach performs better. Based on these results, we
suggest using the standard normal cdf approach for the empirical examples, unless
there is strong evidence suggesting a uniform distribution or negative kurtosis with
symmetry for the innovation. Additionally, we also report the results of estimation
when the true parameter is close to unity. As expected, it can be challenging to
determine whether the root is located inside or outside the unit circle, as they are
similarly magnified.

In the second example, our aim is to estimate an AR(2) process generated by
innovations with a centered χ5 distribution. In this situation, the objective is to in-

17κ3 is skewness and κ4 is kurtosis.
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vestigate the identification of causality and noncausality of AR processes with higher
orders, as AR(p) processes with p ≥ 2 can have different combinations of nonfunda-
mental solutions, such as the mixed causal-noncausal processes discussed by Hecq
et al. (2016). We select θ0,1 = 0.4 and θ0,2 = 0.8 as two parameters of the polynomial
(1 − θ0,1L)(1 − θ0,2L) in the causal case, and generate three other types of processes.
The sample size is varied from 100 to 200, with 100 replications per simulation. The
results are presented in Table 2.6.2, which displays four types of processes in terms
of causality: two are mixed causal-noncausal AR(2) processes, one purely causal
AR(2) process, and one purely noncausal AR(2) process. In this experiment, our
discussion is limited to the identification of the number of noncausal roots detected
in the processes18. The first row of Table 2.6.2 reports the percentage of correct
identification of the number of noncausal roots in the process, while the second row
presents the percentage of identification that detects the existence of noncausality.
The results indicate that the proposed method performs better in processes with
noncausality than in causal cases. In the purely casual case, the performance is rel-
atively poor when the sample size is small (T = 100), but the proportion of correct
identification increases significantly when the sample size increases to 200.

2.4.2. Smooth cdf approach: h > 0

In Section 2.3.3, we present the strategy to approximate the asymptotic distribution
of the estimates based on the indicator function. The approximation is achieved
by substituting the indicator function with its smooth counterpart, allowing h → 0
when T → ∞. We also provide a general analysis of the convergence rate of h. In this
subsection, we carry out some experiments to evaluate the numerical approximation
performance of the smooth cdf estimates using different values of h. As per Theorem
2.3.5, h is restricted between T−1 and T−1/4, so we select 4 rates of h associated with
T : T−0.99, T−3/4, T−1/2, T−0.26. We compare the corresponding estimates with the
one based on the indicator function (h = 0). We generate the AR(1) process from
an iid innovation sequence with χ2

5 distribution and the parameter 0.4 in the causal
case and 2.5 in the noncausal case. The sample size is 100 for each replication.
We set the smooth cdf Λ to the logistic distribution and adopt empirical cdf of
residuals as weighting functions to avoid numerical integration in calculating the

18In the first experiment of AR(1) processes, we report the proportion of the correct root iden-
tification and the precision of the identified roots, in terms of the bias and the mean squared
error, since the root is equal to the coefficient under the circumstance. However, in the case of
AR(p) with orders greater than 1, the roots of autoregressive polynomials are obtained through
the factorization of coefficients, which can be very sensitive to this procedure. For exam-
ple, Yt − 3.1Yt−1 + 1.5Yt−2 = (1 − 0.6L) (1 − 2.5L)Yt; with mild changes in the coefficients,
Yt − 2.8Yt−1 + 1.81Yt−2 = (1 − 1.03L) (1 − 1.77L)Yt, which yields a totally different conclusion
on the roots. Thus, there is not much meaning to discuss the precision of the roots in magnitude
in AR processes with higher orders.
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loss function19. The numerical results from 100 replications are presented in Table
2.6.3. The first three items, namely, PCI, Bias, and Root MSE (RMSE), provide
a general evaluation of the performance of the estimates with different values of h.
Overall, the estimates’ performance does not exhibit substantial differences across
different choices of h. With regard to PCI, the estimates θ̃hT tend to achieve a higher
correct root identification rate in the causal case when h converges to 0 at a slower
rate. This behavior may be attributed to more concentration near zero when h

is larger in terms of T , which is the median of the logistic distribution, when h

converges more slowly. As for the bias and the RMSE, both measures show only
subtle fluctuations. The last item, relative RMSE (RRMSE), aims to assess the
approximation performance of θ̃hT to θ̂T by measuring their similarity. The RRMSE
is computed by the RMSE normalized by the RMSE of the estimates based on
the indicator functions. The results in Table 2.6.3 indicate a better approximation
performance of θ̃hT to θ̂T when the sample size increases. Moreover, it is worth noting
that the approximation performance of θ̃hT to θ̂T is not proportional to h, and it does
not vary too much with different choices of h.

2.5. Empirical application

2.5.1. Clustering volatility

In this section, we apply our proposed method to analyze a series of 753 daily
trading volumes of Microsoft (MSFT) stock from 6/3/1996 to 5/26/1999. Breidt
et al. (2001) have argued that a noncausal AR(1) model better fits the data than
a causal AR(1) model, based on diagnostic tests of residuals computed from both
models. To prepare the data for analysis, we remove the heteroskedasticity and
drift by taking the logarithm and demeaning the sequence, as shown in the upper
panel of Figure 2.6.1. The augmented Dickey-Fuller (ADF) test indicates that the
resulting sequence is stationary, with no unit root present. Additionally, the partial
autocorrelation of the sequence suggests that an AR model with order 1 or 3 might
be appropriate, as shown in the lower panel of Figure 2.6.1. We fit the data by
an AR model of order 1 and our proposed method yields a noncausal model as a
stationary solution,

ût = Yt − 1.7953
(0.6059)

Yt−1.

19For the estimates based on the indicator function, both empirical cdf approach and standard
normal cdf approach do not involve numerical integration. However, in the case of estimates
using smooth functions Λ, only empirical cdf and corresponding Λ can avoid extra computational
burdens. Besides, it has been shown that no significant difference between the empirical cdf
approach and the standard normal cdf approach in terms of the finite sample performance of the
estimates. Therefore we select the empirical cdf of residuals as weighting functions for simplicity.
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In other words, the forward-looking behavior of investors has a stronger impact on
stock investment than the backward-looking behavior. This is evident in the cluster-
ing phenomenon observed in the stock market, which can be attributed to investors’
uncertainty about the future market environment. Intuitively, the perception of
a more volatile market environment in the future would lead to more variant in-
vestment strategies of investors of different types. Instead of fitting the data with
the AR-ARCH model, with the noncausal AR(1) model, which can mimic clustering
volatility dynamics, as demonstrated by Breidt et al. (2001), we can avoid estimating
more parameters. We plot the autocorrelation function (ACF) of the squared value
of residuals {ũ2

t} and {û2
t} from the causal model using conventional Gaussian MLE

(ũt = Yt − 0.5854Yt−1) and noncausal model using our approach, respectively. The
upper part of the Figure 2.6.2 displays a clear correlation in the squared residuals
from the causal AR(1) model at first lag, indicating ARCH would be an appropri-
ate alternative to characterize the residual dependence. The lower part of Figure
2.6.2 shows residuals generated from the noncausal model do not show a significant
correlation on the squared value of the residuals. Apart from volatility clustering
behavior, noncausal autoregressive processes also can capture the dependence be-
tween different percentiles, which is not possible with conventional GARCH models.
These nonlinear dynamics observed in Microsoft stock data may be linked to the
"informational heterogeneity" of investors who receive idiosyncratic messages from
the shocks in the financial market, resulting in belief dynamics of different orders20

(Kasa et al. (2006)).

2.6. Discussion: Measures of dependence under a martingale difference
assumption

The assumption on the innovations used to generate data process can be possibly
relaxed to martingale difference sequence (mds), which broadens the class of time
series models by including linear models with ARCH-type innovations.
Denote the σ-field generated by the past sequence of ut by σt−1 = σ (ut−1, ut−2, . . . ).
By the definition of mds, we obtain

E (ut|σt−1) = 0,

which implies
E (utI (ut−j(θ) ≤ x)) = 0 for j ≥ 1 ∀x ∈ R.

20The existence of asymmetric information in the market activates investors not only to forecast
the future economic variables but also the forecasts of other investors, which forms higher-orders
of belief dynamics.
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The indicator function can be replaced by the exponential function exp(·) or any
other parametric family considered in Escanciano (2006). Here we choose the indi-
cator function to be consistent with the notation introduced throughout this paper
and its simplicity in computation.
We define the following measure of dependence

γθ,j(x) = E (ut(θ)I(ut−j(θ) ≤ x)) for j ≥ 1,∀x ∈ R,

and γθ,j(x) = γθ,|j|(x) for j < 0. The corresponding spectral density and distribution
functions based on this measure are

dθ(x;ω) = 1
2π

∞∑︂
j=−∞

γj(x)e−ijω, ω ∈ [−π, π],

Dθ(x;λ) = γθ,0(x)λ+ 2
∞∑︂
j=1

γθ,j(x)sin jπλ
jπ

, λ ∈ [0, 1].

Following the same approach in the iid case, the population loss function is con-
structed by a L2 distance of the generalized cdf in the unrestricted case and the
conjectured one in the restricted case

Qmds
0 (θ) : = L2

(︂
Dθ(x;λ), Dmds

θ (x;λ)
)︂

= 2
∫︂
R2

∞∑︂
j=1

γ2
θ,j(x) 1

(jπ)2dW (x).

The study on the identification and estimation of the model is left to further research.
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Table 2.6.1: Comparison of estimates using empirical cdf and standard normal cdf under
different distributions of innovations: study in AR(1) case

W: empirical cdf standard normal cdf
ut T θ0: 0.4 0.4−1 0.9 0.9−1 0.4 0.4−1 0.9 0.9−1

U[−5,5] 100 PCI 67.00% 84.00% 53.00% 54.00% 62.00% 77.00% 45.00% 41.00%
Bias -0.0148 0.3112 -0.0254 0.0421 -0.0211 0.5532 -0.0405 0.0598
MSE 0.0092 0.5532 0.0067 0.0146 0.0122 0.09017 0.0076 0.0177

200 PCI 87.00% 86.00% 64.00% 63.00% 82.00% 78.00% 50.00% 54.00%
Bias -0.0101 0.0507 -0.0130 0.0155 -0.0169 0.0964 -0.0203 0.0206
MSE 0.0046 0.2240 0.0031 0.0047 0.0054 0.3443 0.0037 0.0049

t3 100 PCI 60.00% 69.00% 69.00% 57.00% 81.00% 86.00% 75.00% 72.00%
Bias -0.0089 0.1421 -0.0079 0.0170 -0.0145 0.0792 -0.0162 0.0257
MSE 0.0131 0.4052 0.0036 0.0079 0.0102 0.2954 0.0035 0.0075

200 PCI 76.00% 75.00% 63.00% 59.00% 90.00% 84.00% 71.00% 76.00%
Bias -0.0105 0.1740 0.0121 0.0053 -0.0087 0.1285 0.0023 0.0162
MSE 0.0037 0.2849 0.0026 0.0043 0.0034 0.2090 0.0024 0.0040

χ5 100 PCI 94.00% 94.00% 71.00% 69.00% 94.00% 93.00% 78.00% 73.00%
Bias -0.0035 0.1921 -0.0372 0.0550 -0.0062 0.2085 -0.0377 0.0699
MSE 0.0078 0.6751 0.0062 0.0149 0.0071 0.6660 0.0063 0.0181

200 PCI 99.00% 98.00% 80.00% 76.00% 99.00% 99.00% 81.00% 77.00%
Bias -0.0101 0.1082 0.0060 0.0134 -0.0085 0.1674 0.0034 0.0025
MSE 0.0045 0.2281 0.0032 0.0041 0.0045 0.3838 0.0031 0.0043

PCI: percentage of correct root identification using our method
Bias: computed by Ê T (θ̂T ) − θ0

MSE (mean squared error): computed by sum of ˆ︁
VarT (θ̂T ) and Bias2 using the correctly identified

replications

Table 2.6.2: Estimates of AR(2) generated by innovations following χ2
5

χ2(5) − 5
T= 100 T= 200

θ0 : (0.4, 0.8) (0.4−1, 0.8−1) (0.4−1, 0.8) (0.4, 0.8−1) (0.4, 0.8) (0.4−1, 0.8−1) (0.4−1, 0.8) (0.4, 0.8−1)
PCI 59.00% 81.00% 84.00% 85.00% 80.00% 94.00% 95.00% 90.00%
PN 41.00% 95.00% 96.00% 85.00% 20.00% 100.00% 98.00% 99.00%

PCI: percentage of correct root identification including the number of roots lying inside unit circle
PN: percentage of detecting the existence of noncausality in the process. i.e., There is at least one root lying inside
unit circle.
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Table 2.6.3: Performance of the estimates by approximating the indicator function using
smoothed cdf with different convergence rates of h: AR(1) driven by χ2

5 innovations

causal AR(1) noncausal AR(1)
T = 100 h = 0 h = T−0.99 h = T−3/4 h = T−1/2 h = T−0.26 h = 0 h = T−0.99 h = T−3/4 h = T−1/2 h = T−0.26

PCI 88.00% 90.00% 92.00% 93.00% 96.00% 90.00% 90.00% 90.00% 88.00% 90.00%
Bias -0.0097 -0.0067 -0.0096 -0.0112 -0.0162 0.0994 0.0938 0.0796 0.0684 0.0883
RMSE 0.0837 0.0777 0.0763 0.0739 0.0750 0.7214 0.6424 0.6415 0.6345 0.6427
RRMSE 1.0000 0.9279 0.9111 0.8823 0.8957 1.0000 0.8905 0.8892 0.8796 0.8909
T = 200 h = 0 h = T−0.99 h = T−3/4 h = T−1/2 h = T−0.26 h = 0 h = T−0.99 h = T−3/4 h = T−1/2 h = T−0.26

PCI 99.00% 99.00% 99.00% 99.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Bias -0.0094 -0.0091 -0.0096 -0.0096 -0.0091 0.0519 0.0521 0.0497 0.0512 0.0518
RMSE 0.0596 0.0585 0.0595 0.0597 0.0593 0.4476 0.4479 0.4458 0.4403 0.4407
RRMSE 1.0000 0.9828 0.9993 1.0026 0.9952 1.0000 1.0006 0.9960 0.9835 0.9846

PCI: percentage of correct root identification using our method
Bias: computed by Ê T (θ̂T ) − θ0

RMSE (root mean squared error): computed by squared value of the sum of ˆ︁
VarT (θ̂T ) and Bias2 using the correctly identified repli-

cations
RRMSE (relative RMSE): root mean squared error of the estimates normalized by the RMSE of the estimates based on the indicator
functions.

Figure 2.6.1: Microsoft daily trading volume from 6/3/1993 to 5/26/1999
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Figure 2.6.2: Diagnostics of residuals from both causal and non-causal models: a com-
parison in ACF of residuals in squared values
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2.7. Appendix A: Proofs

2.7.1. Proof of Lemma 2.2.1

Define

Fθ(x) := E
(︂
F̂ θ,j(x,∞)

)︂
= E (I (ut(θ) ≤ x)) = E

(︂
F
(︂
x− u

(0)
t (θ)

)︂)︂
where ϕ0(θ) = 1 for all θ ∈ Θ,

ut(θ) =
∞∑︂

j=−∞
ϕj(θ)ut−j, u

(I)
t (θ) = ut(θ) −

∑︂
j∈I

ϕj(θ)ut−j.

For any j > 0,

E
(︂
F̂ θ,j(x, y)

)︂
=E (I (ut(θ) ≤ x) I (ut−j(θ) ≤ y))
=E

(︂
I
(︂
ut ≤ x− u

(0)
t (θ)

)︂
I
(︂
ϕ−j(θ)ut ≤ y − u

(−j)
t−j (θ)

)︂)︂
=E

(︂
I
(︂
ut + ϕj(θ)ut−j ≤ x− u

(0,j)
t (θ)

)︂
I
(︂
ϕ−j(θ)ut + ut−j ≤ y − u

(0,−j)
t−j (θ)

)︂)︂
=E

(︃∫︂
I
(︂
z + ϕj(θ)w ≤ x− u

(0,j)
t (θ)

)︂
I
(︂
ϕ−j(θ)z + w ≤ y − u

(0,−j)(θ)
t−j

)︂
f(z)f(w)dzdw

)︃
=E

(︃∫︂
I
(︂
u ≤ x− u

(0,j)
t (θ)

)︂
I
(︂
v ≤ y − u

(0,−j)
t−j (θ)

)︂
f (j)
u,v(u, v)dudv

)︃
=E

(︂
F (j)
u,v

(︂
x− u

(0,j)
t (θ), y − u

(0,−j)
t−j (θ)

)︂)︂
where the last second equality comes from the change of variables⎛⎝ u

v

⎞⎠ =
⎛⎝ z + ϕj(θ)w
ϕ−j(θ)z + w

⎞⎠ ,
⎛⎝ z

w

⎞⎠ = 1
1 − ϕj(θ)ϕ−j(θ)

⎛⎝ u− ϕj(θ)v
v − ϕ−j(θ)u

⎞⎠ .
The Jacobian equals
⃓⃓⃓⃓
⃓d(z, w)
d(u, v)

⃓⃓⃓⃓
⃓ = 1

(1 − ϕj(θ)ϕ−j(θ))2

⃓⃓⃓⃓
⃓⃓ 1 − ϕj(θ)

−ϕ−j(θ) 1

⃓⃓⃓⃓
⃓⃓ = |1 − ϕj(θ)ϕ−j(θ)|

(1 − ϕj(θ)ϕ−j(θ))2 = 1
1 − ϕj(θ)ϕ−j(θ)

> 0.

For sufficiently large j, |ϕk(θ)ϕ−k(θ)| < 1 for all k ≥ j and for relatively small j,
there is always a compact set of θ ∈ Θ such that |ϕj(θ)ϕ−j(θ)| < 1 since ϕj(θ) is
zero at the true parameter value for j ≠ 0.
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By applying Mean Value Theorem on f , we can get

f (j)
u,v(u, v) = 1

1 − ϕj(θ)ϕ−j(θ)
f

(︄
u− ϕj(θ)v

1 − ϕj(θ)ϕ−j(θ)

)︄
f

(︄
v − ϕ−j(θ)u

1 − ϕj(θ)ϕ−j(θ)

)︄

= (1 +O (ϕj(θ)ϕ−j(θ))) f
(︄

u− ϕj(θ)v
1 − ϕj(θ)ϕ−j(θ)

)︄
f

(︄
v − ϕ−j(θ)u

1 − ϕj(θ)ϕ−j(θ)

)︄
= f(u)f(v) (1 +O (ϕj(θ)ϕ−j(θ)))

+O

(︄
uϕ−j(θ)f

(︄
u− ϕj(θ)v

1 − ϕj(θ)ϕ−j(θ)

)︄
ḟ

(︄
v − ϕ−j(θ)uη

1 − ϕj(θ)ϕ−j(θ)

)︄)︄

+O

(︄
vϕj(θ)f

(︄
v − ϕ−ju

1 − ϕj(θ)ϕ−j(θ)

)︄
ḟ

(︄
u− ϕj(θ)vη

1 − ϕj(θ)ϕ−j(θ)

)︄)︄

for η ∈ (0, 1). Under Assumption 2.2 with a = 1,

F (j)
u,v(x, y) = F (x)F (y) +O (ϕj(θ) + ϕ−j(θ))

uniformly in (x, y) ∈ R2.

Before proceeding to the next step, we define truncated versions of u(0,j)
t,m (θ) and

u
(0)
t−j,m(θ) for some j/2 ≤ m < j,

u
(0,j)
t (θ) =u(0,j)

t,m (θ) + ε
(0,j)
t,m (θ)

u
(0,−j)
t−j (θ) =u(0,−j)

t−j,m(θ) + ε
(0,−j)
t−j,m(θ)

where, the truncated residuals

u
(0,j)
t,m (θ) = u

(0)
t,m(θ) =

m∑︂
k=−m

ϕk(θ)ut−k − ut

u
(0,−j)
t−j,m(θ) = u

(0)
t−j,m(θ) =

m∑︂
k=−m

ϕk(θ)ut−j−k − ut−j,

and for each θ ∈ Θ and µ0 > 1, the truncation error

E
⃓⃓⃓
ε

(0,j)
t,m (θ)

⃓⃓⃓
≤ E |ut|

⎛⎝ ∞∑︂
k=m+1

|ϕk(θ)| +
−m−1∑︂
k=−∞

|ϕk(θ)|
⎞⎠ ≤ C(m+ 1)1−µ0 < Cj1−µ0

E
⃓⃓⃓
ε

(0,−j)
t−j,m(θ)

⃓⃓⃓
≤ E |ut−j|

⎛⎝ ∞∑︂
k=m+1

|ϕk(θ)| +
−m−1∑︂
k=−∞

|ϕk(θ)|
⎞⎠ ≤ C(m+ 1)1−µ0 < Cj1−µ0 .
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Using this representation,

E
(︂
F (j)
u,v

(︂
x− u

(0,j)
t (θ), y − u

(0,−j)
t−j (θ)

)︂)︂
=E

(︂
F
(︂
x− u

(0,j)
t (θ)

)︂
F
(︂
y − u

(0,−j)
t−j (θ)

)︂
+O (ϕj(θ) + ϕ−j(θ))

)︂
=E

(︂
F
(︂
x− u

(0,j)
t,m (θ)

)︂
F
(︂
y − u

(0,−j)
t−j,m(θ)

)︂)︂
+ η1 E

⃓⃓⃓
ε

(0,j)
t,m (θ)F

(︂
y − u

(0,−j)
t−j (θ)

)︂⃓⃓⃓
+ η2 E

⃓⃓⃓
ε

(0,−j)
t−j,m(θ)F

(︂
x− u

(0,j)
t (θ)

)︂⃓⃓⃓
+O (ϕj(θ) + ϕ−j(θ)) where η1, η2 ∈ (0, 1)

=E
(︂
F
(︂
x− u

(0,j)
t,m (θ)

)︂
F
(︂
y − u

(0,−j)
t−j,m(θ)

)︂)︂
+O(j1−µ0)

=E
(︂
F
(︂
x− u

(0,j)
t,m (θ)

)︂)︂
E
(︂
F
(︂
y − u

(0,−j)
t−j,m(θ)

)︂)︂
+O(j1−µ0)

=E
(︂
F
(︂
x− u

(0,j)
t (θ)

)︂)︂
E
(︂
F
(︂
y − u

(0,−j)
t−j (θ)

)︂)︂
+O(j1−µ0)

=Fθ(x)Fθ(y) +O(j1−µ0).

The second equality follows immediately from the application of MVT and the fourth
one comes from independence after designed truncation on the residuals. The last
second equality is induced from redoing truncation and filling the gaps at lag j and
leads −j. Therefore, we conclude uniformly in θ and (x, y) ∈ R2

|σθ,j(x, y)| ≤ O(j1−µ0).

2.7.2. Proof of Lemma 2.3.1

To analyze Var(σ̂θ,j(x, y)), we need to compute the most difficult contribution,

Var
(︂
F̂ θ,j(x, y)

)︂
= 1

(T − j)2

T∑︂
t=1+j

T∑︂
t′+j
Cov (I (ut−j(θ) ≤ y) I (ut(θ) ≤ x) , I (ut′−j(θ) ≤ y) I (ut′(θ) ≤ x)) ,

where the covariance is equal to

E (I (ut′(θ) ≤ x) I (ut′−j(θ) ≤ y) I (ut(θ) ≤ x) I (ut−j(θ) ≤ y))
− E (I (ut′(θ) ≤ x) I (ut′−j(θ) ≤ y))E (I (ut(θ) ≤ x) I (ut−j(θ) ≤ y)) .

