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Science is made up of so many things
that appear obvious after they are explained.

Pardot Kynes (10121 AG-10175 AG)
in Frank Herbert’s Dune

The thing the ecologically illiterate don’t realize
about an ecosystem is that it’s a system. A system!

A system maintains a certain fluid stability that
can be destroyed by a misstep in just one niche.

A system has order, a flowing from point to point.
If something dams the flow, order collapses.

The untrained miss the collapse until too late.
That’s why the highest function of ecology

is the understanding of consequences.

Pardot Kynes (10121 AG-10175 AG)
in Frank Herbert’s Dune





A C K N O W L E D G E M E N T S

As it could not be otherwise, I would like to begin this thesis with a
disclaimer and an apology. Everybody that knows me, knows that I am
terrible at this kind of things. I promise that I am working on it, and I
like to think that I naturally convey that I would not have reach this point
without any of you. Then, I hope that you all can forgive me for writing
this section in my language instead of yours.

Se m’ha fet molt llarg això, és més, encara no m’acabo de creure que ja
s’acabi. Però al mateix temps, tinc la sensació el temps m’ha passat volant.
Aquesta paradoxa sols s’explica gràcies a vosaltres. Han sigut anys de
molt d’estrès i incertesa, però també m’ho he passat molt bé i al final això
és el que queda.

No puc començar per un altre lloc que agrair a Saúl i Javier la seva confi-
ança. Sense ells no estaria escrivint aquesta secció ni tampoc coneixeria a
gran part de la gent que ve a continuació. Gràcies per introduir-me al món
acadèmic en el meravellós microclima que és el GISC. Especialment, grà-
cies a Saúl per sempre ficar a disposició la seva xarxa de contactes, sense
la teva ràpida intervenció en el canvi per COVID de l’estança doctoral no
tindria gens clara la meva pròxima etapa acadèmica.

Una vegada dit això espero que em permeteu girar el protocol i agrair
primer als meravellosos companys de despatx que he tingut que són els
que tenen més mèrit. He de començar amb Alberto, que és clarament
l’italiá que més gasta en vols que conec. . . Encara no entenc com has
aguantat la invasió de despatx d’un tio que no pot callar més de 5 minuts
seguits, però t’agreixo eternament que ho hagis fet. Ets un crack dins i
fora de la universitat. Pablo Lozano, aka Palozano1, mira si tenia clar que 1 Ho sento, que ja és

lleig que sortint abans
tinguis tú el apodo pero
així vius al meu cap...

volia compartir despatx amb tú que et vaig anar a buscar dos dies després
conèixer-te. Et dec, entre moltes altres coses, casí tot el que sé de Linux i
Python, gràcies per provar que el que diuen els físics dels enginyers no
és sempre cert. I Jose MC Mateu vas aconseguir una cosa molt difícil que
és que no hi hagués quasi dol al despatx per Palozano. Ets una persona
meravellosa amb un humor compulsiu, com no m’has de caure bé Makina,
gràcies pels caps de setmana.

A les dues generacions de la joventut del tupper gràcies per la im-
mediata integració al departament. Vicky, Francy, Ignacio, Esti, Diego i
Maria vau fer ràpidament que el viatge diari a Leganés fos tot un plaer. I
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en especial a Pablo i Pilar que a més els vaig donar pràctiques de mater-
nitat avançada. I de la segona fornada, el tàndem de despatx Juan (que
té la paciència d’un sant) i Jorge que junt amb Bea (grácies pels concerts),
Miguel i Nello va emplenar de sobra el forat que va deixar el Baby Boom
matemàtic.

Una vegada omplert ja l’estómac es pot parlar de ciència. Així que
vull agrair a la gent del departament, GISC o no, que sempre ha tingut
la porta oberta per a mi, en especial a Jose i Anxo per amenitzar els
matins amb cafè. I de fora de la universitat cal recalcar a Jacobo, Susanna,
Luiño, Iker i la resta del col·lectiu de les Evomisas. Per mostrar-me que
no tot és competència en la ciència i també, perquè no, per donar-me
una excusa per a menjar bé un dia cada dues setmanes després d’escoltar
bona ciència. Sou tots un referent per a mi.

Seguint el viatge cap a fora toca agrair a la barreja de dos grups, de
Pau Formosa i George Coupland, que em va acollir meravellosament
durant la meva estada per Colònia. Gràcies per fer-me sentir com a casa,
Martina, Gauthier i Enric, ens veiem ben aviat.

I per acabar queda agrair a la família i amics, que són els que s’han
menjat el pitjor dels mals moments i als que donaré menys aquí. Realment
no tinc paraules d’agraïment que valguin per a vosaltres, ja ho celebrarem
i tranquils que no us jutjaré si ja no llegiu res més.

Segur que em deixo algú, així que si estàs llegint això i no t’he donat
les gràcies dis-m’ho i ho discutim amb una birra.

Moltíssimes gràcies a tots,

Pau
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M O T I VAT I O N A N D S T R U C T U R E

Nitrogen is required to form both the amino acids that constitute proteins
and the nucleic acids that store the genetic information in the DNA and
RNA. This makes it an essential element for life, given that all organisms
are constituted by proteins and store their genetic information in either
DNA or RNA. The nitrogen cycle, represented in fig. 0.1, is extremely
relevant because it controls the amount of organic nitrogen in a given
ecosystem. This is because, despite being the largest atmospheric compo-
nent (almost 78% of the atmosphere is nitrogen), it is mostly present in
the form of N2.

Figure 0.1: Biological Nitrogen cycle: This cartoon shows a simplified nitrogen
cycle with a particular color for the two processes studied during
this thesis. In blue, we mark the nitrogen fixation and in green the
nitrogen incorporation into plants.

This chemical form presents a triple covalent bond between the two
nitrogen (N ≡ N) that requires a lot of energy to break. This makes the
compound highly nonreactive and difficult to decompose to any other
molecules, and easier to assimilate for all organic forms. This process is
called nitrogen fixation and naturally only lightning and a few bacteria
and archaebacteria and are capable of it, lightning being by far the less
relevant (less than 3% of the total amount) (Fowler et al., 2013). Due to
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this, organic nitrogen is usually the major limiting factor of the amount
of biomass that a given ecosystem can sustain.

At the beginning of the 20th century, with the discovery of an indus-
trial process to fixate ambient nitrogen into ammonia (the Haber-Bosch
process) the use of nitrogen fertilizers skyrocketed. This increase of the
global nitrogen fixation capabilities allowed for roughly doubling of the
one observed without human intervention (Fowler et al., 2013). Until this
discovery, all the processes that required reactive nitrogen were depen-
dent on natural reservoirs of guano (accumulated excrement of seabirds
and bats) which greatly impeded its generalization. On the other hand, it
has been recently estimated (Erisman et al., 2008) that nitrogen fertilizers
are responsible for feeding almost half of the human population (fig. 0.2).
This new ammonia source, together with the Green Revolution, allowed
for the demographic explosion presented in fig. 0.2.

Figure 0.2: Chronology of the world population dependency with both the
Haber-Bosch nitrogen and the land used in agriculture. The world
population has been obtained from Gapminder for the years 1900-
1949, and from the UN Population Division from 1950 onwards. The
estimates of population sustained with and without the production
of Haber-Bosch nitrogen are derived from (Erisman et al., 2008). And
finally, the estimate of the cropland area from the History database
of the Global Environment (HYDE). Together with these data we rep-
resent three time periods relevant to the demography evolution: the
two World Wars and the Green Revolution.

One can observe in this same fig. 0.2 that the widespread incorpora-
tion of the Haber-Bosch nitrogen in agriculture occurred after the end of
World War II, and it coincides with the change of tendency of the popu-
lation growth. During both war periods and the Interwar period, most of
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the ammonia produced was used to fabricate explosives. It is also worth
noting that we adjusted the land use axis to evidence the obvious cor-
relation between the evolution of the amount of population fed without
the use of "artificial" fertilizer and the area dedicated to crops. Neverthe-
less, the two magnitudes correlation breaks after the Green Revolution,
when the area dedicated to crops remained constant while the efficiency
of those crops augmented. With roughly the same crop extension as in
1970 nowadays we can feed a third more of the population fed in 1970.

As already mentioned, this is achieved thanks to the so-called Green
Revolution, which is a global agricultural revolution that focused mainly
on the intensification of production and the selection of crops to increase
production. The modernization of agriculture can be divided into two
complementary approaches. On one hand, there was extensive genetic
breeding of all the main carbohydrate sources of our diet: wheat, rice,
maize, potatoes, and cassava. This selected the most efficient varieties,
those that maximize the grain/biomass ratio. It was discovered that dwarf
varieties dedicate most of their energy to grain, and due to this they also
respond better to fertilization (Evenson and Gollin, 2003). Additionally,
the smaller size and sturdier stalks of the plants also help to reduce the
lodging (the knockdown of a plant, unearthing the roots) under high
wind (Hedden, 2003). This variety search was done by selecting and cross-
ing the plants with the desired characters in a sort of Mendelian genetics.
Given that it was not until much later, already in the 90s, that the genetic
pathways responsible for these optimal traits were identified (Hedden,
2003). On the other hand, the modernization of agriculture was also due
to the extensive use of mechanization, irrigation facilities, and inorganic
fertilizers which allowed for the intensification of croplands that were not
capable to sustain such high production rates before (Khush, 1999).

While this intensification of agriculture allowed to triplicate the pop-
ulation is not sustainable due to soil erosion and both the depletion and
contamination of aquifers (Pingali, 2012). Then a new approach is neces-
sary to make agriculture more sustainable because, as one can observe
in fig. 0.2, the increase in production is heavily dependent on nitrogen
fertilizers. A deeper understanding of the genetic mechanisms underly-
ing both natural nitrogen fixation in bacteria and nitrogen incorporation
in plants could allow for targeted genetic modifications. Recent experi-
mental works, such as (S. Wei et al., 2022; K. Wu et al., 2020), show that
targeted genetic modifications could further improve crop efficiency, re-
ducing the need for nitrate fertilization.

Following this point of view, during my thesis, I studied two particu-
lar biological systems to provide a mathematical model for two particular
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cases of both the nitrogen fixation in bacteria and nitrogen incorporation
in plants. We structured the thesis in four parts:

• The part I presents a brief recapitulation of the common theoretical
and mathematical framework used in parts II and III which consti-
tute the main body of work of this thesis.

• Part II contains the main results obtained for the analysis of cyanobac-
teria nitrogen fixation. This part starts with a brief introduction to
the biological system in chapter 2. In this introduction, we recapitu-
late and organize the current state of the art in both the experimental
(section 2.1) and modeling (section 2.2) approaches to this system.

After this introduction, we discuss the stability of the previous mini-
mal model presented in (Muñoz-García and Ares, 2016) in chapter 3.
Through this study, we provide an insight over the adaptive advan-
tages that a bistable regime provides over a fluctuating environment.
The particular mechanistic deduction of the model is not included
in this chapter, and it is presented in appendix A.

Then, in chapter 4, we investigate the function of patA and hetF to-
gether with their interactions with the main genes responsible for
heterocyst pattern formation. The proposed mathematical model
reproduces the diverse experimental phenotypes and explains the
main function of both patA and hetF in the gene-regulatory network
of heterocyst differentiation. As we did in the previous chapter, the
full model deduction is presented in appendix B.

We close the cyanobacteria part of this thesis with an intercellu-
lar correlation study in chapter 5. In this chapter, we present the
correlations observed for the model presented in chapter 4 while
comparing it with the available experimental data. The obtained in-
tercellular correlation profiles are used to present a new two stage
selection mechanism for heterocyst differentiation that reproduces
the observed spatial self organization in Anabaena filaments.

• Part III contains the main results obtained for the analysis of ni-
trogen incorporation in rice plants. During this study, we present
a model of lateral growth or tillering that works in parallel to the
vertical growth regulation through the well-known DELLA proteins.
This model provides new insight regarding the maintenance of ni-
trogen induced yield increases in dwarf rice varieties while repro-
ducing the available experimental observations.

• Finally, part IV recapitulates the main results of the thesis and pro-
poses future research lines to apply the basic biological knowledge
in the crop selection and/or design.

xii
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Part I

S O M E K I N D O F M A N U A L

Here we will present a brief general introduction of both the
genetic regulation in biological systems and the mathematical
framework used in the rest of the thesis.





1
T H E S Y S T E M S B I O L O G Y P E R S P E C T I V E

The point of view of complex systems has already a certain antiquity in
physics (mainly within the field of non-linear physics). It was already per-
fectly summarized by Aristotle in the sentence: "The whole is greater than
the sum of its parts". In a collective system formed by diverse elements,
knowing the behavior of each element separately often does not allow you
to deduce the behavior of the entire system. This is due to the so-called
emerging properties that appear due to the interactions of individual ele-
ments, either with each other or with the environment. But its application
to external fields such as sociology, psychology, or biology and therefore
its establishment as a scientific field of its own is relatively recent. Its
development responds mainly to the technological advancements in com-
putational power, which allow for both the processing of much larger
amounts of data and the numerical resolution of much bigger mathemat-
ical models. Additionally, the discovery of quantitative high-throughput
biological tools together with the creation of globally accessible databases
allowed for the systematic research required to develop all the -omics sci-
ences (Ideker et al., 2001). These disciplines (genomics, transcriptomics,
proteomics, and metabolomics) provide the huge amount of data neces-
sary to understand a given system as a whole, which is the main objective
of the Systems Biology (Kitano, 2002).

The rising of these properties denies the lineal superposition system
that ruled in physics at the ages of Newtonian mechanics and electromag-
netism. Thus, it is often more effective to develop a simple model that
captures these interactions in broad terms. Not only because this is usu-
ally easier than knowing in depth the behavior of each of the elements of
the system, but also because many times these minimalist models have a
much better capacity for predicting dynamics than more extensive models
that do not consider these emerging properties. This is because our knowl-
edge of the system is never absolute. Then, it is impossible to know all
the interactions between elements and the addition of more elements al-
ways makes it easier to artificially "tune" the system to behave as desired.
This would make it harder to pinpoint the more relevant interactions. In
the case of biological systems, it is impossible to consider every genetic
pathway involved tangentially is a given process. Additionally, is it worth
mentioning that the typical separation of the molecular regulation in path-
ways is already a reduction, given that there is only one common pool of
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4 the systems biology perspective

metabolites? This produces a relevant overlap and/or coupling between
different regulatory pathways given that the effects that one has over, for
example, the ADP/ATP or NAD+/NADH ratio will affect and condition
the other pathways. Then, in order to have both a translatable and faithful
model, one should compromise these two perspectives. A perfect model
should be representative of the full system, while keeping it as simple
as possible to avoid over-fitting and arbitrariness. This is usually accom-
plished through coarse-graining, which allows for the reduction of the
scale of the model through the use of the existent modularities and hier-
archies in the system (Ideker et al., 2001; Haiyuan Yu and Mark Gerstein,
2006).

This strategy originated in the molecular dynamics simulations re-
search field (Levitt and Warshel, 1975). There, atomistic models are used
to reproduce the behavior of the system of interest, usually a protein,
while dissolved in water or embedded in a lipid bilayer or even the inter-
action between several proteins. These simulations are very demanding
computationally, as they require following the trajectories of 105 − 107

atoms during 10−6 − 10−8 seconds (Saunders and Voth, 2013). The coarse-
graining allows the clustering of a group of neighboring atoms into a new
artificial atom that will be used in the simulation. Analogously, through
coarse-graining, one can simplify well-known clustered sections of the
regulatory network not relevant to our research in such a way that the
known external interactions of these sections are maintained but all the
internal interactions are ignored. The main example of this proceeding
is to consider several genes that mostly interact between them and that
react similarly to the studied external conditions as an artificial gene that
incorporates all the interactions of those genes with the rest of the net-
work.

This perspective is called holism and complements very well the re-
ductionist approach, which focuses on full detailed descriptions of certain
genes or proteins. Traditionally, biologists have taken this reductionist o
mechanistic approach and considered that the whole system could be
understood through the study of its actors. On the other hand, holistic
approaches consider the full regulatory pathway as a whole through the
simplification of the already well-known processes. Then it is easy to see
how well these two perspectives complement each other fig. 1.1. Detail-
oriented and systematic experimental research provides the required in-
formation for drafting big-picture models. While, the models constitute
a cheaper and faster method to provide predictions of the behavior of
the system in new experimental conditions that could be later confirmed
through new experiments.
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the systems biology perspective 5

Figure 1.1: Modeling Loop: Diagram showing the most basic flowchart for the
creation of a biological model. The particular examples on the back-
ground of each sphere correspond to the model studied in part III.

There are two main approaches to this interplay between modeling
and experiments. The first one, denominated Top-down system’s biology,
uses system-level behavior information together with the existent partial
information of the individual elements of the system to infer new inter-
actions or elements that could explain the observed performance. On the
other hand, Bottom-up systems biology uses detailed information on all
the known parts to predict the reaction of the full system in new exter-
nal conditions. While these two approaches are not that different in the
system’s biology context, where the main objective is the analysis and
comprehension of a given system, they start to differ much more when
one considers the engineering application of systems biology and syn-
thetic biology. This discipline tries to artificially design biological systems
in order to optimize the desired function. In this context, the Top-down
approach would be the natural step after the classical genetic modifica-
tion to produce transgenic with a much bigger scope of modifications in
order to obtain new emergent behaviors. While on the other hand, the
Bottom-up approach would completely build a new system with known
functional parts, creating completely artificial pathways or even organ-
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6 the systems biology perspective

isms capable to mimic natural biological behaviors. The main example
of the latter approach, which is also widely considered the starting point
of the field, is the repressilator presented in (Elowitz and Leibler, 2000).
This artificial oscillator uses a regulatory network of three transcriptional
repressor systems that are not part of any natural biological clock to re-
produce the behavior of a tunable biological clock.

Figure 1.2: Early synthetic biology designs: switches and oscillators. This dia-
gram shows an electronic configuration, a natural biological example,
and the first synthetic example for both a switch and an oscillator.
Reproduced from (Khalil and Collins, 2010).

These minimal network motives are capable to perform a certain gen-
eral function such as a robust oscillating expression (repressilator) or a
controlled deactivation of the gene expression (toggle-switch) in fig. 1.2.
Due to this, they could constitute the building blocks for the design or
modification of genetic pathways to optimize a certain function in an ex-
istent organism. And additionally, given their generality, they could help
to predict the function of certain regulatory networks just by their struc-
ture.

As a testament to this generality, we will use this systems biology
perspective to study a couple of genetic regulatory networks related to
nitrogen fixation and intake in cyanobacteria and rice plants, respectively.
We will see that, despite the differences in both their function and their
organism, the behavior of these two networks can be described with the
same mathematical framework. The number of acting elements and their
name will be different for each network, but the roles that they perform
are limited and common.
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1.1 genes , proteins , and their models 7

In the following section, we will present the theoretical background
required for the formulation of mathematical models of any genetic regu-
latory network.

1.1 genes , proteins , and their models

The minimal functional element of a multicellular organism is, as the
name implies, the cell. At the cellular level, any possible cellular role is
defined by the concentration of proteins, and therefore, it is ultimately
codified in the full genetic information of the organism. Then each cell’s
fate, which defines its functionality, is completely dependent on a par-
ticular balance of the expression of the thousands of genes expressed in
the cell. The expression of genes is heavily interconnected in such a way
that genes tend to be activated in groups, reducing the activity of other
genes. The network of interactions between genes is a regulatory system
that integrates both intracellular and extracellular signals to control the
expression of all the genes. But before presenting the regulatory networks
analyzed during this thesis, in this chapter, we will present the theoreti-
cal framework used to model them mathematically. We will use both the
repressilator and the toggle switch motifs mentioned earlier, rather than
general examples of gene regulation modeling.

In order to ensure a common background, we will first present a
brief biological description of the mechanisms to regulate gene expres-
sion. These mechanisms are used to control the concentration of proteins
at the cellular level.

There are two types of molecules capable of storing genetic informa-
tion, DNA and RNA. Composition differences make the DNA much more
stable than the RNA, and this affects the biological function of these two
molecules Alberts, 2015. Almost all organisms use DNA as the long-term
storage of biological information, the only exception are RNA viruses that
use RNA. Alternatively, RNA is mainly used as an intermediary step for
protein formation because it is required to build the proteins. Then, the
genetic information codified in the DNA is first reproduced into messen-
ger RNA (mRNA) in a process called transcription to build proteins by
translating the mRNA in the ribosomes. This process can be observed in
fig. 1.3 together with the main difference between prokaryote and eukary-
ote cells.

Prokaryote cells are much simpler than eukaryotes, given that they
have neither a nucleus nor any other membranous organelles (which are
functional subunits of a eukaryote cell). While the eukaryotes present dif-
ferent internal compartments, the prokaryotes are a single open space
with both the DNA and the ribosomes freely suspended in the cytoplasm.

7



8 the systems biology perspective

Figure 1.3: An overview of the flow of information from DNA to protein in
both prokaryote and eukaryote cells. Image provided by OpenStax
CNX. License: CC BY: Attribution.

This makes protein production much more complex in the eukaryote cells
because the mRNA translated inside the nucleus needs to be exported to
the cytoplasm to be translated into the ribosomes. Gene expression regu-
lation can be observed in all the different stages of the process: at both the
transcriptional and the translational level modifying the efficiency of each
process (by methods described later on) and, at the post-transcriptional
and post-translational, with modifications to either the mRNA and the
proteins that modify its stability and functional life. While the transcrip-
tion and translation are almost simultaneous in the prokaryote cells, this
transport opens a wider window for post-transcriptional regulation in
the eukaryotes and even in some cases requires an additional maturation
of the mRNA. Due to this, the regulation of gene expression in prokary-
otes is mainly produced either at the transcriptional level or the post-
translational level (with targeted protein degradation or protection).

Gene transcription is done by the RNA polymerases, which are large
enzymes that build the mRNA chain following the sequence codified in
the DNA strand. The enormous relevance of these proteins is shown in
both their huge fidelity (on average it makes an error once every 1010

base pairs) and the fact that it is one of the most conserved complexes in
biology (A. J. F. Griffiths et al., 2020). All the actual RNA polymerases in
both prokaryotic and eukaryotes conserve the same functional core. Then,
in order for the transcription of a certain gene to be initiated, the RNA
polymerase must attach to its promoter, which is a particular sequence
that marks its beginning. Given that both the polymerase and the starting
are common to all the genes transcribed, it does not favor the expression
of any gene by itself. The regulation of the transcription rate is done by
other proteins, called transcription factors (A. J. F. Griffiths et al., 2020).
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1.1 genes , proteins , and their models 9

These proteins are usually generalized into two classes. On one side, in-
hibitors impede the transcription disturbing the polymerase, and, on the
other, activators improve its efficiency.

The most straightforward way to negatively regulate a gene is the
one presented in fig. 1.4. This scheme shows a typical situation where
an inhibitor can attach in a region between the promoter and the proper
gene sequence (called an operator in the prokaryote genomes).

Figure 1.4: Inhibition of transcription. Image reproduced from Gene Expres-
sion. © 2010 Nature Education

This binding physically blocks the way of the polymerase that cannot
initiate the transcription. There are also cases when the inhibitor links
two separated regions of the DNA strand looping it on itself and also
impeding the transcription of the looped section, or even proteins that
impede the opening of the DNA helix (A. J. F. Griffiths et al., 2020). Ad-
ditional factors such as the number of gene copies and stability of the
inhibitor attachment to the DNA mark the intense effect on the transcrip-
tion of the gene because the polymerase will be blocked for longer times.
This allows for a continuous range of inhibition, instead of just a toggle
effect with only the on and off options. This can be reinforced addition-
ally with proteins that affect the base polymerase efficiency by altering its
conformation.

Similarly, the activators can act directly with analogous strategies but
with the opposite effect on gene transcription. Then an activator could
link to a preceding region of the promoter in such a way that increases
the affinity of the polymerase to the gene promoter. Alternatively, an ac-
tivator could facilitate the transcription process either by anchoring the
polymerase into the desired gene section, as observed in fig. 1.5, or by

9
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10 the systems biology perspective

binding to the promoter creating a loop that stabilizes the exposure of
the transcribed gene (A. J. F. Griffiths et al., 2020).

Figure 1.5: Example of an enhancement of transcription. Image reproduced
from Gene Expression. © 2010 Nature Education

It is also important to also consider that all inhibitors and activators
of a given gene usually can either interact or compete with each other.
Additionally, they are also affected by other elements whose production
is dependent on external signals. This, which is fairly common, further
modulates their effect on gene expression and allows the cell to react to
extracellular changes. Finally, given that these transcription factors are
also proteins, they are also subjected to gene regulation and this creates
densely interconnected regulatory networks with abundant close circuits
(also denominated feed-back).

It is easy to see that once you start considering the dynamics of
a system with a few interconnected genes, the sheer number of cross-
interactions makes it increasingly hard to make intuitive predictions. These
systems typically present non-linear responses to environmental changes
with emergent behaviors that are too complex to allow for an intuitive
explanation. If enough quantitative data about the system is known, one
can translate the interaction network into a mechanistic model. This math-
ematical model describes the temporal dynamics of all considered vari-
ables through a set of differential equations. This set of differential equa-
tions can be then numerically integrated to computationally simulate
the system’s experimental behavior and should respond to parameter
changes analogously to the real system (Ingalls, 2013). Alternatively, one
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1.1 genes , proteins , and their models 11

can solve it to obtain the equilibrium states of the system (if they exist)
without having to obtain all the temporal evolution. Nevertheless, this dis-
cussion about what to do once you have the model formulated belongs to
the next section 1.2. Here, we will present the methodology to translate
the interaction network into a mathematical model consisting of a set of
differential equations.

In order to study gene expression and protein interaction, we can
consider all the species as molecular components and use the well-known
mathematical method to model chemical reactions. As an example of this
method, we will now consider the system represented in fig. 1.6 which
consists of two molecular species.

Figure 1.6: Diagram of a simple open-ended reaction system.

In this system, the species M is created at a constant rate βM and
degraded at a linear rate αm, and the species P is created at a rate βP

from m without consuming it and degraded at a linear rate αp. In classical
chemical notation those reactions would be represented as:

∅ −−→
βM

m, m −−→
αM

∅, (1.1a)

m −→
βP

m+ p, p −→
αP

∅, (1.1b)

where the left side elements are the ones producing the reaction, called
reactants, and the right ones are the products of the reaction and the ∅
symbol represents the absence of either one. It is easy to see that the gross
amount of M is only affected by the reactions in (1.1a) and similarly, the
quantity of P is only altered by the reactions in (1.1b).

Up until this point, we have not properly defined either m, p or all
the rates. We just know that they are quantities of something that is cre-
ated and destroyed following (1.1). They could as easily be a really simple
model of monkeys and parasites or one of the gene expression of an un-
regulated gene which is first transcribed into mRNA and later translated

11



12 the systems biology perspective

into proteins. Given that the genes are neither created nor destroyed dur-
ing gene expression, there is no need to model them, as they would al-
ways remain constant.

To be able to translate this system of reactions into a set of differential
equations, we will have to set some restrictions. The law of mass action11 As both a curiosity

and a reflection on the
changes to the

international scientific
communication, it is

worth noting that this
law was discovered by

the chemist Cato
Guldberg and the

mathematician Peter
Waage in 1867. But, as

they wrote their
research in Norwegian,

it was not widely
known until its

rediscovery ten years
later by chemist

Jacobus Henricus van’t
Hoff.

states that if one assumes homogeneity and continuity in the system, the
rate of the reactions is proportional to the concentration of the reactants.
These two conditions impose the necessity to consider a fixed volume of
our system and a homogeneous distribution of both M and P to make
the concentrations m and p good descriptors. As an example of what
this means, we will consider again the two descriptions proposed earlier.
On one hand, we would have to consider the population density of both
monkeys and parasites to have a continuous variable. Additionally, we
should only include a certain type of environment where monkeys meet
regularly to avoid heterogeneity. On the other hand, we will use molar
concentrations for both the mRNA and the proteins and the expression
of both should be high enough to ensure a well-mixed system. If this is
not true and the expression of them is either too dispersed or too clus-
tered, the comparison of real contacts and the model prediction will be
off. If the probability of the reactants meeting in the real system is slightly
higher or lower than the one supposed in a homogeneous system, the
model dynamics will, respectively, underestimate and overestimate the
reaction rate. Before continuing with the modeling, we should address
the elephant in the room. Why bother with all of this if we need to use
a principle that demands constant volume, and we all know that cells
grow? To make it even worse, cells grow quite a lot. As an example, An-
abaena cell volume changes almost two orders of magnitude during its
life (de Tezanos Pinto et al., 2016; Milo and R. Phillips, 2016). The trick
here is to realize that all these conditions are not absolute, they are only
necessary for the timescale of the reactions. Cellular growth occurs, usu-
ally, in a much larger timescale than the one of both mRNA and protein
production. As we will soon see, this separation of scales is one of the
most important tricks for biological modeling. The main takeaway is that,
if you are considering something on a faster scale, everything on a slower
scale can be taken as a constant with their initial value. On the other side,
if you are studying something on a slower scale, you can suppose that all
the faster variables are in equilibrium.

12



1.1 genes , proteins , and their models 13

Now, with these considerations in mind, we can obtain the temporal
dynamic of our minimal system by using the law of mass action over the
set of reactions (1.1):

dm

dt
= βm −αmm, (1.2a)

dp

dt
= βPm−αpp. (1.2b)

This set of equations (1.2) defines the temporal trajectories defined by the
system (1.1). Given the initial conditions and the parameter values, we
could obtain the time evolution of each of the variables. Furthermore, as
this is a trivial case, we could even solve them analytically instead of the
regular numerical integration required to obtain the trajectories. But in
most cases, this is not feasible and instead one should attempt to simplify
the system as much as possible. The most usual strategy is to look for
different timescales in the dynamics of the system. Here for example,
as the system has an open interaction network the intermediate species
m must reach equilibrium before p. Then we can take the eq. (1.2a) to
equilibrium by setting dm

dt = 0, given that in equilibrium the system will
stabilize and no longer change. By doing this, we obtain the value meq

that m will reach meq = βm
αm

. Once you have this value, you can introduce
it to the rest of the equations system and reduce the size of the system by
an equation and a variable. But again, given the simplicity of this example,
the substitution of meq allows for the direct solution of the system in this
case. By also taking, dp

dt = 0 we obtain also the equilibrium of the p species
peq = βPm

eq

αp
= βPβm

αpαm
.

With this, we have already successfully both modeled the basal ex-
pression of an unregulated gene and solved its expression in equilibrium.
But as we mentioned earlier, genes with such simple dynamics are quite
rare given the huge genetic interconnection. Additionally, a gene like this
would produce the same amount of RNA and proteins independently of
the external conditions. This can be a huge waste of resources if the RNA
and proteins are created without being needed (and is one of the most
typical mutation problems (A. J. F. Griffiths et al., 2020)). Due to this, it is
thought that only a few housekeeping genes are highly expressed consti-
tutively. The roles of the genes with higher constitutive expression seem
to be related to protein regulation (Zhao et al., 2017). Paradoxically, while
some of them are ribosomal genes used to both build and maintain the
protein factories, the others are related to the ubiquitination proteolytic
pathway used to mark and degrade proteins (Zhao et al., 2017). This could
seem strange if one thinks of the cell as a system in equilibrium, but that
is precisely the error. Cells, and by extension any other organism, are sys-
tems profoundly out of equilibrium, constantly changing and adapting
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14 the systems biology perspective

to their environment. Additionally, they are optimized to avoid wasting
resources. Due to this, they usually work in a focused way. Then if the ex-
ternal conditions suddenly change, the housekeeping genes ensure that
the cell is ready to rapidly change gears by shifting protein concentra-
tions.

Now that we know how to translate into differential equations molec-
ular reactions, it is time to consider a system with a bit more complexity.
For this, we will now obtain the mathematical model of one of the func-
tional network motives mentioned earlier (Figure 1.2), the genetic toggle
switch. As the name implies, this minimal two-gene system presents a
rich dynamical behavior that can be exploited to externally regulate the
expression of those genes. In the upper part of fig. 1.7 we present both the

Figure 1.7: Diagrams of the genetic toggle switch.

typical gene interaction diagram and a more detailed diagram including
genes, mRNAs, and proteins together with all the reactions of the sys-
tem. While the lower part presents the representation that will be used

14
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throughout the rest of the thesis. We can use the more detailed diagram
to enumerate all the reactions of the system:

GA +B
kB
⇄
k−B

GA
o , GB +A

kA
⇄
k−A

GB
o , (1.3a)

GA −→
τA

GA +mA, GA
o −−−→

τAϵA
GA

o +mA, mA −→
δA

∅, (1.3b)

GB −→
τB

GB +mB, GB
o −−−→

τAϵA
GB

o +mB, mB −→
δB

∅, (1.3c)

mA −−→
βA

mA+A, A −−→
αA

∅, (1.3d)

mB −−→
βB

mB+B, B −−→
αB

∅. (1.3e)

The first line (1.3a) describes the binding and unbinding of the A and B

to the promoters of the other gene, GA, and GB. This attachment occupies
the promoter, marked as GA

o in our model, and reduces the expression
of this gene by a factor ϵA in (1.3b) with 0 ⩽ ϵA < 1, given that it is
an inhibitor. We have the same for the gene B (1.3c) and all the other
elements are equivalent to the ones obtained in the single gene system
(1.2). Given that now we have two promoter states, we will have to write
dynamic equations for those variables. Despite this, we must remember
that the total amount of genes is constant. Then for a gene X, the total
number of copies will be the sum of the free and the occupied ones:

[GX
T ] = [GX] + [GX

o ]. (1.4)

From this set of reactions, we can obtain the following set of differen-
tial equations:

d[GA]

dt
= −kB[B][G

A] + k−B[G
A
o ], (1.5a)

d[GA
o ]

dt
= kB[B][G

A] − k−B[G
A
o ], (1.5b)

d[GB]

dt
= −kA[G

B][A] + k−A[G
B
o ], (1.5c)

d[GB
o ]

dt
= kA[G

B][A] − k−A[G
B
o ], (1.5d)

d[mA]

dt
= τA[G

A] + τAϵA[G
A
o ] − δA[mA], (1.5e)

d[mB]

dt
= τB[G

B] + τBϵB[G
B
o ] − δB[mB], (1.5f)

d[A]

dt
= βA[mA] −αA[A], (1.5g)

d[B]

dt
= βB[mB] −αB[B]. (1.5h)
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Once we have this set of equations, we could finish our analytical
work and simulate our system. If we input the values of all the param-
eters, set the initial concentrations for all the variables, and numerically
integrate these expressions in time, we would obtain the proper trajec-
tories of all the variables. But we would be overworking our computer
because it is quite clear that there are several timescales in this system
that we could use to simplify it and reduce its scale.

The first one is the promoter dynamics because, as stated previously
in eq. (1.4), the genes are neither created nor destroyed. As a rule of
thumb, one can consider reversible reactions will reach equilibrium faster
than irreversible ones. The reasoning behind this is that while irreversibly
is usually linked to complex and extensive changes such as conformation
changes in protein or the creation and destruction of elements, the re-
versible processes are usually simple binding and unbinding. The more
complex the process, the slower it is because it has to involve more el-
ements. Then if we consider that the binding/unbinding dynamics are
much faster than both the gene transcription and translation, we can con-
sider that equations eqs. (1.5a) to (1.5d) are in equilibrium. By taking
d[GA]
dt =

d[GA
o ]

dt =
d[GB]
dt =

d[GB
o ]

dt = 0 we obtain the equilibrium conditions
for the gene promoters. For gene A, we have that:

kB[B][G
A]eq = k−B[G

A
o ]eq ⇒ [GA

o ]eq =
kB[B][G

A]eq
k−B

=
[B]

KB
[GA]eq

where we have defined the equilibrium constant KB ≡ k−B

kB
for the binding

and unbinding to the promoter. Then, if we use the conservation of the
total number of genes eq. (1.4), we can obtain expressions for both [GA]eq
and [GA

o ]eq that depend only of [GA
T ] and [B]:

[GA
o ]eq =

[B]

KB
([GA

T ] − [GA
o ]eq) ⇒

KB

[B]
=

[GA
T ]

[GA
o ]eq

− 1 ⇒ [GA
o ]eq =

[GA
T ]

KB
[B] + 1

⇒

[GA
o ]eq = [GA

T ]

[B]
KB

1+
[B]
KB

, (1.6a)

[GA]eq =
KB

[B]
([GA

T ] − [GA]eq) ⇒
[B]

KB
=

[GA
T ]

[GA]eq
− 1 ⇒ [GA]eq =

[GA
T ]

[B]
KB

+ 1
⇒

[GA]eq = [GA
T ]

1

1+
[B]
KB

. (1.6b)
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1.1 genes , proteins , and their models 17

Once we have the equilibrium conditions for both promoters, eqs. (1.6)
we can introduce them into eq. (1.5e) to obtain:

d[mA]

dt
= τA[G

A
T ]

1

1+
[B]
KB

+ τAϵA[G
A
T ]

[B]
KB

1+
[B]
KB

− δA[mA] ⇒

d[mA]

dt
= τA[G

A
T ]
1+ ϵA

[B]
KB

1+
[B]
KB

− δA[mA]. (1.7)

We can then repeat this process exactly for the gene B and obtain the
following expression for eq. (1.5f):

d[mB]

dt
= τB[G

B
T ]
1+ ϵB

[A]
KA

1+
[A]
KA

− δB[mB]. (1.8)

With only the consideration of rapid equilibrium for the gene pro-
moter we have already reduced our original model to half its variables:

d[mA]

dt
= τA

1+ ϵA
[B]
KB

1+
[B]
KB

− δA[mA], (1.9a)

d[mB]

dt
= τB

1+ ϵB
[A]
KA

1+
[A]
KA

− δB[mB], (1.9b)

d[A]

dt
= βA[mA] −αA[A], (1.9c)

d[B]

dt
= βB[mB] −αB[B]. (1.9d)

It is worth noticing that we also reduced the number of parameters by
the same amount, we now have 4 parameters in our model. In this last
formulation of our model (1.10) we have redefined the parameters τA
and τB by absorbing the constants [GA

T ] and [GB
T ] into them. If we denom-

inate now the old parameters τ ′ (τA ≡ τ ′
A[G

A
T ] and τB ≡ τ ′

B[G
B
T ]). This

means that while originally the τ parameter represented the maximum
expression rate for each gene promoter, each gene now represents the
total amount of a particular mRNA produced in the cell (it accumulates
all the cell copies). Something similar happened with the promoter bind-
ing constants k and k− in our system now we only have the equilibrium
constant K ≡ k−

k . In general, as one reduces a system by using approxi-
mations, the resulting parameters are each time less mechanistic because
they start to represent the combination of several processes instead of a
particular process.

17



18 the systems biology perspective

Again, we could stop here and simulate the dynamics of the system
if one has the value for all the remaining parameters. In general, one
should tailor the deepness of the model to the experimental data available
for the studied system. But in most cases, particular experimental rates
for molecular reactions are quite rare and one ends up with several free
parameters to adjust with the existent data (we will discuss this in more
depth in the next section 1.2.1). Due to this it is usually better to simplify
the system as much as possible even if this reduces the identifiability of
the model. If one does not have enough information, it is better to reduce
the number of free parameters to avoid over-fitting (more on this subject
in section 1.2.1).

Here we still have one more simplification available. As we observed
in the previous model (1.2), the mRNA acts simply as an intermediate
state. Additionally, while the transcription and the translation occur at a
very similar rate, the degradation of mRNA is much faster (Milo and R.
Phillips, 2016). While the median mRNA degradation lifetime is roughly
5 min in E. coli, the fastest actively degraded protein has a half-life of
about one hour (Milo and R. Phillips, 2016). This faster turnover would
make the mRNA reach equilibrium much earlier than the proteins. Then
we can consider fast equilibrium conditions for both eqs. (1.9a) and (1.9b).

By taking both d[mA]
dt =

d[mB]
dt = 0 we can easily obtain a system with

only protein dynamics:

δA[mA]eq = τA
1+ ϵA

[B]
KB

1+
[B]
KB

⇒ [mA]eq =
τA
δA

1+ ϵA
[B]
KB

1+
[B]
KB

, (1.10a)

δB[mB]eq = τB
1+ ϵB

[A]
KA

1+
[A]
KA

⇒ [mB]eq =
τB
δB

1+ ϵB
[A]
KA

1+
[A]
KA

. (1.10b)

Finally, before introducing those equilibrium values for mA and mB we
will introduce a couple of new parameters:

ρA =
τA
δA

βA, (1.11a)

ρB =
τB
δB

βB. (1.11b)

These new ρ parameters incorporate both the rates of transcription and
translation together with the mRNA linear degradation term, and they
represent the rate of protein creation over time from a given gene. With

18
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this final arrangement, we obtain the toggle switch in its more simplified
form, which is the one typically presented in the literature:

d[A]

dt
= ρA

1+ ϵA
[B]
KB

1+
[B]
KB

−αA[A], (1.12a)

d[B]

dt
= ρB

1+ ϵB
[A]
KA

1+
[A]
KA

−αB[B]. (1.12b)

As we kept the regulatory effect general, we could also see the activa-
tor role for, ϵ > 1 given that the protein binding to the promoter would
increase its efficiency. It is worth mentioning that the resulting regula-
tory function for the activation mode is the well-known Michaelis-Menten
equation (Michaelis, Menten, et al., 1913).

In the paper that presented the construction of the genetic toggle
switch, (Gardner et al., 2000) they have the maximum inhibition with
both ϵA = ϵB ≡ 0 and cooperative effects on the protein binding. Here we
have not considered any cooperative effects, but we could add them with
an extra reaction for the binding to the promoter for each additional site.
To ease the visualization we will just consider a second-order cooperative
action for the B, then in this case the A promoter reactions would be

GA +B
2kB
⇄
k−B

GA
1 , (1.13a)

GA
1 +B

k2B
⇄

2k−2B

GA
2 , (1.13b)

where we have changed the notation of the promoter occupied by a pro-
tein from GA

o to GA
1 where the number indicates the number of proteins

attached. We presented here the most complete case where the two pro-
moter sites are equivalent and there is cooperative binding. The indistinct
consideration causes the 2s in both the kB rate in eq. (1.13a) (because there
are two possible sites to bind) and the k−2B rate in eq. (1.13b) (because
there are two attached proteins equally possible to unbind). And the co-
operative binding causes that kB ̸= k2B and k−B ̸= k−2B which means that
the affinity of the protein to the promoter changes if there is already a
protein attached. Typically, the affinity increases with the number of lig-
ands attached to the promoter. But these characteristics are not true for
all the gene promoters, so their incorporation into the model depends on
the information already available in the system. But again, if one does not
have concrete experimental information, it is typically better to opt for the
most simple case to reduce the risk of over-fitting. In this case, it would be
to consider distinctive sites (the proteins can only attach directly to one
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20 the systems biology perspective

site and this opens the next one) and, a bit paradoxically, that the affinity
is approximately the same for all ligands. With these considerations, both
the multiplicative factors and two parameters disappear because k2B ≡ kB
and k−2B ≡ k−B.

Then, one can repeat the same process of recursively considering equi-
librium for all of them, analogously to eqs. (1.6), to obtain the new dynam-
ics for the mRNA:

d[mA]

dt
= τA[G

A
T ]
1+ ϵ1A

[B]
K1B

+ ϵ2A
[B]2

K1BK2B

1+ 2
[B]
KB

+
[B]2

K1BK2B

− δA[mA]. (1.14)

This general expression considers indistinct cooperative binding sites. As
such, we could adjust both the affinities and the effect on the transcrip-
tion of the full and partially occupied promoters. If one instead considers
the general case with n distinct binding sites (to avoid the multiplicity fac-
tor and have a more succinct expression) we would obtain the following
regulatory function:

f(x) = τ

1+
n∑
i=1

ϵi
xi

i∏
j=1

Kj

1+
n∑
i=1

xi
i∏

j=1

Kj

(1.15)

where τ is the transcription factor, ϵi is the regulatory effect on the tran-
scription rate (as before 0 ⩽ ϵi < 1 for inhibition, ϵi = 1 no effect and
ϵi > 1 for activation) and Ki is the equilibrium constant for the binding
of the i promoter site.

But once one starts to consider more binding sites, it starts to become
a bit unrealistic to suppose that we would be able to determine experi-
mentally all the particular binding affinities. This, together with the fact
that the last ligand has typically a much higher affinity Kn << Kn−1,
allows us to simplify eq. (1.15) to simply:

f(x) = τ
1+ ϵn

xn

Kn

1+ xn

Kn

(1.16)

The expression that we have obtained through the mechanistic model
is the discrete exponent version of the named function, the Hill equa-
tion. This function was proposed empirically to describe the binding of
oxygen to hemoglobin2 by Archibald Hill in 1913 (A. V. Hill, 1913). It is2 For that particular

case, the optimal
exponent is 4 given
that the hemoglobin

presents 4 sites where
the oxygen can attach

itself.

worth noting that for the cases where the multimer structure is formed be-
fore attaching to the promoter (as it will happen for our Anabaena model
described in part II) only the final form would have a regulatory func-
tion. In those cases, this is expression eq. (1.16), not a simplification given
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1.1 genes , proteins , and their models 21

that the intermediate stages of the multimer do not affect the promoter.
These experimental differences decide the proper definition of the equi-
librium constant. Depending on the experimental data, you could have
that KN ≡ Kn when only the last element attaches to the promoter. Alter-
natively, KN ≡

∏n
i=1 Ki ≃ (Kn)

n when the multimerization occurs in the
promoter, and therefore, we only could have experimental values of the
monomer affinity.

The only difference between this final form eq. (1.16) and the origi-
nal equation eq. (1.7) is in the exponent on the regulatory transcription
factor. As one can observe in fig. 1.8 the exponent defines the sensitiv-
ity of the regulation. To be able to plot together activation and inhibition
as complete opposites, we have supposed an activation mechanism that
does not present constitutive production. This type of activation cannot
be described as a multiplicative effect through an ϵ. Then, we can rewrite
these expressions considering instead an additive effect where we use β

for the constitutive rate β ≡ τ and ρ for the modification effects after the
regulation. For the activators (as ϵ > 1) we will have ρ ≡ τ(ϵ− 1) and
ρ ≡ τ(1 − ϵ) for the inhibitors (given that ϵ < 1). With these variable
changes, we obtain:

f(t) = β+ ρ

xn

Kn

1+ xn

Kn

, (1.17a)

f(y) = β+ ρ
1

1+ yn

Kn

, (1.17b)

This is the notation that will be used throughout the thesis. The behavior
of both an activator eq. (1.17a) and an inhibitor eq. (1.17b) for several
values of n is represented in fig. 1.8 in solid and dashed lines, respectively.

One can observe in fig. 1.8 that for lower values of the exponent, or
Hill coefficient, the regulation is much more gradual, needing a much
higher concentration of the ligand to affect the transcription. As n in-
creases, the function resembles more and more a step function and be-
haves more like a threshold around the value Kn. This value is the only
common point in all distributions, and the value of the function on this
point will always be half its maximum value.

The promoter structures of genes are complex and there are a lot of
possible mechanisms to regulate the expression of a gene. Due to this, it is
possible that several transcription factors regulate the same gene. If those
transcription factors act independently of each other, one can prove that
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22 the systems biology perspective

Figure 1.8: The figure shows the effect of the hill coefficient over the fraction of
bounded ligand for a certain ligand concentration. Solid lines show
the activation function eq. (1.17a) and dashed lines the inhibitory
function eq. (1.17b).

their effects accumulate following the same methodology. The general
regulatory term with varied transcription factors interactions is

f(x) =

∑
p∈P

pnp

Kp

1+
∑
p∈P

pnp

Kp
+
∑
i∈I

ini

Ki

, (1.18)

where P are the group of all the activators that intervene in the process
with its respective equilibrium constant Kp and cooperative exponent np

and I is the group of all the inhibitory transcription factors with their
particular parameters.

With all this, we now have all the tools to translate both the regulatory
network that controls pattern formation in Anabaena (studied in Part II
and the one that controls lateral growth (or tillering) in Rice Part III into
mathematical models of differential equations. Then we will now move
to present the main strategies and methods used to analyze the models
resulting from these proceedings in the following section.
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1.2 model analysis and simulation 23

1.2 model analysis and simulation

Once one has obtained the final expression for the model, one has to think
if it wants to describe the full dynamics of the system or only requires the
equilibrium state. If we only require the equilibrium state, it is usually not
necessary to integrate the dynamics until the system no longer changes.

As the example system for this section, we will use a simpler version
with of the toggle switch with multiplicity presented in (Gardner et al.,
2000)

d[A]

dt
= ρ

1

1+ [B]n
− [A], (1.19a)

d[B]

dt
= ρ

1

1+ [A]n
− [B], (1.19b)

which defined both the equilibrium constants and the degradation rates
to 1 KA = KB = αA = αB ≡ 0. Additionally, we further simplified that
expression by considering the same production rate ρ and multiplicity
factor n for the two species.

A system is in equilibrium if it does not change with time. Then,
to obtain the equilibrium state of this system, one only needs to solve
d[A]
dt =

d[B]
dt = 0. As this system is really simple, we can even solve it

graphically. To do so we have to find the isoclines which are the set of
point where one of the components of the derivative is null. This set of
point will always have a dimension less than the original system. Then in
this case we will have the two lines:

[A] = ρ
1

1+ [B]n
, (1.20a)

[B] = ρ
1

1+ [A]n
. (1.20b)

We represented these isoclines in the fig. 1.9 top for two different val-
ues of the multiplicity3 n = 1 and 10. Along the red dashed line eq. (1.20a) 3 These two particular

curves have been
already presented in
fig. 1.8.

we have that, d[A]
dt = 0 and in the blue dashed line eq. (1.20b) we have

d[A]
dt = 0. Then the crossing points of these two lines will be the equilib-

rium states of the system. We can see that for n = 2, we only have one
equilibrium state (to which all the trajectories in light green go). How-
ever, for n = 10 we have three equilibrium states with two stable ones,
represented in blue, and one saddle-node represented in yellow color. As
a result of this, the final state of this system with n = 10 depends on its
initial conditions. The saddle-node point is only accessible through the
black dashed line [A] = [B], and any other trajectory will never cross this
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24 the systems biology perspective

line. Consequently, all the trajectories starting from a set of initial concen-
trations on a certain side of this line will end on the stable equilibrium
point located on the same side.

Figure 1.9: The upper plots show the phase space for two different values of the
multiplicity n = 1&10. The gray lines represent the flow of the system,
several trajectories are drawn in green and the equilibrium points
are represented with blue and yellow dots. To ease the visualization,
we also included the isoclines of the system, represented with red
and blue dashed lines, and the bisection with a dashed black line.
The lower plot presents the bifurcation diagram for the multiplicity
factor, also known as Hill coeficient, n. The color of the line define
the stability of the equilibrium state. These images are obtained with
a code adapted from the collected lecture notes by Guilhem Doulcier.
License: CC BY-SA 4.0.

To obtain the nature of the equilibrium points, we have performed a
linear perturbation analysis. But as we will not directly use it, we will
not provide further details on this procedure. The main idea behind it
is to study how the system reacts over a linear fluctuation over a steady
state. If this fluctuation is always amplified the state is unstable, and if
it is dampened it is a stable state. But it can also depend on the fluctua-
tion characteristics, then the type of state options broaden. An example
of this is the saddle equilibrium in fig. 1.9 which is unstable from all
directions except the A = B one. We only formally studied the stability
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1.2 model analysis and simulation 25

of our system in chapter 3, and in that case, this information was auto-
matically provided by the XPP-Auto software. This is a typical software
to numerically solve systems of differential equations. For more complex
systems, it is usually easier to numerically solve d[A]

dt =
d[B]
dt = 0. However,

it is worth noting that this would provide the equilibrium points but, typ-
ically, not the flux. Due to this, we would have no information regarding
the dynamics of the system. If we are interested on the dynamics of the
system (as we will be in chapter 4), we should numerically integrate its
system of equation from a set of initial conditions. In that case, the equilib-
rium states should be obtained through the repetition of different initial
conditions to check for bistabilities with different trajectories.

This study can be repeated for a continuum array of n values to obtain
the bifurcation diagram presented in fig. 1.9 bottom. This diagram shows
the effect that the multiplicity has over the toggle-switch system and ex-
emplify the richness in behavior that nonlinear effects provide even on a
simple system. This sort of parameter sweep is really useful and informa-
tive when the number of parameters is small and one can individually
study all of them (as we will do in chapter 3) or if we have some informa-
tion regarding which are the most relevant ones.

For all the other cases when the system is too big for a systematic anal-
ysis, we will typically use optimization algorithms that autonomously re-
duce the parameter range to explore.

1.2.1 Model adjustment and parameter optimization

In order to design a systematic exploratory algorithm to search the best
set of parameters, we need to find a method to quantify the quality of
a parameter set. To do so, we will define a function that compares the
expected experimental values of all the known observable with the ones
obtained with each set of parameters. This function is commonly known
either as loss or cost function and must be well-behaved, strictly positive,
and present the minimum value when those two values coincide. For this,
quadratic differences such as the mean squared error such as

E(P) =
∑

x∈Obs

[
ωx(xexp − xP)

2
]

(1.21)

are typically used. We have added an ωx weight that can modify the rel-
ative relevance of an observable x. Then xexp would be the experimental
value of that observable and xP the value produced by the model with a
set P of parameters.

Once we have obtained this loss function, E(P) we can treat it as a
Hamiltonian that defines an energy of our model in the parameter space.
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Then we have translated our parameter choice into an optimization prob-
lem of this eq. (1.21). Then, if our objective is only to reach a minimum
of this function, the most efficient way to explore the parameter space is
the so-called gradient descent strategy. Depending on the parameter sam-
pling method, you have a huge array of specific protocols. But at its core,
this strategy only contains one policy: to only accept parameter changes
that reduce the energy of the system. This makes obvious sense, if you
only move downwards, you will for sure end up with a better parameter
than the one you started with. But if the energy landscape is rough with
a lot of "peaks" and "valleys" is a really poor exploratory algorithm. It
will be completely captured by the first local minima that it finds, even if
it is the shallowest one. To solve this issue, one could compromise a bit
the acceptation policy and decide to accept some parameters that increase
the energy of the system only to expand the exploration range. This is the
main idea behind the Metropolis–Hastings algorithm (Metropolis et al.,
1953).