We start with the joint moment of 4 indicators involved in the computation of the
covariance in a similar manner to Lemma 2.2.1.
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Assume t > t′, j > 0 and t− t′ > 2j, so t− t′ − j > (t− t′) /2,

E (I (ut′−j(θ) ≤ y) I (ut′(θ) ≤ x) I (ut−j(θ) ≤ y) I (ut(θ) ≤ x))

=E

⎛⎜⎜⎜⎜⎜⎜⎝
∫︂
⎛⎜⎜⎜⎜⎜⎜⎝
I
(︂
z1 + ϕ−j(θ)z2 + ϕt′−t(θ)z3 + ϕt′−t−j(θ)z4 ≤ y − u

(0,−j,t′−t−j,t′−t)
t′−j (θ)

)︂
I
(︂
ϕj(θ)z1 + z2 + ϕt′−t+j(θ)z3 + ϕt′−t(θ)z4 ≤ x− u

(0,j,t′−t+j,t′−t)
t′ (θ)

)︂
I
(︂
ϕt−t′(θ)z1 + ϕt−t′−j(θ)z2 + z3 + ϕ−j(θ)z4 ≤ y − u

(0,−j,t−t′−j,t−t′)
t−j (θ)

)︂
I
(︂
ϕt−t′+j(θ)z1 + ϕt−t′(θ)z2 + ϕj(θ)z3 + z4 ≤ x− u

(0,j,t−t′+j,t−t′)
t (θ)

)︂

⎞⎟⎟⎟⎟⎟⎟⎠
f(z1)f(z2)f(z3)f(z4)

dz1dz2dz3dz4

⎞⎟⎟⎟⎟⎟⎟⎠
=E

⎛⎝∫︂ ⎛⎝ I
(︂
u1 ≤ y − u

(0,−j,t′−t−j,t′−t)
t′−j (θ)

)︂
I
(︂
u2 ≤ x− u

(0,j,t′−t+j,t′−t)
t (θ)

)︂
I
(︂
u3 ≤ y − u

(0,−j,t−t′−j,t−t′)
t−j (θ)

)︂
I
(︂
u4 ≤ x− u

(0,j,t−t′+j,t−t′)
t (θ)

)︂ ⎞⎠ fu(u)du
⎞⎠

=E
(︂
Fu
(︂
y − u

(0,−j,t′−t−j,t′−t)
t′−j (θ), x− u

(0,j,t′−t+j,t′−t)
t (θ), y − u

(0,−j,t−t′−j,t−t′)
t−j (θ), x− u

(0,j,t−t′+j,t−t′)
t (θ)

)︂)︂
where

u =

⎛⎜⎜⎜⎜⎜⎝
u1

u2

u3

u4

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
z1 + ϕ−j(θ)z2 + ϕt′−t(θ)z3 + ϕt′−t−j(θ)z4

ϕj(θ)z1 + z2 + ϕt′−t+j(θ)z3 + ϕt′−t(θ)z4

ϕt−t′(θ)z1 + ϕt−t′−j(θ)z2 + z3 + ϕ−j(θ)z4

ϕt−t′+j(θ)z1 + ϕt−t′(θ)z2 + ϕj(θ)z3 + z4

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
1 ϕ−j(θ) ϕt′−t(θ) ϕt′−t−j(θ)

ϕj(θ) 1 ϕt′−t+j(θ) ϕt′−t(θ)
ϕt−t′(θ) ϕt−t′−j(θ) 1 ϕ−j(θ)
ϕt−t′+j(θ) ϕt−t′(θ) ϕj(θ) 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
z1

z2

z3

z4

⎞⎟⎟⎟⎟⎟⎠
and
⎛⎜⎜⎜⎜⎜⎝

1 ϕ−j(θ) ϕt′−t(θ) ϕt′−t−j(θ)
ϕj(θ) 1 ϕt′−t+j(θ) ϕt′−t(θ)
ϕt−t′(θ) ϕt−t′−j(θ) 1 ϕ−j(θ)
ϕt−t′+j(θ) ϕt−t′(θ) ϕj(θ) 1

⎞⎟⎟⎟⎟⎟⎠

−1

=

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎝ 1 ϕ−j(θ)
ϕj(θ) 1

⎞⎠−1 ⎛⎝ 0 0
0 0

⎞⎠
⎛⎝ 0 0

0 0

⎞⎠ ⎛⎝ 1 ϕ−j(θ)
ϕj(θ) 1

⎞⎠−1

⎞⎟⎟⎟⎟⎟⎟⎠ (1 +O (ϕt−t′(θ) + ϕt′−t(θ)))

= 1
1 − ϕj(θ)ϕ−j(θ)

⎛⎜⎜⎜⎜⎜⎝
1 −ϕj(θ) 0 0

−ϕ−j(θ) 1 0 0
0 0 1 −ϕj(θ)
0 0 −ϕ−j(θ) 1

⎞⎟⎟⎟⎟⎟⎠ (1 +O (ϕt−t′(θ) + ϕt′−t(θ))) .

Hence the Jacobian is

1
(1 − ϕj(θ)ϕ−j(θ))2 (1 +O (ϕt−t′(θ) + ϕt′−t(θ)))
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and by applying MVT to the argument of each f in the linear mappings za =
za(u), a = 1, 2, 3, 4, and only keeping components involved with 1, ϕj(θ), ϕ−j(θ),

fu(u)

= 1
(1 − ϕj(θ)ϕ−j(θ))2f

(︄
u1 − ϕju2

1 − ϕj(θ)ϕ−j(θ)

)︄
f

(︄
−ϕju1 + u2

1 − ϕj(θ)ϕ−j(θ)

)︄
f

(︄
u3 − ϕju4

1 − ϕj(θ)ϕ−j(θ)

)︄

× f

(︄
−ϕju3 + u4

1 − ϕj(θ)ϕ−j(θ)

)︄
× (1 +O (ϕt−t′(θ) + ϕt′−t(θ))) + g(u)O (ϕt−t′(θ) + ϕt′−t(θ))

=f12 (u1, u2) f34 (u3, u4) + g(u)O (ϕt−t′(θ) + ϕt′−t(θ))

where

f12 (u1, u2) = 1
1 − ϕj(θ)ϕ−j(θ)

f

(︄
u1 − ϕju2

1 − ϕj(θ)ϕ−j(θ)

)︄
f

(︄
−ϕju1 + u2

1 − ϕj(θ)ϕ−j(θ)

)︄
,

f12 = f34 due to stationarity and g(u) is integrable in u ∈ R4 under Assumption 2.2
with a = 2.

By integrating the joint density over u, we get

Fu (x) = F12 (x1, x2)F34 (x3, x4) +O (ϕt−t′(θ) + ϕt′−t(θ))

uniformly in x = (x1, x2, x3, x4) ∈ R4.

Therefore,

E (I (ut′−j(θ) ≤ y) I (ut′(θ) ≤ x) I (ut−j(θ) ≤ y) I (ut(θ) ≤ x))

=E
⎛⎝ F12

(︂
x− u

(0,j,t′−t,t′−t+j)
t′ (θ), y − u

(0,−j,t′−t,t′−t−j)
t′−j (θ)

)︂
F34

(︂
x− u

(0,j,t−t′,t−t′+j)
t (θ), y − u

(0,−j,t−t′,t−t′−j)
t−j (θ)

)︂ ⎞⎠+O (ϕt−t′(θ) + ϕt′−t(θ))

=E
(︂
F12

(︂
x− u

(0,j)
t (θ), y − u

(0,−j)
t−j (θ)

)︂)︂2
+O

(︂
|t− t′|1−µ0

)︂
=Fθ,j(x, y)2 +O

(︂
|t− t′|1−µ0

)︂
.

The second last equality comes from truncation, independence, and refilling the
truncation at m = [(t− t′)/4], the same techniques used in the previous proof.
Then,

E
⃓⃓⃓
F̂ θ,j(x, y) − Fθ,j(x, y)

⃓⃓⃓2
≤C

(︄
1 ∧ (T − j)j

(T − j)2

)︄
+ C

1
(T − j)2

T∑︂
t=j+1

∑︂
t′:|t−t′|>2j

|t− t′|1−µ0

≤C
(︄

1 ∧ j

(T − j)

)︄
+ C

j2−µ0

T − j
+ C

log T
(T − j)µ0−1 .

The summation can be divided into two parts. The first component in the first
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inequality comes from the summand of |t− t′| ≤ 2j, which consists of at maximum
4j(T − j) terms of covariance uniformly bounded by 1. For the summand with
|t− t′| > 2j, each term is a O

(︂
|t− t′|1−µ0

)︂
. The summation ∑︁

t′:|t−t′|>2j |t− t′|1−µ0

is bounded by an integral
∫︁
s>2j s

1−µ0ds.

2.7.3. Truncation effect

The representation of the truncated sequences First, we show that the trun-
cation series follows from a similar representation of a residual sequence defined in
(2.2.3) with the same condition as Assumption 2.1 satisfied. Say,

ût(θ) = ut(θ) −

⎛⎝t−T−1∑︂
j=−∞

+
∞∑︂
j=t

⎞⎠ψ(−1)
j (θ)Yt−j

=
∞∑︂

k=−∞
ψ

(−1)
k (θ)Yt−j −

⎛⎝t−T−1∑︂
j=−∞

+
∞∑︂
j=t

⎞⎠ψ(−1)
j (θ)

∞∑︂
k=−∞

ψj(θ0)ut−j−k

=
∞∑︂

k=−∞
ϕk(θ)ut−k −

∞∑︂
k=−∞

⎧⎨⎩
⎛⎝t−T−1∑︂
j=−∞

+
∞∑︂
j=t

⎞⎠ψ(−1)
j (θ)ψk−j(θ0)

⎫⎬⎭ut−k
=

∞∑︂
k=−∞

⎧⎨⎩ϕk(θ) −

⎛⎝t−T−1∑︂
j=−∞

+
∞∑︂
j=t

⎞⎠ψ(−1)
j (θ)ψk−j(θ0)

⎫⎬⎭ut−k
=

∞∑︂
k=−∞

⎧⎨⎩
t−1∑︂

j=t−T
ψ

(−1)
j (θ)ψk−j(θ0)

⎫⎬⎭ut−k
=

∞∑︂
k=−∞

ϕt,Tk (θ)ut−k,

where

ϕk(θ) =
∞∑︂

j=−∞
ψ

(−1)
j (θ)ψk−j(θ0), ϕ

(t,T )
k (θ) =

t−1∑︂
j=t−T

ψ
(−1)
j (θ)ψk−j(θ0).

Consider k > 0, then

t < k/2 →

⃓⃓⃓⃓
⃓⃓
⎛⎝t−T−1∑︂
j=−∞

+
∞∑︂
j=t

⎞⎠ψ(−1)
j (θ)ψk−j(θ0)

⃓⃓⃓⃓
⃓⃓ ≤ C |ψk(θ)|

k/2 < t < 3k/2 →

⃓⃓⃓⃓
⃓⃓
⎛⎝t−T−1∑︂
j=−∞

+
∞∑︂
j=t

⎞⎠ψ(−1)
j (θ)ψk−j(θ0)

⃓⃓⃓⃓
⃓⃓ ≤ C

⃓⃓⃓
ψ

(−1)
k (θ)

⃓⃓⃓

3k/2 < t →

⃓⃓⃓⃓
⃓⃓
⎛⎝t−T−1∑︂
j=−∞

+
∞∑︂
j=t

⎞⎠ψ(−1)
j (θ)ψk−j(θ0)

⃓⃓⃓⃓
⃓⃓ ≤ C

⃓⃓⃓
ψ

(−1)
k (θ)

⃓⃓⃓
,
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while for the case of k < 0, similar bonds can be obtained by comparing with
t− T < 0. Then, for all |k| large enough, we have

sup
θ∈Θ

⃓⃓⃓
ϕ

(t,T )
k (θ)

⃓⃓⃓
≤ C|k|−µ0

uniformly in t = 1, 2, . . . , T . Thus, ût(θ) has a similar representation with ut(θ) in
terms of ϕ(t,T )

k (θ).

Asymptotic truncation effect Based on the representation of the truncated
sequence, we can check that

E
⃓⃓⃓
F̂ θ,j(x, y) − F̄ θ,j(x, y)

⃓⃓⃓2
= 1

(T − j)2

T∑︂
t=j+1

T∑︂
t′=j+1

E [I (ut(θ) ≤ x) I (ut−j(θ) ≤ y) I (ut′(θ) ≤ x) I (ut′−j(θ) ≤ y)]

− 2
(T − j)2

T∑︂
t=j+1

T∑︂
t′=j+1

E [I (ut(θ) ≤ x) I (ut−j(θ) ≤ y) I (ût′(θ) ≤ x) I (ût′−j(θ) ≤ y)]

+ 1
(T − j)2

T∑︂
t=j+1

T∑︂
t′=j+1

E [I (ût(θ) ≤ x) I (ût−j(θ) ≤ y) I (ût′(θ) ≤ x) I (ût′−j(θ) ≤ y)] ,

where F̄ θ,j(x, y) = 1
T−j

∑︁T
t=j+1 I (ût(θ) ≤ x) I (ût−j(θ) ≤ y) and each expectation can

be treated as before in terms of ϕk(θ) and ϕ(t,T )
k (θ). Once the smooth representation

in terms of the cdf F is obtained, we can bound the expectation with the assistance
of MVT

E sup
θ∈Θ

|ut(θ) − ût(θ)|2 ≤ C
(︂
t1−µ0 + (T + 1 − t)1−µ0

)︂
,

then for each θ ∈ Θ, µ0 > 2, we have

E
⃓⃓⃓
F̂ θ,j(x, y) − F̄ θ,j(x, y)

⃓⃓⃓2
≤ C (T − j)−1 ,

where we can conclude the effect of the truncation due to the finite sample obser-
vations can be asymptotically negligible.

2.7.4. Proof of Theorem 2.3.2

First we need to show pointwise convergence of Q̂T (θ) to Q0(θ) for each θ ∈ Θ, i.e,

Q̂T (θ) − Q0(θ) = op(1) for each θ ∈ Θ.
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We first approximate the population loss function by

QT (θ) =
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
(jπ)2σ

2
θ,j(x, y)dW (x, y),

so that,

|Q0(θ) − QT (θ)| =

⃓⃓⃓⃓
⃓⃓ ∞∑︂
j=T

∫︂
R2

1
(jπ)2σ

2
θ,j(x, y)dW (x, y) +

T−1∑︂
j=1

∫︂
R2

j

T

1
(jπ)2σ

2
θ,j(x, y)dW (x, y)

⃓⃓⃓⃓
⃓⃓

≤

⃓⃓⃓⃓
⃓⃓ ∞∑︂
j=T

∫︂
R2

1
(jπ)2σ

2
θ,j(x, y)dW (x, y)

⃓⃓⃓⃓
⃓⃓+

⃓⃓⃓⃓
⃓⃓ 1
π2

T−1∑︂
j=1

∫︂
R2

1
jT
σ2
θ,j(x, y)dW (x, y)

⃓⃓⃓⃓
⃓⃓ .

Note that |σθ,j(x, y)| is uniformly bounded by 1 in (θ, x, y) ∈ Θ × R2 for each
j = 1, 2, . . . T . Hence,

sup
θ∈Θ

|Q0(θ) − QT (θ)| ≤ 1
π2

∞∑︂
j=T

1
j2

∫︂
R2

sup
(θ,x,y)∈Θ×R2

|σθ,j(x, y)|2 dW (x, y)

+ 1
Tπ2

T−1∑︂
j=1

1
j

∫︂
R2

sup
(θ,x,y)∈Θ×R2

|σθ,j(x, y)|2 dW (x, y)

≤ C
∞∑︂
j=T

1
j2 + C

T

T−1∑︂
j=1

1
j

≤ C

T
+ C ln(T − 1)

T
= o(1).

From the above statement, showing Q̂T (θ) − Q0(θ) = op(1) is equivalent to showing

|Q̂T (θ) − QT (θ)| = op(1). (2.7.1)

First we define zt(θ, x) := I (ut(θ) ≤ x) −Fθ(x), which is a mean zero sequence, and

σ̄θ,j(x, y) = 1
T − j

T∑︂
t=j+1

zt (θ, x) zt−j (θ, y) ,

where

σ̂2
θ,j(x, y) − σ2

θ,j(x, y) =σ̂2
θ,j(x, y) − σ̄2

θ,j(x, y) + σ̄2
θ,j(x, y) − σ2

θ,j(x, y)
σ̂2
θ,j(x, y) − σ̄2

θ,j(x, y) = |σ̂θ,j(x, y) − σ̄θ,j(x, y)|2 + 2 (σ̂θ(x, y) − σ̄θ,j(x, y)) σ̄θ,j(x, y).

By Cauchy-Schwarz inequality,

E |(σ̂θ,j(x, y) − σ̄θ,j(x, y)) σ̄θ,j(x, y)|

≤
{︂
E |(σ̂θ,j(x, y) − σ̄θ,j(x, y))|2 E |σ̄θ,j(x, y)|2

}︂1/2

≤C (T − j)−1

72



The last inequality comes from |σ̄θ,j(x, y)| ≤ 1 and

(T − j)4 E |σ̂θ,j(x, y) − σ̄θ,j(x, y)|2 ≤

⎧⎪⎨⎪⎩E
⃓⃓⃓⃓
⃓⃓ T∑︂
t=j+1

zt(θ, x)

⃓⃓⃓⃓
⃓⃓
4

E

⃓⃓⃓⃓
⃓⃓ T∑︂
t=j+1

zt−j(θ, y)

⃓⃓⃓⃓
⃓⃓
4
⎫⎪⎬⎪⎭

1/2

≤C (T − j)2 .

The proof of the above result uses the Marcinkiewicz-Zygmund inequality in Theo-
rem 1 of Doukhan and Louhichi (1999) for a sequence of weakly dependent random
variables {Xn}n∈N centered at expectation, for which

Cr,q :=
⃓⃓⃓
Cov

(︂
Xt1 · · ·Xtm , Xtm+1 · · ·Xtq

)︂⃓⃓⃓
= O

(︂
r−q/2

)︂
as r → ∞,

for some fixed q ∈ N, q ≥ 2 and the sup is taken over all {t1, t2, . . . , tq} such that
1 ≤ t1 ≤ · · · ≤ tq and m, r satisfy tm+1 − tm = r, there exists a positive constant C
independent on n for which ⃓⃓⃓⃓

⃓⃓E
(︄

N∑︂
n=1

Xn

)︄q ⃓⃓⃓⃓
⃓⃓ ≤ CN q/2.

In our context, we apply this result for Xn = {I (un(θ) ≤ x) − Fθ(x)} for fixed x

and q = 4, considering m = 1, 2.
Similarly,
⃓⃓⃓
σ̄2
θ,j(x, y) − σ2

θ,j(x, y)
⃓⃓⃓
= |σ̄θ,j(x, y) − σθ,j(x, y)|2 + 2 (σ̄θ,j(x, y) − σθ,j(x, y))σθ,j(x, y)

so that

E
⃓⃓⃓
σ̄2
θ,j(x, y) − σ2

θ,j(x, y)
⃓⃓⃓

≤E |σ̄θ,j(x, y) − σθ,j(x, y)|2 + 2
{︂
E |σ̄θ,j(x, y) − σθ,j(x, y)|2 E |σθ,j(x, y)|2

}︂1/2

≤C
(︄

1 ∧ j

T − j

)︄
+ C

j2−µ0

T − j
+ C

log T
(T − j)µ0−1

+ C

(︄
1 ∧ j

T − j

)︄1/2

+ C
j1−µ0/2

(T − j)1/2 + C
(log T )1/2

(T − j)µ0/2−1/2
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by Lemma 2.3.1. Hence,

E
⃓⃓⃓
Q̂T (θ) − QT (θ)

⃓⃓⃓
= E

⃓⃓⃓⃓
⃓⃓T−1∑︂
j=1

∫︂
R2

(︂
σ̂2
θ,j(x, y) − σ2

θ,j(x, y)
)︂

(1 − j

T
) 1
(jπ)2dW (x, y)

⃓⃓⃓⃓
⃓⃓

≤ 1
π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2

{︂
E
⃓⃓⃓
σ̂2
θ,j(x, y) − σ̄2

θ,j(x, y)
⃓⃓⃓
+ E

⃓⃓⃓
σ̄2
θ,j(x, y) − σ2

θ,j(x, y)
⃓⃓⃓}︂
dW (x, y)

≤ 1
π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E
⃓⃓⃓
σ̄2
θ,j(x, y) − σ2

θ,j(x, y)
⃓⃓⃓
dW (x, y)

+ 1
π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E |σ̂θ,j(x, y) − σ̄θ,j(x, y)|2 dW (x, y)

+ 2
π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E |(σ̂θ,j(x, y) − σ̄θ,j(x, y)) σ̄θ,j(x, y)| dW (x, y)

=A+B + C.

For some µ0 > 1,

A ≤C

π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2

(︄(︄
1 ∧ j

T − j

)︄
+ j2−µ0

T − j
+ log T

(T − j)µ0−1

)︄
dW (x, y)

+ C

π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2

⎛⎝(︄1 ∧ j

T − j

)︄1/2

+ j1−µ0/2

(T − j)1/2 + (log T )1/2

(T − j)µ0/2−1/2

⎞⎠ dW (x, y)

≤C

T

T−1∑︂
j=1

1
j2 ((T − j) ∧ j) + C

T

T−1∑︂
j=1

(︄
j−µ0 + 1

j2 (log T ) (T − j)2−µ0

)︄

+ C

T

T−1∑︂
j=1

1
j2

(︂
(T − j)1/2 ∧ (j(T − j))1/2

)︂
+ C

T

T−1∑︂
j=1

(T − j)1/2 j−1−µ0/2

+ C

T

T−1∑︂
j=1

1
j2 (log T )1/2 (T − j)1/2−µ0/2

=o(1) as T → ∞.

Next,

B ≤ C

π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2 (T − j)−1 ≤ C

T

T−1∑︂
j=1

1
j2 ≤ C

T
= o(1),

and, similarly for C,

C ≤ C

π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2 (T − j)−1 ≤ C

T
= o(1).

The proof of pointwise convergence of Q̂T (θ) to QT (θ) is completed.
As the result of the non-differentiability of the objective function, we need to show
stochastic equicontinuity of Q̂T (θ). For the definition of stochastic equicontinuity
see Chapter 36 Section 2.7 in Newey and McFadden (1994).
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By definition, we shall prove

sup
θ̄∈B(θ,ϵ,η)

⃓⃓⃓
Q̂T (θ̄) − Q̂T (θ)

⃓⃓⃓
= ∆ (ϵ, η) = op(1) for each θ ∈ Θ and T ≥ T0(ϵ, η),

where B (θ, ϵ, η) denotes an open set containing θ that may depend on ϵ and η.
Equivalently,

sup
θ̄∈B(θ,ϵ,η))

⃓⃓⃓
Q̂T (θ̄) − Q̂T (θ)

⃓⃓⃓
= sup

θ̄∈B(θ,ϵ,η)

⃓⃓⃓
Q̂T (θ̄) − QT (θ̄) + QT (θ̄) − QT (θ) + QT (θ) − Q̂T (θ)

⃓⃓⃓
= op(1).

The above statement is implied by

sup
θ̄∈B(θ,ϵ,η)

⃓⃓⃓
Q̂T (θ̄) − QT (θ̄)

⃓⃓⃓
= op(1)

sup
θ̄∈B(θ,ϵ,η)

⃓⃓⃓
QT (θ̄) − QT (θ)

⃓⃓⃓
= o(1)

where the second equation immediately follows from the continuity of the population
function QT (θ) in a compact set θ.
Define a metric dk of θ on Θ by the Euclidean norm, and we shall show the process
indexed by θ ∈ Θ

DT (θ̄) := Q̂T (θ̄) − QT (θ̄) (2.7.2)

is stochastically equicontinuous by demonstrating the class of function DT (θ) is P-
Donsker.
Theorem 2.1 of Newey (1991) confirms uniform convergence in the probability of
objective function in a compact set of parameter Θ. In addition, the identification
of θ0 by the population loss function Q0(θ) is guaranteed under Assumptions 2.1, 2.3
and 2.4. Since the global minimum of the non-negative function Q0(θ) is uniquely
attained at θ = θ0, and for θ ≠ θ0, Q0(θ) > 0 contributed by the non-zero term(s)
σθ,j(x, y) due to the pairwise dependence of ut(θ) and ut−j(θ) for some j and (x, y) ∈
R2. Then, the fundamental consistency theorem for extremum estimators implies

θ̂T −→p θ0 as T → ∞.

2.7.5. Proof of Theorem 2.3.3

The consistency of the estimates based on the smoothed cdf transformation, θ̃hT ,
easily follows the steps in the proof of Theorem 3 in Velasco (2022) with some
modifications by replacing the characteristic function with the smoothed cdf Λ(·)
in the objective function Q̃T (θ;h), the sample counterpart of the population loss
function

Q0(θ;h) := 2
π2

∞∑︂
j=1

1
j2

∫︂
R2
σ2
θ,j(x, y;h)dW (x, y), (2.7.3)
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where

σθ,j(x, y;h) := E
[︄
Λ
(︄
x− ut(θ)

h

)︄
Λ
(︄
y − ut−j(θ)

h

)︄]︄
− E

(︄
Λ
(︄
x− ut(θ)

h

)︄)︄
E

(︄
Λ
(︄
y − ut−j(θ)

h

)︄)︄
= Fθ,j(x, y;h) − Fθ,j(x,∞;h)Fθ,j(∞, y;h).

The bound of σθ,j(x, y;h) can be derived in a similar way as Lemma 1 in Velasco
(2022), so that,

sup
θ∈Θ

|σθ,j(x, y;h)| ≤ Chj
1−µ0 ,

uniformly in (x, y) ∈ R2 and Ch is a positive number depending on h but bounded
due to fixed h > 0.
Similarly, for j = 1, 2, . . . , T − 1, for θ ∈ Θ,

E |σθ,j(x, y;h) − σ̃θ,j(x, y;h)|2 ≤ Ch

(︄
1 ∧ j

T − j

)︄
+ C

j2−µ0

T − j
+ C

log T
(T − j)µ0−1 .

The pointwise convergence of Q̃T (θ;h) to Q0(θ;h) is shown with the assistance of
the centered variable, zt(θ, x;h) := Λ

(︂
x−ut(θ)

h

)︂
− E

[︂
Λ
(︂
x−ut(θ)

h

)︂]︂
, and

σ̄θ,j(x, y;h) = 1
T − j

T∑︂
t=j+1

zt(θ, x;h)zt−j(θ, y;h).