To further the statistical mechanics approach, we can borrow the Boltz-
mann distribution to establish a more permissive acceptance policy. This
distribution

pi =
e

−Ei
kT∑N

i e
−Ei
kT

(1.22)

gives the probability to observe a state pi with an energy Ei when the
system is at a temperature T . k is the Boltzmann constant that relates pro-
portionality between the energy of the particles of an ideal gas and its

temperature and
∑N

i e
−Ei
kT (the Canonical partition function) is the nor-

malization factor required to obtain that the probability of the system to
be in some considered states is 1

∑N
i pi ≡ 1. This probability can be easily

expanded to consider the probability of a transition between two states.
If we want to go from a state i to j and i is much more probable than j

this transition should be really rare. Then this transition probability must
be proportional to the relative probabilities of each state

Pij =
pj

pi
= e

−(Ej−Ei)

kT . (1.23)

Then we can use this expression4 as the acceptance protocol for our4 This expression is
called the Boltzmann

factor because is no
longer normalized and
therefore is no longer a

distribution.

algorithm. Then for each proposed parameter change, we calculate the Pij
and obtain a random value from a uniform distribution between 0 and 1.
Then if the obtained value is lower than Pij we will accept the transition.
Is it easy to see that with this criterion we will still accept all the tran-
sitions to lower energy parameter sets, for those pj > pi, and therefore
Pij > 1. But now we can tune the algorithm to also accept some transi-
tions to higher energy through the temperature value. The physical in-
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terpretation for this is that stochastic thermal fluctuations could provide
the extra energy for the system to reach less optimal states. Then, the
higher the temperature is, the more different is the behavior from the gra-
dient descent. For really high temperatures, it can ve considered almost a
completely stochastic exploration that could have convergence problems.
And for lower temperatures, the Metropolis–Hastings algorithm acts as
a slightly noisy gradient descent. This strategy has the potential to avoid
the local minima capture, but with a slight caveat. The parameter trajec-
tories obtained with the algorithm greatly depend on the chosen temper-
ature. Then we incorporated an extra optimization problem, which is the
temperature range that will provide the most efficient exploration of the
parameter space to avoid the initial conditions bias without compromis-
ing too much of its convergence. There are several strategies to deal with
this problem, such as adaptable parameter sampling or reset strategies
(Newman and Barkema, 1999). We will not discuss extensively here this
options, but we will incorporate some of them to our algorithm in each
particular study, such as reset strategies in chapter 4 or shifting/oscillat-
ing Hamiltonian weights chapter 6. Here, we will focus on the common
idea of concatenating an initial exploration on high temperature with a
posterior refinement of the parameter value with a much lower temper-
ature. This is the idea at the core of the simulated annealing algorithm
presented in (Kirkpatrick et al., 1983) that we will extensively use through
this thesis.

This algorithm takes its name from the annealing procedure in con-
densed matter physics (Laarhoven and Emile H. L. Aarts, 1987). The an-
nealing consist in first a rapid heating of a substance, typically a metal, to
melt it completely and therefore randomly arrange its particles. Then the
heat bath is progressive and slowly cooled to allow the arrangement of
all the particles in the lowest energy state available. As one could expect
from the name, the algorithm can easily be explained through an analogy
of this process. In its minimum expression, represented in fig. 1.10, the
simulated annealing is a Metropolis–Hastings algorithm with an initial
high temperature and a continuous cooling. Then, when the algorithm
initiates its exploration (the top window plot in fig. 1.10), the high tem-
perature allows for an almost random and exploration of the parameter
space almost without taking into account the energy of the system. This
allows for a more diverse initiations of the trajectories, even without al-
tering the initial conditions. Once the temperature starts to decrease (the
middle window plot in fig. 1.10), the algorithm will progressively reject
more and more proposed parameter changes. This will increase the de-
terministic drift towards lower energy parameters while still allowing for
fluctuations that avoid the local minima trapping. And finally during the
last low temperature regime (the low window plot in fig. 1.10) the al-
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gorithm preforms a pure local gradient descent to select the parameters
with the lowest energy. This same representation in fig. 1.10 shows an
exaggerated example that even with this methodology one cannot ensure
that the minimum located is the global one. Due to this, it is typical to
concatenate several consecutive runs starting with the previous best fit to
ensure consistency. But in most cases, it is not necessary to ensure that a
given parameter set is unique or the best one. We will typically stop the
parameter search once we believe that the agreement between the model
and the experimental observable.

Te
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gy

Parameter value

Time
Figure 1.10: The figure shows three different imagined instances of a simulated

annealing algorithm exploration in purple, orange, and green for
three different temperature regimes. The energy of a given param-
eter value is represented by the greyed area in the window plots.
The parameter changes are represented with black lines and the en-
ergy transitions with arrows colored with the temperature typically
required to observe it. Brighter colors represent the final parameter
value, the soft ones the initial one and black dots represent pro-
posed parameter changes, represented with dashed lines, that the
algorithm did not accept. Image adapted from Simulated Annealing
Evolution by Sergio Ledesma, Jose Ruiz and Guadalupe Garcia (CC
BY 3.0.)
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There are numerous cooling strategies in the bibliography (E. H. L.
Aarts and Korst, 1989; Laarhoven and Emile H. L. Aarts, 1987) with dif-
ferent degree of elaboration. But through this thesis, we used one of the
simplest ones

T(t) =
Tini√
t

. (1.24)

We initially set the Tini such that we would always accept a doubling of
the energy in the first simulation step of the first run. For posterior analy-
ses, we decreased a bit to have an 80% probability to accept a doubling in
the first step. The more concrete configuration of each optimization algo-
rithm will be discussed in each one of the chapters where we have used
this technique.
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Part II

N I T R O G E N F I X AT I O N I N H E T E R O C Y S T S

Here we will study the patterning of nitrogen-fixing cells (het-
erocysts) in cyanobacteria filaments. As the amount of hetero-
cysts controls the filament fixing capabilities, if one controls
the pattern one controls the filament’s dedication to nitrogen
fixation.





2
I N T R O D U C T I O N A N D S TAT E O F T H E A RT

Cyanobacteria is the name of a phylum of prokaryote organisms that
presents the common characteristic of performing photosynthesis. An-
cestral cyanobacteria-like prokaryotes developed photosynthesis, which
converts energy and oxygen from sunlight, water, and CO2, around 3 bil-
lion years ago. This gives them an advantage over the existent anaerobic
prokaryotes that had to search for their nutrients. As a result of this, they
proliferated and started to oxygenate the atmosphere, which until that
point was completely devoted to oxygen (anaerobic) and formed primar-
ily by nitrogen (N2), carbon dioxide (CO2) and methane (CH4). This lib-
eration of the oxygen stored in both the water HO2 and the CO2 through
photosynthesis produced huge environmental changes oxidizing most of
the superficial iron to hematite forming numerous continental Red beds.
This massive liberation caused the great oxygenation event, which is the
name of the saturation of the atmosphere with oxygen, up to more than a
30% concentration in oxygen. This change was supposed the first known
mass extinction by killing most of the anaerobic organisms to which the
oxygen was toxic. Additionally, the oxygen also reduced the amount of
methane (CH4) in the atmosphere by converting it to both water HO2 and
CO2. This caused a thinning of the atmosphere, destroying a methane
greenhouse on a timescale as short as 1 million years, that led to a global
glaciation (the Makganyene snowball) that lasted several hundred million
years (Kopp et al., 2005).

These two related events produced a niche for aerobic organisms that
consume oxygen to grow and evolve, ultimately producing all the breath-
ing biodiversity observed today. Not only this, but it is also hypothesized
that the chloroplasts, the organelle where the photosynthesis is realized,
originated through endosymbiosis of a cyanobacterium by an aerobic eu-
karyote organism (Archibald, 2015). This would make the cyanobacteria
the cellular ancestor of all plant organisms.

Cyanobacteria are still extremely successful today and can be found
in a very diverse range of environments with very different colony sizes.
Huge cyanobacteria colonies, called blooms, arise suddenly in both fresh
fig. 2.1A and salt water, fig. 2.1B covering as much as 200,000 km2 of sea
surface some summers (Kahru et al., 2018). On land, cyanobacteria can
easily live in ponds and wet terrain, but small colonies are capable of even
sustaining extreme environments such as drylands (both cold and hot)
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Figure 2.1: Cyanobacteria environmental range: A Freshwater bloom on Erie
lake on September 26, 2017. B Saltwater bloom in the Baltic Sea on
August 15, 2020. Both present the same 10 km scale bar and the
images are reproduced from NASA Earth Observatory images by
Joshua Stevens, using Landsat data from the U.S. Geological Survey
(A and B). C Unearthed hypolithic cyanobacteria biofilm intimately
associated with a quartz substrate. The scale bar measures 2 cm and
the image is reproduced from (Chan et al., 2012). D Sloth fur as a mo-
bile ecosystem for green algae and cyanobacteria (Kaup et al., 2021).
The scale bar measures 20µm and the image is composed by a sloth
photograph of Johner Images/Alamy and a zoomed hair modified
from a figure in (Suutari et al., 2010).

and are capable to grow underground attached to quartz rocks fig. 2.1C.
And finally, cyanobacteria also form symbiotic relationships with other
organisms. The most eye-catching of those are represented in fig. 2.1D
that shows that colonies of both green algae and cyanobacteria are capa-
ble to grow in the sloth fur. This imbues the fur with a green hue that
facilitates the sloth camouflage, and it is also speculated in (Kaup et al.,
2021) that there is also a direct exchange of substances between the organ-
isms. Less striking, but much more relevant for this thesis, are the exten-
sive examples of cyanobacteria-plant symbiosis (Lee and C.-M. Ryu, 2021).
Cyanobacteria are capable to grow in both roots and leaves of plants to
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both protect and contribute with fixed nitrogen to the plant while they re-
ceive carbon-based nutrients. This relationship and the possibilities that
it opens will be more extensively discussed later in part IV.

This ubiquity shows huge adaptability and resilience, but is also prob-
ably helped by the fact that cyanobacteria are a pretty general biologi-
cal term. It includes a varied biological group with quite diverse cellular
lifestyles (Komárek, 2016).

Figure 2.2: Illustration of morphological diversity in cyanobacteria. Families
(morphological Orders) follow (Rippka et al., 1979). I. Chroococcales:
a Chroococcus subnudus, b Ch. limneticus, c Cyanothece aeruginosa, d
Snowella litoralis, e Microcystis aeruginosa. II. Pleurocapsales: f Pleuro-
capsa minor. III. Oscillatoriales: g Planktothrix agardhii, h Limnothrix re-
dekei, i Arthrospira jenneri, j Johanseninema constricum, k Phormidium sp.,
l, m Oscillatoria sp., n Schizothrix sp., o Tolypothrix sp., p Katagnymene
accurata., IV. Nostocales: q Dolichospermum planctonicum, r Dolichos-
permum sp., s Nostoc sp., t Nodularia moravica. V. Stigonematales con
: u, v Stigonema sp. Scale bar a–u = 10 µm, v = 20 µm. Reproduced
from (Dvořák et al., 2015), CC BY 2.0 license.

As one can see in fig. 2.2 there are five big "classical families" distin-
guished through morphological criteria. Both the Chroococales, fig. 2.2a-e,
and the Pleurocapsales, fig. 2.2e-f form aggregated bacterial colonies. This
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would be a clear unicellular behavior. Others, the Oscillatoriales, form con-
tinuous filaments but without specialized cell types, constitute an exam-
ple of borderline multicellular organism fig. 2.2g-p. And finally families,
such as the Nostocales, fig. 2.2q-t, and the Stigonematales, fig. 2.2u,v, that
present both a filamentous multicellular structure and specialized cell
types. These specialized cellular forms are akinetes, enlarged reinforced
cells that act as resource reservoirs, and heterocysts. These last ones will
be the object of study of this part II. They are cells irreversibly dedicated
to fixing ambient nitrogen into an organic form. This process is catalyzed
by nitrogenase, and this enzyme is easily degraded by oxygen. In order to
avoid this degradation, some cyanobacteria have developed a mechanism
to protect nitrogenase from the oxygen produced by vegetative cells. This
mechanism is to stop carrying out photosynthesis, develop an external
glycolipid cell to impede oxygen diffusion from the medium, and finally
degrade all remaining oxygen and photosynthesis-related proteins while
it increases the production of nitrogenase. This nitrogen fixation is in-
dispensable to the environment because only a few bacteria and archaea
are capable of fixing atmospheric nitrogen. Then, both their ubiquity and
adaptability and this unique ability make them crucial for the viability of
all living beings on Earth. They provide the nitrogen necessary to sustain
the vegetative biomass that constitutes the base of the trophic chain.

The biology of cyanobacteria has been the subject of intensive work
during the last decades. A great number of studies have focused on
a specific type of cyanobacteria that forms colonies consisting of one-
dimensional filaments, the strain PCC 7120 of the genus Anabaena, to such
an extent that this has become a model organism in the field (Harish and
Seth, 2020; Herrero and Flores, 2019; A. M. Muro-Pastor and Hess, 2012;
X. Zeng and C.-C. Zhang, 2022; C. C. Zhang et al., 2018). Under nitrogen-
rich conditions, these filaments are composed only of vegetative cells car-
rying photosynthesis. However, as a response to different environmental
stresses, vegetative cells can differentiate into specialized cell types that
can fix atmospheric nitrogen. These individual conversions allow the sur-
vival of the colony and represent a paradigmatic example of a prokaryotic
multicellular life form with differentiated cell types. When external nitro-
gen sources are scarce, heterocysts appear in a quasi-regular pattern, with
intervals of roughly ten vegetative cells between heterocysts. Fixed nitro-
gen produced by the heterocysts reaches the vegetative cells and sustains
their growth, as can be observed in fig. 2.3.

Reciprocally, nutrients produced by photosynthesis in vegetative cells
are also shared to maintain the production of nitrogenous compounds in
heterocysts, which require high energy consumption (Flores and Herrero,
2010; A. M. Muro-Pastor and Hess, 2012). Upon differentiation, hetero-
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Figure 2.3: Nutrient exchange in an Anabaena PCC 7120 filament under nitro-
gen deprivation: The A image shows a fluorescence image of an An-
abaena PCC 7120. The purple fluorescence is associated with the thy-
lakoid membranes (and therefore to the photosynthesis) while the
yellow fluorescence marks NsiR1 expression, which is described as
an early marker of heterocyst differentiation in A. M. Muro-Pastor,
2014. Image courtesy of Alicia Muro-Pastor. The B diagram shows
a sketch of an Anabaena filament with the same color code and the
extracellular nutrient exchanges along the filament. Adapted from:
James W. Golden and Ho Sung Yoon, 2003.

cysts lose the possibility to undergo cell division, but vegetative cells con-
tinue dividing, producing filament growth and increasing the distance
between consecutive heterocysts. Due to this, new heterocysts differenti-
ate in the middle of the intervals between previously existing heterocysts
in order to not diminish the supply of nitrogen to distant vegetative cells.
In this way, the dynamic process of differentiation allows the overall pat-
tern of heterocyst location to conserve its properties over time.

There are many processes involved in the regulation of heterocyst
pattern formation and its maintenance. In addition to nitrogen levels and
other environmental aspects, many genes and transcription factors play
a role (Herrero et al., 2013). In the next section, we will present a brief
chronology of the identification of the known elements of the regulatory
network.
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2.1 experimental chronology of the regulatory network

The first link between nitrate (organic nitrogen) and heterocyst forma-
tion appeared in (Fogg, 1949). In this work, it was shown that the pres-
ence of nitrate in the medium inhibits the formation of heterocysts in
Anabaena Cylindrica Lemm. Despite this, the involvement of heterocysts in
nitrogen fixation was not proposed until a few years later in (Fay et al.,
1968) (even though they still did not provide any proof of their hypothe-
sis). Roughly at the same time, it was hypothesized in (C. P. Wolk, 1967)
that existent heterocysts condition the apparition of subsequent hetero-
cysts through the inhibition of nearby cells. In their work, the authors
show that fragmented filaments of Anabaena Cylindrica Lemm. (separating
vegetative cells from heterocysts) produce more heterocysts than intact fil-
aments. A similar result in (Water and Simon, 1982) unequivocally linked
the heterocysts to nitrogen fixation. In this experiment, after the fragmen-
tation of Cylindrospermum licheniforme filaments, a synchronous round of
heterocyst differentiation was induced. This round of differentiation was
coupled with a spike in nitrogenase activity between 13 and 26 hours that
mirrors the production of heterocyst envelope components (glycolipid).
This equivalent behavior implies a close relationship between heterocysts
and nitrogen fixation.

Once the close relationship between heterocysts and nitrogen process-
ing was established, the main objective in the field moved to the screen-
ing for the different genes that control the differentiation process. The
first gene linked to this process was ntcA. This gene was first identified in
(Vega-Palas et al., 1990) (during the analysis of mutants of Synechococcus
sp.Strain PCC 7942 incapable to assimilate nitrate) and properly character-
ized in (Vega-Palas et al., 1992), (T. F. Wei et al., 1994), (Frías et al., 1994),
and (Luque et al., 1994) as an essential gene for the atmospheric nitrogen
assimilation and heterocyst development. After depletion of the nitrate
present in the media, the role of ntcA would be to start the differentiation
process by up-regulating both itself and the master regulator of the hete-
rocyst transition, hetR. The gene hetR was initially identified in (Buikema
and Haselkorn, 1991) by the isolation of Anabaena sp. strain PCC 7120

mutants unable to grow aerobically on media lacking fixed nitrogen and
proposed as a regulatory protein crucial for the differentiation process.
This regulatory function and its capability to positively self-regulate itself
was confirmed in (Todd A. Black et al., 1993).

On the other hand, the two main inhibitors of the heterocyst differen-
tiation process, hetN and pats, were also identified in the 1990s. Curiously
enough, they were discovered through the same research line that was
initiated with (Ernst et al., 1992), where they generated mutants of An-
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abaena sp. strain PCC 7120 incapable of sustained growth on media lack-
ing fixed nitrogen using TnS-derived transposons. First, hetN was iden-
tified in (T. A. Black and C. P. Wolk, 1994) while studying a particular
insertion location that was capable of arresting the production of hetero-
cysts and multiple contiguous heterocysts (Mch phenotype) depending
on the inserted gene. This insertion location was found to be the locus of
hetN, whose deletion mutant also produces a Mch phenotype. A follow-
ing work (Bauer et al., 1997) showed that hetN transcription starts after
at least 6 hours of nitrogen deprivation and also located another cosmid
(8E11) with the ability to suppress heterocyst formation. Finally, the au-
thors of (Ho Sung Yoon and James W. Golden, 1998) studied this cosmid
and identified the gene responsible for the heterocyst suppression, which
they denominated patS.

Figure 2.4: Progress of heterocyst differen-
tiation: Scheme of the process of differenti-
ation of heterocyst-forming cyanobacteria,
with the roles of the main genes involved.
Darker green means more fixed nitrogen
in a cell, and the darker border represents
the glycolipid cell wall that is formed once
the cell is committing to differentiation. Re-
produced from (Flores and Herrero, 2010).

In Anabaena sp. strain PCC
7120 this gene blocks hetero-
cyst differentiation when over-
expressed and its deletion mutant
shows an increased frequency of
heterocysts and a Mch phenotype.
Moreover, it was also shown that
the last five peptides of this gene
(PatS-5) are enough to inhibit het-
erocyst formation. This led the au-
thors to propose that a processed
PatS peptide, originating from dif-
ferentiating protoheterocysts, dif-
fuses along the filament by neigh-
boring cells, creating a gradient of
an inhibitory signal.

Also during this timeframe,
the gene patA was identified in
(Liang et al., 1992) by the study of
a mutation whose phenotype pre-
sented heterocysts mostly at the fil-
ament ends. Additionally, the dele-
tion of patA suppressed the multi-
heterocyst phenotype produced by
extra copies of the wild-type hetR
gene. Just a bit after the turn of
the century, another essential gene
for the heterocyst formation in Nos-
toc punctiforme was presented in
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(Wong and J. C. Meeks, 2001), where it was shown that the ∆hetF dele-
tion mutant is not able to form heterocysts while presenting a higher
concentration of HetR than the wild type. Advances in the study of this
gene will not arrive until much further ahead, at this point it was only
hypothesized that they belong to the same regulatory network controlled
by hetR.

At this point, at the beginning of the 21st century, the main players
in the regulatory network of heterocyst differentiation were already iden-
tified, albeit with different levels of detail. Besides patA and hetF, which
gave the impression of being relevant but without a clear role, the rest
of the mentioned genes seemed to have a well-defined role presented
in fig. 2.4. Therefore, the experimental research focus shifted from the
"Who?" to the "How?". Then the researchers started to study the inter-
actions between those genes, mainly studying the epistasis between the
several mutants.

For example, a more detailed description of the mechanism of ni-
trogen sensing used by ntcA was presented in (M. I. Muro-Pastor et al.,
2001), (Tanigawa et al., 2002), and (Maria Félix Vázquez-Bermúdez et al.,
2003). It was shown that the nitrogen status is detected through the in-
ternal level of the 2-Oxoglutarate metabolite and therefore closely relates
the heterocyst formation with the nitrogen metabolism of the vegetative
cells. The close relationship between ntcA and hetR was further studied
in (A. M. Muro-Pastor et al., 2002), (Olmedo-Verd et al., 2005), and (Ehira
and Ohmori, 2006), where the positive feedback loop between those genes
is fully fleshed out.

Regarding the inhibitory gradients in the filament, (H. S. Yoon and
J. W. Golden, 2001) showed that while the deletion mutant of patS presents
clusters of heterocysts and shorter intervals of vegetative cells between
heterocysts, this difference with the wild type phenotype gets smaller
with time due to the inhibitory gradients of nitrogen products. Due to
this, they hypothesized that the main role of PatS is the resolution of the
local dispute by the vegetative cells to differentiate, and they situated the
commitment window between 9 and 13 hours. A full characterization of
the inhibitory role of hetN over hetR is presented in (S. M. Callahan and
Buikema, 2001) where the native hetN promoter was substituted with a
copper-inducible petE promoter, which allowed to tune the activation of
hetN by controlling the concentration of copper in the media. Additionally,
they observed that the hetN transcription is produced mainly in the hete-
rocysts. Due to the previous, the system presents two distinct inhibitory
timescales, the one of patS, which is produced early after nitrogen depri-
vation, and the one of hetN, which activates after the differentiation com-
mitment. It was hypothesized that patS is relevant for the de novo pattern
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formation, while hetN is more relevant for the pattern maintenance. Par-
allel, independent work by (B. Li et al., 2002) also reports inhibitory role
evidence by showing that plasmid-mediated over expression of hetN is
capable to avoid the up-regulation of hetR on nitrogen depletion.

It was not until a few years later that the first evidence of the in-
hibitory mechanism was presented in (Xu Huang et al., 2004). Here, the
authors prove that HetR forms homodimers capable to bind to DNA
to up-regulate the production of both itself and patS, and that the pen-
tapeptide PatS-5 inhibits this up-regulation. These results showed that
the inhibitory mechanism of patS is to impede the regulatory functions
of HetR. This implication was later confirmed in two independent stud-
ies, (I. Y. Khudyakov and James W. Golden, 2004) and (Borthakur et al.,
2005). In the first one, the authors identified a point mutation (a C to
T transition) on the hetR, providing the organism with resistance to the
over expression of both inhibitors and producing a completely random
heterocyst location pattern when those genes are not over expressed. In
the second study, the authors showed that both inhibitory pathways are
independent of each other and therefore can function in the mutant back-
ground of the other gene. Additionally, they observe that the double mu-
tant ∆patS∆hetN leads to an almost complete differentiation of the fila-
ment that can be reduced by the continued supply of ammonia to the
system. Therefore, these two works presented evidence that, while the
pathways of both inhibitors seem independent and act at different time
points of the differentiation, they present a certain similarity in the in-
hibitory mechanism. The final proof of the effect of the inhibitors over
HetR concentration came in (Risser and Sean M. Callahan, 2009). In this
study, the authors showed gradients of GFP-tagged HetR that increase as
one moves away from a cell that produces inhibitors and reported that
this gradient is caused by inhibitor-mediated degradation of HetR: "Is it
also worth noting that this work was realized both in mutants that presented a
higher concentration coupled with a lower amount of heterocysts: Two modifica-
tions of the hetR and deletion of patA mutants which share a common phenotype:
a higher concentration coupled with a lower amount of heterocysts."(direct quo-
tation from Risser and Sean M. Callahan, 2009).

Regarding the relationship of the gene patA with the rest of the regu-
latory network, first (Makarova et al., 2006) studied the sequence of PatA
and detected a domain (PATAN) related to protein-protein interactions,
suggesting a post-transcriptional regulatory role. And afterward, a cou-
ple of studies, (Orozco et al., 2006) and (Risser and Sean M. Callahan,
2008), covered the study of the epigenetic relationship of this gene. In
(Orozco et al., 2006) the relationship between hetR, hetN, patS, and patA
was studied using multiple mutants. The authors showed that, while the
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deletion phenotype is epistatic to any other deletion, the over expression
of patS is epistatic to hetR over expression. This indicates that hetR acts
upstream of all the other genes, given that all of them require a func-
tional hetR. They also observed that while the ∆patA phenotype (a fila-
ment with heterocysts mostly on the filament ends) gets more extreme on
the ∆patA∆hetN double mutant (which presents multiple heterocysts on
the ends), it is not present on both the ∆patA∆patS double mutant and
∆patA∆hetN∆patS (Orozco et al., 2006). The first, ∆patA∆patS, is more
similar to the patS single mutant with longer vegetative intervals than
to the ∆patA. And ∆patA∆hetN∆patS presents fewer heterocysts than the
hetNpatS double mutant.

These results indicated that a functional patS is required to observe
the patA phenotype and led the authors to suggest that PatA reduces
the effect of HetN and PatS while independently promoting differenti-
ation through HetR (Orozco et al., 2006). On the other hand, in (Risser
and Sean M. Callahan, 2008) the relationship between hetF and patA was
studied. They reported that the HetR concentration increase observed in
∆hetF and ∆patA mutants were caused by a reduction of the HetR protein
turnover. Additionally, they also observed that hetF is capable to recover
the ∆patA mutant and is also necessary for the HetR mediated transcrip-
tional promotion of both itself and patS. These two facts suggest an un-
known shared role of these genes in a post-transcriptional activation of
HetR that allows its regulatory function.

A bit more recently, it was also shown in (Hou et al., 2015) that the
expression of patA is also regulated by hetR. And finally, a very recent
study (Valladares et al., 2020) showed a relationship of this gene with
several components of the Divisome and, therefore, with the control of
the cell division.

Also, during this first decade of the 21st century, two new genes that
had previously received less experimental focus were identified. The first
one, hetL, was presented in (D. Liu and James W. Golden, 2002). Its over-
expression relieves inhibition by PatS-5 pentapeptide in Anabaena PCC
7120 and, therefore, it is affecting heterocyst regulation downstream of
PatS production. This has been recently confirmed for Nostoc PCC 7120

in (Xiaomei Xu et al., 2020), where it was shown that HetL provides im-
munity to HetR to the inhibitory action of PatS. The second gene, hetZ,
was studied in (W. Zhang et al., 2007). The authors showed that its mu-
tants present delayed or no heterocyst differentiation at all. A posterior
work by (Videau et al., 2018) showed that hetZ over-expression can fully
bypass hetR to produce functional heterocysts and hypothesized a role in
the commitment to differentiation.
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During more recent years, experimental efforts have focused on the
mechanics of the interactions of the regulatory genetic network through
the study of the proteins codified by the previously presented genes, with
the aim to obtain the functional form of those proteins and the regulatory
pathways in which they intervene. The first example is a study of the
HetR structure with the use of crystallography. In (Kim et al., 2011) it was
shown that HetR forms dimers capable of interacting with DNA and also
that this interaction is impeded by the binding of PatS-5 (the RGSGR se-
quence shown to be capable to disrupt heterocyst formation (Xu Huang
et al., 2004)) with HetR. Posterior research in (Valladares et al., 2016) also
evidenced the existence of a tetrameric functional form of HetR with a reg-
ulatory effect on its phosphorylation (which, in turn, affects its regulatory
function). This effect of the phosphorylation on the heterocyst formation
was expanded in (Roumezi et al., 2020) through the study of the relevance
of the Pkn22 kinase on the hetR regulation. Here, the authors showed that
the phosphorylation of HetR is essential for its regulatory function.

Focusing now on the inhibitors, during the last decade a couple of
studies (Feldmann et al., 2011, 2012) quantified the biochemical constants
of the binding of the peptide sub-products of PatS, especially PatS-5
(the RGSGR sequence) and PatS-6 (which contains an additional peptide,
ERGSGR), with HetR. As the affinity of PatS-6 with HetR is more than 30

times bigger than the one of PatS-5, the authors hypothesized that PatS-6
could be the actual functional form of the PatS inhibitor. At the same time,
it was also shown in (Higa et al., 2012) that the functional form of HetN is
also an RGSGR sequence equivalent to one of PatS. Slightly later arrived
the consolidation of a peptide chain as the diffusible inhibitor, with the
first evidence for intercellular transfer of peptide inhibitory products of
patS presented in (Corrales-Guerrero et al., 2013). It is also known that
despite having the same functional form, both the processing and export
of this polypeptide (Rivers et al., 2014) and the promoter configuration
of the genetic transcription (Rivers et al., 2018) are different between patS
and hetN. And finally, the existence of redundancy in the early inhibition
has been shown in (I. Khudyakov et al., 2020) through the identification of
patX, a complementary gene of patS with a much lower regulatory effect.

Regarding more recent studies about hetR and the inhibitors patS and
hetN, it has been reported the first evidence of their transcriptional dy-
namics during the heterocyst differentiation in (Di Patti et al., 2018). By
tagging the proteins with GFP, the authors managed to characterize the
activation of these three genes during the transition. While hetR shows
a gradual activation that spans over more than 30 hours until reaching
around 10 times the original transcription, both inhibitors have a sud-
den increase in transcription. For patS the signal resembles a spike that
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reaches a maximum increase of 4-6 times the original transcription after
around 5 hours and recedes to a higher stable transcription of 3-4 the
original one after another 5 hours. Alternatively, the hetN signal increase
suddenly over around 10 hours to reach a level of transcription 1.3 times
the original one. By defining the commitment time as the point where the
auto-florescence (a proxy for the photosynthesis) decays to half the maxi-
mum value, the authors were also able to observe that the hetR activation
inversely correlates with the auto-fluorescence decay, that the maximum
of the patS expression is located on this commitment time, and that the
increase of hetN starts right after this commitment time.

It is worth mentioning that very recently some other genes with a rel-
evant function during the heterocyst differentiation have been identified.
For example, the gene hetP has been presented in (Videau et al., 2016)
to work together with its homologous in a redundant switch-like mecha-
nism that controls commitment. Posterior works by (H. Zhang et al., 2018)
and (Yaru Du et al., 2020) have shown a functional overlap of this gene
with hetZ for the control of heterocyst differentiation in response to hetR
up-regulation. Another example is the gene patD, presented in (Li Wang
et al., 2019), which is regulated by NtcA. Its inactivation increases the
heterocyst frequency (mainly through a hetN down-regulation), without
losing the heterocyst patterning, and reduces growth efficiency.

Experimental results, such as the previously described, have allowed
advancement in the understanding of the mechanisms and interactions
between the known main players: hetR, patS, and hetN that give rise to
the appearance and maintenance of heterocyst patterns. However, in ad-
dition to these, other transcription factors such as patA and hetF have been
shown to play an important role in the early steps of differentiation, reg-
ulating the transcriptional activity of hetR. All this complex network of
interactions, represented in fig. 2.5, where other heterocyst related genes,
such as hetC, hetP, hetL, patN, and hetZ, also play a role, has made the
complete understanding of heterocyst differentiation a challenge during
the last two decades.
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Figure 2.5: Gene regulatory network of heterocyst differentiation: The main elements and their
interactions are depicted schematically, together with other relevant elements with
either more dubious (in the light red background) or oversimplified roles (in the
light blue background) in the scheme. AHetR stands for the active form of HetR.
The ellipse represents the differentiation into a heterocyst. Arrows with solid lines
represent interactions between elements. Arrows with dashed-dotted lines represent
post-transcriptional changes. Regular and bold formatted references to indicate phe-
notypically inferred and observed molecular interactions, respectively.

Now that we have a functional regulatory genetic network, repre-
sented in fig. 2.5, we will also revise the different perspectives taken by
previous modelization attempts over the system in the next section.

2.2 review of the existent mathematical models

Pattern formation is extremely relevant in embryonic development be-
cause it allows for precise periodic spatial differentiation of certain cells
or groups of cells. An important question is how a pattern, and therefore
heterogeneity, is produced from a homogeneous state, given that embryos
develop from a single cell. Another intriguing feature is that patterning
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must be robust enough to ensure reliability, given that embryo develop-
ment is a highly reproducible process. Additionally, the widespread ac-
tion of pattern formation in all organisms and different levels of devel-
opment seems to point to the existence of simple intrinsic mechanisms
capable to act with widely different elements.

The reaction-diffusion system, presented by Turing in his seminal
work (Turing, 1952), constitutes a simple model capable of forming spa-
tial patterns starting from a homogeneous state. Turing considers a ring
of equivalent cells that generate a couple of diffusible morphogens whose
production depends on the concentrations of both of them. He realized,
through a linear perturbation analysis, that, while the system starts ho-
mogeneous, slight perturbations in the diffusion of morphogens are rein-
forced and create "waves" of morphogens in the cell ring. This reinforce-
ment is caused because, when a cell sends more inhibitors to its neigh-
boring cells than what it receives, the neighboring cells produce fewer
inhibitors. This further reduces the flux of inhibitor that enters the cell,
which in turn, increases inhibitor production and its flux to the neigh-
boring cells. This feedback loop produces waves of morphogens that can
drive the system to a heterogeneous state if system parameters are capa-
ble to sustain the perturbation out of the linear regime. Furthermore, if
there are more than two diffusible morphogens, the heterogeneous state
can be oscillatory. The general condition that allows these instabilities to
form is the combination of an activator and a more diffusible inhibitor.
The particular ratio between the diffusion rates is highly dependent on
the reaction system that regulates these morphogens (Gierer and H. Mein-
hardt, 1972). This fine-tuning required for the pattern fixation questions
the biological feasibility of this mechanism because it makes the system
susceptible to small changes in parameter values that would alter greatly
its behavior.

These types of biological pattern-forming systems were further exten-
sively studied by Gierer and Meinhardt (Hans Meinhardt, 2008), and fully
theoretically fledged out in Murray’s textbook (Murray, 2003). A state-of-
the-art discussion on Turing’s ideas, their development, and some system
examples can be found on a paper in this same Special Topic issue (Lacalli,
2022). Subsequently, Murray’s analysis has been expanded to consider
reaction-diffusion systems in continuously growing domains, observing
that depending on the characteristics of the growth, it can produce more
robust pattern formation, or add difficulties to it (Barrass et al., 2006;
Crampin et al., 1999). Finally, the limiting case in which the activator does
not diffuse cannot create a stable stationary pattern and, therefore, the
emergent patterns are always of a dynamical nature (Marciniak-Czochra
et al., 2017). The incorporation of mechano-chemical feedback can me-
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diate the reinforcement and consequent fixation of the pattern through
a morphological change that affects the diffusion of the inhibitory mor-
phogen (Brinkmann et al., 2018).

When talking about these reaction-diffusion systems, it is important
to remember that the insights from linear stability analysis, usually in-
voked to determine whether a system can form a stable pattern or not, can
be deceiving: the dispersion relation close to a homogeneous fixed point
can sometimes be very helpful, but also deceiving once full non-linearities
kick in. For this reason, classical rules for pattern formation based on lin-
ear analysis are better understood as applying to pattern inception. Given
that it studies linear perturbations and the stabilization of a final pattern
is a process where non-linearities cannot in general be neglected (Smith
and Dalchau, 2018). For instance, against classical thinking, systems with
equally diffusing signals can make stable patterns (Marcon et al., 2016).
In this framework, it is clear that events like domain growth (Raspopovic
et al., 2014), discrete nature of the system (Nakamasu et al., 2009), or sep-
aration of timescales for the action of different molecular species, can all
play a role to shape the formation and maintenance of patterns.

All these characteristics are relevant for the study of pattern forma-
tion in the filamentous cyanobacterium Anabaena (fig. 2.6). The cells of
the filament exchange nutrients and react as a whole to environmental
changes. Due to this, one can consider the filament as a whole multi-
cellular organism. This is especially evident when the filament is placed
in conditions of nitrogen deprivation. Under these conditions, the fila-
ment undergoes a dynamical differentiation process that differentiates
roughly one in every ten cells into nitrogen-fixing heterocysts, in a quasi-
regular pattern that is maintained as the filament keeps growing (Flores
and Herrero, 2010). This patterned differentiation constitutes an example
of specialization, cooperation, and distribution of labor because, while
the vegetative cells keep producing carbon through photosynthesis, the
heterocysts fix environmental nitrogen into organic forms that can be as-
similated by all cells. Thus, for the filament to subsist, both end products
must be shared and diffuse through the filament to the cells that are not
capable of synthesizing them. While previous reviews have already com-
piled the current theories about heterocyst pattern formation (Flores and
Herrero, 2010; Harish and Seth, 2020; Herrero et al., 2016; X. Zeng and
C.-C. Zhang, 2022), in this chapter we will systematically discuss the dif-
ferent mathematical and computational frameworks that have been used
to model the physics of cell differentiation and pattern formation in this
system.
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Figure 2.6: A. Wild type Anabaena PCC 7120 filament grown in conditions of ni-
trogen deprivation, showing vegetative cells and heterocysts. B. Fluo-
rescence images that characterize the differentiation stage of each cell.
The purple fluorescence is associated with the thylakoid membranes
(and therefore to the photosynthesis) while the yellow fluorescence
marks NsiR1 expression, which is described as an early marker of
differentiation in (A. M. Muro-Pastor, 2014). The intermediate stages
of developing heterocysts are indicated by polygonal shapes. Images
courtesy of Alicia Muro-Pastor.

2.2.1 Diffusion models of an inhibitor exported from heterocysts

First, we present works that attempt to model the patterned distribu-
tion of heterocysts without any explicit genetic regulation. With this aim,
these models only consider gradients in nitrogen concentration or some
inhibitory signal originating from heterocysts.

An early attempt at modeling the patterning of heterocyst differen-
tiation in cyanobacteria filaments came at a time when, while the bio-
logical role of heterocysts was not well-defined (Fay et al., 1968), it was
already stated that heterocysts seem to inhibit the formation of new ones
(C. P. Wolk, 1967). The model presented in (Baker and Herman, 1972) con-
sisted of an integer linear cell array simulator which allowed cell-to-cell
diffusion of an inhibitory product and division of vegetative cells. Due
to computational limitations at the time, concentrations were modeled
as integer numbers, as a result, set a discrete minimum change in con-
centration. This model was used to test the hypothesis that cell division
and differentiation are two competing processes in which, at the end of
each cell cycle (quantified by a countdown), cells have to choose a fate
depending on the inhibitor concentration. This simple model can obtain
feasible distributions for heterocyst placement, but the code was heavily
limited by having to work with integer concentrations. The model pre-
dicted a low threshold of the inhibitor to avoid differentiation, causing
integer rounding to be comparable with concentration values. This low
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threshold was probably caused by the unrealistic assumption of an equal
rate for cell-cell and cell-media diffusion, which impeded the formation
of a well-defined inhibitory gradient in the filament.

Just a year after this first study, the group responsible for one of the
initial experimental studies (C. P. Wolk, 1967) presented also theoretical
results using a simulation code (C. Peter Wolk, 1975). The authors con-
sidered that heterocyst placement was defined by a diffusible inhibitor
whose concentration dynamic was expressed as:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2
− k ·C(x, t). (2.1)

where C(x, t) is the concentration of the diffusible inhibitor at the point x
in the time t, D is the diffusion constant and k is the decay rate.

From this equation, the authors obtained an inhibitor diffusion root-
mean-square distance for the closed (k = 0) and general systems, by con-
sidering a discrete approximation with cells as distance units and the
inhibitor generated from a point source. These two distances were used
as alternative ways to define the range of inhibition that a heterocyst has
over neighboring cells in the simulation. This simulation was a sequential
random pick of non-inhibited vegetative cells that continues until all cells
are inhibited or heterocysts. The solution for the general system is shown
to agree with the experimental distribution of distances between hetero-
cysts better than the closed system. However, the closed system produces
a slightly more uniform distribution, while presenting much longer in-
tervals than the experimental data. This leads the authors to propose two
diffusion-based spacing mechanisms, in which a heterocyst would appear
on a cell sufficiently distant from preexisting heterocysts so that it has a
concentration of the activator higher than some critical level. At the heart
of this work is the initial idea that heterocyst differentiation is a purely
stochastically driven process. Then, control is only exerted through de-
sensitization that protects the cells that are close to existent heterocysts
against differentiation.

The same diffusive eq. (2.1) was studied in (De Koster and Linden-
mayer, 1987) obtaining two different analytical solutions (one continuous
and another discrete). These solutions were compared with an improved
version of the integer linear cell array simulator discussed previously. This
version avoids some problems in (Baker and Herman, 1972) by storing the
concentration as a floating-point variable and eliminating the environ-
ment with the initialization of the filament already in equilibrium with
two heterocysts in the extremes. Through this comparison two biologi-
cally reasonable estimations were made: D = 0.14− 0.39 µm2/s for the
inhibitor diffusion constant and k = 2.7− 7.5 · 10−4 s−1 for the degrada-
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tion rate, and an inaccurate estimation for the cell cycle, 7.25 h, which is
known to be around 24 h.

Much later on, the group of researchers of (Allard et al., 2007) pro-
posed a series of models. While the first three models will be discussed
here, the last one will be considered in the following section as it includes
some genetic interactions. The initial work (Allard et al., 2007) compares
the distribution of heterocysts obtained through random placement with
one obtained with a model of nitrogen propagating over a filament with
a continuous periplasm. In this model, vegetative cells consume nitro-
gen to grow, while heterocysts produce nitrogen that diffuses through
the filament. When the nitrogen level of a vegetative cell reaches 0 the
cell irreversibly commits to differentiation. Additionally, the cells grow at
a constant rate and divide at a certain fixed division time for each cell.
The model is initialized with a couple of heterocysts at the ends of the
filaments and a randomly distributed growth rate for each cell. For this
model to be able to reproduce the experimental distributions, the authors
have to consider an immediate release of nitrogen after commitment in
order to avoid the formation of multiple heterocysts. This work presents
an opposing paradigm to the earlier ideas in (C. P. Wolk, 1967): while
in the oldest work there was a deterministic system of inhibition with a
stochastic initiation of differentiation, this work includes a deterministic
drive that starts the differentiation to explain de novo heterocyst forma-
tion. Nevertheless, the need to include a sizable immediate release of
nitrogen once a cell is committed to differentiation to avoid the formation
of clusters of heterocysts shows that some level of stochasticity is neces-
sary. This stochasticity is represented here by the random distribution of
growth rates along the filament. The heterogeneity of growth rates will
decide which one of the cells, located in a nitrogen-deprived area, will
consume faster its reserves and therefore become a heterocyst. This inter-
play between deterministic dynamics on a random heterogeneous system
seems necessary to recover the observed experimental heterocyst spacing
distributions and will be a common trait of most of the models presented
below.

This model was expanded in (Brown and Rutenberg, 2012a,b) with
the addition of a coupling between the growth and the available nitrogen
in the cell and the possibility of nitrogen leakage into the media. Addition-
ally, the commitment condition is also modified and cells have to remain
in complete nitrogen deprivation for a set time before they differentiate
into heterocysts. This model is capable of reproducing the experimental
placement of heterocysts (with a commitment time of 8 hours) consider-
ably better than a random placement and a partially random one where
positions adjacent to heterocysts cannot differentiate. Nevertheless, the
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assumption that a heterocyst is capable of releasing a sizable amount of
fixed nitrogen right after commitment is not biologically feasible and will
be substituted by genetic regulation in later work (Brown and Rutenberg,
2014) (described in section Genetic regulation models). The authors also
obtained a relationship between filament growth rate and heterocyst fre-
quency, and found that growth rate presents a maximum for a certain
value of heterocyst frequency (Brown and Rutenberg, 2012a). This maxi-
mal growth is similar for different placement strategies if nitrogen leakage
is not considered in the model. However, if leakage over 1% is considered,
the differences in the growth rate between strategies are relevant: the strat-
egy of differentiation by nitrogen-starved cells, which produced the most
realistic heterocyst distributions, is also the one that produces maximal
growth (Brown and Rutenberg, 2012a).

Alternatively, (Ishihara et al., 2015) considers a paracrine inhibitory
signal originating from the heterocysts instead of considering the nitro-
gen dynamics of the filament. Experimental data obtained from a mutant
strain harboring a PhetR::gfp reporter cassette (Asai et al., 2009) presents
delayed heterocyst differentiation, observing the first heterocysts at 63–65

hours after nitrogen deprivation instead of the typical 18 to 24 hours
(Flores and Herrero, 2010), indicating that the differentiation process is
somehow altered in this strain. In their model, the authors continue the
idea, first presented in (Baker and Herman, 1972), that cell division and
heterocyst differentiation are two competing mechanisms. They propose
a cellular automaton model where cells have the capacity of aging, di-
vide and differentiate into heterocysts (that are immediately functional),
and dynamics are simulated with a Gillespie algorithm (Gillespie, 1976).
The division and differentiation probabilities are represented by sigmoid
Hill functions of the cell age. Additionally, the differentiation rate is af-
fected by a lateral inhibition produced by existent heterocysts. This effect
decreases as the number of vegetative cells in the source heterocysts in-
creases. The initial condition for the simulation is a filament of a random
number of cells with random ages flanked by two heterocysts. The model
reproduces the experimental distribution of segments between hetero-
cysts, but not the age distribution of the cells that differentiate. However,
it is worth noting that the filaments in which all vegetative cells differen-
tiate into heterocysts before the filament has grown up to 5000 cells are
discarded. The model predicts that most cells differentiate at an older age,
while experimentally, the differentiation happens at a younger age. From
this, it is inferred that the model does not properly capture early pat-
tern formation. To solve this disagreement, hetR transcription was stud-
ied, observing that it was not immediately perturbed by cell division and
remained active at the early stage, concluding that hetR activity should
be considered independent of cell age. Following this, a model was pre-
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sented where differentiation is independent of cell age, obtaining a more
realistic age distribution of the commitment time. Finally, both early (de-
fined as 63–65 hours after nitrogen deprivation) and late (more than 69

hours after nitrogen deprivation) differentiation could be explained with
the same kinetic parameters, by altering the differentiation dependency
with cellular age. Given that the commitment time to differentiation is
around 7-8 hours (A. M. Muro-Pastor and Hess, 2012; H. S. Yoon and
J. W. Golden, 2001), it is evident that the reporter strain used introduces
artifacts, and any conclusion based on its observation has to be taken with
extreme caution.

All the models discussed until this point are remarkably capable of
reproducing the overall experimental interval length distribution of het-
erocysts, however, they fail to capture the early pattern formation in the
filament. Besides, the initial conditions for almost all these studies are
filaments with functional heterocysts in the extremes. Therefore, since in-
hibitors will only reach the cells close to a heterocyst, only the regions far
from these heterocysts, if long enough filaments are considered, would
properly reflect de novo pattern formation. Additionally, all these mod-
els only consider an inhibitory signal originating from the heterocysts
without including the well-known competitive lateral inhibition between
vegetative cells through PatS (Corrales-Guerrero et al., 2013; Yaru Du et
al., 2020; H. S. Yoon and J. W. Golden, 2001). Given that the only selec-
tion mechanism acting over the vegetative cells during the first round
of differentiation is the initial heterogeneity, the authors are forced to
add arbitrary mechanisms to avoid the excessive simultaneous differen-
tiation of contiguous cells. In (Allard et al., 2007; Brown and Rutenberg,
2012a,b) the mechanism is an immediate big release of nitrogen from the
heterocysts that stops the differentiation of the close neighbors of commit-
ted cells. Alternatively, in (Ishihara et al., 2015) the model is fitted with
a strain with an apparent differentiation impairment in which the first
round of differentiation appears almost three times later than the typical
appearance time.

As a result of these limitations, it seems necessary to include an in-
hibitory signal originating from vegetative cells in order to fix the hete-
rocyst’s pattern. Thus, once this initial pattern is formed, an inhibitory
signal originating from the heterocysts, that could be due to the fixed ni-
trogen(Fogg, 1949; Water and Simon, 1982), to a paracrine inhibitor iden-
tified as HetN in (S. M. Callahan and Buikema, 2001) or to a combination
of both, could be enough to maintain the preexisting pattern.
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2.2.2 Genetic regulatory models

The role of the main genes involved in heterocyst differentiation is de-
picted in fig. 2.4. The differentiation mechanism is initiated by the up-
regulation of ntcA in nitrogen deficiency conditions. This increase of ntcA
causes an increase of hetR that initiates the production of patS. This gene
codifies a lateral inhibitor that avoids the differentiation of several con-
tiguous cells into heterocysts. Once the cell has already differentiated it
starts producing both fixed nitrogen and hetN which is another inhibitor
of heterocyst formation. hetR is the master regulator of the process: in
its absence, there is no heterocyst differentiation, consistent with observa-
tions in Cylindrospermopsis, which is the only Nostocal that lost the ability
to develop heterocysts and fix nitrogen.

In (Gerdtzen et al., 2009) a deterministic compartmental model was
introduced with three genes represented by a vector, with values in the in-
terval [0, 1], that interact between them through an interaction matrix. The
genes considered are ntcA, hetR, and patS. ntcA is considered to be acti-
vated by nitrogen depletion (Vega-Palas et al., 1992) and, in turn, activates
hetR (A. M. Muro-Pastor et al., 2002). hetR is considered to activate both
itself and patS (Xu Huang et al., 2004). Finally, patS inhibits hetR produc-
tion (Ho Sung Yoon and James W. Golden, 1998). All these interactions
are considered to have the same relative strength, except the hetR activa-
tion of patS that is defined to have half of this strength. An representative
diagram of the model is included in fig. 2.7.

This model also includes a proxy for patS and fixed nitrogen diffu-
sion through a multiplicative factor Dn (D < 1). This factor reduces the
inhibitory effect of patS over the hetR expression of a cell located n cells
away from the patS source. The inhibitory effect of ntcA through fixed
nitrogen is characterized as an inhibition from hetR expression, given that
the cells with hetR = 1 will be considered heterocysts.

The simulation is initialized from random conditions, and then state
transitions are considered to occur asynchronously, with one gene state
on a given cell being updated using the interaction matrix at a time in ran-
dom order for the whole array of cells. After a certain time, the system
converges to a patterned filament where LH, the average interval between
heterocysts (cells expressing all genes in the model at the maximum possi-
ble level, 1) depends on the value of the diffusion constant D. Increments
of D up to a critical value of 0.7 produce an almost linear increase in LH
due to the creation of fewer heterocysts. However, from this point onward,
the behavior of LH stops being linear and the system saturates to a state
without any heterocyst for D ⩾ 0.92.
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Figure 2.7: Diagram of the network considered in (Gerdtzen et al., 2009). Cells
are organized cyclically. Direct interactions are represented by solid
lines and indirect interactions by dashed lines. Arrowheads indicate
activation and vertical lines indicate inhibition. Numbers indicate the
strength of the interactions considered among the elements of the
network. Reproduced from (Gerdtzen et al., 2009), CC BY 2.0 license.

The authors set the value of D that produced an LH = 10± 2 cells,
which is similar to the experimental value observed in (Ho Sung Yoon
and James W. Golden, 1998) to study the system. They presented the his-
tograms for intervals between heterocysts in the case of the wild type, the
∆patS deletion mutant, and hetR over-expressed condition. These results
show that, while the means LH are compatible with the experimental data,
the simulation produces histograms much more skewed towards larger
intervals for both the wild type and the over-expression of hetR, and a
strictly decreasing distribution of interval length for the ∆patS mutant.
The first discrepancy could be caused due to the reinterpretation of the
fixed nitrogen inhibition of ntcA through hetR. This change would pro-
duce an additional inhibitory signal originating from developing cells in-
stead of only from mature heterocysts as it should be. On the other hand,
the discrepancy in the ∆patS could be just a problem of interpretation.
Given that the expression of the variable patS is never shut off, one could
argue that this variable is a joint representation of the two main inhibitory
genes, patS and hetN. Then the deletion of this variable should result in
the complete differentiation observed in the double ∆patS∆hetN mutant
(Borthakur et al., 2005), but with the additional artificial inhibition of hetR
described above. This inhibition partially rescues this mutant because it
fulfills the same dual role. The rescue is not full because it targets ntcA
instead of hetR, which reduces its efficiency.
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A continuous representation of a linearly growing one-dimensional
filament was presented in (M. Zhu et al., 2010). The system of equations
that defines its dynamics is:

dr

dt
= αr +βrF(r, s) +G(r, s,n) − κrr (2.2)

ds

dt
= αs +βsF(r, s) +Ds

∂2s

∂x2
− κss (2.3)

dn

dt
= βnF(r, s) +Dn

∂2n

∂x2
− κnn, (2.4)

where r is the concentration of HetR, s of PatS, and n of HetN. The spatial
domain, that is, the filament length L, grows at a constant rate ρ:

dL

dt
= ρL. (2.5)

This model considers linear degradation rates for all the genes (κr, κs, κn)
and diffusion of the two inhibitors with rates Ds and Dn. Regarding pro-
tein production, the authors considered basal production for both HetR
(αr), PatS (αs), and regulated production for all genes through the func-
tion

F(r, s) ≡ r2

(Ks + s)(K2
r + r2)

, (2.6)

and an additional production term for hetR

G(r, s,n) ≡ (re − r)2(nc −n− ηs). (2.7)

Both eqs. (2.6) and (2.7) include the HetR homodimer formation described
in (Xu Huang et al., 2004) through a quadratic hetR variable. Equation (2.6)
models activation of HetR, PatS, and HetN by HetR dimer, and inhibition
by PatS. Equation (2.7) is a phenomenological term affecting HetR: its
strength depends on the difference between HetR concentration and an
ad hoc level re, and its sign is set by the parameter nc: when the combi-
nation of HetN and Pats concentrations given by n+ ηs is larger than nc,
function G(r, s,n) has the effect of degradation, otherwise, it promotes the
production of HetR. Through this term, low levels of inhibitors have the
effect of an extra activation, that disappears only when the concentration
of HetR is re. With this model, the goal is to study pattern maintenance;
due to this, the initial condition simulates the presence of heterocysts in
the borders of the system. This condition is translated into a uniform
initial distribution of both HetR and PatS, set to their equilibrium concen-
tration based only on the constitutive production and degradation terms;
in the heterocysts, the concentration of HetR is set to the equilibrium
value re. HetN is initially set to a diffusion-mediated ’bowl-shaped’ dis-
tribution, with the maxima at the heterocysts. In a way akin to Turing
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patterning (Turing, 1952), the apparition of only one heterocyst in the
middle is heavily conditioned by the difference in the two inhibitors’ dif-
fusive rates. Particularly, the diffusion of HetN should be lower than the
filament growth rate, so that there can be HetN depletion in the middle of
the filament to induce HetR production. The diffusive rate of PatS must
be higher than the one of HetN to reduce the length of the induced region.
With these conditions, the model properly reflects the rise of HetR in the
middle of the filament that is hypothesized to originate the new hetero-
cyst (Todd A. Black et al., 1993) and the reported inhibitory gradients
produced by it (Risser and Sean M. Callahan, 2009).

The low robustness of the pattern to modification of the diffusion pa-
rameters is characteristic of Turing-like continuous models. It stems from
the requirement that the pattern is an equilibrium state of the overall
regulatory system, and consequently the interplay of the two inhibitors
must be tuned in such a way that the range of the inhibitors is different
enough to create steady spatial differences in gene expression that orig-
inate the pattern. However, discrete systems like Anabaena filaments can
fixate an unstable pattern through the irreversible commitment of a cell
that presents a sustained high expression of a given gene, even if that
expression is transient and would be reversed without the differentiation.
For this reason, in Anabaena, the dynamical stability of the pattern is much
less relevant than its establishment.

A few years later, (Brown and Rutenberg, 2014) presented the last
model of the series discussed in the previous section on diffusion models.
In this paper, the authors incorporate a mechanism of genetic inhibition to
the nitrogen diffusion model presented in (Brown and Rutenberg, 2012a).
This lateral inhibition through patS and hetN substitutes the immediate
release of nitrogen and allows a more biologically realistic maturation of
the heterocysts. Both genes are modeled as Boolean variables that directly
prevent the commitment to differentiation of a fixed range of contiguous
cells. To replicate the experimental observations, the authors set this range
to five cells. The expression of both patS and hetN is in turn modeled as
deterministic switches. On one hand, patS inhibition starts right after com-
mitment until the complete maturation of the heterocyst (10 hours after
commitment), and a time τS (set to 1 hour) after this point the heterocyst
starts producing fixed nitrogen. On the other hand, hetN inhibition starts
a certain time τN (also set to 1 hour) after commitment and is never shut
off.