Then, the same approach in the proof of Theorem 2.3.2 can be applied here. This
convergence is uniform in θ ∈ Θ. This result immediately follows from the uniform
boundedness of the derivative of Q̃T (θ;h) given a fixed h > 0,

∂

∂θ
Q̃T (θ;h) = 4

π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
σ̃θ,j(x, y;h) ∂

∂θ
σ̃θ,j(x, y;h)dW (x, y),

where

∂

∂θ
σ̃θ,j(x, y;h) = 1

T − j

T∑︂
t=j+1

[︄
λ

(︄
x− ut(θ)

h

)︄
Λ
(︄
y − ut−j(θ)

h

)︄(︃
−1
h

)︃
u

(1)
t (θ)

]︄

+ 1
T − j

T∑︂
t=j+1

[︄
Λ
(︄
x− ut(θ)

h

)︄
λ

(︄
y − ut−j(θ)

h

)︄(︃
−1
h

)︃
u

(1)
t−j(θ)

]︄

+ 1
T − j

T∑︂
t=j+1

[︄
λ

(︄
x− ut(θ)

h

)︄(︃
−1
h

)︃
u

(1)
t (θ)

]︄
1

T − j

T∑︂
t=j+1

Λ
(︄
y − ut−j(θ)

h

)︄

+ 1
T − j

T∑︂
t=j+1

[︄
λ

(︄
y − ut−j(θ)

h

)︄(︃
−1
h

)︃
u

(1)
t−j(θ)

]︄
1

T − j

T∑︂
t=j+1

Λ
(︄
x− ut(θ)

h

)︄
,
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with u
(1)
t (θ) := ∑︁∞

j=−∞ ϕ
(1)
j (θ)ut−j. By simple algebra, we can show

E sup
θ∈Θ

⃦⃦⃦⃦
⃦ ∂∂θ σ̃θ,j(x, y;h)

⃦⃦⃦⃦
⃦ ≤ Ch

∞∑︂
j=−∞

sup
θ∈Θ

⃦⃦⃦
ϕ(1)(θ)

⃦⃦⃦
E |ut| < ∞,

and

E sup
θ∈Θ

⃦⃦⃦⃦
⃦ ∂∂θ Q̃T (θ;h)

⃦⃦⃦⃦
⃦ ≤ 4

π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E sup
θ∈Θ

⃦⃦⃦⃦
⃦σ̃θ,j(x, y;h) ∂

∂θ
σ̃θ,j(x, y;h)

⃦⃦⃦⃦
⃦ dW (x, y) < ∞,

under E |ut| < ∞ and Assumption 2.4, 2.6 and the density function λ(·) being uni-
formly bounded in Assumption 2.5.
The identification of θ0 is achieved using Q0(θ;h) since the dependence structure of
the residual sequence {ut(θ)}Tt=1 remains unchanged after this smooth transforma-
tion, indicating the unique minimum is obtained at θ = θ0 and Q0(θ;h) > 0 since
θ ≠ θ0 under Assumption 2.1, 2.3 and 2.4.
Therefore, the consistency of θ̃hT follows.

2.7.6. Proof of Theorem 2.3.4

The asymptotic normality of the estimates, θ̃hT is derived by showing a CLT on the
score of Q̃T (θ;h) evaluated at the true value in the Taylor expansion of Q̃T (θ;h),
together with the convergence of the Hessian matrix of Q̃T (θ;h),

0 = ∂

∂θ
Q̃T (θ̃hT ;h) = ∂

∂θ
Q̃T (θ0;h) + ∂2

∂θ∂θ′ Q̃T (θ̄hT ;h)
(︃
θ̃
h

T − θ0

)︃
, θ̄

h

T ∈ (θ0, θ̃
h

T ).
(2.7.4)

First, we approximate the ∂
∂θ

Q̃T (θ0;h) by the score of the theoretical counterpart of
QT (θ0;h) by showing⃦⃦⃦⃦

⃦ ∂∂θQT (θ0;h) − ∂

∂θ
Q̃T (θ0;h)

⃦⃦⃦⃦
⃦ = op(T−1/2),

where⃦⃦⃦⃦
⃦ ∂∂θQT (θ0;h) − ∂

∂θ
Q̃T (θ0;h)

⃦⃦⃦⃦
⃦ ≤

⃦⃦⃦⃦
⃦ ∂∂θQT (θ0;h) − ∂

∂θ
Q̄T (θ0;h)

⃦⃦⃦⃦
⃦+
⃦⃦⃦⃦
⃦ ∂∂θ Q̄T (θ0;h) − ∂

∂θ
Q̃T (θ0;h)

⃦⃦⃦⃦
⃦
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with QT (θ0;h) and Q̄T (θ0;h) defined by σθ0,j(x, y;h) and σ̄θ0,j(x, y;h), respectively.
First,

E

⃦⃦⃦⃦
⃦ ∂∂θQT (θ0;h) − ∂

∂θ
Q̄T (θ0;h)

⃦⃦⃦⃦
⃦

≤Ch
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E

⃦⃦⃦⃦
⃦σθ0,j(x, y;h) ∂

∂θ
σθ0,j(x, y;h) − σ̄θ0,j(x, y;h) ∂

∂θ
σ̄θ0,j(x, y;h)

⃦⃦⃦⃦
⃦ dW (x, y)

=o(T−1/2)

since

E

⃦⃦⃦⃦
⃦σθ0,j(x, y;h) ∂

∂θ
σθ0,j(x, y;h) − σ̄θ0,j(x, y;h) ∂

∂θ
σ̄θ0,j(x, y;h)

⃦⃦⃦⃦
⃦

≤2E
⃦⃦⃦⃦
⃦ ∂∂θσθ0,j(x, y;h) − ∂

∂θ
σ̄θ0,j(x, y;h)

⃦⃦⃦⃦
⃦+ Ch

(︂
E |σθ0,j(x, y;h) − σ̄θ0,j(x, y;h)|2

)︂1/2

≤Ch (T − j)−1

where the first inequality comes from triangular inequality and Cauchy-Schwarz
inequality, and the second inequality follows from

E

⃦⃦⃦⃦
⃦ ∂∂θσθ0,j(x, y;h) − ∂

∂θ
σ̄θ0,j(x, y;h)

⃦⃦⃦⃦
⃦ ≤ Ch (T − j)−1

E |σθ0,j(x, y;h) − σ̄θ0,j(x, y;h)|2 ≤ Ch (T − j)−2 .

Next, with similar strategies,

E

⃦⃦⃦⃦
⃦ ∂∂θ Q̄T (θ0;h) − ∂

∂θ
Q̃T (θ0;h)

⃦⃦⃦⃦
⃦

≤Ch
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E

⃦⃦⃦⃦
⃦σ̄θ0,j(x, y;h) ∂

∂θ
σ̄θ0,j(x, y;h) − σ̃θ0,j(x, y;h) ∂

∂θ
σ̃θ0,j(x, y;h)

⃦⃦⃦⃦
⃦ dW (x, y)

≤Ch
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E

⃦⃦⃦⃦
⃦ ∂∂θ σ̄θ0,j(x, y;h) − ∂

∂θ
σ̃θ0,j(x, y;h)

⃦⃦⃦⃦
⃦ dW (x, y)

+ Ch
T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2

⎛⎝E |σ̄θ0,j(x, y) − σ̃θ0,j(x, y)|2 E
⃦⃦⃦⃦
⃦ ∂∂θ σ̃θ0,j(x, y)

⃦⃦⃦⃦
⃦

2
⎞⎠1/2

dW (x, y)

=o(T−1/2),

which follows

E

⃦⃦⃦⃦
⃦ ∂∂θ σ̄θ0,j(x, y;h) − ∂

∂θ
σ̃θ0,j(x, y;h)

⃦⃦⃦⃦
⃦ ≤ Ch(T − j)−1

E |σ̄θ0,j(x, y) − σ̃θ0,j(x, y)|2 ≤ Ch(T − j)−2.
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Now, we can check that

T 1/2 ∂

∂θ
Q̃T (θ0)

=4T 1/2

π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2

(︄
σ̃θ0,j(x, y) ∂

∂θ
σ̃θ0,j(x, y)

)︄
dW (x, y)

= − 4
π2

1
T 1/2

T∑︂
t=1

∫︂
R2

{︃
Λ(x− ut

h
) − ψh(x)

}︃ ∞∑︂
j=1

{︃
Λ(y − ut−j

h
) − ψh(y)

}︃
×
{︂
ϕ

(1)
j (θ0)λh(x)µh(y) + ϕ

(1)
−j(θ0)λh(y)µh(x)

}︂
dW (x, y) + op(1)

= − 4
π2

1
T 1/2

T∑︂
t=1

∫︂
R

{︃
Λ
(︃
x− ut
h

)︃
− ψh(x)

}︃
λh(x)dW (x)

×
∞∑︂
j=1

ϕ
(1)
j (θ0)

∫︂
R

{︃
Λ
(︃
y − ut−j

h

)︃
− ψh(y)

}︃
µh(y)dW (y)

− 4
π2

1
T 1/2

T∑︂
t=1

∫︂
R

{︃
Λ
(︃
x− ut
h

)︃
− ψh(x)

}︃
µh(x)dW (x)

×
∞∑︂
j=1

ϕ
(1)
−j(θ0)

∫︂
R

{︃
Λ
(︃
y − ut−j

h

)︃
− ψh(y)

}︃
λh(y)dW (y) + op(1)

= − 4
π2

1
T 1/2

T∑︂
t=2

eht V
h
t−1 − 4

π2
1

T 1/2

T∑︂
t=2

νht E
h
t−1 + op(1),

with {eht , νht , V h
t−1, E

h
t−1} defined in the main text. The equality follows

E

⃦⃦⃦⃦
⃦σ̃θ0,j(x, y)

(︄
∂

∂θ
σ̃θ0,j(x, y) + ϕ

(1)
j (θ0)λh(x)µh(y) + ϕ

(1)
−j(θ0)λh(y)µh(x)

)︄⃦⃦⃦⃦
⃦

≤

⎛⎝E |σ̃θ0,j(x, y)|2 E
⃦⃦⃦⃦
⃦ ∂∂θ σ̃θ0,j(x, y) + ϕ

(1)
j (θ0)λh(x)µh(y) + ϕ

(1)
−j(θ0)λh(y)µh(x)

⃦⃦⃦⃦
⃦

2
⎞⎠1/2

≤Ch(T − j)−1,

using E |σ̃θ0,j(x, y)|2 ≤ (T − j)−1 and

E

⃦⃦⃦⃦
⃦ ∂∂θ σ̃θ0,j(x, y) + ϕ

(1)
j (θ0)λh(x)µh(y) + ϕ

(1)
−j(θ0)λh(y)µh(x)

⃦⃦⃦⃦
⃦

2

≤ Ch(T − j)−1.

Note that {eht V h
t−1} and {νht Eh

t−1} are martingale difference sequences given the past
information. Denote the variance of

(︂
eht V

h
t−1 + νht E

h
t−1

)︂
conditional on the σ-field by

the past sequence of ut by Vart−j
(︂
eht V

h
t−1 + νht E

h
t−1

)︂
, which can be computed by

Vart−1
(︂
eht V

h
t−1 + νht E

h
t−1

)︂
= Var

(︂
eht V

h
t−1 + νht E

h
t−1|σ(ut−1, . . . )

)︂
= σ2

e;hV
h
t−1(V h

t−1)′ + σ2
ν;hE

h
t−1(Eh

t−1)′ + σe,ν;h
(︂
V h
t−1(Eh

t−1)′ + Eh
t−1(V h

t−1)′
)︂
.
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It can be shown that

1
T

T∑︂
t=1
Vart−1

(︂
eht V

h
t−1 + νht E

h
t−1

)︂

=σ2
e;h

1
T

T∑︂
t=1

(︂
V h
t−1(V h

t−1)′
)︂

+ σ2
ν;h

1
T

T∑︂
t=1

(︂
Eh
t−1(Eh

t−1)′
)︂

+ σe,ν;h
1
T

T∑︂
t=1

(︂
V h
t−1(Eh

t−1)′ + Eh
t−1(V h

t−1)′
)︂

=σ2
ν;h

(︂
Σ0,2 + Σ∗

0,2

)︂
+ σe,ν;h

(︂
Σ†

0,2 + Σ†′

0,2

)︂
+ op(1),

(2.7.5)

by showing

E
(︂
Eh
t−1(Eh

t−1)′
)︂

=
∞∑︂
j=1

j−4ϕ
(1)
−j(θ0)ϕ(1)

−j(θ0)′σ2
e;h, E

(︂
V h
t−1(V h

t−1)′
)︂

=
∞∑︂
j=1

j−4ϕ
(1)
−j(θ0)ϕ(1)

−j(θ0)′σ2
ν;h,

and
E
(︂
Eh
t−1(V h

t−1)′
)︂

=
∞∑︂
j=1

j−4ϕ
(1)
−j(θ0)ϕ(1)

−j(θ0)′σe,ν;h

since E
(︂
eht−je

h
t−k

)︂
= 0 and E

(︂
νht−jν

h
t−k

)︂
= 0 for k ≠ j. Besides, we shall show

1
T

T∑︂
t=1
E
(︃⃦⃦⃦
eht V

h
t−1 + νht E

h
t−1

⃦⃦⃦2
I
{︂⃦⃦⃦
eht V

h
t−1 + νht E

h
t−1

⃦⃦⃦
> ϵ

√
T
}︂)︃

= o(1) for any ϵ > 0.

(2.7.6)
The sufficient condition for (2.7.6) is

1
T

T∑︂
t=1
E
⃦⃦⃦
eht V

h
t−1

⃦⃦⃦4
+ 1
T

T∑︂
t=1
E
⃦⃦⃦
νht E

h
t−1

⃦⃦⃦4
< ∞.

For simplicity, we assume Eh
t−1 and V h

t−1 are of single dimension. Hence, the above
expression can be written as

E
⃓⃓⃓
eht
⃓⃓⃓4 ∑︁T

t=1 E
⃓⃓⃓
V h
t−1

⃓⃓⃓4
T

+ E
⃓⃓⃓
νht
⃓⃓⃓4 ∑︁T

t=1 E
⃓⃓⃓
Eh
t−1

⃓⃓⃓4
T

,

which is bounded because

E
⃓⃓⃓
V h
t−1

⃓⃓⃓4
=

∞∑︂
k1=1

∞∑︂
k2=1

∞∑︂
k3=1

∞∑︂
k4=1

(k1k2k3k4)−2 ϕ
(1)
k1 (θ0)ϕ(2)

k1 (θ0)ϕ(1)
k3 (θ0)ϕ(1)

k4 (θ0)E
⃓⃓⃓
νht−k1ν

h
t−k2ν

h
t−k3ν

h
t−k4

⃓⃓⃓

≤ Ch

(︄ ∞∑︂
k=1

k−2
⃦⃦⃦
ϕ

(1)
k (θ0)

⃦⃦⃦)︄4

< ∞.

With (2.7.5) and (2.7.6), we can apply CLT for martingale difference sequences by
Brown (1971) on eht V

h
t−1 + νht E

h
t−1 and obtain,

T 1/2 ∂

∂θ
Q̃T (θ0;h) →p N

(︃
0, 16
π4H1,h

)︃
.
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The convergence of Hessian matrix, ∂2

∂θ∂θ′ Q̃(θ0) is derived in a similar way,

∂2

∂θ∂θ′ Q̃T (θ0;h)

= 4
π4

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2

{︄(︄
∂σ̃θ0,j(x, y;h)

∂θ

)︄(︄
∂σ̃θ0,j(x, y;h)

∂θ

)︄′

+
(︄
σ̃θ0,j(x, y;h)∂

2σ̃θ0,j(x, y;h)
∂θ∂θ′

)︄}︄
dW (x, y)

= 4
π2

∞∑︂
j=1

1
j2

∫︂
R2
E

(︄
∂σ̃θ0,j(x, y;h)

∂θ

)︄
E

(︄
∂σ̃θ0,j(x, y;h)

∂θ

)︄′

dW (x, y) + op(1)

= 4
π2

∞∑︂
j=1

ϕ
(1)
j (θ0)ϕ(1)

j (θ0)′ 1
j2

∫︂
R

(︂
µh(y)

)︂2
dW (y)

∫︂
R

(︂
λh(x)

)︂2
dW (x)

+ 4
π2

∞∑︂
j=1

ϕ
(1)
−j(θ0)ϕ(1)

−j(θ0)′ 1
j2

∫︂
R

(︂
µh(x)

)︂2
dW (x)

∫︂
R

(︂
λh(y)

)︂2
dW (y)

+ 4
π2

∞∑︂
j=1

(︂
ϕ

(1)
j (θ0)ϕ(1)

−j(θ0)′ + ϕ
(1)
−j(θ0)ϕ(1)

j (θ0)′
)︂ 1
j2

(︃∫︂
R
µh(y)λh(y)dW (y)

)︃2
+ op(1)

= 4
π2ρ

h
1ρ

h
2

(︂
Σ0,1 + Σ∗

0,1

)︂
+ 4
π2

(︂
ρh12

)︂2 (︂
Σ†

0,1 + Σ†′

0,1

)︂
+ op(1) = 4

π2H0,h + op(1).

The uniform boundedness of the third-order derivative of the objective function is
also required for the convergence of the Hessian matrix. For simplicity, we consider
the analysis of ∂3

∂θ3 Q̃T (θ) in single dimension,

∂3

∂θ3 Q̃T (θ)

= 4
π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2

{︄
3
(︄
∂σ̃θ,j(x, y;h)

∂θ

)︄
∂2σ̃θ,j(x, y;h)

∂θ2 +
(︄
σ̃θ,j(x, y;h)∂

3σ̃θ,j(x, y;h)
∂θ3

)︄}︄
dW (x, y).

Some uniform bounds can be derived for the components of ∂3

∂θ3 Q̃T (θ) under As-
sumption 2.5, 2.7 and E |ut|3. By applying Minkowski’s inequality, we can show

E sup
θ∈Θ

⃦⃦⃦
u

(a)
t (θ)

⃦⃦⃦b

≤E sup
θ∈Θ

⃦⃦⃦⃦
⃦⃦ ∞∑︂
j=−∞

ϕ
(a)
j (θ) |ut|

⃦⃦⃦⃦
⃦⃦
b

≤ C sup
θ∈Θ

∞∑︂
j=−∞

⃦⃦⃦
ϕ

(a)
j (θ)

⃦⃦⃦b
E |ut|b < ∞ for a, b = 1, 2, 3.

Then, by Hölder’s inequality, we can get

E sup
θ∈Θ

⃦⃦⃦(︂
u

(a1)
t (θ)

)︂ (︂
u

(a2)
t−j (θ)

)︂⃦⃦⃦

≤
(︄
E sup
θ∈Θ

⃦⃦⃦
u

(a1)
t (θ)

⃦⃦⃦b1
)︄1/b1 (︄

E sup
θ∈Θ

⃦⃦⃦
u

(a2)
t−j (θ)

⃦⃦⃦b2
)︄1/b2

< ∞ for a1, a2 = 1, 2, b1, b2 > 1 and j = 0,±1,±2, . . .

E sup
θ∈Θ

⃦⃦⃦(︂
u

(1)
t (θ)

)︂m (︂
u

(1)
t−j(θ)

)︂n⃦⃦⃦

≤
(︄
E sup
θ∈Θ

⃦⃦⃦(︂
u

(1)
t (θ)

)︂m⃦⃦⃦2
)︄1/2 (︄

E sup
θ∈Θ

⃦⃦⃦(︂
u

(1)
t−j(θ)

)︂n⃦⃦⃦2
)︄1/2

for m,n = 1, 2 and j = 0,±1,±2, . . .
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Following the above inequalities together with the uniform boundedness of density
of Λ and its corresponding derivatives of order 1 and 2, i.e., λ̇ and λ̈, we are able to
prove

E sup
θ∈Θ,(x,y)∈R2

⃦⃦⃦⃦
⃦∂aF̃ θ,j(x, y;h)

∂θa

⃦⃦⃦⃦
⃦ < ∞, and

E sup
θ∈Θ,(x,y)∈R2

⃦⃦⃦⃦
⃦∂aσ̃θ,j(x, y;h)

∂θa

⃦⃦⃦⃦
⃦ < ∞, for a = 1, 2, 3 and j = ±1,±2, . . .

Then,

E

⃦⃦⃦⃦
⃦sup
θ∈Θ

∂3

∂θ3 Q̃T (θ)
⃦⃦⃦⃦
⃦

≤ 4
π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E sup
θ∈Θ,(x,y)∈R2

⃦⃦⃦⃦
⃦3
(︄
∂σ̃θ,j(x, y;h)

∂θ

)︄
∂2σ̃θ,j(x, y;h)

∂θ2

⃦⃦⃦⃦
⃦ dW (x, y)

+ 4
π2

T−1∑︂
j=1

(︃
1 − j

T

)︃ 1
j2

∫︂
R2
E sup
θ∈Θ,(x,y)∈R2

⃦⃦⃦⃦
⃦σ̃θ,j(x, y;h)∂

3σ̃θ,j(x, y;h)
∂θ3

⃦⃦⃦⃦
⃦ dW (x, y)

≤C
T−1∑︂
j=1

1
(jπ)2 < ∞

Last, given consistency of θ̃hT , so as θ̄hT ∈ (θ̃hT , θ0), together with the Taylor expansion
(2.7.4), the theorem follows.

2.7.7. Proof of Theorem 2.3.5

Identification To check the identification of θ0 using Q0(θ;h) is still valid when
h → 0, we need to study the approximation of Q0(θ;h) to Q0(θ) in this dynamic
process of h, where the key component is σθ,j(x, y;h). Let Gθ,j(·, ·) be the joint
probability cdf of (ut(θ), ut−j(θ)) with a uniformly bounded Lebesgue pdf gθ,j(·, ·).
Then, using integration by parts,

Fθ,j(x, y;h) =
∫︂
R

∫︂
R

Λ
(︃
x− a

h

)︃
Λ
(︄
y − b

h

)︄
gθ,j(a, b)dadb

=
[︄[︄

Λ
(︃
x− a

h

)︃
Λ
(︄
y − b

h

)︄
Gθ,j(a, b)

]︄∞

−∞

]︄∞

−∞

−
∫︂
R

∫︂
R

1
h2λ

(︃
x− a

h

)︃
λ

(︄
y − b

h

)︄
Gθ,j(a, b)dadb

+
∫︂
R

∫︂
R

1
h
λ
(︃
x− a

h

)︃
Λ
(︄
y − b

h

)︄
∂Gθ,j(a, b)

∂b
dadb

+
∫︂
R

∫︂
R

1
h

Λ
(︃
x− a

h

)︃
λ

(︄
y − b

h

)︄
∂Gθ,j(a, b)

∂a
dadb
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where the first term is

Λ(−∞)Λ(−∞)Gθ,j(∞,∞) − Λ(∞)Λ(∞)Gθ,j(−∞,−∞) = 0,

and the second term is
−Gθ,j(x, y) +O(h2),

uniformly in (x, y) ∈ R2, exploiting the fact that

∫︂
R

Λ
(︄
y − b

h

)︄
∂Gθ,j(a, b)

∂b
db =

[︄
Λ
(︄
y − b

h

)︄
Gθ,j(a, b)

]︄∞

b=−∞
+ 1
h

∫︂
R
λ

(︄
y − b

h

)︄
Gθ,j(a, b)db

= 0 +Gθ,j(a, y) +O(h2)

uniformly in (a, y), then the third term is
∫︂
R

1
h
λ
(︃
x− a

h

)︃
Gθ,j(a, y)da+O(h2) = Gθ,j(x, y) +O(h2),

and the same for the fourth term, thus

Fθ,j(x, y;h) = Gθ,j(x, y) +O(h2)

uniformly in (x, y) as h → 0.
Then, the loss function with smoothed cdf can be reexpressed as

Q0(θ;h) = 2
π2

∞∑︂
j=1

1
j2

∫︂
R2
σ2
θ,j(x, y)dW (x, y) +O(h2)

where σθ,j(x, y) is the general covariance based on the indicator function. From the
above statement, we can conclude that identification using Q0(θ;h) is guaranteed
as h → 0 since Q0(θ;h) > 0 when θ ≠ θ0 under Assumptions 2.1, 2.3 and 2.4.

Consistency Consistency of θ̃hT as h → 0 requires the uniform convergence of
Q̃T (θ;h) to Q0(θ) as h → 0. Equivalently, we need to show all the terms on the rhs
of the following expression are negligible,

Q̃T (θ;h) − Q0(θ) = 2
π2

T−1∑︂
j=1

1
j2

∫︂
R2

{︂
σ̃2
θ,j(x, y;h) − σ2

θ,j(x, y)
}︂
dW (x, y)

− 2
π2

T−1∑︂
j=1

1
j2
j

T

∫︂
R2
σ̃2
θ,j(x, y;h)dW (x, y)

− 2
π2

∞∑︂
j=T

1
j2

∫︂
R2
σ2
θ,j(x, y)dW (x, y).
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The last two terms are easy to show to be op(1) uniformly in θ ∈ Θ as h → 0 because
of |σ̃θ,j(x, y;h)| ≤ 1 and |σθ,j(x, y)| ≤ 1 regardless of h. So the key part is

E |σ̃θ,j(x, y;h) − σθ,j(x, y)|2 ,

which needs to be bounded for (x, y, θ) as h → 0. We would show it by decomposing
the term into the squared bias and the variance.
Repeat the steps of approximating Fθ,j(x, y;h) with Fθ(x,∞;h)Fθ(∞, y;h) using
the truncation and MVT techniques, we have

Λ
(︄
x− ut(θ)

h

)︄
= Λ

(︄
x− umt (θ)

h

)︄
+ 1
h
λ

(︄
umt (θ) − umt (θ)

h
τ

)︄
(umt (θ) − ut(θ)) for some τ ∈ (0, 1),

so,

E

(︄
Λ
(︄
x− ut(θ)

h

)︄
Λ
(︄
x− ut−j(θ)

h

)︄)︄
= E

(︄
Λ
(︄
x− umt (θ)

h

)︄)︄
E

(︄
Λ
(︄
x− umt−j(θ)

h

)︄)︄
+O

(︂
h−1 E |umt (θ) − ut(θ)|

)︂
+O

(︂
h−2 E

⃓⃓⃓
(umt (θ) − ut(θ))

(︂
umt−j(θ) − ut−j(θ)

)︂⃓⃓⃓)︂
for m = j/2, for E(u2

t ) < ∞,

E

(︄
Λ
(︄
x− umt (θ)

h

)︄)︄
E

(︄
Λ
(︄
x− umt−j(θ)

h

)︄)︄
+O

(︂
h−1j1/2−µ0

)︂
+O

(︂
h−2j1−2µ0

)︂
=E

(︄
Λ
(︄
x− ut(θ)

h

)︄)︄
E

(︄
Λ
(︄
x− ut−j(θ)

h

)︄)︄
+O

(︂
h−1j1/2−µ0

)︂
+O

(︂
h−2j1−2µ0

)︂
=Fθ,j(x,∞;h)Fθ,j(∞, y;h) +O

(︂
h−1j1/2−µ0

)︂
+O

(︂
h−2j1−2µ0

)︂
=Gθ(x)Gθ(y) + O

(︂
h−1j1/2−µ0

)︂
+O

(︂
h−2j1−2µ0

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

approximation error from the truncation and MVT

+ O(h2)⏞̄ ˉ̄ ⏟̄⏟̄ ˉ̄ ⏞̄
approximation error from the smoothed cdf

It is worth noting that there would be a tradeoff between h and T when h → 0,
since when h approaches zero too fast, which makes the approximation error of the
indicator function from the smoothed cdf sufficiently small, it also leads to a less
precise performance of the joint cdf by the product of the marginal cdf due to the
terms in h−1 and h−2. However, an equivalent version of the proof of Theorem 2.3.3
can be justified without further issue when h → 0, making sure that h converges
slowly enough. The convergence rate of h associated with T needs to be considered
with extra care through the key component of the score, ∂σ̃θ,j(x,y;h)

∂θ
, in the derivation

of the asymptotic distribution.
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Asymptotic normality To study the effect of h in the asymptotic distribution
of θ̃hT as h → 0, we first write

σ̃θ,j(x, y;h) = 1
T − j

T∑︂
t=j+1

{︄
Λ
(︄
x− ut(θ)

h

)︄
− F̂ θ,j(x,∞;h)

}︄{︄
Λ
(︄
y − ut−j(θ)

h

)︄
− F̂ θ,j(∞, y;h)

}︄

≈ 1
T − j

T∑︂
t=j+1

{︄
Λ
(︄
x− ut(θ)

h

)︄
− Ĝθ(x)

}︄{︄
Λ
(︄
y − ut−j(θ)

h

)︄
− Ĝθ(y)

}︄
.