The initial condition considered is a lonely cell that grows for over
7 days in nitrogen-rich conditions in order to get a heterogeneous fil-
ament, which will be put in nitrogen-deprived conditions. The model
properly reproduces the vegetative interval histogram tendencies for all
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the mutants, but with less noise and without the experimental preference
for even-numbered vegetative intervals. Additionally, the authors observe
that younger cells are more likely to differentiate, especially on the first
round of differentiation (24 hours), suggesting an indirect effect of the
cell cycle on heterocyst commitment. This work shows that a determinis-
tic model whose only random variable is the growth rate can reproduce
some pattern features observed experimentally.

While the Boolean switch-like genetic model is able to reproduce the
experimental mutant behaviors, it does it artificially with an immediate
complete inhibition over a fixed range. This is arguably hard to justify
experimentally. Despite incorporating both patS and hetN in the model,
their roles are completely equivalent to the immediate release of nitrogen
presented in their previous works (Allard et al., 2007; Brown and Ruten-
berg, 2012a,b). Instead of having distinct roles in the pattern formation,
one in the pattern formation and the other in its maintenance, as hypoth-
esized in (S. M. Callahan and Buikema, 2001), they are modeled with the
same function (which is to avoid the formation of multiple heterocysts).
Additionally, the design of the switch-like dynamics forces the mutant
phenotype by providing a window of a duration τS (after the cell commit-
ment) and τN (after patS deactivation) in which there is no inhibition of
differentiation in the system for the mutants ∆patS and the ∆hetN.

A year after this work, a model was presented that used the systems
biology framework to study both the stable states of a unicellular system
and the pattern formation in a filament (Torres-Sánchez et al., 2015). This
model incorporates the nitrogen sensing module of the genetic network
with the inclusion of the nctA dependence of the GS/GOAT cycle (M. I.
Muro-Pastor et al., 2001) and patS mediated inhibition. Particularly, ntcA
production is increased by both HetR and NtcA and inhibited by fixed
nitrogen. hetR transcription has the same regulation as ntcA plus the in-
hibition from patS. Besides, both patS and fixed nitrogen are positively
regulated by HetR. This model considers the dynamics of fixed nitrogen,
NtcA, HetR, and PatS concentrations. The authors use both the biological
information of the genetic network and statistical mechanics analysis to
obtain the regulatory equations of the system. After obtaining a set of pa-
rameters that reproduces heterocyst differentiation, the authors assume
that there are two temporal scales: one fast, formed by HetR and ntcA,
which relaxes to its steady-state much earlier than the slow one, which
is due to the dynamics of PatS and fixed nitrogen. Assuming this, one
can use an adiabatic argument and consider that the fast variables are in
equilibrium when considering the dynamics of the slow ones.
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Figure 2.8: States of a cyanobacterium
when subjected to different conditions of
nitrogen and diffusion in the model in
(Torres-Sánchez et al., 2015). When com-
bined Nitrogen (cN) is provided to the cell,
there is only one stable fixed point (A),
which corresponds to a state in which the
production of both HetR and PatS is mini-
mum (vegetative state). When subjected to
nitrogen deprivation, there are two stable
fixed points (B and C). In those, it exists
an equilibrium between the production of
HetR, PatS, and cN. The one with higher
expression (B) corresponds to the heterocyst
steady state. When the cell is exposed to ni-
trogen stress its trajectory evolves from A to
the steady state B, and thus it remains veg-
etative. But if one includes diffusion of cN
and PatS from the cell, the only stable state
(D) corresponds to a heterocyst state with
high levels of production of HetR, cN, and
PatS. Adapted from (Torres-Sánchez et al.,
2015), CC BY 4.0 license.

A bifurcation analysis for this
reduced system is presented, and
the equilibrium states are shown
in fig. 2.8. For nitrogen-rich condi-
tions, the systems only present one
stable solution, which corresponds
to the vegetative state (fig. 2.8A:
low expression of both hetR and
patS). On the other hand, for
nitrogen-deprived conditions, the
system presents bistability, with
a vegetative stage (fig. 2.8B: with
equivalent expressions of hetR and
patS, but higher expression than
in nitrogen-rich conditions) and a
heterocyst stage (fig. 2.8C: with
high expressions of hetR, patS, and
fixed nitrogen). Additionally, the
system presents hysteresis, so af-
ter nitrogen deprivation, the sys-
tem will stay in the vegetative
state unless a perturbation pushes
it into the heterocyst state. Such
a perturbation occurs when con-
sidering the diffusion of fixed ni-
trogen and PatS, which is enough
to destabilize the vegetative state
and push the dynamics to the het-
erocyst state (fig. 2.8D). The study
is later expanded to a discrete fil-
ament of cells to show that by
adding uniform white noise and
diffusion of both PatS and fixed
nitrogen, the model is capable to
form a patterned differentiation. It
is also stated that the appearance
of differentiation is considered a
pure stochastic event, and also that
the biological parameters of the
model can be tuned to observe the
same pattern with different ampli-
tudes of the white noise.
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The high dependency on the noise to differentiate seems to contra-
dict previous works that considered deterministic models of nitrogen-
mediated inhibition (Brown and Rutenberg, 2012a, 2014) or even the same
regulatory network (Gerdtzen et al., 2009). Those models produced a com-
parable agreement with the experimental data with much lower relevance
of the noise; the stochasticity is only present in the initial conditions of
the systems and not in their dynamics. In our opinion, this discrepancy
can be attributed to the overlapping of the roles of both PatS and fixed ni-
trogen, which saturates the system with inhibitors that stop the increase
in HetR production. Particularly, given that the filament model is able
to produce fixed nitrogen at a low level once HetR concentration rises
in vegetative cells, there is no need for a transition to the high nitrogen
production cellular state (heterocyst). Instead, the biological system is not
capable of fixing nitrogen until the transition has already occurred, given
that nitrogen fixation cannot coexist with photosynthesis. Therefore, the
activation of hetR transcription through ntcA cannot be shut off until ni-
trogen is provided to the system. Due to this, the system is forced to
maintain the individually unstable state of high expression of both hetR
and patS until a heterocyst is formed in the filament. Additionally, re-
cent experimental works (Corrales-Guerrero et al., 2013; Higa et al., 2012;
Rivers et al., 2014, 2018) seem to indicate that both patS and hetN require
a post-transcriptional modification to produce the inhibitory peptide. It
has been suggested (Corrales-Guerrero et al., 2014b; Rivers et al., 2018)
that this transformation occurs at the cell membrane during cell-to-cell
trafficking. This would avoid self-inhibition from the patS and hetN pro-
duced in a given cell and, therefore, would make impossible a unicellular
stability study.

A similar system’s biology approach was considered in (Muñoz-García
and Ares, 2016), where an alternative three-gene minimal model was
presented fig. 2.9. This model also included both hetR as the main non-
diffusive regulator of the system and patS as an inhibitor of HetR-mediated
activation. Instead of the nitrogen sensing module, the model included
hetN as an inhibitor produced in the heterocysts. Then hetR activates both
patS and its own expression, while patS and hetN (which is produced at
a basal level in the heterocysts) inhibit this activation. Fixed nitrogen is
included as a direct inhibitor of HetR regulation. As a substitute for the
ntcA role as the trigger of hetR expression, the model includes a low basal
expression of hetR. Using mass-action kinetics, the authors obtained a de-
terministic set of differential equations from the mechanistic information
of these interactions.

The model considers that, while HetR needs to form a homodimer
to promote expression, this activation can also be inhibited with the at-
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Figure 2.9: Minimal model of the genetic network in (Muñoz-García and Ares,
2016). (A) In vegetative cells, HetR dimers can activate the expression
of hetR and patS. (B) In heterocysts, hetN is expressed constitutively
and fixed-nitrogen products are produced. Active products of PatS
and HetN, possibly the RGSGR pentapeptide, can diffuse between
cells of any kind in the filament and bind HetR, preventing it from
binding DNA. Fixed-nitrogen products also diffuse to other cells and
contribute weakly to inhibit differentiation. Image reproduced from
(Muñoz-García and Ares, 2016)

tachment of just one inhibitor. The stochastic nature of gene expression
was considered, adding noise to the equations using Langevin dynamics
(Gillespie, 2000). This genetic model was introduced in a agent based sim-
ulation of a filament with inhibitor diffusion where each cell has its own
noisy dynamical variables, growth rate and thresholds for both differenti-
ation and cell division. The model was able to reproduce the experimen-
tal distribution of vegetative intervals between heterocysts up to the third
moment of the distribution, for both the wild type and the ∆patS mu-
tant, and gives a reasonable prediction for the ∆hetN mutant, for which it
made no comparison with experimental data.

The phenotypical reproduction by the model of the deletion mutants
reinforces the role of the two inhibitory genes proposed in (S. M. Callahan
and Buikema, 2001). This model also provides additional insight into the
interplay between cell division and heterocyst differentiation. Due to the
similar timescale between these two processes, the noise on the cell divi-
sion defines the overall behavior of the filament. If there is low noise and
cells divide in a quasi-synchronous way, the filament pattern has an oscil-
latory behavior with enlargement and posterior shortening of the mean
distance between heterocysts. In this low noise regime, the model also
recovers the larger appearance of even-numbered vegetative cell intervals
characteristic of heterocyst patterns (John C. Meeks and Elhai, 2002). In-
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stead, for a noisier cell division, the percentage of even intervals remains
always close to 50% and the oscillatory behavior of the mean vegetative
cell’s interval disappears.

Following the Turing-like characterization in (Xu Huang et al., 2004),
(Di Patti et al., 2018) presents the same three gene system (hetR as an
activator and both patS and hetN as diffusible inhibitors) but, in this case,
the inhibitory effect is produced through degradation of HetR dimers
mediated by PatS and HetN. The model assumes a basal production in
all cells and a linear degradation for the three genes, and an increase in
the production of both HetR and PatS activated by HetR. As the model
does not enforce any distinction between vegetative and heterocyst cells,
all cells actively produce both inhibitors simultaneously. Thus, it does not
reflect the temporal differences in the onset of production of PatS and
HetN. A bit surprisingly, the same work presents very nice experimental
evidence of this difference through GFP reporters of transcription.

With this set of interactions, the authors obtain a set of differential
equations through the van Kampen expansion. Initially, the authors study
the linear stability around the homogeneous fixed point of the mean field
approximation. Through this analysis, the authors located a set of pa-
rameters that allow the formation of instabilities that could originate a
pattern in the mean-field conditions. As already mentioned, during the
analysis of (Xu Huang et al., 2004), the most relevant parameters are the
diffusion constants for both inhibitors. The smaller the ratio DS

DN
is, the

narrower the instability region. Subsequently, the authors introduce the
same interactions in a Gillespie algorithm with the same set of param-
eters to check how stochasticity affects pattern formation. The authors
show that the presence of noise promotes the spontaneous selection of a
leading wavelength in the emerging pattern. Due to this, the parameter
region where the system presents instabilities, and therefore pattern seed-
ing, is considerably larger in the noisy system. The addition of filament
growth (cellular division) to the model increases the amount of available
unstable modes of the system. Despite this similarity, the patterning is
much more stable in the system with deterministic growth than in the
noisy one. Without noise, a new high HetR expression region (heterocyst)
appears in the midsection of the existing pattern when the filament elon-
gates enough. On the other hand, the addition of growth to the noisy
system destabilizes the patterning and allows for the transition between
the different unstable modes that arise with the filament growth. This
implies that while the pattern formation is enhanced by the addition of
noise to the system, its maintenance in a growing domain requires an ir-
reversible fixation of the heterocyst state. This result is in clear agreement
with the theoretical result on (Marciniak-Czochra et al., 2017) that stated
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that Turing systems with stationary activators cannot autonomously fix
the dynamical pattern. Additionally, this model shows that it is possible
to form the pattern through the regulation of degradation instead of the
previously studied regulator inhibition. Nevertheless, it should be tested
if this alternative inhibition through HetR degradation reproduces the ex-
perimental data for a model with a more realistic temporal separation
between the two inhibitors.

After this systematic analysis of the existent genetic models, one can
extract some common key ideas. First, the realization that several con-
figurations of a minimal three-gene network with an activator, hetR, and
a couple of inhibitors, patS and typically hetN, but it could also be the
fixed nitrogen through ntcA regulation, as in (Gerdtzen et al., 2009), are
capable of reproducing the wild type behavior. Due to this, it seems in-
dispensable to consider other phenotypes, especially the deletion ones, in
order to properly evaluate the regulatory mechanisms proposed. Another
clear common argument is that there must be a certain temporal separa-
tion between the inhibitory effects to originate a pattern. This difference
could be either produced due to the relationship between the diffusion
coefficients (Di Patti et al., 2018; M. Zhu et al., 2010). Directly imposed,
as observed in (Brown and Rutenberg, 2014) and also (Muñoz-García and
Ares, 2016) (where hetN is exclusively produced in heterocysts). Or alter-
natively, through the use of fixed nitrogen (Gerdtzen et al., 2009; Torres-
Sánchez et al., 2015) acting indirectly through ntcA and therefore present-
ing a certain delay.

2.2.3 Cyanobacteria population models

An alternative point of view to the study of spatial pattern formation is
to consider the cyanobacteria culture as a population problem where the
percentage of each cell type is defined by external conditions.

This approach is used in (Hense and Beckmann, 2006), presenting a
deterministic model of the life cycle of cyanobacteria dependent on en-
ergy, mainly in the form of light and nitrogen availability. In this formula-
tion, the heterocyst would be the stage with high energy (abundant light)
and low nitrogen availability. The model is capable of reproducing the
seasonal changes in the cyanobacteria population composition and infers
a correlation between summer blooms and cycle velocity, where previ-
ous summer conditions strongly affect the possibility of explosive growth.
The scope of this work is mostly ecological and does not provide extensive
insight into the mechanisms controlling the vegetative-heterocyst transi-
tion.
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Alternatively, (Pinzon and Ju, 2006) takes the same culture level pop-
ulation approach but with a more biomolecular focus on the cellular
processes that modulate the transition from a vegetative cell to a het-
erocyst. The deterministic model proposed includes the photosynthetic
growth of vegetative cells, heterocyst differentiation, self-shading effect
on light penetration, and nitrogen fixation. The authors hypothesize that
heterocyst differentiation is driven by the difference between the required
fixed nitrogen to support maximal growth and the available nitrogen. The
model describes experimental profiles well and gives reasonable predic-
tions even for the transition from growth over external nitrogen sources
to self-sustained growth.

This population point of view was taken again later in (Grover et
al., 2019). In this work, the authors present a deterministic model where
the transition between vegetative and heterocyst cells is controlled by the
relationship between the processed and free concentration of both nitro-
gen and phosphorus in the cells. The model predicts a relationship be-
tween the heterocyst-to-vegetative ratio with the nitrogen-to-phosphorus
ratio of the environment. The authors use this to discuss an evolution-
ary reason for the regulation of heterocyst differentiation. Given that
phosphorus-limited habitats are much more common than nitrogen-limited
ones, the costly investments in nitrogen fixation are tightly regulated.

As one can see, this kind of the mean-field point of view is more use-
ful for an ecological and evolutionary perspective but does not provide
much insight into the regulation of the heterocyst differentiation. The
patterned differentiation of heterocysts seems relevant to the mechanism
controlling the differentiation decision, therefore the population point of
view is less optimal because the pattern information is lost.

2.2.4 Modeling overview

In the section about inhibitor diffusion models, we have discussed exam-
ples of models where diffusible inhibitory signal produced in the hete-
rocysts is enough to maintain an existing pattern in a filament. If one
considers the genetic regulatory system (fig. 2.4) it is easy to see that the
role of this inhibitory signal originating from the heterocysts would be
taken by HetN and fixed nitrogen. HetN acts directly over HetR and fixed
nitrogen indirectly through ntcA. With this minimal structure, a new het-
erocyst would arise in the space between heterocysts roughly when the
interval doubles its length. Then, as observed when discussing genetic
regulatory models, if one also considers patS, which is a lateral inhibitor
expressed in vegetative cells, the system is capable to create de novo pat-
tern formation.
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This regulatory system (fig. 2.10) would be coupled with a switch-like
genetic mechanism that initiates differentiation when the HetR concen-
tration is higher than a certain threshold. This three-gene system of an
activator and two inhibitors could seem a Turing pattern, but it presents
a key difference, one of the inhibitors hetN has its production restricted to
the heterocysts. Moreover, this differentiation to heterocysts entails a mor-
phological change and therefore is irreversible. This ensures the stability
of the pattern that would not be possible in a Turing system.

Different strategies to model these three genes can simulate a hetero-
cyst pattern, so more biological information is necessary to properly de-
fine the differentiation mechanism. A powerful tool is constraining mod-
els by comparison with different genetic backgrounds. In the last section,
section 2.1 we show a simplified regulatory network of heterocyst differ-
entiation obtained from surveying experimental literature fig. 2.5. From it,
it is evident that the mechanism controlling heterocyst differentiation is
quite more complex than any model discussed in this work. Then, by in-
corporating more genes into the models one would, on one hand, deepen

Figure 2.10: Three genes, simplified regulatory system and expected protein con-
centration dynamics for the emergence of a new intercalary hetero-
cyst in a fully deterministic system. The heterocysts are represented
as peaks of HetR that produce hetN. The dashed profiles represent
the state right before the transition to a heterocyst.
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the understanding of the regulatory network, and on the other hand, open
the possibility to compare with a wider range of genetic backgrounds.
Therefore, the way forward is to incorporate into model genes that still
have more dubious roles but with enough experimental information, such
as patA and hetF. The research of the genes represented in light red rect-
angles in fig. 2.5 is still quite brief and there is not enough information
to justify their inclusion in models. There is evidence that both hetC and
patN are connected to patA regulation, but there is not enough informa-
tion to assign a proper role to them. On the other hand, the function of
hetL seems quite clear: it appears to be involved with HetR activation,
but there is no clear link to hetF and other genes in the system, besides
hetR. Also with an apparently clear function but without a clear relation
with the other genes are both hetP and hetZ, which are heavily linked to
the heterocyst commitment but without a clear explanation on how they
affect the commitment.

This patched information is natural given that, as we have already
shown in the previous section 2.1, the first experimental evidence is usu-
ally the effects of the knock-out mutants of these genes over the known
network. Posterior studies that provide experimental information regard-
ing protein translation, such as (Corrales-Guerrero et al., 2015; Di Patti
et al., 2018), could be really useful to properly characterize such genes in
a mathematical model. The modeling of putative mechanisms for these
genes is also a useful source of predictions, helping to focus on what ex-
periments should look for. As an example of this, our new model that
includes patA and hetF, which will be presented in chapter 4 predicts
that inhibitor leakage at the filament extremes is necessary to explain the
patA phenotype (Casanova-Ferrer et al., 2022). This expansion of the ge-
netic scope of the models would bridge the gap that now exists between
this kind of reduced model focusing on heterocyst differentiation and the
more general genome-scale frameworks such as (Malatinszky et al., 2017),
which model the full metabolism of the Anabaena cell and how it changes
after the differentiation into a heterocyst.
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S TA B I L I T Y S T U D Y O F T H E A N A B A E N A M I N I M A L
M O D E L

In this chapter, we will expand the modeling perspective presented in
(Muñoz-García and Ares, 2016) that only considered a minimal three-
gene system (represented in red in fig. 3.1) to reproduce both the pattern
formation and maintenance. We will study the stability of our model by
obtaining the bifurcation diagrams for several parameters of the model.
But before that we will expand a bit on the core biology of the system, to
properly argue the modeling choices.

Figure 3.1: Minimal mechanism of hetero-
cyst differentiation: The scheme represents
the process of differentiation of a filament of
heterocyst-forming cyanobacteria, with the
roles of the main genes involved. Darker
green means more fixed nitrogen in a cell.
Yellow marks a cell committing to differenti-
ation, and orange is a functional heterocyst.
Reproduced from (Di Patti et al., 2018), CC
BY 4.0 license.

It has been shown that,
when nitrogen stress is per-
ceived, the transcription regu-
lator ntcA is important to trig-
ger heterocyst differentiation
(Herrero et al., 2004; C. C.
Zhang et al., 2006), by directly
or indirectly controlling the ex-
pression of several genes in-
cluding hetR (Valladares et al.,
2008).

The expressions of ntcA
and hetR are mutually depen-
dent, although the latter seems
to be sufficient for heterocyst
development (Buikema and
Haselkorn, 1991). Thus, posi-
tive auto-regulation of hetR is
required for differentiation and
is particularly significant in de-
veloping heterocysts (Todd A.
Black et al., 1993; Rajagopalan
and Sean M. Callahan, 2010).
hetR expression is the main
positive regulatory factor in
heterocyst development, (Todd
A. Black et al., 1993; Buikema
and Haselkorn, 1991) and this
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gene is epistatic to the others involved in heterocyst differentiation
(Orozco et al., 2006). These two genes constitute the main activation hub
of heterocyst differentiation, and their dynamics are equivalent while in
nitrogen deprivation.

The gene patS is a negative regulator of hetR, suppressing differentia-
tion when over expressed and inducing multiple contiguous heterocysts,
the so-called Mch phenotype, when deleted (H. S. Yoon and J. W. Golden,
2001; Ho Sung Yoon and James W. Golden, 1998). The expression of patS
produces a short peptide PatS, predicted to be formed by 13 or 17 amino
acids, which contains a carboxyl-terminal that prevents DNA binding ac-
tivity of HetR (Feldmann et al., 2012; Xu Huang et al., 2004) and inhibits
differentiation when added to culture medium (Ho Sung Yoon and James
W. Golden, 1998). The expression of patS in small groups of cells was
shown to diminish the levels of HetR in adjacent cells (Risser and Sean M.
Callahan, 2007), suggesting that a PatS-dependent signal can be trafficked
along the filament (Corrales-Guerrero et al., 2013).

Although lack of patS expression initially produces a pattern with
groups of contiguous heterocysts and short intervals of vegetative cells
between those clusters, this pattern tends to recover the characteristics of
a wild type-like pattern later on (H. S. Yoon and J. W. Golden, 2001). This
suggests the presence of additional patterning signals operating long after
nitrogen deprivation. The most relevant player that leads to this late in-
hibitory effect is the hetN gene, expressed only in heterocysts. Similarly to
patS, the product codified by hetN also contains an ERGSGR sequence of
amino acids (Glutamate-Arginine-Glycine-Serine-Glycine-Arginine), rais-
ing the possibility that an ERGSGR-containing peptide derived from the
full protein goes from cell to cell (Higa et al., 2012; Rivers et al., 2018).
However, in contrast to the ∆patS mutant phenotype, the ∆hetN mutant
phenotype has a heterocyst pattern similar to the wild type at the initial
stages of nitrogen depletion and a multiple contiguous heterocyst pheno-
type after 48 hours (S. M. Callahan and Buikema, 2001). This indicates
that hetN expression is activated later than that of patS. Additional proof
of the inhibitory function of patS and hetN is that, when both genes are
suppressed, almost all cells eventually differentiate, causing lethal levels
of heterocysts (Borthakur et al., 2005). For these reasons, we have included
both inhibitors in our model. But, given the new evidence presented in
(Rivers et al., 2018), we have chosen to consider a unique inhibitory ele-
ment produced from both patS and hetN during their extracellular export.
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3.1 model deduction and adjustment

From the biological information presented and using the ideas and pro-
cedures introduced in section 1.1, we can obtain a system of differential
equations that reproduces the system behavior. The full model deduction
is presented in appendix A, here we only present the final set of equa-
tions:

dRj(t)

dt
= βr +ϕ(rj,ij,Fj)ρr −αrr(Rj,ij) −

r(Rj,ij)
2

Kb

[
αd +αId

i2j

K2
d

]
(3.1a)

dpj(t)

dt
= (1− δhc,j)ϕ(rj,ij,Fj)ρp − 2dppj −αppj (3.1b)

dnj(t)

dt
= δhc,jρn − 2dnnj −αnnj (3.1c)

dij(t)

dt
= dp(pj−1 + pj+1) + dn(nj−1 +nj+1) + di(ij−1 − 2ij + ij+1) −αiij (3.1d)

dFj(t)

dt
= δhc,jρF −αFFj + dF(Fj−1 − 2Fj + Fj+1) (3.1e)

* To be able to
reproduce the HetN
deletion mutant we add,
phenomenology, a
lineal inhibition from
the fixed nitrogen
products (F), if we do
not add this term the
deletion mutant of hetN
shows a completely
differentiated filament
due to the fact that we
do not have considered
the nitrogen sensing
system (which is
mediated through
ntcA)
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where the subindex j indicates that the variable refers to the cell number
j in the filament (being then j− 1 and j+ 1 its neighboring cells) and t

denotes time. The variables Rj(t), pj(t), nj(t), ij(t), Fj(t) are the concen-
tration of HetR, PatS, HetN, diffusible pentapeptide, and fixed nitrogen
respectively. And δhc,j specifies whether the cell is vegetative or a hete-
rocyst: its value is 1 if the cell j is a heterocyst, 0 if it is vegetative. The
rest of the parameter’s biological description is presented in table 3.1 to-
gether with its value. In addition, we define the boundary condition that
if j+ 1 or j− 1 is outside the filament, then Xj+1 = 0 or Xj−1 = 0, with X

representing an arbitrary variable.

Once we have the complete model of our system, studying the stabil-
ity of this system according to the parameters would be as easy as analyti-
cally resolving the stationary state, annulling all the temporal derivatives,
and observing how the stability of the solutions is altered in relation to
the value of the parameters. But this straightforward method is only pos-
sible for systems with much simpler temporal evolution, such as those
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Table 3.1: wild type parameters of the model.
Parameter Description Value Units

br HetR basal production rate 40 nM h−1

ρr HetR maximum regulated production rate 1000 nM h−1

αr HetR monomer degradation rate 4 h−1

αd HetR free dimer degradation rate 0.25 h−1

αId HetR inhibited dimer degradation rate 0.5 h−1

ρp PatS maximum regulated production rate 4000 nM h−1

αp PatS degradation rate 2 h−1

dp PatS-Inhibitor conversion rate 10 h−1

ρn HetN production rate in heterocysts 10000 nM h−1

αn HetN degradation rate 2 h−1

dn HetN-Inhibitor conversion rate 5 h−1

di Inhibitor diffusion rate 25 h−1

αi Inhibitor degradation rate 2 h−1

ρF fixed nitrogen production rate in heterocysts 8000 nM h−1

αF fixed nitrogen degradation rate 4 h−1

df fixed nitrogen diffusion rate 100 h−1

Kr HetR-Promoter equilibrium constant 100 nM
Kb Monomer binding equilibrium constant 75 nM
Kd Affinity of RGSGR and fixed nitrogen to HetR 227 (Feldmann et al., 2011) nM
ρ Cellular growth rate 0.06 µm h−1

σ Variance of noise in cellular growth 0.2 µm h−1

studied in section 1.1. As our case is much more complex than those few
examples, we need to solve numerically our system of equations and in
order to do so we need to find a set of parameters that adequately re-
produce the experimental results. In order to adjust this new model, we
modified the C++ simulation code from (Muñoz-García and Ares, 2016),
as the final systems are quite similar, and we wanted to maintain our pa-
rameters as close as possible to the ones presented in that study. Then,
through manual changes from their set of parameters, we have obtained
the adjustment with experimental data presented in (Corrales-Guerrero
et al., 2014a).

As one can see while the means adjust quite well to the experimental data,
the only serious discrepancy comes with the last experimental value for
the ∆patS deletion mutant5. But this point seems quite conflictive because5 Which means that is

a strand without a
patS or with a faulty

copy that has been
rendered unusable. In

our system is
equivalent to ρp = 0

while the experimental data show a clear reduction of the spacing be-
tween heterocysts.

Other experimental results such as (H. S. Yoon and J. W. Golden, 2001)
affirm textually that "A patS mutant grown for several days under nitrogen-
fixing conditions showed partial restoration of the normal heterocyst pattern,
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Figure 3.2: Mean number of vegetative cells between heterocysts and the total
percentage of heterocysts in the filament. Symbols represent exper-
imental values from (Corrales-Guerrero et al., 2014a) and lines are
simulation results.

presumably because of a gradient of nitrogen compounds supplied by the hete-
rocysts"(direct quotation from H. S. Yoon and J. W. Golden, 2001).

The percentages of heterocyst do not present an agreement as good as
the means. This happens because the amount of contiguous heterocysts is
lower in the model than in the experimental data. But, given that we are
going to focus on the pattern formation for this study, we consider that
is a good enough fit. Additionally, the phenotypes observed during the
different mutants simulations, fig. 3.3, closely follow the ones described
in the bibliography for those two mutants.

It is important to realize that even after obtaining all the parameters,
this is still a Many-Body complex problem. We would have this set of six
equations (eqs. (3.1)) for every considered cell. Then the size of our sys-
tem will increase by 5-fold, the number of new cells in the system. Due
to this, in order to be able to obtain the bifurcation diagrams, we will
have to limit the number of cells in the system. In this case, we will re-
duce the system to two cells, which is the minimum required to observe
heterogeneity in HetR concentration as an early stage of pattern forma-
tion in the filament. As we are interested in the pattern inception, we will
not consider either filament growth or actual differentiation in the sys-
tem. Then we can safely ignore both the HetN and the fixed nitrogen. It
is also worth noting that this focus on the early pattern inception is the
reason for not further simplifying the model. We could consider, as it was
previously done in (Muñoz-García and Ares, 2016), that the dimerization
equilibrium is faster than the inhibition. This consideration would elimi-
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Figure 3.3: Example of the the ∆patS and ∆hetN Mch phenotypes observed in our
simulation. In the ∆patS mutant, the multiple heterocysts are formed
simultaneously. On the other hand, in the ∆patS mutant the multiple
heterocysts appear consecutively.

nate the competition between these two and therefore eq. (3.2a). But, as
we have already shown in section 1.1, it would reduce the interpretability
of the model by combining several biological processes in the same pa-
rameter. As we will discuss particular changes to the parameters, and we
are reducing the scale of the system, we have chosen to keep the parame-
ters as mechanistic as possible. For the next chapters, we will instead see
that with that consideration of sequential interactions, these systems can
be further simplified.

With all this in mind, can reduce our model to obtain the following
equations for a two cells system:

dR1(t)

dt
= βr + ρrg1(r1,i) −αrr1 −

r21
Kb

[
αd +αId

i21
K2
d

]
(3.3a)

dp1(t)

dt
= ρpg1(r1,i1) − dpp1 −αpp1 (3.3b)

di1(t)

dt
= dpp2 + di(−i1 + i2) −αii1 (3.3c)

dR2(t)

dt
= βr + ρrg2(r2,i2) −αrr2 −

r22
Kb

[
αd +αId

i22
K2
d

]
(3.3d)

dp2(t)

dt
= ρpg2(r2,i2) − dpp2 −αpp2 (3.3e)

di2(t)

dt
= dpp1 + di(−i2 + i1) −αii2 (3.3f)
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3.2 stability study of the 2 cell case

Now we could directly introduce this reduced system (eqs. (3.3)) in XPP-
AUTO (an open-source numerical integrator software) to obtain bifurca-
tion diagrams. But our main objective is to observe if there is pattern
formation on the filament for a given value of the parameters. In our two
cells system, this is equivalent to studying if the solutions of the HetR
concentration for the two cells are homogeneous or not. Then, if they are
homogeneous the system would be in a non-pattern state while if they
are heterogeneous the system would theoretically form a pattern over the
filament. As our objective is to evaluate the relative values of the two cells,
it would be much easier to consider both the difference and the addition
of the two cell concentrations rather than their individual values:

∆X ≡ X1 −X2,∑
X ≡ X1 +X2,

and therefore

X1 =

∑
X−∆X

2
, (3.5a)

X2 =
∆X−

∑
X

2
. (3.5b)

If we apply this change of variables eqs. (3.5) over eqs. (3.3). With this
change and setting the correct configuration of the Runge-Kutta from
XPP-AUTO we obtain the following results for our first parameter βr

(fig. 3.4):
These two first graphics will be used as examples for all the ones to come.
In this plot, fig. 3.4, we have not been cut through the black dotted lines
that mark that do not make sense physically to show the whole diagram
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Figure 3.4: Bifurcation diagram of the sum and difference of HetR concentration
for the parameter of basal production βr. To ease the visualization,
the homogeneous regime is colored in blue, the bistable one in purple,
and finally the heterogeneous one in red. We will also show the value
of the WT parameters, table 3.1, with a red dotted line.

provided by XPP-AUTO. We also present in fig. 3.4 both the ∆X and the∑
X diagrams, while from now on we will only present the ∆X as it is the

most useful to study the behavior of the system. These diagrams present
the stable solutions with a solid black line, while the unstable ones will be
plotted using dashed lines. In addition, it also represented the regime of
the stable solutions for each value of the parameter: blue background for
the stable homogeneous solution, purple for the coexistence between ho-
mogeneous and heterogeneous solutions, and red for the heterogeneous
solutions. As one would expect, the value for the WT parameter (that
forms patterns in the complete model simulations) is always in the het-
erogeneous region.

Now we will present the bifurcation diagrams for all the reduced model
parameters6 obtained, maintaining all the other parameters in the wild6 Except di whose

integration never
converged for some
reason that I do not

really know

type values. We will comment on similarities and differences between
them once we have shown them all. As we are presenting, |∆[HetR]| we
have to consider that all the heterogeneous solutions are double, as can
be observed in fig. 3.4 right.

Most of the bifurcation diagrams, as the first two on fig. 3.5 (with the
two parameters that control HetR production), present 2 bistable zones
(the second one in βr is barely visible) and therefore two hysteresis zones
like the ones observed in the (Torres-Sánchez et al., 2015) model. That
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Figure 3.5: Bifurcation diagram for the parameters of HetR production (βr and
ρr). The homogeneous regime is colored in blue, the bistable one in
purple, and finally the heterogeneous one in red. The WT value is
presented with a red dotted line.

Figure 3.6: Bifurcation diagram for the parameters of HetR interaction: Kr of
the promoter induction and Kb of the dimer formation. The homoge-
neous regime is colored in blue, the bistable one in purple, and finally
the heterogeneous one in red. The WT value is presented with a red
dotted line.

means that there are two regions of the phase diagram for those param-
eters where you could move, with very small variations of the initial pa-
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Figure 3.7: Bifurcation diagram for the parameters of HetR dimer degradation
(αd and αId). The homogeneous regime is colored in blue, the
bistable one in purple, and finally the heterogeneous one in red. The
WT value is presented with a red dotted line.

Figure 3.8: Bifurcation diagram for the parameters of HetR monomers and PatS
degradation (αr and αp). The homogeneous regime is colored in blue,
the bistable one in purple, and finally the heterogeneous one in red.
The WT value is presented with a red dotted line.

rameter, through two different stable solutions depending on if you travel
from the homogeneous phase to the heterogeneous or vice-versa. Those
bifurcations look like two sub-critical pitchfork bifurcations opposed to
each other for values near the branching point but the existence of a much
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Figure 3.9: Bifurcation diagram for the parameters of PatS production (ρp) and
conversion to the inhibitory form (dp). The homogeneous regime is
colored in blue, the bistable one in purple, and finally the heteroge-
neous one in red. The WT value is presented with a red dotted line.

Figure 3.10: Bifurcation diagram for the parameters of the inhibitory interaction
(Kd) and inhibitor degradation (αi). The homogeneous regime is
colored in blue, the bistable one in purple, and finally the heteroge-
neous one in red. The WT value is presented with a red dotted line.

higher order term stabilizes the unstable branches for values of the param-
eter bigger than the furthest from the critical value of the parameter that
is still in the bifurcation region (Strogatz, 2015). This effect is what causes
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the bistability and therefore the hysteresis phenomenon. Nevertheless, it
is worth noting that we have not considered here the noisy character of
gene expression.

The only other type of bifurcation observed in our model is a super-
critical pitchfork bifurcation, where from one single homogeneous stable
solution we obtain two symmetric heterogeneous stable solutions and the
homogeneous one becomes unstable. Like the one in the leftmost bifurca-
tion point of the two graphs in fig. 3.10.

Therefore, all bifurcations presented are either sub-critical fork bifur-
cations, if a bistable region can be observed, or supercritical fork bifurca-
tions if none exist. The fact that all bifurcations are pitchfork type is quite
logical since the phase change occurs between homogeneous and hetero-
geneous solutions and therefore a single homogeneous solution always
has to appear as two heterogeneous as the cells are indistinguishable and
then each one of them could be the one with higher concentration.

This 2-cell system reproduces the behavior observed in the sensibility
analysis of (Muñoz-García and Ares, 2016). In this previous work, it was
observed that the most sensible parameters were the ones related to HetR
production, interactions, and degradation. One can observe in figs. 3.5
to 3.7 and fig. 3.8 left, that these same processes are also the ones with
smaller heterogeneous regions with two surrounding bistable regions.

It is also worth noting that while the dimer degradation parameters
were not especially sensible in (Muñoz-García and Ares, 2016) this 2-cell
system, clearly distinguishes the effect over inhibited and non-inhibited
dimers. One can see in fig. 3.7 that both present a huge heterogeneous
region, but both the location of the wild-type parameters and the bistable
region differs. For the degradation of uninhibited dimers, the behavior
would only change if the value increases six or seven-fold, but one could
consider that there is no degradation and the system would remain in
the pattern regime. On the other hand, the inhibited dimer degradation
presents two homogeneous regions. One, equivalent to the uninhibited in-
hibition, for high degradation values and another, much smaller one, for
really low degradation values with a bistable transition. Even if it is inter-
esting that the bistable region seems to coincide with the non-inhibited
degradation value, the particular values of these transitions are not rel-
evant because they would change when other parameters are modified.
The fact that the non-degradation point is homogeneous is important.
This indicates that while there is no need for the degradation of free
dimers one should consider degradation of the inhibited ones in order
to observe the pattern. This observation aligns with the previous experi-
mental hypothesis that attributed a proteolytic function to both patS and
hetN (Risser and Sean M. Callahan, 2009).
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3.3 numerical stochastic simulation of 100 cells

In order to check if this 2-cells system is representative of a much larger
one. For this, we adapted the same code used to adjust the parameters in
fig. 3.2 to eliminate both growth and the differentiation into heterocyst in
a static 100 cells filament.

First, we studied deterministic evolution where one does not consider
any noise in gene expression. Without noisy dynamics, the initial condi-
tions completely define the available equilibrium states. One can observe
in fig. 3.11 that the system requires a certain initial heterogeneity to estab-
lish a pattern along the filament. This initial dispersion is represented in
our system by taking the initial value from a Gaussian distribution with
mean IC and variance σsIC. In fig. 3.11 we present the effect of both this
multiplicative noise σs and the mean value IC.
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Figure 3.11: Effect of initial heterogeneity on pattern formation: The main plots present
the concentration of HetR along the filament for 10 filaments initiated with four
different initial concentrations of HetR and three different levels of dispersion.
The translucent points are all the concentration values, the brighter ones are
from one particular filament, and the empty black dots represent the situation
with completely homogeneous initial conditions. The lateral plots present the
marginal distributions of the concentration of HetR in the filament cells.

To study the effect of the multiplicative noise σs, one should compare
the three subplots between them. For lower values of noise, the system
only presents an equilibrium state that is analogous to the one observed
in a completely homogeneous situation. We only present one case for
the completely homogeneous situation because we obtained this same
equilibrium state for all the different IC. But as the initial noise increases,
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this equilibrium value increases and diverges from the homogeneous one
and a new low HetR concentration equilibrium appears.

This general behavior is common for all the initial conditions, but the
sensibility of the system is not equivalent for all the initial concentrations
of HetR (IC). Already in the leftmost marginal plot, one can see that the
initial distribution around [HetR]=25 nM presents a much larger equilib-
rium dispersion despite having a much lower initial dispersion (as we are
using a multiplicative noise). Additionally, this same case (IC = 25 nM)
is the first to present two equilibrium states (central marginal plot) and
also presents the higher distance between the two equilibrium points for
the high noise regime. It is also worth noting that while the higher con-
centration equilibrium changes with the election of (IC) the one with a
lower HetR concentration is always located around [HetR]=37.5 nM. This
particular value is not that relevant, as is defined by the particular set
of parameters chosen, but the fact that is common for all the IC indicates
that is an absorbent state and its value probably defines the best choice for
IC. This state probably corresponds to a deactivated cell state, where the
regulated production is completely inhibited (gj(rj, ij) ≈ 0 in eqs. (3.3)).
But further work would be necessary to analytically prove this hypothe-
sis. As IC = 25nM seems to be the best initial concentration to originate
patterning, we will use this value with the higher static noise σs = 0.8IC
for all the consecutive studies.

If one considers some noisy gene expression, fig. 3.12, the relevance
of both the IC and σs is lost. The dynamical noise completely dominates
the system and defines if a pattern forms along the filament. For low
values of noise, σd = 0.05, the system presents the same two clear and
separated attractors for all the considered initial conditions. We should
not denominate this state equilibrium states because this filament with
only hetR and patS never reaches equilibrium and the patterns have a
dynamical nature. Despite having a different nature from the determin-
istic equilibrium states, these attractors are located at roughly the same
concentration values. This distribution of "on" and "off" cells along the fil-
ament is broken for higher values of noise, σd = 0.1. In this noise regime,
the separation between the two attractors is lost, and we cannot observe
a "valley" in the marginal plot.

Once we studied the WT parameter’s behavior to ensure that we have
a heterogeneous state for this extended system, we will study both two
different parameters and two levels of noise. This will show if the predic-
tions of the 2-cell reduced system hold for two noise regimes. We have
chosen the two production parameters of HetR given that are the ones
with the narrowest heterogeneous regions. We have chosen the parameter
values as central to study as central as possible on their representative
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Figure 3.12: Effect of the noisy gene expression on pattern formation: The plots
show the HetR concentration along 10 filaments for each of the 7 ini-
tial conditions and two regulatory noise σd regimes. The brighter
dots are from one particular filament, and the empty black dots rep-
resent the situation with completely homogeneous initial conditions
and no dynamical noise. The marginal plots show the distribution
of HetR for all the initial conditions, and the dashed line marks the
37.5 nM maximum observed in fig. 3.11.

region in fig. 3.5. For βr, fig. 3.13, we studied two values for the lower
bistable region, βr = 10& 20 nM h−1, the wild type value, βr = 40 nM
h−1, for the heterogeneous region and βr = 80 nM h−1 for the homoge-
nous region. We chose two values in the same bistable region to study if
the distance to transition at the heterogenous one, in the parameter space,
affected the observed state. One can first observe that for this parameter,
low levels of noise affect very little the bistable regimes. This is probably
because this parameter is the only basal production of our model eqs. (3.3)
and, as such, its reduction greatly cools down the dynamics of the system.
For a much slower system, the dynamic noise is much less relevant. All
the non-heterogeneous regimes present a concentration close to one of the
homogeneous solutions for most of the cells of the filament. Alternatively,
in the heterogeneous regime, this homogeneous solution becomes unsta-
ble and is located in the "valley" area between the two equally populated
attractors.
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Figure 3.13: Effect of the basal production of HetR on the pattern formation:
The plots show the HetR concentration along 10 filaments for 4 dif-
ferent βr and three regulatory noise σd regimes. The brighter dots
are from one particular filament, and the empty black dots repre-
sent the situation with completely homogeneous initial conditions
and no dynamical noise. Each plot title marks the expected regime
on the 2-cell analysis 3.5 left.
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Alternatively, for ρr, fig. 3.14, we considered only one value for each
region because the system presents two transitions (3.5 right). Due to this,
we studied the lower concentration homogeneous state with ρr = 700 nM
h−1, the lower bistable region with ρr = 810 nM h−1, the heterogeneous
WT with ρr = 1000 nM h−1, the higher bistable region with ρr = 1170 nM
h−1, and the high homogeneous state ρr = 1300 nM h−1.
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Figure 3.14: Effect of the regulated production of HetR on the pattern forma-
tion: The plots show the HetR concentration along 10 filaments for
4 different ρr and three regulatory noise σd regimes. The brighter
dots are from one particular filament, and the empty black dots rep-
resent the situation with completely homogeneous initial conditions
and no dynamical noise. Each plot title marks the expected regime
on the 2-cell analysis 3.5 right.

While for βr we observed a lower effect of the noise in the bistable
areas, here we see that the addition of noise in all the non-heterogeneous
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regimes is much more disruptive than its increase. It is really easy in
fig. 3.14 that the presence of noise produces a discontinuous activation
of the cells in the filament. In the homogeneous case without any noise,
we observe a continuous progressive activation of all the cells of the fila-
ment. Alternatively, once one introduces noise in the system, the filament
distributes its cells between the "on" and "off" states in a proportion that
depends on the regimes described in 3.5 right.

As shown in both figs. 3.13 and 3.14, the 2-cell prediction works per-
fectly for noise regimes in which the system presents heterogeneity for
the WT parameters. One can observe that the bistable attractors are really
asymmetrical. The one closer to the homogeneous solution is always more
populated than the other one, independently of the initial conditions. We
could not find hysteresis in this system. But a more extensive exploration3

reports that while the introduction of noise reduces the bistable area, the3 The extended study
done by my colleague

Victoria
Doldan-Martelli where
pairs of parameters are

modified at the same
time and noise is

incorporated in a 50
cells equally simplified

system is still in
preparation

region does not disappear and therefore the transition is always abrupt
and with a hysteresis effect (unpublished data from Doldan-Martelli’s study).
The overall behavior described in section 3.3 can be expected for all the
other parameters considered in section 3.2, given that all the observed
bifurcations are of the pitchfork type.

3.4 biological interpretation of the results

One could interpret modification of the parameters as possible biological
adaptations to the media. As such, the presence of bistable regimes close
to the parameter space provides the system with higher adaptability. The
discontinuous nature of the transition between the rate of cells with low
and high concentrations of HetR (denominated "off" and "on" states dur-
ing this chapter) in the filament facilitates sudden changes in the filament
strategy if the environmental conditions change suddenly. As we have al-
ready discussed in section 2.1, a high concentration of HetR is known to
be required for the differentiation into a heterocyst. Then having a wide
array of different strategies to distribute the level of HetR production in
the cells is really convenient. This would allow the cell to remain in the
most energetically favorable "off" homogeneous state for stable environ-
mental conditions. And, once it reacts to environmental changes through
parameter changes, has the possibility of a partial commitment to the
"on" strategy through a bistable regime where the reversion to the homo-
geneous state is still much easier. In our particular case, the advantage of
the discontinuous transition can be easily seen in both the βr diagram 3.5
left and fig. 3.13. This is due to the fact that βr is an artificial parameter
of our model constructed to ease the study of the pattern formation envi-
ronmental conditions. We substituted the ntcA initialization with a basal
production of hetR through βr. Then, our virtual filaments are always in
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nitrogen-deprived conditions as hetR production is always on (albeit at a
much lower level than through the self-regulated production).

With this in mind, one could simulate the detection of nitrogen depri-
vation in our model as a modification of βr value. Its value would pro-
gressively increase from the βr = 0 which corresponds to an [HetR]= 0

homogenous states until reaching the heterogeneous βr = 40 nM h−1.
With this framing, it is easy to see that the lower bistable region in 3.5
left allows for a much faster adaptation to the new conditions. Even with
tiny values of βr there would be some cells with a high enough HetR con-
centration to allow for a potential heterocyst formation in the filament.
Then, if nitrogen deprivation is maintained, our filament would gradu-
ally increase the proportion of "on" cells until reaching the heterogeneous
regime. In that regime, the heterocyst formation would be much easier be-
cause roughly half of the cells present a HetR concentration compatible
with the initiation of the differentiation.
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4
I N C O R P O R AT I O N O F PAT A A N D H E T F T O T H E M O D E L

In the last chapter, we extended the study of the minimal model presented
in (Muñoz-García and Ares, 2016) observing the conditions that give rise
to the multistability required to originate a pattern. We realized that even
with a smaller system of just 2 elements, patS and hetR, is capable to
show a phase transition between a homogeneous and a heterogeneous
filament configuration. But, as it was already discussed in the original
work (Muñoz-García and Ares, 2016), it is necessary to include hetN in
the system to have proper maintenance of the quasi-regular pattern of
heterocysts along the filament. But, as one can observe in fig. 2.5, the
regulatory network that controls heterocyst differentiation is much larger.
In this chapter, we will expand the model through the inclusion of hetF
and patA whose role is still not clearly defined.

The most striking feature of the ∆patA mutant is that it forms hete-
rocysts almost exclusively at the terminal cells of the filament, while the
∆hetF cannot form heterocysts. Then, these two genes seem to have a
clear role in pattern formation, given the heterocyst distribution on the
filament is heavily distorted in their deletion mutants.

As we did in the previous chapter 3, we will first recap and expand
the most relevant biological information to properly justify our modeling
choices.

4.1 experimental evidence about the role of hetF and patA

The fact that patA seems to be required for the differentiation of inter-
calary heterocysts but not for terminal heterocysts has made some au-
thors think that a different differentiation process in which patA is not
involved could occur depending on cell position (Orozco et al., 2006). Sur-
prisingly, even though rare intercalary heterocysts are formed in strains
lacking the patA gene, high levels of HetR (higher than in the wild type)
are measured 18 hours after removing combined nitrogen (Risser and
Sean M. Callahan, 2008, 2009). Regarding the connection between patA
and the master regulator in heterocyst differentiation, hetR, multiple con-
tiguous heterocysts appear when hetR is over expressed (Liang et al.,
1992). However, this differentiation is mostly suppressed in the patA mu-
tant, for which the same patA phenotype with only terminal heterocysts is
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obtained even under nitrogen starvation. Additionally, in (Young-Robbins
et al., 2010), it was observed that the patA transcription is greatly reduced
in strains for which the expression of hetR is blocked. Therefore, the acti-
vation of patA expression seems to be directly up regulated by HetR.

More insights into the functional relationship between patA and other
genes involved in heterocyst differentiation are presented in (Orozco et al.,
2006). This work studies the connections between patA and hetR, patS, and
hetN, analyzing the single, double, and triple mutant phenotypes. For the
patA mutant background with hetN inactivated, they obtain a phenotype
indistinguishable from the patA mutant with single terminal heterocysts
at 24 hours post-induction. However, an increasing number of contiguous
heterocysts are formed, mostly at the ends of the filament, after that time.
In the case of the ∆patA∆patS double mutant, its phenotype is identical to
the ∆patS single mutant during short times after induction. This seems to
imply that a functional patS gene is required to obtain a patA phenotype.
However, after 48 hours, the average distance between heterocysts for the
∆patA∆patS double mutant is larger than in the ∆patS single mutant and
the wild type.

Based on the previous results, it is suggested that PatA might reduce
the efficiency of the inhibitory function of both PatS and HetN. This effect
could be achieved in two general ways. The first one would be that PatA
interacts with PatS and HetN to reduce its inhibitory potential through a
post-transcriptional modification that could be forced degradation, a con-
formation change, or sequestration. On the other hand, PatA could also
interact with HetR to protect it by reducing its sensitivity to inhibition.
Nevertheless, given that the ∆patA∆patS and the ∆patA∆patS∆hetN mu-
tants do not present the same phenotype of the ∆patS and the ∆patS∆hetN
mutants, PatA must have another effect besides the protection of HetR
to the inhibition through PatS and HetN. The ∆patA-like phenotype ob-
tained for an isolated allele of hetR made the authors in (Orozco et al.,
2006) suggest that patA might also promote differentiation independently
of its effects on patS and hetN.

A study by Risser and Sean M. Callahan, 2008, shows that the deletion
of hetF in Anabaena PCC 7120 produces enlarged vegetative cells (with a
morphology similar to patA over expression) that do not differentiate into
heterocysts even after several days of nitrogen starvation. When hetF is
over expressed, vegetative cells become significantly smaller than those in
the wild type, and multiple contiguous heterocysts (the Mch phenotype)
are induced 24h after nitrogen step-down.

Their deletion mutants (and the double mutant) present similar high
levels of HetR. However, the addition of an ectopic functional HetF reverts
the phenotype of all these mutants to the wild type. Furthermore, the
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regulatory effect of those genes on hetR seems to be post-transcriptional.
Both patA and hetR is necessary for the aberrant cell morphology of the
∆hetF mutant, and the addition of extra copies of hetF can functionally
bypass the deletion of patA without requiring a direct interaction of PatA
with hetF. Finally, hetR self-regulation and patS up regulation through
HetR depend on hetF. These results lead the authors of (Risser and Sean
M. Callahan, 2008) to suggest the existence of an activation process of
HetR controlled by hetF which induces the hetR regulatory function.

4.2 gene regulatory network

Using the information presented in section 4.1, we propose a regulatory
network, depicted in fig. 4.1, that includes the main genes involved in het-
erocyst differentiation. This genetic network7 modifies and expands a pre- 7 Which is a reduction

from fig. 2.5vious minimal model for the interaction of hetR, patS, and hetN (Muñoz-
García and Ares, 2016).

This proposal includes the novel gene patX. This gene has recently
been described as a redundant gene for the inhibitory mechanism of patS
(Elhai and I. Khudyakov, 2018; I. Khudyakov et al., 2020). Despite acting
analogously to patS, patX seems to play a secondary role, complement-
ing the main signal produced by patS. As shown in (I. Khudyakov et al.,
2020), the ∆patX single mutant does not present an altered phenotype.
But on the other hand, the ∆patX∆patS double mutant displays a much
higher percentage of heterocysts than the ∆patS single mutant with a
lethal almost complete Mch phenotype (Elhai and I. Khudyakov, 2018; I.
Khudyakov et al., 2020). To consider this in a simple way, we consider that
the variable in our model for PatS represents the combined effects of PatS
and PatX. The knock-out of patS will be modeled reducing 90% the value
of the production rate for this variable; the remaining 10% represents the
redundant effect of patX expression.

Additionally, we consider the same functional mobile form of the in-
hibitor for all the inhibitory genes: patS, hetN, and patX. This inhibitor
is the hexapeptide ERGSGR (Rivers et al., 2018). We consider that the
hexapeptide is produced as a modification of PatS, HetN, or PatX at the
cell membrane, with characteristic rates for each protein. The resulting
product is then exported to the neighbor cell. This hexapeptide has shown
to have a higher affinity with HetR than the pentapeptide originally pro-
posed (Feldmann et al., 2012).

The most relevant novel inclusion in the model we propose is the
requirement of a post-transcriptional transformation of HetR to act as a
genetic regulator. This active form of HetR, which we term AHetR, is
probably obtained through a phosphorylation process (Makarova et al.,
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Figure 4.1: Gene regulatory network of heterocyst differentiation. The main el-
ements involved and their interactions for heterocyst differentiation
are depicted schematically together with other relevant genes (light
red rectangles) not included in our model. Rectangles, circles, and
polyhedral forms represent genes, inactive proteins, and active prod-
ucts, respectively. AHetR stands for the active form of HetR. The el-
lipse represents differentiation into a heterocyst. Arrows with solid
lines represent interactions between elements. Arrows with dashed-
dotted lines represent post-transcriptional changes. The dashed line
represents a simplified interaction of nitrogen sensing through ntcA.

2006; Valladares et al., 2016; Zhou et al., 1998b) and only the active frac-
tion of HetR would contribute to heterocyst differentiation. This could
explain the apparent paradox of a higher concentration of HetR with less
heterocyst formation in both ∆hetF and ∆patA. The high concentration of
HetR in these mutants would be explained through a higher turnover rate
for the activated HetR protein (Zhou et al., 1998b).