To control for the bias arising from centering the variables at F (x) = Gθ0(x), the
marginal cdf of the true innovation ut, instead of ψh(x) = E

(︂
Λ
(︂
x−ut

h

)︂)︂
when θ = θ0

in the asymptotic theory, we need to check that

E
[︃
Λ
(︃
x− ut
h

)︃
Λ
(︃
y − ut−j

h

)︃]︃
− F (x)F (y)

=E
[︃
Λ
(︃
x− ut
h

)︃]︃
E
[︃
Λ
(︃
y − ut−j

h

)︃]︃
− F (x)F (y)

=
(︂
F (x) +O(h2)

)︂ (︂
F (y) +O(h2)

)︂
− F (x)F (y)

=O(h2) = o
(︂
(T − j)−1/2

)︂
,

and for this approximation error to be negligible in the asymptotic analysis at the
rate of T−1/2, it is necessary that

h = o(T−1/4), i.e. hT 1/4 → 0, (2.7.7)

which basically restricts h not tending to zero too slowly with the purpose of con-
trolling for bias in the asymptotic distribution.
Next, we focus on the key component of the score,

∂

∂θ
σ̃θ,j(x, y;h) ≈ − 1

h(T − j)

T∑︂
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u
(1)
t (θ)λ
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h(T − j)

T∑︂
t=j+1

u
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(︄
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h
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λ

(︄
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h

)︄

+ Ĝθ(y) 1
h(T − j)

T∑︂
t=j+1

u
(1)
t (θ)λ

(︄
x− ut(θ)

h
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+ Ĝθ(x) 1
h(T − j)

T∑︂
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u
(1)
t−j(θ)λ
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y − ut−j(θ)

h

)︄
,
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so,

∂

∂θ
σ̃θ0,j(x, y;h) ≈ − 1

h(T − j)

T∑︂
t=j+1

u
(1)
t (θ0)λ

(︃
x− ut
h

)︃
Λ
(︃
y − ut−j

h

)︃

− 1
h(T − j)

T∑︂
t=j+1

u
(1)
t−j(θ0)Λ

(︃
x− ut
h

)︃
λ
(︃
y − ut−j

h

)︃

+ Ĝθ0(y) 1
h(T − j)

T∑︂
t=j+1

u
(1)
t (θ0)λ

(︃
x− ut
h

)︃

+ Ĝθ0(x) 1
h(T − j)

T∑︂
t=j+1

u
(1)
t−j(θ0)λ

(︃
y − ut−j

h

)︃
.

With E(ut) = 0, we have that

∂

∂θ
σ̃θ0,j(x, y;h)

→p − 1
h
E
[︃
utλ

(︃
x− ut
h

)︃]︃
E
[︃
Λ
(︃
y − ut
h

)︃]︃
− 1
h
ϕ

(1)
j (θ0)E

[︃
utΛ

(︃
y − ut
h

)︃]︃
E
[︃
λ
(︃
x− ut
h

)︃]︃
− 1
h
E
[︃
utλ

(︃
y − ut
h

)︃]︃
E
[︃
Λ
(︃
x− ut
h

)︃]︃
− 1
h
ϕ

(1)
−j(θ0)E

[︃
utΛ

(︃
x− ut
h

)︃]︃
E
[︃
λ
(︃
y − ut
h

)︃]︃
+ F (x) 1

h
E
[︃
utλ

(︃
x− ut
h

)︃]︃
+ F (y) 1

h
E
[︃
utλ

(︃
y − ut
h

)︃]︃
,

(2.7.8)

for j = 1, 2, . . . .
Then, let h → 0, assuming Λ and λ are symmetric around 0 for simplicity, by Taylor
expansion,

1
h
E
[︃
λ
(︃
x− ut
h

)︃]︃
= 1
h

∫︂
λ
(︃
x− u

h

)︃
f(u)du = f(x) +O

(︃
h2 sup

u

⃓⃓⃓
f (2)(u)

⃓⃓⃓)︃
1
h
E
[︃
utλ

(︃
x− ut
h

)︃]︃
= 1
h

∫︂
uλ
(︃
x− u

h

)︃
f(u)du = xf(x) +O

(︃
h2
{︃

sup
u

⃓⃓⃓
f (1)(u)

⃓⃓⃓
+ sup

u

⃓⃓⃓
uf (2)(u)

⃓⃓⃓}︃)︃
E
[︃
Λ
(︃
y − ut
h

)︃]︃
=
∫︂

Λ
(︃
y − u

h

)︃
f(u)du = 1

h

∫︂
F (u)λ

(︃
y − u

h

)︃
du = F (y) +O

(︃
h2 sup

u

⃓⃓⃓
f (1)(u)

⃓⃓⃓)︃
E
(︃
utΛ

(︃
y − ut
h

)︃)︃
=
∫︂
uΛ

(︃
y − u

h

)︃
f(u)du = 1

h

∫︂
uλ
(︃
y − u

h

)︃
F (u) du−

∫︂
F (u) Λ

(︃
y − u

h

)︃
du

= E (uI (u ≤ y)) +O
(︃
h2 sup

u

{︂
f(u) +

⃓⃓⃓
uf (1)(u)

⃓⃓⃓}︂)︃
.

(2.7.9)

From (2.7.9), we can see that the bias between E
(︂
∂σ̃θ0,j(x,y;h)

∂θ

)︂
and ∂σθ0,j(x,y)

∂θ
=

−ϕ(1)
j (θ0)µ(y)f(x) − ϕ

(1)
−j(θ0)µ(x)f(y), is O(h2) under the uniform boundedness of

the density function f(·) and its derivative of order 1 and 2 in Assumption 2.7.
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Concerning Var
(︂
∂σ̃θ0,j(x,y;h)

∂θ

)︂
, we have

Var
⎡⎣ 1
h(T − j)

T∑︂
t=j+1

u
(1)
t (θ0)λ

(︃
x− ut
h

)︃
Λ
(︃
y − ut−j

h

)︃⎤⎦
= 1
h2(T − j) Var

[︃
u

(1)
t (θ0)λ

(︃
x− ut
h

)︃
Λ
(︃
y − ut−j

h

)︃]︃

+ 1
h2(T − j)2

T∑︂
t=j+1

T∑︂
t′=j+1

Cov
[︃
u

(1)
t (θ0)λ

(︃
x− ut
h

)︃
Λ
(︃
y − ut−j

h

)︃
, u

(1)
t′ (θ0)λ

(︃
x− ut′

h

)︃
Λ
(︃
y − ut′−j

h

)︃]︃
,

where

Var
[︃
u

(1)
t (θ0)λ

(︃
x− ut
h

)︃
Λ
(︃
y − ut−j

h

)︃]︃
=E

[︃(︂
u

(1)
t (θ0)

)︂2
λ2
(︃
x− ut
h

)︃
Λ2
(︃
y − ut−j

h

)︃]︃
− E

[︃
u

(1)
t (θ0)λ

(︃
x− ut
h

)︃
Λ
(︃
y − ut−j

h

)︃]︃2
,

and

E
[︃(︂
u

(1)
t (θ0)

)︂2
λ2
(︃
x− ut
h

)︃
Λ2
(︃
y − ut−j

h

)︃]︃
=
∑︂
k

∑︂
k′
ϕ

(1)
k (θ0)ϕ(1)

k′ (θ0)E
[︃
ut−kut−k′λ2

(︃
x− ut
h

)︃
Λ2
(︃
y − ut−j

h

)︃]︃

=
∑︂
k

ϕ
(1)
k (θ0)E

[︃
u2
t−kλ

2
(︃
x− ut
h

)︃
Λ2
(︃
y − ut−j

h

)︃]︃

+
∑︂
k

∑︂
k′
ϕ

(1)
k (θ0)ϕ(1)

k′ (θ0)E
[︃
ut−kλ

2
(︃
x− ut
h

)︃]︃
E
[︃
ut−k′Λ2

(︃
y − ut−j

h

)︃]︃

+
∑︂
k

∑︂
k′
ϕ

(1)
k (θ0)ϕ(1)

k′ (θ0)E
[︃
ut−kΛ2

(︃
y − ut−j

h

)︃]︃
E
[︃
ut−k′λ2

(︃
x− ut
h

)︃]︃
,

so that for k = 0 ( also applies to k = j in the case of ut−j ),

E
[︃
u2
t−kλ

2
(︃
x− ut
h

)︃
Λ2
(︃
y − ut−j

h

)︃]︃
≤ C

∫︂
R
u2λ2

(︃
x− u

h

)︃
f(u)du = O(h3)

E
[︃
ut−kλ

2
(︃
x− u

h

)︃]︃
=
∫︂
R
uλ2

(︃
x− u

h

)︃
f(u)du = O(h2),

and k ≠ 0, j,

E
[︃
u2
t−kλ

2
(︃
x− ut
h

)︃
Λ2
(︃
y − ut−j

h

)︃]︃
≤ C E(u2

t−k)
∫︂
R
λ2
(︃
x− u

h

)︃
f(u)du = O(h)

E
[︃
ut−kλ

2
(︃
x− u

h

)︃]︃
= 0.

Then, Var
[︂
u

(1)
t (θ0)λ

(︂
x−ut

h

)︂
Λ
(︂
y−ut−j

h

)︂]︂
= O(h−1) and Var

(︂
∂σ̃θ0,j(x,y;h)

∂θ

)︂
= O (h−1(T − j)−1)

if the covariance terms do not contribute to this order. Compiling terms for bias
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square and variance of ∂σ̃θ0,j(x,y;h)
∂θ

, we have

E

⎡⎣⃦⃦⃦⃦⃦ ∂∂θ σ̃θ0,j(x, y;h) − ∂

∂θ
σθ0,j(x, y)

⃦⃦⃦⃦
⃦

2
⎤⎦ = O(h4 + h−1(T − j)−1), (2.7.10)

which needs to be o(1) to maintain the usual rate of convergence of the estimates if
we have shown that the contribution of σ̃θ0,j(x, y;h) is of order T−1/2 for the classical
CLT. This implies that,

h4 + (Th)−1 → 0 as T → ∞,

i.e. h has to converge to zero when T goes to infinity but slower than T−1.
Combining the rates obtained from (2.7.7) and (2.7.10), we conclude that, at least,
the convergence rate of h needs to satisfy

h−1T−1 + h4T → 0, as T → ∞, (2.7.11)

for the asymptotic normality of θ̃hT at a T 1/2 rate as h → 0.
With all these established, we can show that, with the convergence rate of h being
(2.7.11),

∂

∂θ
σ̃θ0,j(x, y;h)

→p − ϕ
(1)
j (θ0)E (uI (u ≤ y)) f(x) − ϕ

(1)
−j(θ0)E (uI (u ≤ x)) f(y)

= − ϕ
(1)
j (θ0)µ(y)f(x) − ϕ

(1)
−j(θ0)µ(x)f(y) = ∂

∂θ
σθ0,j(x, y),

(2.7.12)

which coincides with the limit obtained using "generalized" derivatives of the indi-
cator function, see equation (2.7.12).
Next, we check the score ∂

∂θ
Q̃T (θ0;h),

∂

∂θ
Q̃T (θ0;h) = − 4

π2
1
T

T∑︂
t=2

etVt−1 − 4
π2

1
T

T∑︂
t=2

νtEt−1 + op(T−1/2).

Then, by applying CLT on etVt−1 + νtEt−1, we have

T 1/2 ∂

∂θ
Q̃T (θ0;h) →p N

(︃
0, 16
π4H1

)︃
, as h−1T−1 + h4T → 0, (2.7.13)

whereH1 := σ2
eσ

2
ν

(︂
Σ0,2 + Σ∗

0,2

)︂
+σe,ν

(︂
Σ†

0,2 + Σ†′

0,2

)︂
with {σ2

e , σ
2
ν , σe,ν} being the limits

of {σ2
e;h, σ

2
ν;h, σe,ν;h}.
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Similarly, regarding the Hessian matrix, we have

∂2

∂θ∂θ′ Q̃T (θ0;h) →p
4
π2

(︂
ρ1ρ2

(︂
Σ0,1 + Σ∗

0,1

)︂
+ (ρ12)2

(︂
Σ†

0,1 + Σ†′

0,1

)︂)︂
= 4
π2H0

as h−1T−1 + h4T → 0,
(2.7.14)

and the theorem follows from (2.7.13) and (2.7.14).

2.8. Appendix B: Numerical Calculus

2.8.1. Calculations of Sample Objective Function

The sample objective function based on the indicator function (2.3.2) can be com-
puted as follows:

Q̂T (θ) = 2
π2

T−1∑︂
j=1

(1 − j

T
) 1
j2

∫︂
R2
σ̂2
θ,j(x, y)dW (x, y)

where

σ̂2
θ,j(x, y) = F̂

2
θ,j(x, y) − 2F̂ θ,j(x, y)F̂ θ,j(x,∞)F̂ θ,j(∞, y) + F̂

2
θ,j(x,∞)F̂ 2

θ,j(∞, y),

F̂ θ,j(x, y) = 1
T − j

T∑︂
t=j+1

I(ut(θ) ≤ x)I(ut−j(θ) ≤ y).

The integration of σ̂2
θ,j(x, y) over weighting function W can be decomposed into

following three components:∫︂
F̂

2
θ,j(x, y)dW (x, y)

=
" 1

(T − j)2

T∑︂
t=j+1

T∑︂
s=j+1

I(ut(θ) ≤ x)I(ut−j(θ) ≤ y)I(us(θ) ≤ x)I(us−j(θ) ≤ y)dW (x)dW (y)

= 1
(T − j)2

T∑︂
t=j+1

T∑︂
s=j+1

∫︂
I(ut(θ) ≤ x)I(us(θ) ≤ x)dW (x)

∫︂
I(ut−j(θ) ≤ y)I(us−j(θ) ≤ y)dW (y)

= 1
(T − j)2

T∑︂
t=j+1

T∑︂
s=j+1

∫︂ ∞

max {ut(θ),us(θ)}
dW (x)

∫︂ ∞

max {ut−j(θ),us−j(θ)}
dW (y)

= 1
(T − j)2

T∑︂
t=j+1

T∑︂
s=j+1

(1 −W (max {ut(θ), us(θ)})) (1 −W (max {ut−j(θ), us−j(θ)}))
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where W is set to be a continuous probability measure.
Similarly,∫︂

F̂ θ,j(x, y)F̂ θ,j(x,∞)F̂ θ,j(∞, y)dW (x, y)

=
" 1

(T − j)3

T∑︂
t=j+1

T∑︂
s=j+1

T∑︂
r=j+1

I(ut(θ) ≤ x)I(ut−j(θ) ≤ y)I(us(θ) ≤ x)I(ur−j(θ) ≤ y)dW (x)dW (y)

= 1
(T − j)3

T∑︂
t=j+1

T∑︂
s=j+1

T∑︂
r=j+1

∫︂
I(ut(θ) ≤ x)I(us(θ) ≤ x)dW (x)

∫︂
I(ut−j(θ) ≤ y)I(ur−j(θ) ≤ y)dW (y)

= 1
(T − j)3

T∑︂
t=j+1

T∑︂
s=j+1

T∑︂
r=j+1

(1 −W (max {ut(θ), us(θ)})) (1 −W (max {ut−j(θ), ur−j(θ)}))

and∫︂
F̂

2
θ,j(x,∞)F̂ 2

θ,j(∞, y)dW (x, y)

= 1
(T − j)4

T∑︂
t=j+1

T∑︂
s=j+1

T∑︂
m=j+1

T∑︂
n=j+1

"
I(ut(θ) ≤ x)I(us(θ) ≤ x)I(um−j(θ) ≤ y)I(un−j(θ) ≤ y)dW (x, y)

= 1
(T − j)4

T∑︂
t=j+1

T∑︂
s=j+1

T∑︂
m=j+1

T∑︂
n=j+1

(1 −W (max {ut(θ), us(θ)})) (1 −W (max {um−j(θ), un−j(θ)}))
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3. CHAPTER III: DIRECTIONAL PREDICTABILITY
TESTS

3.1. Introduction

Testing predictability of observed time series and model residuals is fundamental
in economic analysis, as in the evaluation of asset pricing models and investment
strategies, and in general dynamic modeling. This problem is especially difficult for
many financial asset returns which lack strong serial correlation but can be affected
by nonlinear dependence.

While consistent tests of predictability directed against general nonparametric
alternatives have now a long tradition under the form of martingale difference testing
(e.g. Hong (1999), Hong and Lee (2005), Escanciano and Velasco (2006a,b)) in
many cases only some specific, typically linear alternatives are considered under a
Gaussian framework. These methods include many popular white noise residual tests
used to check linear model specifications such as Box and Pierce (1970), Breusch
(1978) and Godfrey (1978). In parallel, tests of white noise have been also proposed
(Lobato et al. (2002), Nankervis and Savin (2010), Shao (2011)) for which nonlinear
predictability and higher-order dependence under non-Gaussianity are allowed, but
not modeled.

Lanne and Luoto (2013) investigate tests of predictability based on checking
the independence hypothesis against general (linear) ARMA or (nonlinear) all-pass
dependence. They also check for general linear ARMA dependence under the null of
observed series following an uncorrelated all-pass process based on independent and
identically distributed (iid) innovations. Imposing non-invertibility in the ARMA
model they solve the identification problem under the null discussed in Andrews
and Ploberger (1996) and Nankervis and Savin (2010) as AR and MA filters do
not cancel out but lead to an all-pass filter. All-pass rational filters, with causal
autoregressive roots being the reciprocal of the non-invertible moving average ones,
do not induce further linear dependence, but introduce nonlinear predictability on
levels as well as on higher-order moments. Therefore, they are specially well suited
to describe the behavior of uncorrelated but possibly dependent and predictable
time series.

In fact, Lanne et al. (2013) tests can be regarded as either tests of the null hy-
pothesis of serial independence against two specific linear parameterizations (general
ARMA or restricted all-pass ARMA), or tests of linear unpredictability (described by
the restrictive class of all-pass ARMA models with iid innovations) against general
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ARMA linear dependence. Concentrating on these specific parametric models can
enhance the performance of tests in many practical situations but the methodology of
Lanne et al. (2013) based on maximum likelihood estimation for iid innovations with
known non-Gaussian distribution is based on very strong assumptions, see Lanne
and Saikkonen (2011) and Lii and Rosenblatt (1992, 1996). Apart from potential
specification errors, their ML methods do not account for the possible higher-order
dependence introduced in the series by unpredictable but non-independent innova-
tions and their interaction with all-pass filters.

Following a similar strategy, in this paper, we propose new predictability di-
rectional tests extending the analysis of Lanne et al. (2013) in several directions
to alleviate the above limitations. The most relevant one from both the method-
ological and applied perspectives is the consideration of hypothesis tests that are
robust to higher-order dependence in the sequence of innovations, so we focus on
the more general martingale difference null hypothesis or on the wider class of white
noise processes generated by all-pass models driven by such unpredictable, but not
serially independent, innovation sequences.

To justify the consistency of our predictability tests against all-pass alternatives
we also investigate the general dependence that all-pass filtering can generate. In
particular, we show that ARMA all-pass processes with martingale difference in-
novations, despite remaining serially uncorrelated, are non-linearly predictable in
the same way as has been showed by Rosenblatt (2000) for serially independent
innovations-driven processes. We obtain this result by characterizing the form of the
dynamic higher-order moments of such ARMA processes with innovations which are
martingale differences, possibly with dynamics in conditional second and third-order
moments, extending the seminal analysis of Rao and Gabr (1980) and Hinich (1982)
of the trispectrum of linear processes with iid errors.

When searching for linear predictability as a deviation of an all-pass ARMA
model, the dependence introduced in higher-order moments by the all-pass filters
(despite they do not affect the uncorrelation of levels) interacts with the one that
might be already present in martingale difference innovations due to e.g. dynamic
conditional heteroskedasticity. Our tests for linear predictability account properly
for these general all-pass dynamics in uncorrelated observed series displaying condi-
tional heteroskedasticity and other forms of nonlinear dependence.

Unlike Lanne et al. (2013), our methodology is not based on maximum likelihood
analysis relying on the iid assumption of innovations but on pairwise dependence
measures checking for the martingale difference property on observations (or model
residuals). Specifically, we propose Lagrange Multiplier (LM) tests based on a dis-
crepancy measure which accounts for higher-order dependence in the martingale
difference innovations (and in the preliminary parameter estimation under the null
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of all-pass dependence) developed in Velasco (2022) starting from Hong (1999) gen-
eral dependence tests.

Our dependence analysis allows us to prove the consistency of our unpredictabil-
ity test against all-pass alternatives which only introduce non-linear predictability, as
well as against alternatives inducing linear correlation for non-Gaussian innovations.
Our approach is an alternative to the ones based on other dependence measures de-
fined using the joint cumulative distribution function (Jin (2022)) or higher-order
moments in either the time (Ramsey and Montenegro (1992)) or frequency domains
(Velasco and Lobato (2018)).

We also consider higher order models beyond the ARMA(1, 1) model discussed
in Lanne et al. (2013) and also compare with iid testing using dependence measures
in our simulation exercises. Further, we investigate tests to detect non-linear depen-
dence in model residuals by checking for an additional all-pass factor in the linear
ARMA model. Extensions to non-causal models, which can generate also nonlinear
dependence, see e.g. Gouriéroux and Zakoïan (2017), are straightforward under our
framework.

The paper is organized as follows. In Section 3.2 we investigate the dependence
induced by all-pass filtering of martingale difference processes in higher-order mo-
ments, and in particular, in squares dependence, extending the analysis in Lanne
et al. (2013). In Section 3.3 we describe the hypothesis tested and the asymptotic
properties of our tests of dependence in the observed series. Section 3.4 investigates
a test to detect all-pass structure in an ARMA model using residuals from a causal
and invertible estimation. In Section 3.5 we report the results of a simulation exer-
cise, while Section 3.6 contains an empirical analysis of predictability of a series of
returns.

3.2. Predictability, linear and nonlinear dependence

In this section, we first show that ARMA(p, p) processes generated by all-pass filtered
martingale difference sequences (mds), despite remaining uncorrelated processes, are
no longer mds, i.e. their levels can be predicted by nonlinear functions of the past,
as has been showed by (Rosenblatt, 2000, Section 5.4) for iid innovations-driven all-
pass models. In particular, we show that they display pairwise dependence, which
motivates our dependence tests based on pairwise measures derived from bivariate
characteristic functions, see also Lemma 3 in Velasco (2022). Second, we general-
ize the result of Lanne et al. (2013) on the higher order dependence generated in
ARMA(1,1) models by non-invertible all-pass filters and iid innovations, to general
order p > 1 models. Then, we show that the squares of observed series follow a
ARMA(p, p) model which implies that levels have a weak GARCH representation.

93



3.2.1. Predictability introduced by all-pass filters on mds sequences

Consider the all-pass ARMA(p, p) process Xt generated by the mds innovations εt
satisfying E [εt| εt−1, εt−2, . . .] = 0 a.s.,

Xt = ψ (L) εt, (3.2.1)

where ψ is the transfer function of a causal and non-invertible all-pass filter of order
p,

ψ (z) =
∞∑︂
j=0

ψjz
j =

p∏︂
j=1

1 −m−1
j z

1 −mjz
,

with |mj| < 1, j = 1, . . . , p, ψ0 = 1 and ψk ∼ ∑︁p
j=1 cjm

k
j as k → ∞ for some cj ≠ 0.

In particular, for p = 1, note that ψ0 = 1 and ψk = mk
1

(︂
1 −m−2

1

)︂
, k > 0.

Then the second-order spectral density of the all-pass process Xt, f
X
2 (λ) =

(σ2
ε/2π) |ψ (λ)|2 = σ2

ε/ (2π) is constant redefining ψ (λ) = ψ
(︂
e−iλ

)︂
while the third-

order spectral density of Xt can be written in terms of the third-order spectral
density of εt as

fX3 (λ) = f ε3 (λ)ψ (λ1)ψ (λ2)ψ (−λ1 − λ2) , λ = (λ1, λ2) .