A possible active form of HetR has been recently suggested in (Roumezi
et al., 2020), where the authors present evidence for the phosphoryla-
tion of HetR as crucial for its activity in Nostoc PCC 7120. This phospho-
rylation is shown to require the presence of the Pkn22 kinase, but no
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more information regarding the regulation of this phosphorylation is pro-
vided. Here we hypothesize that this would be the role of the genetic
pathway controlled by hetF which has already been presented as a pro-
tease (Risser and Sean M. Callahan, 2008) and therefore can be expected
to have a role in post-transcriptional modifications. Thus, we assign to
hetF the role of activator of HetR with the mediation of PatA through
a post-transcriptional interaction that would change HetR into its enzy-
matic form.

This hypothesis is inferred by observing changes in the phenotypes of
several mutant backgrounds and has been considered in fig. 4.1. However,
the nature of this interaction cannot be confirmed, since the observed
phenotype could also be explained through indirect interactions mediated
by HetF.

To complete the mechanistic model, one must take into account that
different genes are expressed in heterocysts or vegetative cells, as de-
picted in fig. 4.2.

Figure 4.2: Mechanistic Model: The vegetative cells are represented with a soft green
background, while the heterocyst has a soft yellow background and a
thicker cell wall. Genes are represented in rectangles and proteic elements
with circles. The dimers are represented with two attached circles and can
be inactivated (in green), activated (in brown), and activated and inhib-
ited (in brown with two attached purple inhibitors). Solid lines represent
production (with only one simple arrowhead), transformations (with a
simple arrowhead on both ends), and interactions (with a double arrow-
head). Dashed lines represent intercellular traffic, and dashed-doted lines
represent a transformation when exported to a neighboring cell.

As shown in fig. 4.2, while hetF is produced only constitutively at a
low-level (Wong and J. C. Meeks, 2001), patA only has a regulated expres-
sion that depends on the active form of the dimeric transcription factor
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AHetR, which also activates its own expression. At the protein level: the
HetR dimer needs to be activated by HetF (whose enzymatic activity can
be enhanced by PatA) to become AHetR. PatS become an inhibitor of
the transcription factor by protein transformation during cell-to-cell trans-
port. The inhibitor thus produced is a small molecule that can move along
the filament. hetN is expressed basally in heterocysts and becomes an in-
hibitor of the transcription factor, similar to the PatS product, by protein
transformation during cell-to-cell transport. The fixed nitrogen products
produced by the heterocyst can also move to act as an inhibitor of AHetR.

4.3 mathematical model

Here, we have used the interactions explained below in the previous sec-
tion and depicted in fig. 4.1 to design our model schematically presented
in fig. 4.2. We formulated a set of differential equations for the evolution
of the species involved in heterocyst differentiation.

The full description of the resulting mechanistic model is presented
in appendix B. First, we assumed that protein interactions are much faster
than the production of those proteins, equilibrium states were considered
for the reactions with a shorter timescale. Then, we incorporated infor-
mation about the expected relative abundance of each protein to further
simplify the system through approximations. In that same appendix, we
also detail the simplifications and approximations taken to reduce both
the size and the computational load. Applying these simplifications, we
get a more manageable mathematical model to describe the temporal evo-
lution of the concentration of the main protein monomers.

Thus, the temporal evolution equation for the main species are
dRj

dt
= βR + g(Rj,Aj,Ij,Gi)ρR −αRRj

(
1+ 2µRj

)
(4.1)

dAj

dt
= g(Rj,Aj,Ij,Gi)ρA −αAAj, (4.2)

dSj

dt
= (1− δHc,j)g(Rj,Aj,Ij,Gi)ρS − 2cSSj −αSSj, (4.3)

dNj

dt
= δHc,jρN − 2cNNj −αNNj, (4.4)

dIj

dt
= cS(Sj−1 + Sj+1) + cN(Nj−1 +Nj+1) + dI(Ij−1 − 2Ij + Ij+1) −αIIj, (4.5)

dGj

dt
= δHc,jρG + dG(Gj−1 − 2Gj +Gj+1) −αGGj, (4.6)

g(Rj,Aj,Ij,Gi) =
FRR

2
j

(
1+

Aj

τA

)
1+ FRR

2
j

(
1+

Aj

τA

)
+

I2j
K2
d

+
Gj

KG

, (4.7)

92



4.3 mathematical model 93

where the subindex j indicates that the variable refers to the cell number
j in the filament (being then j− 1 and j+ 1 its neighboring cells) and t

denotes time.

The concentration of the protein monomers is represented by Rj, Aj,
Sj, and Nj, which stand for the concentration of HetR, PatA, the addition
of both PatS and PatX, and HetN, respectively, in the cell j. We consider
the same functional mobile form of the inhibitor for all the inhibitory
genes considered: patS, hetN, and patX. This inhibitor is the hexapeptide
ERGSGR (Rivers et al., 2018), represented by Ij in our model. We con-
sider that the hexapeptide is produced as a modification of PatS, HetN,
or PatX at the cell membrane, with characteristic rates for each protein.
The product of the modification is exported to the neighbor cell. Finally,
Gj represents the concentration of fixed nitrogen in the cell j. The factor
δHc,j specifies whether the cell is vegetative or a heterocyst: its value is 1

if the cell j is a heterocyst, and 0 if it is vegetative. This value is used as
a switch for the production of both HetN and fixed nitrogen which are
only produced in heterocysts and the production of PatS which is only
produced in heterocysts.

Assuming that HetF is produced at a constant basal rate and de-
graded linearly, we have simplified the model considering an equilibrium
concentration of HetF (Feq) following

dFj

dt
= βF −αFFj = 0,

from where we get a constant concentration of HetF at any cell: Feq =

βF/αF. Given the experimental observation that vegetative cells in hetF
mutants have morphological phenotypes, it is probable that hetF has an
additional role in cell morphology regulation. However, since we are fo-
cused on studying heterocyst differentiation, regulation of both HetR and
HetF in heterocysts is irrelevant to our purposes and is not considered in
the model.

For simplicity, we have considered basal production only for HetR
monomers and HetF proteins with rates βR and βF respectively. The max-
imum regulated production rates are represented by ρR, ρA, ρS, ρN, and
ρG, for HetR, PatA, both PatS and PatX, HetN, and fixed nitrogen, re-
spectively. The linear degradation and dilution rates are αR, αF, αA, αS,
αN, αI, and αG, since dilution and degradation act in the same direction,
these constants combine the effects of these two mechanisms. The active
transport rates or diffusion between adjacent cells are cS, cN, dI, and dG.

We assume the border cells at the filament’s ends leak both the in-
hibitor and the fixed nitrogen to the exterior at a lower rate than the
communication between neighboring cells. Since molecular trafficking
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between neighboring cells may depend on elements sitting on both cell
membranes, something not possible in the border cells, we have reasoned
that it might be possible that leakage to the exterior is less efficient than
intercellular trafficking. To allow for this possibility, we have modeled
this by multiplying the rates dI, dG for molecular trafficking between the
exterior and the first and last cells of the filament by a factor dborder. The
exact value of this factor does not have a qualitative effect on the model,
but can affect the number of terminal heterocysts in some conditions. The
resulting equations for I and G in the first and last cells of the filament
are:

dI1
dt

= cSS2 + cNN2 − dborderdII1 + dI(I2 − I1) −αII1 (4.8)

dG1

dt
= δHc,1ρG − dborderdGG1 + dG(G2 −G1) −αGG1 (4.9)

dIN
dt

= cSSN−1 + cNNN−1 − dborderdIIN + dI(IN−1 − IN) −αIIN (4.10)

dGN

dt
= δHc,NρG − dborderdGGN + dG(GN−1 −GN) −αGGN. (4.11)

The µ parameter8 refers to the nonlinear degradation of HetR medi-8 Introduced in the
seminal paper of this

thesis (Muñoz-García
and Ares, 2016).

ated through its dimerization and could be further expressed as a func-
tion of the rates of binding (kb) and unbinding (ku) of monomers to form
dimers and the degradation rates for both monomers (αR) and dimers
(αd) of HetR as

µ =
kb
αR

(
1−

ku

ku +αd

)
.

This parameter is easily obtainable considering equilibrium over the bind-
ing dynamics and one assumes that all dimers degrade at the same rate.
We decided to keep the dimmer inhibition presented in (Muñoz-García
and Ares, 2016) and did not add a differentiated mode of inhibition for
the inhibited dimers.

The main argument for this choice is simplicity. It was already shown
in (Muñoz-García and Ares, 2016) that there is no need for a higher
degradation for inhibited dimers to obtain a pattern. But there is some
additional rationale behind this choice if one remembers the bifurcation
diagrams for the 2-cell minimal model fig. 3.7. As we already mentioned
in chapter 3, fig. 3.8 right shows that a certain amount of inhibited dimer
degradation is necessary to observe a pattern. But, at the same time, once
you reach that point further degradation will not affect the system be-
cause the heterogeneous region is quite large. On the other hand, the
degradation of the uninhibited dimers fig. 3.8 left works exactly in the
opposite way. While it is possible to reduce it as much as you want with-
out affecting the pattern, the upper limit to observe a pattern is much
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lower than the one of the inhibited one. Then, these two degradation
rates, which have a substantial overlapping range, as only one would fur-
ther reduce the parameter space to explore easing the adjustment of the
model to experimental data.

We can simplify the system assuming that the promoter regulation
through HetR is equivalent for hetR, patA, and patS. This regulation is
modeled using the factor g(Rj,Aj,Ij,Gi), an example of the HetR self-regulation
for several conditions is shown in fig. 4.3. This eq. (4.7) represents the equi-
librium state of the processes of dimerization, activation, and inhibition
of HetR. To obtain this expression we have considered the following equi-
librium constants: KR for the dimerization of HetR, KF for the activation
of the HetR dimers by HetF, τA for the activation mediated through PatA,
and Kd and KG for the inhibition through the hexapeptide and the fixed
nitrogen respectively. Assuming an equilibrium concentration of HetF, the
expression for this regulatory term is reduced to

g(Rj,Aj,Ij,Gi) =

Feq
KF

R2j
KR

(
1+

Aj

τA

)
1+

Feq
KF

R2j
KR

(
1+

Aj

τA

)
+

I2j
K2
d

+
Gj

KG

,

where we have defined
FR ≡

Feq

KFK
2
R

in order to obtain the simplified version in eq. (4.7).

4.3.1 Model Implementation

We have implemented a code in an object-oriented platform to model both
the biochemical interactions which give rise to heterocyst differentiation
and filament growth. Each cell of the filament has its own variables repre-
senting the cellular size and concentration of considered species. The dy-
namical equations for the concentrations of ERGSGR inhibitor and fixed
nitrogen in each cell are coupled with its adjacent neighbors.

The resulting set of equations that controls the filament evolution is
the noisy extension of the deterministic system eqs. (4.1) to (4.7). This
system of equations has been expanded to the Langevin dynamics in the
Itô interpretation (Gardiner et al., 1983). This expansion adds a stochastic
term of the form ωx

i (t)
√

Px
i + |Dx

i | for each cell i and species x, where
Px
i and Dx

i are the sum of production (synthesis) terms and the sum of
degradation terms respectively, and ωx

i (t) is an uncorrelated Gaussian
white noise (Frigola et al., 2012). This noise has zero mean and variance
⟨ωx

i (t)ω
x
j (t

′)⟩ = ΩΦδijδ(t − t ′) and models the intrinsic fluctuations in
the genetic dynamics.
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Figure 4.3: Example of HetR self-regulation for several cell conditions: The
graph shows the value of g(Rj,Aj,Ij,Gi) depending on the concentra-
tion of HetR for three different cell conditions. The first one, in yellow,
represents a random cell in the initial times of the simulation before
the rise of the pattern. The other ones are instead cells in a particu-
lar position of a filament with a heterocyst pattern already formed.
The green one represents a cell near a heterocyst and therefore with a
high concentration of both inhibitors and nitrogen. Alternatively, the
red one represents a cell located in the middle of a vegetative interval.
This one presents a higher response to HetR concentration due to the
lower concentration of both inhibitors and nitrogen.

To differentiate into a heterocyst, a vegetative cell has to accumulate
up to a certain level of HetR. This has been implemented with an integra-
tion of the value of HetR concentration over time for each vegetative cell,
once the value of Rj is above a threshold, T j

R.

This threshold is cell-specific, being drawn from a Gaussian distribu-
tion with mean TR and variance T2

RΩΦ. If at any point, the value of Rj

drops below T
j
R, the integral is reset to zero. Otherwise, if the integral

ever reaches a value M
j
R, also a cell-specific Gaussian distributed param-

eter with mean MR and variance M2
RΩΦ, the vegetative cell differentiates

into a heterocyst. Given the integrative nature of this process, we have set
a minimum time Tmin necessary to avoid unrealistic sudden differentia-
tion due to spikes in HetR production and properly reflect the extensive
biological changes required to obtain a mature functional heterocyst. For
simplicity, we have also used ΩΦ to parametrize variability of TR and MR,
to avoid defining too many noise-related parameters.
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Vegetative cell growth was modeled by a stochastic differential equa-
tion for each cell:

dΛi

dt
= λ

[
1+ωΛ

i (t)
]

, (4.12)

where Λi is the size of the cell i, λ is a constant growth rate and ωΛ
i (t)

is an uncorrelated Gaussian white noise with zero mean and variance
⟨ωΛ

i (t)ω
Λ
j (t

′)⟩ = ΩΛδijδ(t− t ′), which models the intrinsic fluctuations in
the growth process. Starting from an initial size, each cell evolves follow-
ing eq. (4.12) up to a maximum size Mi

Λ, which is a noisy value drawn for
each cell from a Gaussian distribution of mean MΛ and variance M2

ΛΩΛ.
We have used ΩΛ to parametrize this variance for simplicity, again to
avoid having too many parameters describing noisy magnitudes.

When this size Mi
Λ is reached, the vegetative cell divides, produc-

ing two new vegetative cells with one-half of its current size and identi-
cal protein concentrations. Heterocysts follow the same growth, but once
they have reached their maximum size, Mi

Λ, they do not divide and stop
growing.

The code to simulate the model is available at https://github.com/
PauCasanova/AnabaenaPLOS

4.3.2 Parameter Estimation

The parameter values employed in simulation results shown in this work
can be found in table 4.1.

To simulate loss-of-function conditions we have considered the pro-
duction rates equal to zero, except for of the patS loss-of-function, where
we have reduced the production rate of patS by 90%. The remaining 10%
represents the redundant effect still present through the expression of
patX (Elhai and I. Khudyakov, 2018; I. Khudyakov et al., 2020).

In order to adjust our model, a custom simulated annealing algorithm
(Kirkpatrick et al., 1983) was employed to obtain the parameters above the
double line in table 4.1, employing as initial values for the optimization
those in the model of (Muñoz-García and Ares, 2016) when an equivalent
parameter exists. The last six parameters (Kd, λ,MΛ, TR,MR, Tmin) were
manually set. The value of the affinity of ERGSGR to HetR, represented
by Kd, was taken from (Feldmann et al., 2012). Additionally, we choose
both the mean maximum cell size to MΛ = 4 µm and the cellular growth
rate to µ = 0.08µm · h−1 in agreement with filament growth data (Asai
et al., 2009). Finally, the values of TR, MR, and Tmin are fixed beforehand
in order to obtain a commitment time of around 8-9h (A. M. Muro-Pastor
and Hess, 2012). The selection of TR would be dependent on the typi-
cal concentration of HetR on a vegetative cell that is differentiating into a
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Table 4.1: Parameter values used for the wild type simulations. The parameters
over the double line are adjusted with a simulated annealing algo-
rithm, and the ones under it have been fixed from the bibliography.

Parameter Description Value Units

βR Basal production rate of HetR monomers 66.665 nM · h−1

ρR Maximum regulated production rates of HetR monomers 763.33 nM · h−1

αR
Linear degradation rate (including dilution) of HetR
monomers

2.1293 h−1

µ Nonlinear degradation rate of HetR dimers 1.6354 · 10−3 nM−1

ρA Maximum regulated production rates of PatA 3862.3 nM · h−1

αA Linear degradation rate (including dilution) of PatA 3.823 h−1

τA
Equilibrium constant of the PatA enhancement of the activa-
tion process of HetR dimers

81.132 nM

FR Fraction of HetF activated HetR dimers 1.2578 · 10−4 DL

ρS Maximum regulated production rates of PatS 337.5 nM · h−1

αS Linear degradation rate (including dilution) of PatS 2.0827 h−1

cS
Rate of conversion of PatS to the ERGSGR hexapeptide
through cellular transport

8.1485 h−1

ρN Maximum regulated production rates of HetN 527.2 nM · h−1

αN Linear degradation rate (including dilution) of HetN 2.6204 h−1

cN
Rate of conversion of hetN to the ERGSGR hexapeptide
through cellular transport

5.7671 h−1

αI
Linear degradation rate (including dilution) of ERGSGR
hexapeptide

2.3684 h−1

dI Diffusion rate of the ERGSGR hexapeptide 9.0777 h−1

ρG Maximum regulated fixation rates of nitrogen 7533.7 nM · h−1

αG Linear degradation rate (including dilution) of fixed nitrogen 4.32 h−1

dG Diffusion rate of the fixed nitrogen 100.04 h−1

KG
Equilibrium constant for the inhibitory reaction between HetR
and the fixed nitrogen

162.03 nM

dborder Rate of diffusion through the border cells 0.381 DL

ΩΛ Noise strength in cellular growth and size 0.081 DL

ΩΦ Noise strength in gene expression and initial concentration 0.21 DL

Kd
Equilibrium constant for the inhibitory reaction between HetR
and the ERGSGR hexapeptide (Feldmann et al., 2012)

7.36 nM

λ Cellular growth rate 0.08 µm · h−1

MΛ Average maximum cell size 4 µm

TR
Average minimum HetR concentration threshold to differenti-
ate

110 nM

MR
Average accumulated HetR concentration required to form a
heterocyst

1320 nM

Tmin Minimum time to differentiate 5 h

98



4.3 mathematical model 99

heterocyst. However, given that this experimental information is not avail-
able, we set a value taken directly from (Muñoz-García and Ares, 2016),
and adjust the rest of the parameters. If one changes this value and runs
again the optimization algorithm one obtains a new set of parameters, for
which always the concentration of HetR for the patA mutant is uniformly
maintained under the threshold, but close enough to allow the stochastic
formation of heterocysts due to fluctuations. Once the value of TR is set,
MR is the equivalent of maintaining the HetR concentration TR over 12h,
which is the maximum commitment time reported, and Tmin is set to 5h
to ensure that the concentration is at least this time over TR and therefore
eliminates the excessive relevance that sudden bursts could have on an
integrative decision process, given the extensive morphological changes
that the differentiation to heterocysts requires.

We have used a custom simulated annealing algorithm that selected
a set of data that minimizes the following energy function:

E ≡
∑
O

[
w1 ·∆KS(histExp,histSim)2 +w2 ·

(
(mExp −mSim)2 + (pExp − pSim)2

)]
+

+
∑
N

[
w3 ·∆KS(histExp,histSim)2 +w4 · pSim

]
+ δWT ,NoHc

(
¯[HetR]

WT

Sim − TR

)2 (4.13)

where ∆KS(histExp,histSim) is the Kolmogorov-Smirnov distance (Massey,
1951) between the experimental and simulation histograms, m is the mean
distance between heterocysts and p is the mean percentage of heterocysts.
These quantities are compared between experiments and simulations. The
comparison with (Corrales-Guerrero et al., 2014b) is done in the summa-
tory with O which are the datasets of the wild type, ∆patS and ∆hetN for
24h, 48h, and 72h. While the comparison with (Orozco et al., 2006) is done
in the summatory N which are the datasets of the ∆patA and ∆patA∆hetN
for 24h, 48h, 72h, and 96h. The inclusion of both the means and the dis-
tributions of vegetative length intervals allows the algorithm to set the
noise in order to imitate the variance of the experimental data. Finally,
δWT ,NoHc is a factor that is 0 except if the wild type does not present hete-
rocysts where 1. Given that all the other energy terms suppose heterocyst
formation, we included a term that compares the HetR concentration for
the wild type with the threshold value TR in order to drive the system
towards a set of parameters compatible with heterocyst formation. The
set of parameters presented in this paper has been obtained using the
weights (w1,w2,w3,w4) = (1000, 10, 500, 1), which after some tests pro-
duced the best results.
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One can observe in fig. 4.4, that the high stochasticity of the system
forced us to have multiple realizations of each simulation in the simulated
annealing algorithm in order to obtain a reliable energy for a parameter
set.

Figure 4.4: Energy dispersion of a given parameter set depending on number of
repetitions

We settled on 20 realizations for each parameter set to ensure proper
validation of the parameters. But as we are considering five different mu-
tants over a span of at least 72 virtual hours, this increased quite a lot
the computational cost of the exploratory algorithm. Due to this, we did
not realize an extensive exploration of the parameter space with widely
diverging initial parameter estimations and simply settled with the best
set of data produced after 3 months of running time.

4.4 study of the wild type and the ∆patS and ∆hetN mu-
tants

In order to compare the results obtained from our numerical simulations
with the experimental data from (Corrales-Guerrero et al., 2014b; Orozco
et al., 2006), we have replicated the statistical analysis of these works. In
both cases, all the data is aggregated for each experiment and then the
averages and standard deviation are calculated between the experimental
replicates. Thus, a certain amount of filaments has been aggregated in
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batches and then averaged to obtain the standard deviation. On the ex-
perimental side, in (Corrales-Guerrero et al., 2014b), for each strain, 300

cells, or 100 intervals, were counted in three or four independent exper-
iments. In (Orozco et al., 2006), the number of contiguous heterocysts at
the ends of 50 filaments is averaged in three experiments. Alternatively,
our data were obtained from 15 batches of 10 simulations for filaments
with an initial size of 30 cells (consistent with experiments in (Burnat et
al., 2014)) which grow to have around 50, 100, and 200 cells at 24h, 48h,
and 72h respectively. Therefore, we present a bigger data sample than the
one considered in (Corrales-Guerrero et al., 2014b) and of the same order
of magnitude as the one in (Orozco et al., 2006).
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Figure 4.5: Kolmogorov–Smirnov distance between histograms of vegetative intervals length ob-
tained with our model and the experimental datasets from (H. S. Yoon and J. W.
Golden, 2001), (Corrales-Guerrero et al., 2014b) and (I. Y. Khudyakov and James W.
Golden, 2004). The X-axis presents the common variables between the histograms and
the legend the variable that we are comparing. In the first subplot, we compare the
histograms of a given condition at a given time from two different datasets to evalu-
ate the agreement of our model with the available experimental data. In the second,
we obtain the histogram K-S distance between conditions from the same dataset at
a given time. And finally, in the third subplot, we present the temporal change of a
given condition for all the datasets considered.

The statistical distribution of vegetative cell intervals between hetero-
cysts may differ from one experiment to another, as one can notice com-
paring the results from different authors (Borthakur et al., 2005; Corrales-
Guerrero et al., 2013, 2014b; I. Y. Khudyakov and James W. Golden, 2004;
Orozco et al., 2006; Risser and Sean M. Callahan, 2009; X. Wu et al.,
2004; H. S. Yoon and J. W. Golden, 2001; Ho Sung Yoon and James W.
Golden, 1998). For consistency, to compare our results with the experi-
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mental data for the wild type and both the ∆patS and the ∆hetN mutants,
we consider the relative frequency of vegetative intervals of a given length
presented in (Corrales-Guerrero et al., 2014b), which is the most recent
dataset available and one of the most comprehensive. Despite this, we
also show in fig. 4.5 a systematic comparison of the Kolmogorov-Smirnov
distance between the distribution of the vegetative interval distribution
that our model produces, and the ones observed in (Corrales-Guerrero
et al., 2014b; I. Y. Khudyakov and James W. Golden, 2004; H. S. Yoon and
J. W. Golden, 2001) (which are the experimental datasets considered in
(Muñoz-García and Ares, 2016) and in this same paper).

The agreement between the model and experimental data is very
good, as one can also observe in fig. 4.5. There, it is shown that the differ-
ences between simulation data and experimental data are of the same or-
der as temporal differences of the same mutant and considerably smaller
than the differences between the wild type and both ∆patS and ∆hetN.
Additionally, a closer inspection even reveals that the model produces
histograms more similar to the ones presented in (H. S. Yoon and J. W.
Golden, 2001) with respect to the ones from (Corrales-Guerrero et al.,
2014b).

As already mentioned, in order to simplify the description we have
modeled both genes patX, patS using a single variable. Thus, a complete
loss of function of this variable represents the experimental ∆patX∆patS
mutant. This double mutant induces considerably more heterocysts than
the single ∆patS mutant, fig. 4.6 top, as observed experimentally (I. Khudyakov
et al., 2020) (see the ∆patS∆patX double mutant movie). We have also
simulated the ∆patX mutant (see the ∆patX mutant movie), where the
production rate is only 10% of the combined PatS + PatX variable.

We have also simulated the ∆patX mutant (see the ∆patX mutant
movie), where the production rate is only 10% of the combined PatS+PatX
variable. The phenotype observed in fig. 4.6 down is still compatible with
the wild type data, as reported in (I. Khudyakov et al., 2020), with both
slightly shorter vegetative intervals and a higher percentage of hetero-
cysts.

In fig. 4.7, we observe the agreement between the simulations and the
experimental data from (Corrales-Guerrero et al., 2014b) for wild type
and patS and hetN mutants. For the wild type, it is well known that
roughly one of every ten cells differentiates, with a slight increase of this
interval length with time (see the wild type movie). In the ∆hetN mutant,
the initial pattern is similar to the wild type, except for the contiguous
heterocysts appearing at a sequential pace (see the ∆hetN mutant movie).
The ∆patS mutant shows a cluster of heterocysts, which appear simulta-
neously at short times (see the ∆patS mutant movie). For longer times,
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Figure 4.6: Upper plots: Mean number of vegetative cells between heterocysts and the total per-
centage of heterocysts in the filament for different conditions, as indicated. Symbols
represent experimental values from (Corrales-Guerrero et al., 2014b), and lines are
simulation results with their standard deviation as a shadowed area.
Lower plots: Comparison at different times after nitrogen deprivation (as indicated)
between simulated histograms of the number of vegetative cells between heterocysts
for wild type and ∆patX, as indicated. Bars are means of interval lengths, errors are
standard deviations.

the pattern of heterocysts is more similar to the wild type, but with a
higher incidence of contiguous heterocysts, in agreement with the exper-
imental results reported in (H. S. Yoon and J. W. Golden, 2001) with a
larger statistical sample.

These typical phenotype observations are also shown in fig. 4.8) where
one can observe that both ∆patS and ∆hetN present multiple clusters of
heterocysts. While the distribution for ∆patS remains the same through
24 to 72h, the amount of clusters longer than 3 heterocysts increases with
time for the ∆hetN mutant.

The comparison of the distributions of the number of vegetative cells
between heterocysts of the simulated filaments and the experimental data
in (Corrales-Guerrero et al., 2014b) is shown in fig. 4.9.
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Figure 4.7: Mean number of vegetative cells between heterocysts and the total
percentage of heterocysts in the filament. Symbols represent exper-
imental values from (Corrales-Guerrero et al., 2014b) and lines are
simulation results with their standard deviation as a shadowed area.

A small deviation appears for the early phenotype of the ∆patS mu-
tant, especially at 24h. The simulations ∆patS to present less contiguous
heterocysts and shorter intervals than both the experimental data (fig. 4.9)
and the ∆hetN mutant simulation (fig. 4.8) at this time. This difference
could be due to the effect of not considering a protoheterocyst phase.
Without this phase, the differentiation of adjacent cells is strongly reduced
because, once a cell differentiates, it immediately starts producing both
HetN and nitrogen products, which inhibit differentiation. Thus, an artifi-
cial surplus of one and two-cell intervals is observed in the first round of
differentiation. After the first round of division, this causes the observed
peaks of two and four-cell intervals observed at 24h, as observed fig. 4.9
and the ∆patS mutant movie.