To evaluate
f ε3 (λ) = 1

(2π)2

∞∑︂
j,k=−∞

κε3 (j, k) exp (−i (jλ1 + kλ2))

in terms of the joint skewness coefficients of the zero mean (third-order) stationary
sequence εt

κε3 (j, k) = κε3 (k, j) = E [εtεt+jεt+k] , j, k = 0,±1, . . . ,

we note that for a mds εt the only joint third-moments that could be different from
zero are of the form

κε3 (j, j) = E
[︂
εtε

2
t+j

]︂
, j ≥ 0

κε3 (j, 0) = E
[︂
εt+jε

2
t

]︂
, j ≤ 0

κε3 (0, k) = E
[︂
εt+kε

2
t

]︂
, k ≤ 0,

where κε3 (j, j) = κε3 (−j, 0) = κε3 (0,−j) for j ≥ 0, because the squares ε2
t could be

predicted by past observations. However, levels can not be predicted by the past,
implying that

κε3 (j, k) =

⎧⎨⎩ E [εtεt+jεt+k] = 0, when max {j, k} > 0 and j ≠ k

E [εtεt+jεt+k] = 0, when max {j, k} < 0.
(3.2.2)
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Therefore, fX3 (λ) is nonconstant and nonzero as far as f ε3 (λ) is not zero a.e.
because the mds innovation process εt displays some nonzero third-order moments.
Then, some coefficients

κX3 (j, k) =
∫︂

[−π,π]2
fX3 (λ) exp (i (jλ1 + kλ2)) dλ1dλ2

are different from zero for |j| + |k| > 0, implying that the sequence Xt is dependent.
In particular, next theorem shows that the skewness coefficients of Xt are in general
incompatible with those of a mds process as characterized in (3.2.2). Since Xt is a
white noise process, it is linearly unpredictable and to show that Xt is not a mds
we need to argue that Xt is nonlinearly predictable by arguing that κX3 (j, k) =
E [XtXt+jXt+k] ≠ 0 for some j, k < 0. For showing Xt is not a pairwise martingale,
i.e. E [εt| εt−j] ≠ 0 for some j > 0, we need to check that κX3 (j, j) = E

[︂
XtX

2
t+j

]︂
≠

0 for some j < 0. However, if κX3 (j, j) = E
[︂
XtX

2
t+j

]︂
≠ 0, j > 0, this would imply

that Xt has dynamic conditional heteroskedasticity but would not rule out that Xt

is a mds.

Theorem 3.2.1. For a mds εt with E |εt|3 < ∞ and κε3 (0, 0) ≠ 0, the process Xt

defined in (3.2.1) has third-order cumulants given by

κX3 (j, k) = κ
[iid]
X,3 (j, k) +

∞∑︂
m=1

κ
[m]
X,3 (j, k) , j, k = 0,±1, . . .

where the contribution from the marginal third cumulant of εt is

κ
[iid]
X,3 (j, k) = κε3(0, 0)

∞∑︂
c=max{0,−j,−k}

ψc+jψc+kψc,

and the potential contribution from joint cumulants of εt for m = 1, 2, . . . , is

κ
[m]
X,3 (j, k) = κε3 (m,m)

κε3 (0, 0)
{︂
κ

[iid]
X (j −m, k −m) + κ

[iid]
X (j +m, k) + κ

[iid]
X (j, k +m)

}︂
.

All proofs of this section are contained in Appendix A. In particular for j > 0
and k = 0, this theorem shows that κX3 (j, 0) = κX3 (−j,−j) ,

κX3 (j, 0) = κ
[iid]
X,3 (j, 0) +

∞∑︂
m=1

κ
[m]
X,3 (j, 0) , κ

[iid]
X,3 (j, 0) = κε3(0, 0)

∞∑︂
c=0

ψ2
cψc+j,

is expected to be different from zero for infinitely many j > 0, confirming that Xt

is not a pairwise mds as when εt is iid, in which case κ[m]
X,3 (j, 0) = 0 for m > 0 but

κX3 (j, 0) = κ
[iid]
X,3 (j, 0) ≠ 0 providing an alternative pairwise argument for Rosenblatt

(2000) analysis of predictability of all-pass processes under iid.
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We now repeat the analysis for fourth order dynamics in terms of the joint
kurtosis coefficient for a zero mean (fourth-order) stationary sequence εt as

κε4 (j, k, ℓ) = E [εtεt+jεt+kεt+ℓ]−E [εtεt+j]E [εt+kεt+ℓ]−E [εtεt+ℓ]E [εt+jεt+k]−E [εtεt+k]E [εt+jεt+ℓ] .

For a stationary mds εt the joint fourth cumulants that could be different from zero
apart from κε4 := κε4 (0, 0, 0) are derived from the fact that future ε3

t+ℓ and ε2
t+ℓ could

be predicted by the past levels εt and squares ε2
t for some ℓ > 0.

This leads to the following possibly different from zero joint cumulants of the
mds εt, apart from the marginal one κε4 (0, 0, 0). First,

κε4 (j, j, j) = E
[︂
εtε

3
t+j

]︂
, j > 0

κε4 (j, 0, 0) = E
[︂
εt+jε

3
t

]︂
, j < 0

κε4 (0, k, 0) = E
[︂
εt+kε

3
t

]︂
, k < 0

κε4 (0, 0, ℓ) = E
[︂
εt+ℓε

3
t

]︂
, ℓ < 0,

where κε4 (j, j, j) = κε4 (−j, 0, 0) = κε4 (0,−j, 0) = κε4 (0, 0,−j) for j ≥ 0, because
cubes could be predicted by past observations, despite levels can not, and second,

κε4 (j, j, k) = E
[︂
εtεt+kε

2
t+j

]︂
− σ41 {k = 0} , j ≥ 0, k < j

κε4 (j, k, j) = E
[︂
εtεt+kε

2
t+j

]︂
− σ41 {k = 0} , j ≥ 0, k < j

κε4 (k, j, j) = E
[︂
εtεt+kε

2
t+j

]︂
− σ41 {k = 0} , j ≥ 0, k < j

where κε4 (j, j, k) = κε4 (0,−j, k − j) , because squares could be predicted by past
observations. To investigate pairwise dependence we focus on the case k = 0 and
j > 0

κε4 (j, j, 0) = E
[︂
ε2
t ε

2
t+j

]︂
− σ4, j > 0

κε4 (j, 0, j) = E
[︂
ε2
t ε

2
t+j

]︂
− σ4, j > 0

κε4 (0, j, j) = E
[︂
ε2
t ε

2
t+j

]︂
− σ4, j > 0,

where κε4 (j, j, 0) = κε4 (j, 0, j) = κε4 (0, j, j) = κε4 (−j,−j, 0) = κε4 (−j, 0,−j) =
κε4 (0,−j,−j) for j ≥ 0, because squares could also be predicted by the squares
of a single past observation.

Therefore, the fourth order spectral density of Xt,

fX4 (λ) = f ε4 (λ)ψ (λ1)ψ (λ2)ψ (λ3)ψ (−λ1 − λ2 − λ3) ,

is non-constant and nonzero if some kurtosis coefficients of εt are nonzero, so that
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some κX4 (j, k, ℓ) are different from zero for some |j| + |k| + |ℓ| > 0, implying that
the sequence Xt is dependent. Since Xt is not linearly predictable, to show that
Xt is not a mds we need to show that Xt is nonlinearly predictable by checking
that κX4 (j, k, ℓ) ≠ 0 for some j, k, ℓ < 0 using the characterization provided by our
next result. Further, to argue that Xt is not a pairwise mds, we can show that
κX4 (j, j, j) ≠ 0, for some j < 0, i.e. Xt is predictable by a nonlinear function of a
single observation of the past, Xt+j, j < 0, in this case the cubic function, X3

t+j.

Theorem 3.2.2. For a mds εt with E |εt|4 < ∞ and κε4 (0, 0, 0) ≠ 0, the process Xt

defined in (3.2.1) has fourth-order cumulants given by

κX4 (j, k, ℓ) = κ
[iid]
X,4 (j, k, ℓ) +

∞∑︂
m=1

κ
[1,m]
X,4 (j, k, ℓ)

+
∞∑︂
m=1

m−1∑︂
n=−∞

κ
[2,m,n]
X,4 (j, k, ℓ) +

∞∑︂
m=1

∞∑︂
n=1

κ
[3,m,n]
X,4 (j, k, ℓ)

where
κ

[iid]
4,X (j, k, ℓ) = κε4(0, 0, 0)

∞∑︂
d=max{0,−j,−k,−ℓ}

ψd+jψd+kψd+ℓψd

and the potential additional terms due to predictability of squares are given in Ap-
pendix A.

This theorem shows in particular that κX4 (j, 0, 0) = κX4 (−j,−j,−j) , j > 0,
would not be all equal to zero for ψa given by an all-pass ARMA(p, p) model, so
that Xt is not a pairwise mds unlike its innovations εt. If εt were serially independent,
then

κX4 (j, 0, 0) = κε4(0, 0, 0)
∞∑︂
d=0

ψ3
dψd+j

which for e.g. p = 1 can be checked immediately to be non-zero for all j > 0 when
m1 ≠ 0.

3.2.2. Higher order dependence introduced by all-pass filters

Theorem 2 can be recast for a description of the dependence introduced on the
squares of an all-pass ARMA(p, p) process driven by iid innovations, as has been
showed for p = 1 by Lanne et al. (2013) and argued by Breidt, Davis and Trindade
(2001).

Under iid we get at once that

κX4 (j, k, ℓ) = κ
[iid]
X,4 (j, k, ℓ)

as now the iid process εt cannot display higher dependence. Then, by uncorrelation
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of Xt we have that for j > 0 the autocovariance function of X2
t ,

C(X2
t , X

2
t+j) = E[X2

t , X
2
t+j] − σ4

X = κ
[iid]
X,4 (j, j, 0) = κε4

∞∑︂
d=0

ψ2
d+jψ

2
d,

which behaves like the ACF of an MA(∞) process with filter coefficients ψ2
j , dis-

playing positive autocorrelation at all lags. Furthermore, it can be showed that the
process X2

t has an ARMA(p, p) representation by investigating the spectral density
of the squares X2

t .

Theorem 3.2.3. The process X2
t , where Xt is given in (3.2.1) for a zero mean iid

sequence εt with κε4 (0, 0, 0) ≠ 0, has a restricted ARMA(p, p) representation.

In particular, for p = 1 and causal AR coefficient ϕ = m1, |ϕ| < 1, the causal
ARMA(1, 1) representation of the process X2

t has autoregressive coefficient given by
ϕ2.

3.3. Directional Predictability Hypothesis Tests

In this section, we describe tests of directional predictability of observed series where
the null hypothesis of unpredictability or mds is tested against linear alternatives
allowing either for serial correlation (ARMA) or only for nonlinear predictability
(all-pass), and tests of the restricted white noise all-pass ARMA model against a
general ARMA one displaying serial correlation.

Lanne et al. (2013) considered the following parameterization of the noninvertible
ARMA(1, 1) model

Yt = ϕ0Yt−1 + εt−1 − θ0εt, (3.3.1)

where |ϕ0| < 1, |θ0| < 1 and εt is an uncorrelated error term with zero mean and
finite variance σ2

0. Then we can write

(1 − ϕ0L)Yt =
(︂
1 − θ0L

−1
)︂
Lεt

and when θ0 ≠ 0
(1 − ϕ0L)Yt =

(︂
1 − θ−1

0 L
)︂

(−θ0εt)

with
⃓⃓⃓
θ−1

0

⃓⃓⃓
> 1 so the non-invertible MA root θ0 satisfies |θ0| < 1, while if θ0 = 0 we

can write Yt as an AR(1) model,

(1 − ϕ0L)Yt = εt−1.
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The AP model is obtained when ϕ0 = θ0,

Yt = ϕ0Yt−1 + εt−1 − ϕ0εt, (3.3.2)

where the AR and MA roots are reciprocals, ϕ−1
0 and ϕ0 respectively. In general we

write
Yt = ψ (ϑ0;L)Lεt

for ψ (ϑ; z) = (1 − θz−1) / (1 − ϕz) and ϑ = (θ, ϕ)′ under the ARMA model (3.3.1)
and ψ (ϑ; z) = (1 − ϕz−1) / (1 − ϕz) and ϑ = ϕ under the AP model (3.3.2) .

While Lanne et al. (2013) considered that εt is iid, we are interested in this paper
in mds versions of their hypotheses. Thus, we study testing the AP hypothesis with
mds innovations against non-invertible ARMA

HAP/mds : ϕ0 = θ0 in model (3.3.1) ,
H1
AP/mds : ϕ0 ≠ θ0,

the mds hypothesis against all-pass restricted ARMA(1, 1)

H
(AP )
mds : ϕ0 = 0 in model (3.3.2) ,

H
(AP )1
mds : ϕ0 ≠ 0,

or the mds hypothesis against unrestricted but non-invertible ARMA(1, 1)

Hmds : ϕ0 = θ0 = 0 in model (3.3.1) ,
H1
mds : ϕ0 ≠ 0 and/or θ0 ≠ 0,

where we keep the same notation as in Lanne et al. (2013) despite H(AP )
mds and Hmds

imply the same data generating process for Yt = εt (but not the alternatives H(AP )1
mds

and H1
mds unless ϕ0 = θ0 ≠ 0).

These mds versions of the null hypothesis HAP/mds, H
(AP )
mds and Hmds, allow for

higher order dependence in εt. Thus, the AP null hypothesis, equivalent to model
(3.3.2) , implies that Yt is white noise but nonlinear dependent in levels, i.e. is
predictable by Rosenblatt (2000) analysis for non-Gaussian iid εt or by Section 2
results for mds εt. It further implies that Y 2

t are predictable even for iid εt, apart
from the additional dependence possibly introduced by the higher order dependence
in the mds εt. We consider the same parametric alternatives in the direction of
linear models, so that our results in Section 2 show that under H(AP )1

mds the observed
series is no longer a mds, despite being white noise, while under H1

AP/mds and H1
mds

it also displays nonzero autocorrelation, justifying the consistency of tests. For
presentation we focus on the ARMA(1, 1) model but we discuss the general case in
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Appendix B and provide results for any fixed p = 1, 2, . . . .

Lanne et al. (2013) propose testing the AP/iid hypothesis through a Wald test
based on unrestricted estimation of the non-invertible ARMA(1, 1) model (3.3.1) us-
ing non-Gaussian ML estimation following Lanne et al. (2013) under non-invertibility
(and causality), which includes the estimation of a scaling parameter together with
additional shape parameters for the given (zero mean) distribution. Using also AP-
constrained ML estimation they further propose LR tests for this hypothesis.

For testing iid against AP (ARMA) dependence, Lanne et al. (2013) similarly
propose Wald significance tests on the AP-restricted (unrestricted) estimate of ϕ0

(ϕ0 and θ0) and LR tests which require to estimate the corresponding nuisance (scale
and shape) parameters of the distribution of εt. In all cases standard asymptotics
are obtained due to imposing non-invertibility and non-Gaussianity, unlike in the
standard (causal and invertible) situation considered in Nankervis and Savin (2010),
where a nuisance parameter is only present under the alternative which needs to
be accounted for using the methods in Davies (1987) and Andrews and Ploberger
(1996).

In this paper we use robust methods to test the mds versions of the three de-
pendence hypothesis based on nonlinear dependence measures defined with the joint
characteristic function of the residuals, accounting for non-Gaussianity and higher
order dependence when εt is a mds, see e.g. Velasco (2022), though methods based
on the cdf could also be used, see Jin (2022). This approach avoids imposing a
particular non-Gaussian distribution and estimating of the corresponding shape pa-
rameters under serial independence, though versions of the dependence measures
under independence can be also pursued (see Section 5 for a finite sample compari-
son).

Similarly to Lanne et al. (2013) our tests for the AP/mds hypothesis HAP/mds

against general ARMA dependence are based on AP-restricted estimation of the
ARMA(1, 1) model imposing non-invertibility, while the tests for themds hypotheses
against general ARMA or all-pass restricted models, Hmds and H

(AP )
mds respectively,

can be considered as directional variants of the mds version of Hong (1999) omnibus
tests for first-order dependence based on the derivative of the characteristic function.
This approach improves the rate of convergence of test statistics (and would allow
to detect alternatives departing from the null at the usual parametric rate), but at
the cost of having less power against alternatives departing from the null in other
directions.
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3.3.1. Tests of the mds hypothesis

Our robust LM tests are derived from the following objective function based on the
generalized spectral density function

Qmds
T (ϑ) := 2

π

T−1∑︂
j=1

k2
(︃
j

m

)︃(︄
1 − |j|

T

)︄∫︂ ⃓⃓⃓
σ̂

(1,0)
ϑ,j (0, v)

⃓⃓⃓2
dW (v) ,

of residuals

ε̂t (ϑ) = ψ−1 (ϑ;L)
(︂
Yt − Ȳ T

)︂
1 {1 ≤ t ≤ T} = 1 − ϕL

1 − θL−1

(︂
Yt − Ȳ T

)︂
1 {1 ≤ t ≤ T} ,

where ϑ := (ϕ, θ)′ for ARMA(1, 1) model and ϑ := ϕ for AP(1, 1) model, and

σ̂
(1,0)
ϑ,j (0, v) := ∂

∂u
σ̂ϑ,j (u, v)

⃓⃓⃓⃓
⃓
u=0

is the derivative of the residuals’ generalized autocovariance function

σ̂ϑ,j (u, v) = φ̂ϑ,j (u, v) − φ̂ϑ,j (u, 0) φ̂ϑ,j (0, v) ,

based on their empirical pairwise joint characteristic function

φ̂ϑ,j (u, v) = 1
T − j

T∑︂
t=1+j

exp {iuε̂t (ϑ) + ivε̂t−j (ϑ)} .

The kernel function k with k (0) = 1 together with the lag m → ∞ as T → ∞
guarantees that asymptotically dependence at all lags is considered in the L2 distance
Qmds
T (ϑ) while the weighting measure W aggregates information for all v ∈ R. Note

that we have relabel the time index of the residuals to match that of the observations
without loss of generality.

The mds hypothesis can be tested against the two given parametric alternatives
with LM statistics of the form

LMT = T
∂

∂ϑ
Qmds
T (ϑ0)′ ˆ︁AV ar

(︄
T 1/2 ∂

∂ϑ
Qmds
T (ϑ0)

)︄−1
∂

∂ϑ
Qmds
T (ϑ0)

where ϑ0 = ϕ0 = 0 when testing against AP and ϑ0 = (ϕ0, θ0)′ = (0, 0)′ when testing
against ARMA, so that inference could be conducted in the usual way as there are
no nuisance parameters under either null.
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In practice we propose to use approximations for the score function of Qmds
T (ϑ) ,

∂

∂ϑ
Qmds
T (ϑ) = 2

π

T−1∑︂
j=1

k2
(︃
j

m

)︃(︄
1 − |j|

T

)︄∫︂
2 Re

{︄
σ̂

(1,0)
ϑ,j (0, v) ∂

∂ϑ
σ̂

(1,0)
ϑ,j (0, v)

}︄
dW (v)

derived in Velasco (2022) under the null ϑ = ϑ0,

∂

∂ϑ
Qmds
T (ϑ0) = 1

T

T∑︂
t=2

εtZt−1 (ϑ0) + op(T−1/2),

for Zt−1 (ϑ0) := Rt−1 (ϑ0) + St−1 (ϑ0), where z0
t = zt (ϑ0; v) for zt (ϑ; v) := eiuεt(ϑ) −

φϑ (v) , φϑ (v) := E
[︂
eivεt(ϑ)

]︂
, Rt−1 (ϑ0) and St−1 (ϑ0) are given by

Rt−1 (ϑ0) :=
∞∑︂
j=1

i
∫︂
z0
t−j (v) ζ0

j (−v) dW (v) , ζ0
j (v) := −

∞∑︂
n=j

δn (ϑ0)φ(1,0)
j−n (0, v) ,

noting that for φj (u, v) = E [eiuεteivεt−j ] , φ
(1,0)
j (0, v) = (∂/∂u)φj (u, v) |u=0 =

iE [εteivεt−j ] , and by

St−1 (ϑ0) :=
∞∑︂
j=1

i
∫︂
z0
t−j (v) β0

j (−v) dW (v) , β0
j (v) := −δ−j (ϑ0) vφ(2,0)

j (0, v) ,

for φ(2,0)
j (0, v) = (∂2/∂u2)φj (u, v) |u=0 = −E [ε2

t e
ivεt−j ]. The coefficients δj (ϑ) are

defined by
δ (ϑ; z) := − ∂

∂ϑ
logψ (ϑ; z) =

∞∑︂
j=−∞

δj (ϑ) zj

with e.g. for p = 1

ψ (ϑ0; z) = 1 − θ0z
−1

1 − ϕ0z
for ARMA (1, 1) model

ψ (ϑ0; z) = 1 − ϕ0z
−1

1 − ϕ0z
for AP (1, 1) model,

so that δ (ϑ0; z) = (z−1, −z)′ when ϑ0 = (θ0, ϕ0)′ = (0, 0)′ for the ARMA(1, 1)
model and δ (ϑ0; z) = z−1 − z when ϑ0 = ϕ0 = 0 for the AP(1, 1) model.

Then, our feasible test statistics for any p = 1, 2, . . . are given by

LMARMA
T =

T∑︂
t=2

ε̂0
t Ẑ

′
t−1

(︄
T∑︂
t=2

(︂
ε̂0
t

)︂2
Ẑt−1Ẑ

′
t−1

)︄−1 T∑︂
t=2

ε̂0
t Ẑt−1

and for Û t−1 = 1′
2Ẑt−1, 12 = (1 1)′ ⊗ Ip,

LMAP
T =

T∑︂
t=2

ε̂0
t Û

′
t−1

(︄
T∑︂
t=2

(︂
ε̂0
t

)︂2
Û t−1Û

′
t−1

)︄−1 T∑︂
t=2

ε̂0
t Û t−1,
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which are the robust Wald tests of joint significance of the regression of ε̂0
t = ε̂t (ϑ0) =

Yt − Ȳ T on the 2p-vector Ẑt−1 and on the p-vector Û t−1 = 1′
2Ẑt−1, respectively,

defined by

Ẑt−1 := R̂t−1 + Ŝt−1 = i
t−1∑︂
j=1

∫︂
ẑ0
t−j (v)

{︂
ζ̂j (−v) + β̂j (−v)

}︂
dW (v)

for ẑ0
t (v) := eiuε̂

0
t − T−1∑︁T

s=1 e
iuε̂0

s and

ζ̂j (v) := −
T+j−1∑︂
n=j

δn (ϑ0) φ̂(1,0)
ϑ0,j−n (0, v) and β̂j (v) := −δ−j (ϑ0) vφ̂(2,0)

ϑ0,j (0, v) .

Note that ζ̂j and β̂j converge to zero with j exponentially fast, as δ±j (ϑ0) do for
ARMA models, so no additional discount by k

(︂
j
m

)︂
is needed in the computation of

test statistics unlike for parameter estimation by minimizing Qmds
T (ϑ) .

In particular, for p = 1 using the form of δ (ϑ; z) for the ARMA(1, 1) model we
obtain

Ẑt−1 :=
⎛⎝ −i

∫︁
ẑ0
t−1 (v) vφ̂(2,0)

ϑ0,1 (0,−v) dW (v)
i
∫︁
ẑ0
t−1 (v) φ̂(1)

ϑ0 (−v) dW (v)

⎞⎠ =
⎛⎝ Ẑt−1,1

Ẑt−1,2

⎞⎠ , say,

where the series Ẑt−1, t = 2, . . . , T, has closed-form expressions for cdfs W with
explicit characteristic function, so that for W Gaussian, we obtain

Ẑt−1,1 = − 1
T − 1

T∑︂
r=2

(︂
ε̂0
r

)︂2

⎡⎢⎢⎣ (ε̂0
t−1 − ε̂0

r−1) exp
{︃

−1
2

(︂
ε̂0
t−1 − ε̂0

r−1

)︂2
}︃

− 1
T−1

∑︁T
s=2(ε̂0

s−1 − ε̂0
r−1) exp

{︃
−1

2

(︂
ε̂0
s−1 − ε̂0

r−1

)︂2
}︃
⎤⎥⎥⎦

and

Ẑt−1,2 = 1
T

T∑︂
r=1

ε̂0
r

[︄
exp

{︃
−1

2
(︂
ε̂0
t−1 − ε̂0

r

)︂2
}︃

− 1
T − 1

T∑︂
s=2

exp
{︃

−1
2
(︂
ε̂0
s−1 − ε̂0

r

)︂2
}︃]︄

.

For our asymptotic theory we need to impose a moment and a mixing assumption
on the mds εt to control the higher order dependence, together with non-Gaussianity
to achieve consistency against uncorrelated AP alternatives. Non-Gaussianity, char-
acterized by the existence of nonzero higher-order cumulants like in Section 2, is
also key in Velasco (2022) for unrestricted estimation of ARMA models by iden-
tifying the correct location of AR and MA roots with respect the complex unit
circle using the (pairwise) predictability of residuals under wrong location. How-
ever, non-Gaussianity is not necessary for root-restricted estimation, e.g. imposing
non-invertibility and causality, of ARMA or all-pass models. Assumptions are com-
piled and further discussed in Appendix B. Extension to other parametric models is
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straightforward under standard smoothness conditions on the model (implying weak
dependence in the observed data and model residuals) and parameter identification.
Next theorem shows that LM tests have standard null asymptotic distribution.

Theorem 3.3.1. Under Assumptions 3.1 and 3.2 as T → ∞,

LMARMA
T →d χ2

2p under Hmds

LMAP
T →d χ2

p under H(AP )
mds ,

and LMARMA
T →p ∞ under H1

mds and LMAP
T →p ∞ under H(AP )1

mds .

3.3.2. Tests of the AP model

For the LM testing of the AP model against ARMA(1, 1), i.e. HAP/mds : ϕ0 = θ0 in
model (3.3.1) , we parameterize γ0 := ϕ0 − θ0 and test H∗

AP : γ0 = 0 in

(1 − ϕ0L)Yt =
(︂
1 − ϕ0L

−1 + γ0L
−1
)︂
εt−1,

so that keeping the same notation for the model transfer function with the new
parameters ϑ∗ := (γ, ϕ)′ ,

ψ∗ (ϑ∗
0; z) = (1 − ϕ0z

−1 + γ0z
−1)

(1 − ϕ0z)
for ARMA (1, 1) model

and similarly,
δ∗ (ϑ∗; z) = − ∂

∂ϑ∗ lnψ∗ (ϑ∗; z)

so that

δ∗ (ϑ∗
0; z) =

⎛⎝−
∞∑︂
j=0

ϕj0z
−j−1,

∞∑︂
j=0

ϕj0z
−j−1 −

∞∑︂
j=0

ϕj0z
j+1

⎞⎠′

with

δ∗ (ϑ∗
0; z) = Aδ (ϑ0; z) , A :=

⎛⎝ A1

A2

⎞⎠ =
⎛⎝ −1 0

1 1

⎞⎠⊗ Ip

for ϑ∗ = A′ϑ and ϑ = A′ϑ∗.

The LM statistic based on the score (∂/∂ϑ∗)Qmds
T

(︂
ϑ̃

∗
T

)︂
evaluated at the all-pass

restricted estimate ϑ̃∗
T =

(︂
0′, ϕ̃

′
T

)︂′
is approximated by

˜︃LMAP

T = T

(︄
1
T

T∑︂
t=2

ε̃tṼ t−1

)︄′

Ṽ
−1
T

(︄
1
T

T∑︂
t=2

ε̃tṼ t−1

)︄

where ε̃t = ε̂t
(︂
ϑ̃

∗
T

)︂
are the restricted residuals and Ṽ t−1 = A1Z̃t−1, respectively,
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with

Z̃t−1 := R̃t−1 + S̃t−1 = i
T−1∑︂
j=1

∫︂
z̃t−j (v)

{︂
ζ̃j (−v) + β̃j (−v)

}︂
dW (v) (3.3.3)

for z̃t (v) := zt
(︂
v, ϑ̃

∗
T

)︂
= eiuε̃t − T−1∑︁T

s=1 e
iuε̃s and

ζ̃j (v) := −
T+j−1∑︂
n=j

δn
(︂
ϑ̃

∗
T

)︂
φ̂

(1,0)
ϑ̃

∗
T ,j−n

(0, v) and β̃j (v) := −δ−j
(︂
ϑ̃

∗
T

)︂
vφ̂

(2,0)
ϑ̃

∗
T ,j

(0, v) ,

with the empirical characteristic function evaluated at restricted residuals. The
integrals have again closed-form expressions not requiring numerical integration.

The asymptotic variance estimate

Ṽ T := Ξ̃1AṼ
mds

0 A′Ξ̃′
1

accounts for the estimation of ϕ0 through

Ξ̃1 :=
[︄
Ip

... − A1H̃
mds

0 A′
2

{︂
A2H̃

mds

0 A′
2

}︂−1
]︄

with

H̃
mds

0 = −
T−1∑︂
j=1

∫︂ {︂
ζ̃j (−v) + β̃j (−v)

}︂{︂
ζ̃j (v) + β̃j (v)

}︂′
dW (v) , (3.3.4)

and for conditional heteroskedasticity of general form by means of

Ṽ
mds

0 := 1
T − 1

T∑︂
t=2

ε̃2
t Z̃t−1Z̃

′
t−1, (3.3.5)

see Appendix B for explicit formulae.

The asymptotic distribution of the LM statistics is provided in next theorem,
which shares similar properties as the previous tests against simple alternatives. We
now require regularity conditions on the weighting function W , the lag kernel k and
bandwidth m because estimation of nuisance parameters is needed under HAP/mds.
These are satisfied for many standard choices. Note that m does not play a role in
first order asymptotic properties of tests as far as it grows with T slower than T 1/2

for a smooth k at the origin.

Theorem 3.3.2. Under Assumptions 3.1, 3.2 and 3.3 as T → ∞,

˜︃LMAP

T →d χ
2
p under HAP/mds
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and ˜︃LMAP

T →p ∞ under H1
AP/mds.

3.4. Directional Nonlinear Dependence Tests for Residuals

In this section, we adapt the previous non-linear dependence tests based on an all-
pass filter to residuals of a linear ARMA(q1, q2) model which has already accounted
for the linear dependence in observed data by an appropriate choice of the model
orders. To this end, we design LM tests that allow, as in the previous section, for
higher order dependence in the mds true errors and account for the estimation effect
of the preliminary ARMA(q1, q2) model. To impose the additional all-pass filter in
the model dynamics, we use a multiplicative ARMA(q1, q2)-AP(p, p) structure which
guarantees that the extra roots in the AR and MA lag polynomials are reciprocals,
i.e.

ψ (ϑ0; z) = β (z)
α (z)

1 − ϕ0z
−1

1 − ϕ0z
(3.4.1)

for p = 1, where the, non necessarily causal and invertible, ARMA(q1, q2) filter,
q1 + q2 > 0, has lag polynomials

α (z) = 1 − α1z − · · · − αq1z
q1

β (z) = 1 − β1z − · · · − βq2z
q2

with no common roots, all outside the unit circle, with ϑ0 = (ϕ0, α1, . . . , αq1 , β1, . . . , βq2)′ .

Then we focus on testing the mds hypothesis on the ARMA(q1, q2) residuals

ε∗
t = α (L)

β (L)Yt,

against all-pass restricted ARMA(1, 1) dependence, i.e.

H
(ARMA−AP )
mds : ϕ0 = 0 in model (3.4.1) ,

H
(ARMA−AP )1
mds : ϕ0 ≠ 0,

but discuss general p ≥ 1. This alternative can not be detected consistently by usual
residual serial correlation tests, while tests checking for ARCH effects in residuals
could detect it indirectly due to the higher order dependence generated by the all
pass filter.

The LM statistic to test H(ARMA−AP )
mds is based on the score of the filter ψ (ϑ0; z)

with respect to ϕ, δAP (ϑ0; z) := −(∂/∂ϕ) logψ (ϑ0; z) = z−1−z for ϑ0 = (ϕ0, α
′
0, β

′
0)′ =

(ϕ0, ϑ
∗
0)

′, ϑ∗
0 = (α′

0, β
′
0)′, which for p = 1 is δAP (ϑ0; z) = z−1 − z as when testing the

AP(1, 1) model but now ε∗
t has to be replaced by the residuals ε̃t after estimation of
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(α0, β0) whose effect depends on

δARMA (ϑ0; z) = − ∂

∂ϑ∗ logψ (ϑ0; z)

= − ∂

∂ϑ∗ log (1 − β1z − · · · − βq2z
q2) + ∂

∂ϑ∗ log (1 − α1z − · · · − αq1z
q1)

=
(︄

z

β (z) , · · · , zq2

β (z) ,−
z

α (z) , · · · ,− zq1

α (z)

)︄′

.

Then the LM statistic based on the score (∂/∂ϕ)Qmds
T

(︂
ϑ̃

∗
T

)︂
evaluated at the ARMA(q1, q2)

estimates ϑ̃∗
T = (α̃′

T , β̃
′
T )′ is approximated by

˜︃LMARMA−AP
T := T

(︄
1
T

T∑︂
t=2

ε̃tZ̃
(1)
t−1

)︄
Ṽ

−1
T

(︄
1
T

T∑︂
t=2

ε̃tZ̃
(1)
t−1

)︄

where ε̃t = ε̂t
(︂
ϑ̃

∗
T

)︂
are the ARMA residuals and Z̃

(1)
t−1 is defined using the form of

δAP (z), so that for p = 1 equals

Z̃
(1)
t−1 := i

∫︂
z̃t−1 (v)

{︂
φ̃

(1)
ϑ0 (−v) − φ̃

(2,0)
ϑ0,1 (0,−v)

}︂
dW (v)

for z̃t (v) := zt
(︂
v, ϑ̃

∗
T

)︂
= eiuε̃t −T−1∑︁T

s=1 e
iuε̃s and has the same closed-form expres-

sion as before.

The asymptotic variance estimate,

Ṽ T := Ξ̃1Ṽ
mds

0 Ξ̃′
1,

accounts for the pre-estimation of ϑ∗
0 = (α′

0, β
′
0)′ corresponding to the restricted

model under H(ARMA−AP )
mds through the p× (p+ q1 + q2) matrix

Ξ̃1 :=
[︄
Ip

... − H̃
mds

0,12

{︂
H̃
mds

0,22

}︂−1
]︄

with H̃
mds

0 =
[︂
H̃
mds

0,ab

]︂
ab=1,2

as in (3.3.4) and ζj (v) and βj (v) defined in terms of the

coefficients of the joint expansion of δ (z) := −(∂/∂ϑ) logψ (ϑ0; z) =
(︂
δAP (ϑ0; z) , δARMA (ϑ0; z)′

)︂′
.

These are also used for Z̃t−1 =
(︃
Z̃

(1)
t−1, Z̃

(2)′
t−1

)︃′
in (3.3.3) for the estimate Ṽ mds

0 of the
asymptotic variance of the joint score (∂/∂ϑ)Qmds

T (ϑ0) in (3.3.5) . Then, it is imme-
diate to argue that the residuals LM test shares the same asymptotic properties as
when applied to observed data, with consistency relying on non-Gaussianity.

Theorem 3.4.1. Under Assumptions 3.1, 3.2 and 3.3 as T → ∞,

˜︃LMARMA−AP
T →d χ

2
p under H(ARMA−AP )

mds
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and ˜︃LMARMA−AP
T →p ∞ under H(ARMA−AP )1

mds .

3.5. Monte Carlo Simulations

In this section, we report the results of a simulation exercise to investigate the finite
sample properties of our new directional tests. We follow the experiment in Lanne
et al. (2013) and simulate ARMA(1, 1) models with innovations distributed as (stan-
dardized) χ2

4 and t4 random variates, to consider both asymmetric and symmetric
distributions, with lighter and heavier tails, respectively. We impose either indepen-
dence or just mds with conditional heteroskedasticity generated by a GARCH(1, 1)
model with parameters (1, 0.8, 0.1) . We simulate 10,000 independent replications
with three sample sizes, T = 100, 200 and 1,000 replications for T = 500, choose
m =

⌊︂
T 1/5

⌋︂
+ 1. The model parameters are the same as in Lanne et al. (2013) simu-

lations, where MLE and test statistics used that the data was iid and t distributed.

For iid innovations we also consider tests based on an independence loss func-
tion Qiid

T using the joint characteristic function itself instead of its derivative for
measuring first order dependence with Qmds

T . The test statistics based on the iid
criteria are described in Appendix B and share the same asymptotic properties as
those of Section 3 but exploit the independence assumption to construct a simpler
standardization.

We summarize the results for χ2 and t distributions in Tables 1 and 2, respec-
tively, for the the three combinations of Qiid

T and Qmds
T and of models with iid and

mds innovations which are well specified under the null. In terms of size, the LM
tests of simple hypothesis H(AP )

mds and Hmds have empirical size closer to the nomi-
nal level compared to those testing the composite hypothesis HAP , which need to
estimate the restricted model under the null. While tests under iid have reasonable
performance for both innovation distributions, tests under mds display substantial
over-rejection for both parameters for smaller sample sizes, but improving with sam-
ple size for χ2

4 innovations. However, tests for the AP-mds hypothesis for series with
t4 innovations are severely over-sized, even for the largest sample size.

However, regarding power, LM tests against simple hypothesis for series with
mds t4 innovations have very little power when compared to the mds χ2

4 innovations
for all models and sample sizes, and also compared with the reported results for the
composite hypothesis HAP . By contrast, for the χ2 innovations, LM tests provide
comparable rejection rates for both types of null hypothesis. Perhaps due to the
local nature of LM tests, the power functions of simple hypotheses tests seem not
to be monotone for large departures from the null, specially for the smaller sample
sizes and iid innovations.
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LM tests imposing the (true) iid condition through the checking function Qiid
T

show more power than those just exploiting the mds condition through Qmds
T , as

could be expected from using a weaker restriction and from the need to account
for higher order dependence in the standardization of test statistics. Similarly,
when imposing the mds assumption in innovations, conditional heteroskedasticity
makes more difficult to reject all tested versions of the null hypothesis of conditional
independence in mean.

Compared to Lanne et al. (2013) procedures exploiting knowledge of the true
distribution of iid innovations, the results based on our LM tests of the mds hy-
pothesis report much lower power. However, when compared with tests based on
Qiid
T , results improve substantially, getting closer to theirs for χ2 innovations, whose

strong skewness seems to provide more information to our semiparametric tests than
the symmetric t innovations. This is related to the representation of tests statistics
based on generalized autocovariances in terms of correlations of higher-order power
transformations of observations, see Escanciano and Velasco (2006a) and Velasco
(2022).

Table 3.5.1: Rejection rates of 5% LM tests: ARMA(1, 1) models, εt ∼ χ2
4.

ϕ0 θ0 Qiid
T , εt ∼ iid Qmds

T , εt ∼ iid
T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

HAP : ϕ0 = θ0 in ARMA(1, 1)
0.00 0.00 4.65 5.32 6.5 11.83 5.03 5.3
0.80 0.80 4.54 5.16 5.4 7.22 6.71 6.8
0.80 0.85 4.02 7.43 28.4 14.01 20.40 43.2
0.80 0.90 5.84 19.01 72.3 23.61 41.90 85.5
0.80 0.95 7.88 28.33 84.8 31.42 54.38 90.2
0.80 0.75 11.93 20.06 40.4 6.61 10.06 26.5
0.80 0.70 27.75 51.83 87.7 14.59 34.98 77.5
0.80 0.65 47.20 78.80 97.4 30.39 65.94 97.2

H
(AP )
mds : ϕ0 = 0 in all-pass(1, 1)

0.00 0.00 4.92 4.93 5.4 4.83 5.06 4.5
0.10 0.10 24.14 41.54 79.6 14.07 27.84 62.1
0.20 0.20 59.81 87.95 100.0 39.66 73.21 98.8
0.40 0.40 85.07 99.19 100.0 71.20 95.52 100.0
0.60 0.60 58.75 79.00 89.8 54.10 76.33 93.8

Hmds : ϕ0 = θ0 = 0 in ARMA(1, 1)
0.00 0.00 4.49 5.03 5.5 5.06 5.55 6.0
0.10 0.10 17.96 32.74 71.0 10.77 20.32 54.3
0.20 0.20 48.89 80.84 99.6 30.66 64.28 98.1
0.40 0.40 76.61 98.15 100.0 67.78 96.52 100.0
0.60 0.60 50.93 74.96 89.3 59.19 83.78 95.4

Qmds
T , εt ∼ mds

T = 100 T = 200 T = 500

8.60 4.21 3.4
9.10 7.50 6.3
10.39 12.72 48.0
15.35 23.74 19.2
19.75 33.79 66.8
8.04 10.63 19.0
12.82 23.61 49.9
21.25 41.07 77.6

4.53 6.24 6.2
4.85 4.96 7.3
7.60 11.02 21.2
16.62 27.27 50.6
26.32 44.30 71.7

3.99 6.14 5.5
4.85 4.91 6.9
6.77 9.43 18.7
15.87 24.87 48.5
25.39 43.36 70.1

Note: The model innovations are (standardized) χ2
4 and t4 random variates, either iid

or transformed to mds by multiplication of the conditional standard deviation generated
by a GARCH(1, 1) model with parameters (1, 0.8, 0.1) . m =

⌊︂
T 1/5

⌋︂
+ 1 and 10,000

replications are used for T = 100, 200 or 1,000 for T = 500. Null hypotheses parameters
in bold. See text for test statistics computation.
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Table 3.5.2: Rejection rates of 5% LM tests: ARMA(1, 1) models, εt ∼ t4.

ϕ0 θ0 Qiid
T , εt ∼ iid Qmds

T , εt ∼ iid
T = 100 T = 200 T = 500 T = 100 T = 200 T = 500

HAP : ϕ0 = θ0 in ARMA(1, 1)
0.00 0.00 3.22 3.36 4.0 11.83 11.95 13.9
0.80 0.80 3.75 3.28 3.6 7.22 5.19 8.5
0.80 0.85 2.44 2.43 6.3 13.24 18.19 28.3
0.80 0.90 3.05 6.15 24.9 21.08 30.61 47.4
0.80 0.95 3.68 10.11 43.9 26.48 39.25 55.8
0.80 0.75 10.12 17.12 41.7 6.00 8.76 16.5
0.80 0.70 24.23 47.23 86.7 12.90 25.56 59.4
0.80 0.65 42.25 74.11 96.6 26.87 53.13 89.9

H
(AP )
mds : ϕ0 = 0 in all-pass(1, 1)

0.00 0.00 5.28 5.05 3.9 4.83 5.19 5.2
0.10 0.10 8.99 13.45 24.8 6.12 7.75 12.8
0.20 0.20 16.64 27.74 55.7 7.34 9.91 20.3
0.40 0.40 16.74 27.03 59.8 7.08 7.86 9.5
0.60 0.60 7.13 8.02 14.2 7.24 7.35 7.3

Hmds : ϕ0 = θ0 = 0 in ARMA(1, 1)
0.00 0.00 4.50 5.09 4.3 5.06 4.69 5.2
0.10 0.10 7.16 10.50 18.4 5.70 6.73 10.5
0.20 0.20 12.63 21.07 47.4 6.48 8.98 19.1
0.40 0.40 12.20 20.83 49.5 5.62 6.98 10.9
0.60 0.60 6.74 8.46 17.3 5.36 5.87 6.1

Qmds
T , εt ∼ mds

T = 100 T = 200 T = 500

8.60 7.04 6.9
9.10 11.03 14.8
10.66 12.04 18.1
14.29 18.68 28.1
17.14 25.07 38.5
11.58 17.00 31.6
18.69 32.69 60.5
29.15 51.25 82.9

4.53 4.50 5.2
4.70 4.89 4.7
5.09 5.26 4.8
5.66 5.79 6.8
5.53 5.60 5.7

3.99 3.83 4.4
4.27 4.26 4.9
4.54 4.88 6.2
5.13 5.51 6.3
5.37 5.64 5.1

Note: See note for Table 1.

3.6. Empirical Application

In this section, we replicate the empirical analysis of Lanne et al. (2013) on four
series of quarterly US returns for market and value-weighted size-ordered portfolios
using all NYSE, AMEX, and NASDAQ stocks obtained from Kenneth French web
page in June 2022. We use the same time span (1947:1 to 2007:12) to collect monthly
data, which is transformed into quarterly returns (T = 732) . This frequency choice
of Lanne et al. (2013) is motivated in terms of suitability of the ARMA(1, 1) speci-
fication because otherwise higher frequency return series display strong conditional
heteroskedasticity and very weak autocorrelation. Further, higher kurtosis moti-
vates the choice of the t distribution for the innovations, but we remain agnostic
about the distribution of shocks by using our methods based on general dependence
measures.

Our iid causal and non-invertible ARMA(1, 1) estimation results based on mini-
mizing Qiid

T in Table 3 are only similar to those of Lanne et al. (2013) for the Bottom
30% series, but differ for the other three series, with the ARMA specification with
iid errors being seriously questioned for all return series by Hong (1999) indepen-
dence test applied to model residuals, though from our residual specification test, no
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further lags would improve the fitting. In parallel, the AP model (HAP/iid) cannot
be rejected in favor of the general ARMA specification using LM and Wald tests, nor
its residuals seem to display serial dependence for all series, in agreement with Lanne
et al. (2013) results. These potential problems of specification imposing iid errors
can also explain the discrepancy between the restricted and unrestricted parameter
estimates for some series.

However, both LM and Wald tests confirm that the AP model is able to detect
the serial dependence of observations (though the LM test cannot reject H(AP )

iid for
Bottom 30% returns). Again, this conclusion matches the qualitative results of
Lanne et al. (2013) based on LR and Wald tests for the t distribution. The direct
single-step LM tests of Hiid against H1

iid, despite arriving to the same conclusion,
have less power than Wald tests, as expected, and also than the omnibus Hong’s
test in terms of p-values.

The results of Table 4 when only mds is imposed on model errors, show that
both ARMA and AP models provide a good fit according to this identification
hypothesis, with restricted AP estimates very similar to unrestricted ARMA(1, 1)
ones for all return series. The AP model (HAP/mds) is never rejected in favour of
the general ARMA one as under iid while Wald tests reject the mds hypothesis
H

(AP )
mds in favour of the AP model for all four returns with the LM tests rejecting

also for all returns at the 10% level, except for Bottom 30% returns. Finally, the
mds hypothesis Hmds is not rejected at any usual significance level in favour of the
general ARMA model using Hong tests (and only for two series using the LM tests),
showing that this testing strategy can be less effective than the one testing mds

against the AP model under the alternative when autocorrelation is weak but there
is nonlinear dependence.

3.7. Conclusions

In this paper, we have shown how to construct tests of predictability of observed
series and model residuals which allow for higher-order dependence on observations
or model errors. We use a parametric ARMA(1, 1) specification to describe both
linear and non-linear dependence using its all-pass variant and propose Lagrange
Multiplier tests which avoid estimation of the complete model. Our finite sample
analysis shows that the performance of the new tests is reasonable for moderate
sample sizes, but power depends crucially on the true distribution of innovations,
so it seems worth exploring alternative characterizations of the past information to
those implied by the characteristic function as well as optimal weighting an scaling.
Further, in the same way as our empirical application found that Wald tests could
be more powerful than LM tests, also pseudo likelihood ratio tests based on Qmds

T
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Table 3.6.1: iid estimation and tests for quarterly returns.

Portfolio
Market Bottom 30% Middle 40% Top 30%

ARMA(1, 1)
ϕ0 -0.448 0.657 -0.443 -0.462

(.102) (.076) (.103) (.116)
θ0 -0.547 0.673 -0.552 -0.559

(.101) (.076) (.103) (.111)
Qiid
T 2.706 3.915 4.022 2.444˜︃LMARMA−AP

T 0.990 0.572 0.500 0.943
Res. Hongiid 0.003 0.114 0.000 0.003

AP(1, 1)
ϕ0 -0.472 0.663 0.665 -0.493

(.101) (.071) (.063) (.109)
Qiid
T 3.015 3.922 4.048 2.764˜︃LMARMA−AP

T 0.880 0.015 0.024 0.967
Res. Hongiid 0.492 0.250 0.040 0.621

HAP/iid : ϕ0 = θ0 vs H1
AP/iid : ϕ0 ≠ θ0˜︃LMAP

T 0.438 0.522 0.529 0.428
Wald 0.104 0.754 0.073 0.117

H
(AP )
iid : ϕ0 = 0 vs H

(AP )1
iid : ϕ0 ≠ 0

LMAP
T 0.002 0.881 0.029 0.002

Wald 0.000 0.000 0.000 0.000
Hiid : (ϕ0, θ0) = 0 vs H1

iid : (ϕ0, θ0) ≠ 0
LMARMA

T 0.006 0.966 0.092 0.006
Wald 0.000 0.000 0.000 0.000
Hongiid 0.001 0.102 0.000 0.002
Note: See text for data description. Estimates and tests based
on Qiid

T described in Appendix B with m =
⌊︂
T 1/3

⌋︂
+ 1 = 6.

Standard error of estimates in parenthesis computed under the
iid assumption. For tests p-values are reported, in bold when
lower than 0.05.

and Qiid
T could be considered.
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Table 3.6.2: mds estimation and tests for quarterly returns.

Portfolio
Market Bottom 30% Middle 40% Top 30%

ARMA(1, 1)
ϕ0 0623 0.604 0.532 0.682

(.120) (.151) (.132) (.120)
θ0 0.646 0.675 0.630 0.663

(.113) (.143) (.123) (.111)
Qmds
T 4.606 5.462 5.830 4.455˜︃LMARMA−AP

T 0.775 0.000 0.712 0.668
Res. Hongmds 0.826 0.514 0.474 0.374

AP(1, 1)
ϕ0 0.657 0.622 0.601 0.660

(.103) (.144) (.124) (.097)
Qmds
T 4.693 6.039 6.921 4.517˜︃LMARMA−AP

T 0.918 0.709 0.805 0.742
Res. Hongmds 0.598 0.870 0.548 0.552

HAP/mds : ϕ0 = θ0 vs H1
AP/mds : ϕ0 ≠ θ0˜︃LMAP

T 0.923 0.383 0.323 0.546
Wald 0.650 0.223 0.123 0.710

H
(AP )
mds : ϕ0 = 0 vs H

(AP )1
mds : ϕ0 ≠ 0

LMAP
T 0.023 0.363 0.055 0.028

Wald 0.000 0.000 0.000 0.000
Hmds : (ϕ0, θ0) = 0 vs H1

mds : (ϕ0, θ0) ≠ 0
LMARMA

T 0.049 0.267 0.151 0.039
Wald 0.000 0.000 0.000 0.000
Hongmds 0.583 0.728 0.324 0.551
Note: See text for data description. Estimates and tests based on
Qmds
T with m =

⌊︂
T 1/3

⌋︂
+ 1 = 6. Standard error of estimates in

parenthesis. For tests, p-values are reported, in bold when lower
than 0.05.

3.8. Appendix A: Proofs of Section 2

Proof of Theorem 1. The third-order spectral density of the mds εt satisfies

f ε3 (λ) = 1
(2π)2

∞∑︂
j,k=−∞

κε3 (j, k) exp (−i (jλ1 + kλ2))

= 1
(2π)2

∞∑︂
j=0

κε3 (j, j) exp (−ij (λ1 + λ2))

+ 1
(2π)2

−1∑︂
j=−∞

κε3 (j, 0) {exp (−ijλ1) + exp (−ijλ2)} ,

= κε3 (0, 0)
(2π)2 +

∞∑︂
j=1

κε3 (j, j)
(2π)2 {exp (−ij (λ1 + λ2)) + exp (ijλ1) + exp (ijλ2)}
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and the joint cumulants κX3 (r, s) are obtained inverting fX3 (λ) as

κX3 (r, s) =
∫︂
fX3 (λ) exp (i (rλ1 + sλ2)) dλ1dλ2

=
∫︂
f ε3 (λ)ψ (λ1)ψ (λ2)ψ (−λ1 − λ2) exp (i (rλ1 + sλ2)) dλ1dλ2

=
∞∑︂
j=0

κε3 (j, j)
(2π)2

∫︂
exp (−i(j − r)λ1 − i(j − s)λ2)ψ (λ1)ψ (λ2)ψ (−λ1 − λ2) dλ1dλ2

+
−1∑︂

j=−∞

κε3 (j, 0)
(2π)2

∫︂
exp (−i(j − r)λ1) + exp (−i(j − s)λ2)ψ (λ1)ψ (λ2)ψ (−λ1 − λ2) dλ1dλ2.

Then for a general mds εt with κε3 (0, 0) ≠ 0 and for which the future ε2
t+ℓ could

be predicted by the past level εt, so that it is only possible that for some m > 0

κε3 (m,m) = κε3 (−m, 0) = κε3 (0,−m) ≠ 0.

Then, we can decompose κX3 (j, k) into the contributions of κε3 (0, 0) and κε3 (m,m)
for m > 0, i.e.

κX3 (j, k) = κ
[iid]
X,3 (j, k) +

∞∑︂
m=1

κ
[m]
X,3 (j, k) ,

where the additional terms wrt the iid case due to predictability of squares are,
m = 1, 2, . . . ,

κ
[m]
X,3 (j, k) = κε3 (m,m)

(2π)2

∫︂ {︂
e−i(λ1+λ2)m + eiλ1m + eiλ2m

}︂
ψ
(︂
e−iλ1

)︂
ψ
(︂
e−iλ2

)︂
ψ
(︂
ei(λ1+λ2)

)︂
ei(jλ1+kλ2)dλ1dλ2

= κε3 (m,m)
(2π)2

∞∑︂
a=0

∞∑︂
b=0

∞∑︂
c=0

ψaψbψc

∫︂ ⎧⎪⎨⎪⎩
eiλ1(−a+c+j−m)eiλ2(−b+c+k−m)

+eiλ1(−a+c+j+m)eiλ2(−b+c+k)

+eiλ1(−a+c+j)eiλ2(−b+c+k+m)

⎫⎪⎬⎪⎭ dλ1dλ2

= κε3 (m,m)
{︄ ∑︁∞

c=max{0,−j−m,−k−m} ψc+j−mψc+k−mψc +∑︁∞
c=max{0,−j+m,−k} ψc+j+mψc+kψc

+∑︁∞
c=max{0,−j,−k+m} ψc+jψc+k+mψc

}︄

= κε3 (m,m)
κε3 (0, 0)

{︂
κ

[iid]
X (j −m, k −m) + κ

[iid]
X (j +m, k) + κ

[iid]
X (j, k +m)

}︂
,

and the theorem follows. □

The additional terms in the fourth-order joint cumulant of an all-pass model as
described in Theorem 2 are, m = 1, 2, . . . ,

κ
[1,m]
X,4 (j, k, ℓ)

= κε4 (m,m,m)
κε4 (0, 0, 0)

{︂
κ

[iid]
X,4 (j −m, k −m, ℓ−m) + κ

[iid]
X,4 (j +m, k, ℓ) + κ

[iid]
X,4 (j, k +m, ℓ) + κ

[iid]
X,4 (j, k, ℓ+m)

}︂
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while κ[2,m,n]
X,4 (j, k, ℓ) for m > 0, n < m is given by

κ
[2,m,n]
X,4 (j, k, ℓ)

= κε4 (m,m, n)
κε4 (0, 0, 0)

{︂
κ

[iid]
X,4 (j −m, k −m, ℓ− n) + κ

[iid]
X,4 (j −m, k − n, ℓ−m) + κ

[iid]
X,4 (j − n, k −m, ℓ−m)

}︂
,

and κ
[3,m,n]
X,4 (j, k, ℓ) for m > 0, n > 0 is given by

κ
[3,m,n]
X,4 (j, k, ℓ)

= κε4 (0,−m,−n)
κε4 (0, 0, 0)

{︂
κ

[iid]
X,4 (j, k +m, ℓ+ n) + κ

[iid]
X,4 (j +m, k, ℓ+ n) + κ

[iid]
X,4 (j +m, k + n, ℓ)

}︂
.

Proof of Theorem 2. The fourth-order spectral density of a mds εt, f
ε
4 (λ), is

given by

1
(2π)3

∞∑︂
j,k,ℓ=−∞

κε4 (j, k, ℓ) exp (−i (jλ1 + kλ2 + ℓλ3))

=
∞∑︂
j=0

κε4 (j, j, j)
(2π)3 exp (−ij (λ1 + λ2 + λ3)) +

−1∑︂
j=−∞

κε4 (j, 0, 0)
(2π)3

{︄
exp (−ijλ1) + exp (−ijλ2)

+ exp (−ijλ3)

}︄

+
∞∑︂
j=1

j−1∑︂
k=−∞

κε4 (j, j, k)
(2π)3 {exp (−ij(λ1 + λ2) − ikλ3) + exp (−ij(λ1 + λ3) − ikλ2) + exp (−ij(λ2 + λ3) − ikλ1)}

+
−1∑︂

j=−∞

−1∑︂
k=−∞

κε4 (0, j, k)
(2π)3 {exp (−ijλ2 − ikλ3) + exp (−ijλ1 − ikλ3) + exp (−ijλ1 − ikλ2)}

= κε4 (0, 0, 0)
(2π)3 + 1

(2π)3

∞∑︂
j=1

κε4 (j, j, j)
(2π)3 {exp (−ij (λ1 + λ2 + λ3)) + exp (ijλ1) + exp (ijλ2) + exp (ijλ3)}

+
∞∑︂
j=1

∞∑︂
k=1−j

κε4 (j, j,−k)
(2π)3 {exp (−ij(λ1 + λ2) + ikλ3) + exp (−ij(λ1 + λ3) + ikλ2) + exp (−ij(λ2 + λ3) + ikλ1)}

+
∞∑︂
j=1

∞∑︂
k=1

κε4 (0,−j,−k)
(2π)3 {exp (ijλ2 + ikλ3) + exp (ijλ1 + ikλ3) + exp (ijλ1 + ikλ2)} ,

and denoting ψ[4] := ψ (λ1)ψ (λ2)ψ (λ3)ψ (−λ1 − λ2 − λ3) for ψ (λ) = ψ
(︂
e−iλ

)︂
and
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dλ[4] := dλ1dλ2dλ3, its inverse is

κX4 (r, s, t) =
∫︂
fX4 (λ) exp (i (rλ1 + sλ2 + tλ3)) dλ1dλ2dλ3

=
∫︂
f ε3 (λ)ψ (λ1)ψ (λ2)ψ (λ3)ψ (−λ1 − λ2 − λ3) exp (i (rλ1 + sλ2 + tλ3)) dλ1dλ2dλ3

=
∞∑︂
j=0

κε4 (j, j, j)
(2π)3

∫︂
exp (−i(j − r)λ1 − i(j − s)λ2 − i(j − t)λ3)ψ[4]dλ[4]

+
−1∑︂

j=−∞

κε4 (j, 0, 0)
(2π)3

∫︂
{exp (−i(j − r)λ1) + exp (−i(j − s)λ2 + exp (−i(j − t)λ3))}ψ[4]dλ[4]

+
∞∑︂
j=1

j−1∑︂
k=−∞

κε4 (j, j, k)
(2π)3

∫︂ ⎧⎪⎨⎪⎩
exp (−i(j − r)λ1 − i(j − s)λ2 − i(k − t)λ3)

+ exp (−i(j − r)λ1 − i(j − t)λ3 − i(k − s)λ2)
+ exp (−i(j − s)λ2 − i(j − t)λ3 − i(k − r)λ1)

⎫⎪⎬⎪⎭ψ[4]dλ[4]

+
−1∑︂

j=−∞

−1∑︂
k=−∞

κε4 (0, j, k)
(2π)3

∫︂ ⎧⎪⎨⎪⎩
exp (−i(j − s)λ2 − i(k − t)λ3 + irλ1)

+ exp (−i(j − r)λ1 − i(k − t)λ3 + isλ2)
+ exp (−i(j − r)λ1 − i(k − s)λ2 + itλ3)

⎫⎪⎬⎪⎭ψ[4]dλ[4].

Then we can decompose κX4 (j, k, ℓ) into the contributions of κε4 := κε4 (0, 0, 0) (iid
contribution) and those of κε4 (m,m,m) for m > 0, κε4 (m,m, n) for m > 0, n < m

and κε4 (0,−m,−n) for m > 0, n > 0 i.e.

κX4 (j, k, ℓ) = κ
[iid]
X,4 (j, k, ℓ) +

∞∑︂
m=1

κ
[1,m]
X,4 (j, k, ℓ)

+
∞∑︂
m=1

n−1∑︂
n=−∞

κ
[2,m,n]
X,4 (j, k, ℓ) +

∞∑︂
m=1

∞∑︂
n=1

κ
[3,m,n]
X,4 (j, k, ℓ) ,

where the additional terms wrt the iid case due to predictability of squares are,
κ

[1,m]
X,4 (j, k, ℓ) , m = 1, 2, . . . , given by

κ
[1,m]
X,4 (j, k, ℓ)

= κε4 (m,m,m)
(2π)3

∫︂ {︂
e−i(λ1+λ2+λ3)m + eiλ1m + eiλ2m + eiλ3m

}︂
ei(jλ1+kλ2+ℓλ3)ψ[4]dλ[4]

= κε4 (m,m,m)
(2π)3

∞∑︂
a=0

∞∑︂
b=0

∞∑︂
c=0

∞∑︂
d=0

ψaψbψcψd

∫︂ ⎧⎪⎪⎪⎨⎪⎪⎪⎩
eiλ1(−a+d+j−m)eiλ2(−b+d+k−m)eiλ3(−c+d+ℓ−m)

+eiλ1(−a+d+j+m)eiλ2(−b+d+k)eiλ3(−c+d+ℓ)

+eiλ1(−a+d+j)eiλ2(−b+d+k+m)eiλ3(−c+d+ℓ)

+eiλ1(−a+d+j)eiλ2(−b+d+k)eiλ3(−c+d+ℓ+m)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ dλ
[4]

= κε4 (m,m,m)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁∞
d=max{0,−j+m,−k+m,−ℓ+m} ψd+j−mψd+k−mψd+ℓ−mψd

+∑︁∞
d=max{0,−j−m,−k,−ℓ} ψd+j+mψd+kψd+ℓψd

+∑︁∞
d=max{0,−j,−k−m,−ℓ} ψd+jψd+k+mψd+ℓψd

+∑︁∞
d=max{0,−j,−k,−ℓ−m} ψd+jψd+kψd+ℓ+mψd

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= κε3 (m,m,m)

κε4 (0, 0, 0)
{︂
κ

[iid]
X,4 (j −m, k −m, ℓ−m) + κ

[iid]
X,4 (j +m, k, ℓ) + κ

[iid]
X,4 (j, k +m, ℓ) + κ

[iid]
X,4 (j, k, ℓ+m)

}︂
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while κ[2,m,n]
X,4 (j, k, ℓ) for m > 0, n < m is given by

κ
[2,m,n]
X,4 (j, k, ℓ)

= κε4 (m,m, n)
(2π)3

∫︂ {︂
e−i(λ1+λ2)m−iλ3n + e−i(λ1+λ3)m−iλ2n + e−i(λ2+λ3)m−iλ1n

}︂
ei(jλ1+kλ2+ℓλ3)ψ[4]dλ[4]

= κε4 (m,m, n)
(2π)3

∞∑︂
a=0

∞∑︂
b=0

∞∑︂
c=0

∞∑︂
d=0

ψaψbψcψd

∫︂ ⎧⎪⎨⎪⎩
e−iλ1(m+a−d−j)−iλ2(m+b−d−k)−iλ3(n+c−d−ℓ)

+e−iλ1(m+a−d−j)−iλ2(n+b−d−k)−iλ3(m+c−d−ℓ)

+e−iλ1(n+a−d−j)−iλ2(m+b−d−k)−iλ3(m+c−d−ℓ)

⎫⎪⎬⎪⎭ dλ[4]

= κε4 (m,m, n)

⎧⎪⎨⎪⎩
∑︁∞
d=max{0,−j+m,−k+m,−ℓ+n} ψd+j−mψd+k−mψd+ℓ−nψd

+∑︁∞
d=max{0,−j+m,−k+n,−ℓ+m} ψd+j−mψd+k−nψd+ℓ−mψd

+∑︁∞
d=max{0,−j+n,−k+m,−ℓ+m} ψd+j−nψd+k−mψd+ℓ−mψd

⎫⎪⎬⎪⎭
= κε3 (m,m, n)

κε4 (0, 0, 0)
{︂
κ

[iid]
X,4 (j −m, k −m, ℓ− n) + κ

[iid]
X,4 (j −m, k − n, ℓ−m) + κ

[iid]
X,4 (j − n, k −m, ℓ−m)

}︂
,

and κ
[3,m,n]
X,4 (j, k, ℓ) for m > 0, n > 0 is given by

κ
[3,m,n]
X,4 (j, k, ℓ)

= κε4 (0,−m,−n)
(2π)3

∫︂ {︂
eiλ2m+iλ3n + eiλ1m+iλ3n + eiλ1m+iλ2n

}︂
ei(jλ1+kλ2+ℓλ3)ψ[4]dλ[4]

= κε4 (0,−m,−n)
(2π)3

∞∑︂
a=0

∞∑︂
b=0

∞∑︂
c=0

∞∑︂
d=0

ψaψbψcψd

∫︂ ⎧⎪⎨⎪⎩
eiλ1(j−a+d)+iλ2(m+k−b+d)+iλ3(n+ℓ−c+d)

+eiλ1(m+j−a+d)+iλ2(k−b+d)iλ3(n+ℓ−c+d)

+eiλ1(m+j−a+d)+iλ2(n+k−b+d)+iλ3(ℓ−c+d)

⎫⎪⎬⎪⎭ dλ[4]

= κε4 (0,−m,−n)

⎧⎪⎨⎪⎩
∑︁∞
d=max{0,−j,−k−m,−ℓ−n} ψd+jψd+k+mψd+ℓ+nψd

+∑︁∞
d=max{0,−j−m,−k,−ℓ−n} ψd+j+mψd+kψd+ℓ+nψd

+∑︁∞
d=max{0,−j−m,−k−n,−ℓ} ψd+j+mψd+k+nψd+ℓψd

⎫⎪⎬⎪⎭
= κε4 (0,−m,−n)

κε4 (0, 0, 0)
{︂
κ

[iid]
X,4 (j, k +m, ℓ+ n) + κ

[iid]
X,4 (j +m, k, ℓ+ n) + κ

[iid]
X,4 (j +m, k + n, ℓ)

}︂
,

and the theorem follows. □

Proof of Theorem 3. The squares of εt have autocorrelation function given for
j ≠ 0 by

C
(︂
ε2
t , ε

2
t+j

)︂
= E

[︂
ε2
t ε

2
t+j

]︂
− σ4

= E
[︂
ε2
t

]︂
⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞

=σ2

E
[︂
ε2
t+j

]︂
⏞̄ ˉ̄ ˉ̄ ˉ̄⏟⏟̄ ˉ̄ ˉ̄ ˉ̄⏞

=σ2

+2E [εtεt+j]2⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=0

+cum [εt, εt, εt+j, εt+j] − σ4

= cum [εt, εt, εt+j, εt+j]
= κε4 (0, j, j) ,

while for j = 0, C (ε2
t , ε

2
t ) = V (ε2

t ) = 2σ4
ε + κε4 (0, 0, 0) , so that

f ε
2

2 (λ) = 1
2π

∞∑︂
j=−∞

κε4 (0, j, j) exp (−ijλ) + 2σ4
ε

2π ,
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which is closely related to the 4-th order spectral density of the levels εt,

f ε4 (λ1, λ2, λ3) = 1
(2π)3

∞∑︂
a,b,c=−∞

κε4 (a, b, c) exp (−iaλ1 − ibλ2 − icλ3) ,

because
∫︂

Π2
f ε4 (λ1, λ2, λ− λ2) dλ1dλ2 =

∞∑︂
a,b,c=−∞

κε4 (a, b, c)
(2π)3

∫︂
Π2

exp (−iaλ1 − ibλ2 − ic (λ− λ2)) dλ1dλ2

=
∞∑︂

a,b,c=−∞

κε4 (a, b, c)
(2π)3 exp (−icλ)

∫︂
Π2

exp (−iaλ1 − i (b− c)λ2) dλ1dλ2

=
∞∑︂

a,b,c=−∞

κε4 (a, b, c)
2π exp (−icλ) (2π)2 1 {a = 0} 1 {b = c}

=
∞∑︂

c=−∞

κε4 (0, c, c)
2π exp (−icλ)

= f ε
2

2 (λ) − 2σ4
ε

2π .

We now proceed for p = 2 to reduce notation complexity. Assume that the
causal AR inverse roots satisfy |ϕj| < 1 and the noninvertible MA ones are given by
ψj = 1/ϕj, so that

f ε4 (λ1, λ2, λ3)

= κ4

(2π)3

2∏︂
j=1

(1 + ψj exp (iλ1)) (1 + ψj exp (iλ2)) (1 + ψj exp (iλ3)) (1 + ψj exp (−i (λ1 + λ2 + λ3)))
(1 + ϕj exp (iλ1)) (1 + ϕj exp (iλ2)) (1 + ϕj exp (iλ3)) (1 + ϕj exp (−i (λ1 + λ2 + λ3)))

and, ρ := ϕ1ϕ
−1
2 , 0 < |ρ| < 1 or 0 < |ϕ1| < |ϕ2| < 1,

f ε
2

2 (λ) − σ4

2π
=

∫︂
Π2
fX4 (λ1, λ2, λ− λ2) dλ1dλ2

= κ4

2π
1

2π

∫︂
Π

2∏︂
j=1

(1 + ψj exp (iλ2)) (1 + ψj exp (i (λ− λ2)))
(1 + ϕj exp (iλ2)) (1 + ϕj exp (i (λ− λ2)))

dλ2

× 1
2π

∫︂
Π

2∏︂
j=1

(1 + ψj exp (iλ1)) (1 + ψj exp (−i (λ+ λ1)))
(1 + ϕj exp (iλ1)) (1 + ϕj exp (−i (λ+ λ1)))

dλ1

= κ4

2π
(︂
1 −

(︂
ϕ1ϕ

−1
2

)︂)︂2

⃓⃓⃓⃓
⃓ 1 + ψ1ψ2 {ψ2

2 − ρ− 1} + exp (iλ) {ψ2
2 + ψ1ψ2 − ρ−1 − 1}

+ exp (i2λ) {ψ2
1ψ

2
2 − ψ1 (ψ1 + ψ2) + ρ−1}

⃓⃓⃓⃓
⃓
2

⃓⃓⃓
(1 − (ϕ2ϕ1) exp (iλ))

(︂
1 − (ϕ2)2 exp (iλ)

)︂⃓⃓⃓2
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because

1
2π

∫︂
Π

2∏︂
j=1

(1 + ψj exp (iλ2)) (1 + ψj exp (i (λ− λ2)))
(1 + ϕj exp (iλ2)) (1 + ϕj exp (i (λ− λ2)))

dλ2

= 1
2π

∫︂
Π

(1 + ψ1 exp (iλ2)) (1 + ψ2 exp (iλ2))

× (1 + ψ1 exp (i (λ− λ2))) (1 + ψ2 exp (i (λ− λ2)))

×

⎛⎝ ∞∑︂
j=0

(−ϕ1)j exp (ijλ2)
⎞⎠⎛⎝ ∞∑︂

j=0
(−ϕ2)j exp (ijλ2)

⎞⎠
×

⎛⎝ ∞∑︂
j=0

(−ϕ1)j exp (ij (λ− λ2))
⎞⎠⎛⎝ ∞∑︂

j=0
(−ϕ2)j exp (ij (λ− λ2))

⎞⎠ dλ2

= 1 + ψ1ψ2 {ψ2
2 − ρ− 1} + exp (iλ) {ψ2

2 + ψ1ψ2 − ρ−1 − 1} + exp (i2λ) {ψ2
1ψ

2
2 − ψ1 (ψ1 + ψ2) + ρ−1}(︂

1 −
(︂
ϕ1ϕ

−1
2

)︂)︂2
(1 − (ϕ2ϕ1) exp (iλ))

(︂
1 − (ϕ2)2 exp (iλ)

)︂ ,

which can be showed studying the 16 = 24 terms obtained after making the multi-
plication of the 4 binomials in the numerator, while the denominator corresponds
to AR(2) dynamics.

The first six terms not depending on λ2 are,
(︂
1 + (ψ1 + ψ2)2 exp (iλ) + ψ2

1ψ
2
2 exp (i2λ)

)︂
× 1

2π

∫︂
Π

⎛⎝ ∞∑︂
j1=0

(−ϕ1)j1 exp (ij1λ2)
⎞⎠⎛⎝ ∞∑︂

j2=0
(−ϕ2)j2 exp (ij2λ2)

⎞⎠
×

⎛⎝ ∞∑︂
j3=0

(−ϕ1)j3 exp (ij3 (λ− λ2))
⎞⎠⎛⎝ ∞∑︂

j4=0
(−ϕ2)j4 exp (ij4 (λ− λ2))

⎞⎠ dλ2

=
(︂
1 + (ψ1 + ψ2)2 exp (iλ) + ψ2

1ψ
2
2 exp (i2λ)

)︂
×

⎛⎝ ∞∑︂
j1=0

(ϕ2ϕ1)j1 exp (ij1λ)
⎞⎠⎛⎝ ∞∑︂

j2=0
(ϕ2)2j2 exp (ij2λ)

⎞⎠⎛⎝ ∞∑︂
j3=0

(︂
ϕ1ϕ

−1
2

)︂j3⎞⎠

=

(︂
1 + (ψ1 + ψ2)2 exp (iλ) + ψ2

1ψ
2
2 exp (i2λ)

)︂
(1 − (ϕ2ϕ1) exp (iλ))

(︂
1 − (ϕ2)2 exp (iλ)

)︂ (︂
1 −

(︂
ϕ1ϕ

−1
2

)︂)︂
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The next 10 terms depending on powers of exp (iλ2) are

= 1
2π

∫︂
Π

{ψ1 + ψ2 + ψ1ψ2 (ψ1 + ψ2) exp (iλ)} exp (iλ2)

+ψ1ψ2 exp (i2λ2)
+ {(ψ1 + ψ2) exp (iλ) + ψ1ψ2 (ψ1 + ψ2) exp (i2λ)} exp (−iλ2)
+ψ1ψ2 exp (i2λ) exp (−i2λ2)

×

⎛⎝ ∞∑︂
j1=0

(−ϕ1)j1 exp (ij1λ2)
⎞⎠⎛⎝ ∞∑︂

j2=0
(−ϕ2)j2 exp (ij2λ2)

⎞⎠
×

⎛⎝ ∞∑︂
j3=0

(−ϕ1)j3 exp (ij3 (λ− λ2))
⎞⎠⎛⎝ ∞∑︂

j4=0
(−ϕ2)j4 exp (ij4 (λ− λ2))

⎞⎠ dλ2

which is equal to

1
(1 − (ϕ2ϕ1) exp (iλ))

(︂
1 − (ϕ2)2 exp (iλ)

)︂ (︂
1 −

(︂
ϕ1ϕ

−1
2

)︂)︂

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ϕ2 {ψ1 + ψ2 + ψ1ψ2 (ψ1 + ψ2) exp (iλ)} exp (iλ)

+ϕ2
2ψ1ψ2 exp (i2λ)

−ϕ−1
2 {(ψ1 + ψ2) exp (iλ) + ψ1ψ2 (ψ1 + ψ2) exp (i2λ)} exp (−iλ)

+ϕ−2
2 ψ1ψ2 exp (i2λ) exp (−i2λ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where the numerator is, ρ := ϕ1ϕ

−1
2 = ψ2ψ

−1
1 ,

ψ2ψ1
{︂
ψ2

2 − ρ− 1
}︂
+exp (iλ)

{︂
−ψ2

2ψ1 (ψ1 + ψ2) − ρ−1 − 1
}︂
+exp (i2λ)

{︂
−ψ1 (ψ1 + ψ2) + ρ−1

}︂
leading to causal ARMA(2, 2) dynamics together with the previous terms, giving
overall numerator of the rational part of f ε2

2 equal to

1 + (ϕ2ϕ1)−1
{︂
ϕ−2

2 − ρ− 1
}︂

+ exp (iλ)
{︂
(ψ1 + ψ2)2 − ψ2

2ψ1 (ψ1 + ψ2) − ρ−1 − 1
}︂

+ exp (i2λ)
{︂
ψ2

1ψ
2
2 − ψ1 (ψ1 + ψ2) + ρ−1

}︂
,

which is

1+ψ1ψ2
{︂
ψ2

2 − ρ− 1
}︂
+exp (iλ)

{︂
ψ1 (ψ1 + ψ2)

(︂
1 + ρ− ψ2

2

)︂
− ρ−1 − 1

}︂
+exp (i2λ)

{︂
ψ2

1ψ
2
2 − ψ1 (ψ1 + ψ2) + ρ−1

}︂
,

which has to be complemented with the constant term 2σ4
ε

2π , which corresponds to
an additive white noise and does not contribute additionally to the order of the
ARMA(2, 2) representation.

For a general ARMA(p, p) all pass model, a similar solution is always found

f2,ε2 (λ) = κε4 (0, 0, 0)
⃓⃓⃓
g
(︂
eiλ
)︂⃓⃓⃓2

+ 2σ4
ε

2π
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where g
(︂
eiλ
)︂

is the rational transfer function of an ARMA(p, p) model, because
all terms of the integrals have the same denominator as a factorization of p terms
1 − cje

iλ (originating from the p infinite series depending on eiλ) which lead to a
numerator which is a polynomial in eiλ of order p. □

3.9. Appendix B

3.9.1. General ARMA(p,p) model

The general (non-invertible) ARMA(p, p) model extending model (3.3.2) can be
written as

Πp
j=1 (1 − ϕjL)Yt = Πp

j=1

(︂
1 − θjL

−1
)︂
Lpεt

where 0 < |ϕj| < 1 and 0 < |θj| < 1 for all j, or equivalently

α (L)Yt = β
(︂
L−1

)︂
Lpεt (3.9.1)

where α (z) = 1−α1z−· · ·−αpzp = Πp
j=1 (1 − ϕjz) and β (z) = 1−β1z−· · ·−βpzp =

Πp
j=1 (1 − θjL

−1) with αp ≠ 0 and βp ≠ 0. When the model is all-pass so that ϕj = θj

for each j = 1, . . . , p then αj = βj, j = 1, . . . , p, and we can write

α (L)Yt = α
(︂
L−1

)︂
Lpεt. (3.9.2)

In particular, for mds εt, we consider testing the AP(p, p) hypothesis against
general non-invertible ARMA models,

HAP/mds : αj = βj for all j = 1, . . . , p in model (3.9.1) ,
H1
AP/mds : αj ≠ βj, for at least one j = 1, . . . , p

and testing the mds hypothesis against AP(p, p) and

H
(AP )
mds : αj = 0 for all j = 1, . . . , p in model (3.9.2) ,

H
(AP )1
mds : αj ≠ 0, for at least one j = 1, . . . , p

against unrestricted but non-invertible ARMA(p, p) models

Hmds : αj = βj = 0 for all j = 1, . . . , p in model (3.9.1) ,
H1
mds : αj ≠ 0 and/or βj ≠ 0 for at least one j = 1, . . . , p.

Then, the testing will follow in a similar way, but adapting the scores to the general
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model with

ψ (ϑ0; z) = β (z−1)
α (z) = 1 − β1z

−1 − · · · − βpz
−p

1 − α1z − · · · − αpzp
for ARMA (p, p) model

ψ (ϑ0; z) = α (z−1)
α (z) = 1 − α1z

−1 − · · · − αpz
−p

1 − α1z − · · · − αpzp
for AP (p, p) model

for ϑ0 = (α1, . . . , αp, β1, . . . , βp)′ and ϑ0 = (α1, . . . , αp)′ , respectively, and therefore

δ (ϑ0; z) = − ∂

∂ϑ
logψ (ϑ0; z) (3.9.3)

= − ∂

∂ϑ
log

(︂
1 − β1z

−1 − · · · − βpz
−p
)︂

+ ∂

∂ϑ
log (1 − α1z − · · · − αpz

p)

=
(︄

z−1

β (z−1) , · · · , z−p

β (z−1) ,−
z

α (z) , · · · ,− zp

α (z)

)︄′

=
(︂
z−1, · · · , z−p, −z, · · · ,−zp

)︂′
when ϑ0 = (α1, . . . , αp, β1, . . . , βp)′ = 0 for ARMA (p, p)

while

δ (ϑ0; z) = − ∂

∂ϑ
logψ (ϑ0; z)

= − ∂

∂ϑ
log

(︂
1 − α1z

−1 − · · · − αpz
−p
)︂

+ ∂

∂ϑ
log (1 − α1z − · · · − αpz

p)

=
(︄

z−1

α (z−1) − z

α (z) , · · · , z−p

α (z−1) − zp

α (z)

)︄

=
(︂
z−1 − z, · · · , z−p − zp

)︂′
when ϑ0 = (α1, . . . , αp)′ = 0 for AP (p, p) .

Therefore, for ARMA processes only ζ0
j (v) ≠ 0 and β0

j (v) ≠ 0 for j = 1, . . . , p.

The LM testing of the AP model against ARMA, HAP : ϕ0 = θ0 in model
(3.9.1) requires to parametrize γj := αj − βj for j = 1, . . . , p and test H∗

AP : γj = 0
all j = 1, . . . , p in

(1 − α1L− · · · − αpL
p)Yt =

(︂
1 − α1L

−1 + γ1L
−1 − · · · − αpL

−p − γpL
−p
)︂
εt−1,

so that for ϑ∗
0 = (γ1, . . . , γp, α1, . . . , αp)′ ,

ψ (ϑ∗
0; z) = 1 − α1z

−1 + γ1z
−1 − · · · − αpz

−p − γpz
−p

1 − α1z − · · · − αpzp
for ARMA (p, p) model

and therefore
δ (ϑ∗; z) = ∂

∂ϑ
ϕ (ϑ∗; z) = −

∂
∂ϑ
ψ (ϑ∗; z)
ψ (ϑ∗; z)

ψ (ϑ∗
0; z)

ψ (ϑ∗; z)
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and

δ (ϑ∗
0; z) = − ∂

∂ϑ∗ logψ (ϑ∗
0; z)

= − ∂

∂ϑ∗ log
(︂
1 − α1z

−1 + γ1z
−1 − · · · − αpz

−p − γpz
−p
)︂

+ ∂

∂ϑ∗ log (1 − α1z − · · · − αpz
p)

=
(︄

− z−1

(α + γ) (z−1) , · · · ,− z−p

(α + γ) (z−1) ,
z−1

(α + γ) (z−1) − z

α (z) , · · · , z−p

(α + γ) (z−1) − zp

α (z)

)︄′

=
(︄

− z−1

α (z−1) , · · · ,− z−p

α (z−1) ,
z−1

α (z−1) − z

α (z) , · · · , z−p

α (z−1) − zp

α (z)

)︄′

when ϑ∗
0 = (0′, α1, . . . , αp)′ for AP(p, p) model, so that

δ (ϑ∗
0; z) = A(p)δARMA (ϑ0; z) for A(p) = (A⊗ Ip) =

(︄
−Ip 0
Ip Ip

)︄

with ϑ∗ = A(p)′ϑ and ϑ = A(p)′ϑ∗.

3.9.2. Technical Assumptions

Assumption 3.1. For non-Gaussian εt (i.e. with nonzero third or fourth order
marginal cumulant) and some ν ≥ 5 :

1. εt is stationary mds, E [εt| It−1] = 0 and E |εt|ν < ∞.

2. εt is strong mixing with mixing coefficients satisfying ∑︁∞
j=1 j

2α (j)
ν−4

ν < ∞.

Assumption 3.2. W : R → R+ is continuous, symmetric and increasing with
unbounded support and

∫︁
|u|3 dW (u) < ∞.

Assumption 3.3.

1. k : R→ [−1, 1] is symmetric and continuous at 0 and all but a finite number of
points, with k (1) = 1 and |k (x)| ≤ C |x|−b , b ≥ 1, for large x, and 1 −k (x) =
kτ |x|τ + o (x) as x → 0 for some τ ∈ (0,∞) and kτ > 0.

2. 1/m+m2/T → 0 as T → ∞.

Assumption 3.1 is key for identification and to ensure standard local properties
of the score of the loss function Qmds

T under the null hypothesis of mds. Assump-
tion 3.1.2 also implies the mixing condition used in Andrews (1991) for summability
of the fourth-order cumulants and the conditions in Yoshihara (1978) to bound the
fourth moment of sums of mixing processes.
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Assumption 3.2 on W is similar to the corresponding one used in Hong (1999)
to argue for the consistency of serial dependence tests and is stronger than the
nondecreasing with bounded total variation condition he used to derive the null
asymptotic distribution of test statistics. We also introduce a moment condition on
W, to control fluctuations of

⃓⃓⃓
σ

(1,0)
θ,j (u, v)

⃓⃓⃓
in u and v when using derivatives of the

cf, and a factorization, to simplify numerical calculations and asymptotic analysis.

Assumption 3.3.1 was used by Hong (1999) for the analysis of dependence tests
and is standard in the related literature of smoothed spectral density estimation.
Assumption 3.3.2 allows to choose m for optimal MSE estimation of the generalized
spectral densities for standard kernels, but our theory does not provide a rule for
the choice of m because first order asymptotic properties of scores of Qmds

T (ϑ) do
not depend on m once Assumption 3.3.2 holds.

3.9.3. Proofs of Section 3

Proof of Theorem 4. It follows directly from the CLT for the scores of the loss
function Qmds

T in Velasco (2022).

Proof of Theorem 5. From the first-order condition of the restricted AP estima-
tion,

0 = ∂

∂ϑ∗
2
Qmds
T

(︂
ϑ̃

∗
T

)︂
= ∂

∂ϕ
Qmds
T

(︂
ϑ̃

∗
T

)︂
= 2

π

T−1∑︂
j=1

k2
(︃
j

m

)︃(︄
1 − |j|

T

)︄∫︂
2 Re

{︃
σ̂

(1,0)†
ϑ̃

∗
T ,j

(0, v) σ̇(1,0)
ϕ0,j (0, v)

}︃
dW (v) + op

(︂
T−1/2

)︂

where

σ̂
(1,0)†
ϑ̃

∗
T ,j

(0, v) = σ̂
(1,0)†
ϑ∗

0,j
(0, v) +

(︂
ϑ̃

∗
T − ϑ∗

0

)︂′
σ̇

(1,0)
ϑ∗

0,j
(0, v) + op

(︂
T−1/2

)︂
= σ̂

(1,0)†
ϑ∗

0,j
(0, v) +

(︂
ϕ̃T − ϕ0

)︂
σ̇

(1,0)
ϕ0,j (0, v) + op

(︂
T−1/2

)︂
,

we obtain up to op
(︂
T−1/2

)︂
terms,

0 = ∂

∂ϑ∗
2
Qmds
T (ϑ∗

0) + 2
π

T−1∑︂
j=1

k2
(︃
j

m

)︃(︄
1 − |j|

T

)︄∫︂
2 Re

{︃
σ̇

(1,0)
ϕ0,j (0, v) σ̇(1,0)

ϕ0,j (0, v)
}︃
dW (v)

(︂
ϕ̃T − ϕ0

)︂
= ∂

∂ϑ∗
2
Qmds
T (ϑ∗

0) +H∗
22,0

(︂
ϕ̃T − ϕ0

)︂
+ op

(︂
T−1/2

)︂
= A2

∂

∂ϑ
Qmds
T (ϑ0) + A2H

mds
0 A′

2

(︂
ϕ̃T − ϕ0

)︂
+ op

(︂
T−1/2

)︂
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where

Hmds
0 := −

∞∑︂
j=1

∫︂ {︂
ζ0
j (−v) + β0

j (−v)
}︂{︂

ζ0
j (v) + β0

j (v)
}︂′
dW (v) ,

and for A2 = (1 1) ,

ϕ̃T − ϕ0 = −
{︂
A2H

mds
0 A′

2

}︂−1
A2

∂

∂ϑ
Qmds
T (ϑ0) + op

(︂
T−1/2

)︂
.

Similarly, for A1 = (−1, 0) ⊗ Ip,

∂

∂ϑ∗
1
Qmds
T

(︂
ϑ̃

∗
T

)︂
= ∂

∂γ
Qmds
T

(︂
ϑ̃

∗
T

)︂
= ∂

∂ϑ∗
1
Qmds
T (ϑ∗

0) + 2
π

T−1∑︂
j=1

k2
(︃
j

m

)︃(︄
1 − |j|

T

)︄∫︂
2 Re

{︃
σ̇

(1,0)
γ0,j (0, v) σ̇(1,0)

ϕ0,j (0, v)
}︃
dW (v)

(︂
ϕ̃T − ϕ0

)︂
+ op

(︂
T−1/2

)︂
= ∂

∂ϑ∗
1
Qmds
T (ϑ∗

0) +H∗
12,0

(︂
ϕ̃T − ϕ0

)︂
+ op

(︂
T−1/2

)︂
= A1

∂

∂ϑ
Qmds
T (ϑ0) + A1H

mds
0 A′

2

(︂
ϕ̃T − ϕ0

)︂
+ op

(︂
T−1/2

)︂
= A1

∂

∂ϑ
Qmds
T (ϑ0) − A1H

mds
0 A′

2

{︂
A2H

mds
0 A′

2

}︂−1
A2

∂

∂ϑ
Qmds
T (ϑ0) + op

(︂
T−1/2

)︂

or, up to op
(︂
T−1/2

)︂
terms,

∂

∂γ
Qmds
T

(︂
ϑ̃

∗
T

)︂
=

[︃
A1 − A1H

mds
0 A′

2

{︂
A2H

mds
0 A′

2

}︂−1
A2

]︃
∂

∂ϑ
Qmds
T (ϑ0)

=
[︄
Ip

... − A1H
mds
0 A′

2

{︂
A2H

mds
0 A′

2

}︂−1
]︄ [︃
A1

A2

]︃
∂

∂ϑ
Qmds
T (ϑ0)

= Ξ1A
∂

∂ϑ
Qmds
T (ϑ0)

where Ξ1 :=
[︄
Ip

... − A1H
mds
0 A′

2

{︂
A2H

mds
0 A′

2

}︂−1
]︄
, so that

T 1/2 ∂

∂γ
Qmds
T

(︂
ϑ̃

∗
T

)︂
→d N (0, S0)

where
S0 := Ξ1AV

mds
0 A′Ξ′

1

and V mds
0 := V

[︂
εt
(︂
R

(0)
t−1 + S

(0)
t−1

)︂]︂
because εt

(︂
R

(0)
t−1 + S

(0)
t−1

)︂
is a mds,

V mds
0 =

∞∑︂
j=1

∞∑︂
ℓ=1

∫︂ ∫︂
E
[︂
ε2
t z

0
t−j (v) z0

t−ℓ (−u)
]︂

×
{︂
ζ0
j (−v) + β0

j (−v)
}︂{︂

ζ0
ℓ (u) + β0

ℓ (u)
}︂′
dW (v) dW (u) ,
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where

R
(0)
t−1 = i

∞∑︂
j=1

∫︂
z0
t−j (v) ζ0

j (−v) dW (v) , ζ0
j (v) := −

∞∑︂
n=j

δn (θ0)φ(1,0)
j−n (0, v)

S
(0)
t−1 = i

∞∑︂
j=1

∫︂
z0
t−j (v) β0

j (−v) dW (v) , β0
j (v) = −δ−j (ϑ0) vφ(2,0)

j (0, v) .

For calculations we can use Gaussian W, for which we obtain

i
∫︂
ẑt−j (v) β̂j (−v) dW (v)

= δ−j(ϑ̃T )
T − j

T∑︂
r=1+j

ε̂2
r

⎡⎣ (ε̂t−j − ε̂r−j) exp
{︂
−1

2 (ε̂t−j − ε̂r−j)2
}︂

− 1
T−j

∑︁T
t=1+j(ε̂t−j − ε̂r−j) exp

{︂
−1

2 (ε̂t−j − ε̂r−j)2
}︂ ⎤⎦

and

i
∫︂
ẑt−j (v) ζ̂j,m (−v) dW (v) =

T+j−1∑︂
n=|j|

k ((n− j) /m) δn(θ̂)1
i

∫︂
ẑt−j (v) φ̂(1,0)

θ̂,|j|−n (0,−v) dW (v) ,

where, j = 1, 2, . . . , t− 1, n = j, j + 1, . . . , T − 1,

1
i

∫︂
ẑt−j (v) φ̂(1,0)

θ̂,|j|−n (0,−v) dW (v)

= 1
T − n+ j

T−n+j∑︂
r=1

ε̂r

⎡⎣exp
{︃

−1
2 (ε̂t−j − ε̂r+n−j)2

}︃
− 1
T − j

T∑︂
t=1+j

exp
{︃

−1
2 (ε̂t−j − ε̂r+n−j)2

}︃⎤⎦ .

Then, to compute Ĥmds

0,m we need, j = 1, 2, . . . , T − 1,
∫︂
β̂j (−v) β̂j (v)′ dW (v) = −δ−j(ϑ̃T )δ−j(ϑ̃T )′

∫︂
v2
⃓⃓⃓
φ̂

(2,0)
θT ,j

(0, v)
⃓⃓⃓2
dW (v) ,∫︂

ζ̂j,m (−v) ζ̂j,m (v)′ dW (v) =
T+j−1∑︂
n=j

T+j−1∑︂
m=j

k
(︃
n− j

m

)︃
k
(︃
m− j

m

)︃
δn(ϑ̃T )δm(ϑ̃T )′

×
∫︂
φ̂

(1,0)
θT ,j−n (0,−v) φ̂(1,0)

θT ,j−m (0, v) dW (v)

and
∫︁
ζ̂j,m (−v) β̂j (v)′ dW (v) is

T+j−1∑︂
n=j

k
(︃
n− j

m

)︃
δn(ϑ̃T )δ−j(ϑ̃T )′

∫︂
vφ̂

(1,0)
θT ,j−n (0,−v) φ̂(2,0)

θT ,j
(0, v) dW (v) ,

where
∫︂
v2
⃓⃓⃓
φ̂

(2,0)
θT ,j

(0, v)
⃓⃓⃓2
dW (v) = 1

(T − j)2

T∑︂
t=1+j

T∑︂
r=1+j

ε̂2
t ε̂

2
r

(︂
1 − (ε̂t−j − ε̂r−j)2

)︂
exp

{︃
−1

2 (ε̂t−j − ε̂r−j)2
}︃
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and for n = j, j + 1, . . . ,∫︂
φ̂

(1,0)
θT ,|j|−n (0,−v) φ̂(1,0)

θT ,|j|−m (0, v) dW (v)

= − 1
(T − n− j) (T −m− j)

T−n+j∑︂
t=1

T−m+j∑︂
r=1

ε̂tε̂r exp
{︃

−1
2 (ε̂t+n−j − ε̂r+m−j)2

}︃
,

and∫︂
φ̂

(1,0)
θT ,|j|−n (0,−v) vφ̂(2,0)

θT ,j
(0, v) dW (v)

= − 1
T − n+ j

1
T − j

T−n+j∑︂
t=1

T∑︂
r=1+j

ε̂tε̂
2
r (ε̂t+n−j − ε̂r−j) exp

{︃
−1

2 (ε̂t+n−j − ε̂r−j)2
}︃
.

3.9.4. Tests based on iid dependence measures

For the LM tests of the IID null hypotheses H
(AP )
IID and HIID the objective

function based on the generalized spectral density function is now

Qiid
T (ϑ) := 2

π

T−1∑︂
j=1

k2
(︃
j

m

)︃(︄
1 − |j|

T

)︄∫︂
|σ̂ϑ,j (u, v)|2 dW (u, v) ,

where W (u, v) = W (u)W (v), ϑ = (ϕ, θ)′ for ARMA(1, 1) model and ϑ = ϕ for AP
model. Then

∂

∂ϑ
Qiid
T (ϑ) = 2

π

T−1∑︂
j=1

k2
(︃
j

m

)︃(︄
1 − |j|

T

)︄∫︂
2 Re

{︄
σ̂ϑ,j (u, v) ∂

∂ϑ
σ̂ϑ,j (u, v)

}︄
dW (u, v)

so that imposing the null ϑ = ϑ0,

∂

∂ϑ
Qiid
T (ϑ0) = 1

T

T∑︂
t=2

(︂
e0
tX

(0)
t−1 + x0

tE
(0)
t−1

)︂
+ op(T−1/2),

where for a = 0, 1 and z0
t = zt (ϑ0;u) = eiuεt − E [eiuεt ] = eiuεt − φ (u) ,

e0
t = et (θ0) := 1

i

∫︂
zt (θ0;u)uφ (−u) dW (u)

x0
t = xt (θ0) := 1

i

∫︂
zt (θ0;u)φ(1) (−u) dW (u) ,

and X
(0)
t−1 and E

(0)
t−1 are given by

X
(0)
t−1 = X

(0)
t−1 (ϑ0) := 4

π

t−1∑︂
j=1

δj (ϑ0)x0
t−j

E
(0)
t−1 = E

(0)
t−1 (ϑ0) := 4

π

t−1∑︂
j=1

δ−j (ϑ0) e0
t−j,
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for the same coefficients δj (ϑ0) from (3.9.3), so the score approximation for the
ARMA model becomes

1
T

T∑︂
t=2

(︂
e0
tX

(0)
t−1 + x0

tE
(0)
t−1

)︂
= 1
T

4
π

T∑︂
t=2

t−1∑︂
j=1

(︂
e0
t δj (ϑ0)x0

t−j + x0
t δ−j (ϑ0) e0

t−j

)︂
= 1
T

4
π

T∑︂
t=2

(︄
x0
t e

0
t−1

−e0
tx

0
t−1

)︄
,

which has full rank limit variance.

For the AP process we obtain in the same way the score approximation by
multiplying by (1, 1) ,

1
T

T∑︂
t=2

(1, 1)
(︂
e0
tX

(0)
t−1 + x0

tE
(0)
t−1

)︂
= 1
T

4
π

T∑︂
t=2

t−1∑︂
j=1

(︂
x0
t e

0
t−1 − e0

tx
0
t−1

)︂
,

and inference could be conducted in the usual way as before since there are no
nuisance parameters under either null hypothesis using

LMT = T
∂

∂ϑ
Qiid
T (ϑ0)′ ˆ︁AV ar

(︄
T 1/2 ∂

∂ϑ
Qiid
T (ϑ0)

)︄−1
∂

∂ϑ
Qiid
T (ϑ0)

for testing both hypothesis approximating the null distributions by χ2
2 and χ2

1 vari-
ables by estimating for the ARMA model

AV ar

(︄
T 1/2 ∂

∂ϑ
Qiid
T (ϑ0)

)︄
= E

⎛⎜⎝
(︂
x0
t e

0
t−1

)︂2
−x0

t e
0
tx

0
t−1e

0
t−1

−x0
t e

0
tx

0
t−1e

0
t−1

(︂
e0
tx

0
t−1

)︂2

⎞⎟⎠ =
(︄
σ2
eσ

2
x −σ2

xe

−σ2
xe σ2

eσ
2
x

)︄

by the iid property of εt, or for the AP model

AV ar

(︄
T 1/2 ∂

∂ϑ
Qiid
T (ϑ0)

)︄
= 2

(︂
σ2
eσ

2
x − σ2

xe

)︂
,

where (σ2
e , σ

2
x, σ

2
xe) can be estimated by sample moments using

êt := et(θ̂) = 1
i

∫︂
ẑt (u)uφ̂θ̂ (−u) dW (u)

x̂t := xt(θ̂) = 1
i

∫︂
ẑt (u) φ̂(1)

θ̂
(−u) dW (u) ,

in
ˆ︁AV ar

(︄
T 1/2 ∂

∂ϑ
Qiid
T (ϑ0)

)︄
=
(︄
σ̂2
eσ̂

2
x −σ̂2

xe

−σ̂2
xe σ̂2

eσ̂
2
x

)︄
, 2

(︂
σ̂2
eσ̂

2
x − σ̂2

xe

)︂
.

The LM testing of the AP model against ARMA under iid , HAP/iid :
ϕ0 = θ0 in model (3.3.1) would follow the same lines as under mds, just using now

128



Ξ1 :=
[︄
Ip

... − A1H
iid
0 A′

2

{︂
A2H

iid
0 A′

2

}︂−1
]︄

with

H iid
0 := ρ1ρ2

(︂
Σ0 + Σ−

0

)︂
− ρ2

0

(︂
Σ∓

0 + Σ∓′
0

)︂
,

where

Σ0 :=
∞∑︂
j=1

δj (θ0) δ′
j (θ0)

Σ−
0 :=

∞∑︂
j=1

δ−j (θ0) δ′
−j (θ0)

Σ∓
0 :=

∞∑︂
j=1

δ−j (θ0) δ′
j (θ0) ,

ρ0 := −
∫︁
φ(1) (u)uφ (−u) dW (u) , ρ1 :=

∫︁ ⃓⃓⃓
φ(1) (u)

⃓⃓⃓2
dW (u) and ρ2 :=

∫︁
u2 |φ (u)|2 dW (u),

which could be estimated easily from residuals, and

V iid
0 := AV ar

(︄
T 1/2 ∂

∂ϑ
Qiid
T (ϑ0)

)︄
= σ2

eσ
2
x

(︂
Σ2a + Σ−

2a

)︂
+ σ2

xe

(︂
Σ∓

2a + Σ∓′
2a

)︂
.

For instance,

êt = 1
T

T∑︂
r=1

{︂
e− 1

2 (ε̂t−ε̂r)2}︂
(ε̂t − ε̂r) − 1

T 2

T∑︂
r=1

T∑︂
s=1

{︂
e− 1

2 (ε̂s−ε̂r)2}︂
(ε̂s − ε̂r)

x̂t = 1
T

T∑︂
r=1

ε̂r

{︄
e− 1

2 (ε̂t−ε̂r)2
− 1
T

T∑︂
s=1

e− 1
2 (ε̂s−ε̂r)2

}︄

while

ρ̂0 := −
∫︂
φ̂

(1)
θ̂

(u)uφ̂θ̂ (−u) dW (u) = − 1
T 2

T∑︂
r=1

T∑︂
s=1

{︂
e− 1

2 (ε̂s−ε̂r)2}︂
ε̂r (ε̂r − ε̂s)

ρ̂1 :=
∫︂ ⃓⃓⃓

φ̂
(1)
θ̂

(u)
⃓⃓⃓2
dW (u) = 1

T 2

T∑︂
r=1

T∑︂
s=1

{︂
e− 1

2 (ε̂s−ε̂r)2}︂
ε̂sε̂r

ρ̂2 :=
∫︂
u2 |φ̂θ̂ (u)|2 dW (u) = 1

T 2

T∑︂
r=1

T∑︂
s=1

{︂
e− 1

2 (ε̂s−ε̂r)2}︂{︂
1 − (ε̂s − ε̂r)2

}︂
.
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