The low amount of contiguous heterocysts observed in wild type sim-
ulations in comparison with experimental data (Corrales-Guerrero et al.,
2014b) can be explained using the same argument. A protoheterocyst
phase would ease the stochastic formation of multiple simultaneous hete-
rocysts in all genetic backgrounds. On top of that, it is worth noting that
these contiguous heterocysts are seldom described in the literature. Their
appearance on the wild type can be explained by stochastic fluctuations
of the genetic expression that get fixed through the irreversible process
that is the differentiation into a heterocyst. In any case, the model also
allows for the formation of these contiguous heterocysts, albeit in a much
smaller proportion.

These results also improve the phenotypes obtained in the minimal
model from (Muñoz-García and Ares, 2016). In that model, the ∆hetN
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Figure 4.8: The upper plot shows the evolution of the percentage of clusters of
heterocysts (solid lines) and individual heterocysts (dashed lines).
The lower plots show the histogram of the number of clusters of a
given size observed at 24h, 48h, and 72h. Bars are the mean number
of clusters of each size at each time, error bars are standard deviation.

mutant showed both smaller clusters of heterocysts and shorter intervals
between them. The frequency of the vegetative intervals for longer times
(48 and 72 hours) has a much stronger inverse dependency with the inter-
val longer than the one observed experimentally (Corrales-Guerrero et al.,
2014b). While the experimental data presents a Bell-shaped distribution
around the 6-8 cells intervals with an abnormally increased frequency for
contiguous heterocysts, the model distribution is more akin to two differ-
ent decays (one for even intervals and another for odd intervals that get
more different as the time increase) of the interval frequency in regard to
their length.
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Figure 4.9: Comparison at different times after nitrogen deprivation (as indi-
cated) between experimental (Corrales-Guerrero et al., 2014b) and
simulated histograms of the number of vegetative cells between het-
erocysts for wild type (top row), ∆hetN (middle row), ∆patS (bottom
row). Bars are means of interval lengths, errors are standard devia-
tions.

4.5 loss of heterogeneity in the hetr concentration pro-
file in a ∆patA mutant background

The simulations for the ∆patA single mutant show a similar behavior to
experimental results (Liang et al., 1992; Orozco et al., 2006; Risser and
Sean M. Callahan, 2008; Risser et al., 2012; Young-Robbins et al., 2010),
with heterocysts forming mostly on the filament ends despite higher
global HetR concentration in the filament (approximately 24% higher in
our simulations, fig. 4.10) in ∆patA than in the wild type.

One can also see in fig. 4.10 that HetR concentration in vegetative
cells is only oscillates in those conditions that present heterocyst differen-
tiation mainly in the central part of existing vegetative intervals. This is
because the increase of HetR concentration that leads to heterocyst differ-
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Figure 4.10: Time evolution of HetR concentration on vegetative cells for all mu-
tants considered, normalized by the maximum wild type concentra-
tion.

entiation is then dependent on an elongation of an existing interval that is
coupled to the cell cycle synchronicity. A cell has to be far enough from a
heterocyst to be able to self catalyze HetR production, as can be observed
in the shape of the regulatory function for HetR fig. 4.3. This is the main
reason why both the ∆patS and ∆patA∆patS mutants, which present the
formation of multiple simultaneous heterocysts, present a much higher
oscillation than the wild type, which usually just produces one hetero-
cyst. The rest of mutants does not form internal heterocysts (∆hetF, ∆patA,
∆patA∆hetN mutants) or present heterocysts mainly next to already ex-
istent heterocysts (∆hetN mutant), which, in either case, are uncoupled
from the cell cycle.

The absence of internal heterocysts in ∆patA is caused by the loss of a
distinct HetR concentration profile, fig. 4.11 and the ∆patA mutant movie.

Without PatA in the system, the conversion to active HetR is slowed
to a minimum level, and this also slows down the regulatory effect of
HetR over both itself and patS. This produces a homogenization of the
production of PatS and also of the inhibitory hexapeptide along the fila-
ment. Then, in the absence of a pronounced inhibitory gradient, the levels
of HetR increase uniformly to levels close to the threshold for differenti-
ation (fig. 4.11). In these conditions, the selection of the few internal cells
that will differentiate is exclusively due to stochastic fluctuations in the
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Figure 4.11: Three simulations showing HetR profiles in filaments of wild type,
∆patA, and ∆patA with no inhibitor leakage from the terminal cells
(dbroder = 0). HetR concentration is represented by the brightness
of green, and the heterocysts present an additional white cell wall.
For the wild type, one can observe cells with much higher levels of
HetR, those are the candidates to differentiate into heterocysts.

protein production of both HetF and PatS. On the other hand, the model
assumes a certain passive diffusion of both the inhibitory hexapeptide
and fixed nitrogen through the filament ends, which causes a local reduc-
tion of the inhibitory signals, allowing the differentiation of the boundary
cells. If one does not allow the diffusion through the border cells, hete-
rocysts do not form in the filament ends as HetR does not accumulate
enough on those cells, fig. 4.11.

A simple physical analogy of the importance of the boundary con-
dition to understand the patA phenotype can be made using the
following continuous reaction-diffusion model defined on a fila-
ment of length L where the position is denoted by the coordinate
x ∈ [0,L]:

∂r(x, t)
∂t

= βr + f(r, s)ρr −αrr (4.14)

∂s(x, t)
∂t

= f(r, s)ρs −αss+ d
∂2s

∂x2
, (4.15)

where r is the concentration of a non-diffusing activator (HetR), s
the concentration of a diffusible inhibitor, βr a basal production for
the activator (βr > 0), f(r, s) a smooth regulatory function, mono-
tonically increasing in r and decreasing in s, and the other symbols
are parameters.
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These equations need to be supplemented with boundary condi-
tions for s. If the inhibitor cannot diffuse across the filament’s
boundaries, the condition is:

∂s

∂x

∣∣∣∣
x=0,L

= 0. (4.16)

With this condition, we assume that the system is such that a pa-
rameter regime exists where there is a stable homogeneous solu-
tion. However, if leakage of the inhibitor through the boundaries is
possible, the relevant boundary condition is:

s|x=0,L = 0. (4.17)

With this alternative condition and under the same parameter
regime, there would be a gradient of inhibitor decreasing from the
center to the boundaries of the filament, which in turn would pro-
duce a profile of activator with maxima in the boundaries, making
them the favored location for heterocyst differentiation. This sim-
ple analogy explains the physical mechanism behind the boundary-
induced pattern observed in the patA mutant, and agrees qual-
itatively with the observation in the discrete model depicted in
fig. 4.11.

The results of the simulation for the ∆patA∆hetN double mutant also
show a phenotypic agreement with observations (Orozco et al., 2006). The
filaments present multiple terminal heterocysts with only the occasional
internal heterocyst (see the ∆patA∆hetN double mutant movie). Addition-
ally, the model predicts a higher HetR concentration (approximately 27%
higher in our simulations, fig. 4.10) in ∆patA∆hetN than in the wild type,
equivalent to the one observed in ∆patA. Here the border effect of the
inhibitor diffusion through the ends of the filament gets propagated to
multiple cells because the ∆patA∆hetN double mutant, besides the ho-
mogenization of the HetR concentration, does not present the inhibitory
gradient around existent heterocysts produced by hetN.

In fig. 4.12, we present the temporal evolution of the amount of ter-
minal heterocyst for both ∆patA and ∆patA∆hetN mutants. These results
are in agreement with experimental data (Orozco et al., 2006) as shown
in fig. 4.12. The model seems to have a small delay in the formation of
heterocysts (also present in the ∆patA mutant), but except for early times
the model shows a good agreement with the experimental data. This de-
lay could be related to the mechanism of commitment to the differenti-
ation of a given cell. In our model, this decision is exclusively linked to

109

https://doi.org/10.1371/journal.pcbi.1010359.s016


110 incorporation of patA and hetF to the model

24 48 72 96
time (h)

0

1

2

3 number of border heterocysts
patA
patA
patA no leakage

patA hetN
patA hetN
patA hetN no leakage

Figure 4.12: The upper plot shows the temporal evolution of the number of het-
erocysts in the ∆patA and ∆patA∆hetN mutants. Symbols represent
experimental values from (Orozco et al., 2006) and lines are simula-
tion results with their standard deviation as a shadowed area.
The lower plots present the comparison at different times after nitro-
gen deprivation (as indicated) between experimental Orozco et al.,
2006 and simulated histograms of the number of heterocysts in the
filaments end for the ∆patA∆hetN double mutant. Bars are means of
the number of birder heterocysts, errors are standard deviations.

a sustained high concentration of HetR and not to the expression of a
supplementary gene (hetP and/or hetZ) as recent publications (Yaru Du
et al., 2020; Ye Du et al., 2012; Higa and Sean M. Callahan, 2010; Videau et
al., 2016, 2018; H. Zhang et al., 2018) seem to indicate. Hence, incorporat-
ing a gene-controlled differentiation commitment would surely improve
these results, because the self-regulation of that gene could amplify the
differentiation signal.

Finally, we studied the ∆patA∆patS double mutant, of which to our
knowledge there are only phenotypical observations (Orozco et al., 2006).
Its phenotype is described as similar to the single ∆patS mutant pheno-
type, but with longer distances between heterocysts.
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Figure 4.13: Comparison at different times after nitrogen deprivation (as indicated) be-
tween simulated histograms of the number of vegetative cells between het-
erocysts for wild type, ∆patS and ∆patA∆patS, as indicated. Bars are means
of interval lengths, errors are standard deviations.

The simulated filament (see the ∆patA∆patS double mutant movie)
fits this behavior, fig. 4.6 and fig. 4.13. One can notice that the ∆patA∆patS
mutant presents a higher amount of contiguous heterocysts, but with a
smaller frequency and larger intervals of vegetative cells between hetero-
cysts. Additionally, the simulated filament does not present an increase
in HetR concentration typical to other patA mutants. This also confirms
that the full ∆patA phenotype, which shows almost no internal hetero-
cysts and a high concentration of HetR, requires a functional patS gene
(Orozco et al., 2006).

As we discussed previously, the increase in the HetR concentration
is produced due to the homogenization of the PatS production along the
filament, which produces a state where all the cells have a homogeneous
HetR concentration lower than the decision threshold. Therefore, if patS is
not functional this effect would not be observed and the weak activation
of HetR due to the absence of PatA precludes the formation of as many
clusters of heterocysts as one observes in the ∆patS mutant.

One can observe this in fig. 4.10, where the HetR concentration for this
mutant does not behave like the ∆patA single mutant or the ∆patA∆hetN
double mutant, with high constant values of HetR. It behaves similarly
to the simple patS mutant, with a slightly higher concentration than that
mutant after the first outburst of HetR that marks the first differentiation
round (Wong and J. C. Meeks, 2001). On the other hand, the concentration
is higher in the ∆patS single mutant during the first round of differentia-
tion. This inversion is due to the faster production of HetR with a func-
tional patA. Therefore, the decision to differentiate is reached in a shorter
time than in the ∆patA∆patS mutant. Hence, on a homogeneous initial
condition (the first round of differentiation), the concentration would be
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higher in the ∆patS mutant because all cells start producing HetR at a
much faster rate. But starting from heterogeneous initial conditions (all
the following differentiation rounds), the concentration would be higher
in the double mutant. Due to the slower commitment, more cells (closer
to the heterocysts) start producing HetR before being shut down by the
newly formed heterocysts. This effect can also be observed by comparing
the ∆patS mutant movie and the ∆patA∆patS double mutant movie.

4.6 complete loss of hetr regulatory function in the ∆hetF
mutant background

If HetF is necessary to produce the active form of HetR, in its absence
HetR should lose its regulatory function. This prediction is in agreement
with experimental observations in Nostoc punctiforme (Wong and J. C.
Meeks, 2001), which presents a similar transcriptional induction pattern
of hetR than Anabaena PCC 7120. There, the induction of hetR is dependent
on the presence of an intact copy of ntcA. Moreover, the induction of hetR
is still present in the ∆hetF background, but with an altered induction
pattern that eliminates the 0 to 6h burst.

Our simulated ∆hetF successfully eliminates the initial burst of HetR
production observed in all other mutants, fig. 4.10. The absence of this
burst in ∆hetF implies that it is exclusively produced by the positive self-
regulation of hetR (Risser and Sean M. Callahan, 2008; Wong and J. C.
Meeks, 2001). Due to this, the introduction of an additional hetR promoter
activated as a response to nitrogen deprivation would improve the agree-
ment between our model and experiments by increasing only the overall
HetR concentration in our simulations (especially on the ∆hetF and ∆patA
simple and multiple mutants) without altering much of the dynamics.

4.7 noise effect and sensitivity analysis

The effect of the noise amplitude can be observed in fig. 4.14. For low
noise in cellular growth ΩΛ, oscillations appear in the time evolution of
the mean number of vegetative cells between heterocysts. This effect is
due to the effect of nearly synchronized cell divisions and was discussed
in detail in (Muñoz-García and Ares, 2016).

As this noise increases, the system loses synchronization between
cells, and therefore both the mean vegetative interval and the percent-
age of heterocysts are more stabilized to roughly the mean value that one
observes in the less noisy regimes.

The genetic regulatory noise ΩΦ affects the heterocyst pattern more
than the noise in cell growth. This is because a certain genetic noise is
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Figure 4.14: Effect of noise on the mean interval of vegetative cells between
heterocyst for wild type parameters. Symbols represent experimen-
tal values from (Corrales-Guerrero et al., 2014b), and lines are simu-
lation results with their standard deviation as a shadowed area.

required for the pattern formation. Therefore, reducing the noise does
not seem to affect the long-term stability of the pattern, but it delays its
inception to much later on. Alternatively, increasing the noise does not
modify the early pattern, but it produces considerably more heterocysts
which reduces the overall length of the intervals. Finally, if one increases
the two noises by the same rate, one observes that the growth noise ΩΛ

effect dominates for the low overall noise regime while the regulatory
noise ΩΦ effect is the dominant one.

We also studied how the effect of the gene expression noise changes
with its intensity.

One can see in fig. 4.15 that while the deterministic gene regulation
dominates the noise, up to the point marked with the dotted line, the
noise facilitates the formation of the pattern. Given that, the heterocysts
form much easier due to higher fluctuations in protein production. Then,
more cells differentiate into heterocysts, and the length of vegetative in-
tervals decreases. But once the noise dominates over the deterministic
gene expression, the number of heterocysts decreases and the vegetative
intervals increase in both their mean length and variance. Once the noise
dominates, the cells are no longer capable of effectively responding to
the external signaling. This produces an uncoupling of the filament cells,
and the differentiation to a heterocyst becomes a completely independent
stochastic process.
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Figure 4.15: Effect of gene expression noise on the pattern: The left plot shows the effect
of several levels of gene expression noise on the mean interval of vegetative
cells between heterocysts for wild type parameters at 24 hours. The dotted
line marks the transition when the noise dominates over the deterministic
gene expression. The right plot shows the evolution of the effects of the same
levels of gene expression noise on the percentage of heterocysts.

Sensitivity analysis

To assess the robustness of our results, we have performed a sensitivity
analysis following the approach in (Muñoz-García and Ares, 2016). We
calculate the sensitivity of the model to a given parameter X by evalu-
ating the observable Y at two points, the wild type value X0 and the
perturbation X = X0 +∆X. Using the resulting change in the observable,
∆Y, we calculate the sensitivity SYX of the observable to the parameter as:

SYX =
∆Y/Y

∆X/X
. (4.18)

In fig. 4.16, we show the sensitivity of the mean distance between contigu-
ous heterocysts to changes of 10% in the parameters.

The results are qualitatively similar to our previous work (Muñoz-
García and Ares, 2016), however, we find that the extension of the model
has made it even more robust to variations in individual parameters. The
largest sensitivity is found when modifying HetR production and degra-
dation, followed by inhibitor degradation, the strength of the inhibition,
and PatS production. For all other parameters, the relative changes in
mean interval length are much smaller than the relative change in the
parameter.

Additionally, our results are robust to the details of eq. (4.7). For in-
stance, it has also been observed that the tetramers of HetR are capable to
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Figure 4.16: Sensitivity of the mean distance between heterocysts after 72h with
respect to 10% changes in the indicated parameters. Changes are
with respect to the wild type values in table 4.1.

bind to DNA (Hu et al., 2015; Kim et al., 2013) and its abundance increase
during the transition (Valladares et al., 2016). But it is still not clear how
the ERGSGR interact with them and therefore if it has a clear role during
the transition. Despite this, we have checked that this alteration does not
change the qualitative system behavior and the same dynamics can be re-
covered assuming tetrameric binding with an alternative set of parameter
values
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, (4.19)

allows for a similar fit to experimental data fig. 4.17 with only one extra
13 factor multiplying the FR.

Allowing details like affinities or exponents to be different for the
different species regulated by HetR would only increase the number of
free parameters of the model, so for simplicity and to reduce the risk
of overfitting we have made the choice of using the same function in all
cases.
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Figure 4.17: Mean number of vegetative cells between heterocysts and the total percent-
age of heterocysts in the filament for both the dimer and the tetramer active
form presented in eq. (4.19). Symbols represent experimental values from
(Corrales-Guerrero et al., 2014b), and the lines are simulation results with
their standard deviation as a shadowed area.

4.8 conclusion

The formation and maintenance of heterocyst patterns is a paradigmatic
example in which many processes, such as complex gene regulatory net-
works, interactions at different time scales, molecular trafficking, and cell
growth, act together to give rise to a multicellular pattern. All these as-
pects form an intriguing puzzle for which a complete understanding is
still elusive. A practical way to expand our knowledge about this prob-
lem is to investigate what are the functions of some of its pieces. Thus, in-
creasing the complexity of a previous minimal model, we have been able
to gain insight into the functions of the players involved. We have focused
on the patA gene, and based on experimental phenotypical evidence, we
have formulated a mathematical model that includes the interactions of
this gene with the key genes responsible for heterocyst pattern formation.

Our model is not identifiable because several sets of parameters pro-
duce similar behaviors, and most of the phenotypic changes that the mod-
ification of a given parameter value produces can be restored by tuning
a subset of the rest of the parameters. Nevertheless, we never intended
to have an identifiable model because the data available is quite scarce
and is always phenotypic (distances between heterocysts at a given time)
while these parameters act on the molecular scale. In order to have an
identifiable model, we would need much more data and ideally of the
molecular scale (concentration of a given protein or a quantification of
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the gene transcription). By working with just phenotype data with a time
step of 24h, we consider that one cannot extract conclusions regarding the
parameter set and therefore only argue about the validity of the model as
a whole. Our exploratory optimizations indicate that good fits lay on a
manifold of the parameter space, producing equivalent phenotypical pre-
dictions for different parameter sets. As the model is robust to parameter
changes, if in the future molecular data is available we could readjust the
parameters of our model and then use it to extract predictions about the
values of the unknown parameters.

The model shows that considering PatA as a collaborator of the acti-
vation process of HetR directed by hetF is capable of explaining all the
phenotypes of the genes considered in our genetic network. This agree-
ment suggests that there is some interaction, direct or indirect, between
hetF and patA that has not been reported experimentally. This considera-
tion, together with the existence of an active form of HetR, is also enough
to account for the paradoxical changes in HetR concentration in the patA
mutant, which seemed to question the central role of hetR in heterocyst
differentiation.

New experiments are required to confirm the validity of the interac-
tions proposed. In particular, experimental information regarding protein
translation (Corrales-Guerrero et al., 2015; Di Patti et al., 2018) could be
useful in order to have more detailed information regarding the effects
of a given gene on the regulatory network. The roles of many other ac-
tors are still to be elucidated and could be included in the core processes
to obtain a more extensive mathematical description. For example, re-
cent work (Xiaomei Xu et al., 2020) presents evidence that hetL, a gene
previously shown to alter PatS mediated inhibition of heterocyst differen-
tiation (D. Liu and James W. Golden, 2002), interacts with HetR without
inhibiting its DNA-binding activity in Nostoc PCC 7120. This interaction
protects HetR from the inhibitory effects of the Pat-derived hexapeptide
and seems to be essential for the proper function of HetR as a genetic
regulator.That would be the role that we have assigned to hetF based on
the phenotypic evidence on Anabaena PCC 7120.

A recent study (W.-Y. Xing et al., 2022), published almost at the same
time that this model, already confirmed experimental evidence of an
indirect activator role for HetF over hetR. This paper shows that HetF
regulates cell division and heterocyst differentiation by controlling the
inhibitory effects of PatU3. The information regarding this gene is still
pretty scarce, and therefore, it is difficult to locate this gene in the net-
work presented in fig. 2.5. Despite this, a previous work by (Yaru Du et
al., 2020) situates it in close relationship with hetZ to actively regulate hetR
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and patS/patX. This indirect effect could account for the one predicted by
the model if patA is also involved in this PatU3 regulation.

Finally, our work shows that it is possible to reproduce the patA
mutant phenotype without considering a differentiation mechanism de-
pending on a cell’s position on the filament. The model also expands
the characterization presented in (Orozco et al., 2006) by directly linking
the increase of the HetR concentration in all the cells with the absence
of internal heterocysts in both ∆patA and ∆patA∆hetN mutants. This is
obtained by a slowing of the hetR transcription, which produces a homog-
enization of HetR concentration through the filament. Then it is easy to
see why this phenotype is not present in the ∆patA∆patS mutant, where
this reduction in the transcription rate is completely compensated by the
absence of the early inhibitor PatA. The intriguing differentiation of only
terminal heterocysts appears as a consequence of the boundary condi-
tions of the system: leakage of inhibitors out of the filament through the
terminal cells. Hence, despite the apparent simplicity of Anabaena com-
pared to other developmental systems, it is already clear that genetic and
metabolic interactions result in patterns shaped by physical constraints.
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5
F I L A M E N T C O R R E L AT I O N I N T H E p a t A h e t F M O D E L

After the validation of the patAhetF model with the available experimen-
tal data in the previous chapter. Here we will continue the analysis of the
model studying the correlation between cells of a filament. We decided
to study the correlations because they should reflect the coordination be-
tween cells required to self-organize into a pattern.

We will use the same model formulation and parameter set presented
in section 4.3 with the only exception that we will initiate the filament
with much more cells. Instead of starting with the more realistic 30 cells
filaments, we will start the simulations with 5000 cells. This change re-
duces the border effect on our analysis and will ensure that we have
enough statistics for all the cell distances considered, from 1 up to 20

cells. Then for the lowest data sample, which would correspond to the ini-
tial time, before the first cell division, for the 20 cell intervals, we would
have 250 intervals to calculate the correlation factor. Additionally, we will
consider 10 independent filaments to calculate the correlation values, and
then we will average the correlation coefficient obtained for each filament.

We tried several correlation factors, the linear correlation with Pear-
son and also rank correlation with both Spearman and Kendall. But since
we did not observe notable differences between them, we will only present
here the results for the Pearson coefficient. The Pearson correlation coeffi-
cient between two datasets x and y is defined as the covariance between
x and y normalized over the product of their variances:

Pc(x,y) =
Cov(x, y)
σxσy

.

In our particular case, we will have that the Pearson correlation coefficient
for a cell distance d we will compare all the cells with the ones at a
distance d with

Pc(d) ≡

〈
Cov

(
v|-d, v|d

)
σ2
v

〉
filaments

where v is the vector of concentrations in each cell and the |
y
x is used to

represent a subvector from the x index until the y index. Then v|-d is the
vector v without the last d cells and v|d is the vector v without the first d
cells. Finally, σ2

v is the variance of the concentration in the whole filament.
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120 filament correlation in the patAhetF model

5.1 correlation length of the inhibitor gradient defines

pattern length

First, we will study the correlation of the ERGSGR inhibitor. As it is the
only diffusible element of our model, we expect that is the element with
the highest correlation.
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Figure 5.1: Correlation of ERGSGR inhibitor concentration for several genetic backgrounds:
The graphs on the left show the evolution of the relationship between the correlation between
two cells and their relative distance in the filament. We colored in green and red all the cell
distances and midpoints compressed between the lowest and the maximum average vegetative
intervals between heterocysts in the wild type for 10h to 96h, with a doted line for the global
average. The graphs on the right show the evolution of the correlation between cells located at
six particular cell distances in time. To ease visualization, we marked with a gray doted line
the time when the first heterocyst appears in our simulation and a gray band when the pattern
arises. 120
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In fig. 5.1 one can see that in fact the correlation of the diffusible in-
hibitor is really high for close neighbors and decays up to the distance
equivalent to half the pattern length. Additionally, this correlation does
not seem to be significantly affected by the ∆patA and ∆patS mutations
that greatly alter the wild type pattern at short times. This leads us to
argue that this correlation length of around 6 cells is produced by the
combination of the diffusion coefficient and the degradation rate. Spe-
cially the degradation, as we saw that it affects the mean interval much
more than variations in the diffusion rate (fig. 4.16). Moreover, we think
that this correlation length defines the size of the pattern that can arise
in the system. In the end, the diffusible ERGSGR is the only element
that diffuses between cells during the pattern inception phase. Then the
correlation length marks a perception limit in the filament. Cells do not
"see"/sense other cells located further than 6-7 positions.

We can also see that once heterocyst start to appear in the filament,
the correlations are distorted in a manner proportional to the number of
heterocyst. This is specially visible in the first differentiation round that
goes from the apparition of the first heterocyst (the gray doted line) up to
the grey band that marks the rise of statistically well-defined vegetative
cell intervals. The sudden appearance of functional heterocysts floods the
filament with inhibitors, homogenizing its concentration, this enhances
all the correlations already present in the filament. This sudden increase
could be an artifact caused by the absence of a protoheterocyst stage. The
addition of a progressive activation of HetN would stagger the produc-
tion of inhibition and maybe reduce considerably this effect.

5.2 two staged competition with 5 cells grouping regulate

heterocyst selection

During this chapter, and specially this section, we will extensively refer-
ence (Corrales-Guerrero et al., 2015), as it is the only experimental work
concerning a spacial characterization of HetR expression. This work char-
acterizes the correlations of hetR-gfp expression along filaments in con-
ditions of both nitrogen repletion and deprivation. They observed that
the correlation along the filament are stationary in nitrogen replete condi-
tions. In those conditions, the authors report a low positive correlation be-
tween neighboring cells that recedes with cell distance, with an expected
spacial range of 2-3 cells. These correlations are bigger for the ∆patS mu-
tant background (around a Pearson coefficient of 0.30) than for the wild
type (around a Pearson coefficient of 0.10).

Given that our model only considers nitrogen deprivation conditions,
we cannot validate our model in nitrogen replete conditions. Additionally,
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122 filament correlation in the patAhetF model

as we exposed in section 4.3, our model does not consider HetR and PatA
dynamics in heterocysts. As a result of this, when a cell differentiates in
our model, we freeze the HetR and PatA concentration value. Then this
value will remain constant for the rest of the simulation. This causes a
problem in the level of HetR activity (eq. (4.7)), it is not properly defined
in heterocysts given that this expression uses the concentration of both
HetR and PatA. To avoid this issue, we decided to artificially fix the ac-
tivity to the maximum of 1 in the heterocysts. This is in agreement with
the experimental observations, because, as we mentioned before, HetR ac-
tivity in the heterocyst is supposed to be high (Herrero and Flores, 2019).
We chose 1 because it is the highest possible value and therefore most
different to the maximum observed value in vegetative cells, which in
the wild type is around 0.6. Setting the same value for all the heterocysts
introduces an artificial higher correlation between heterocysts, but this
correlation is reduced by the fairly disperse vegetative interval distribu-
tion fig. 4.9 and the lower amount of heterocysts fig. 4.8. Additionally, as
the value is much higher to the one observed in vegetative, one could use
the HetN correlation as a guide.

The first realization presented in (Corrales-Guerrero et al., 2015) is
that the intercellular correlation in the filament is no longer stationary.
They reported that up to three hours after nitrogen deprivation, the dis-
tribution of the fluorescence along the filament still resemble the ones
from nitrogen replete conditions. But from seven hours after nitrogen
step-down onwards, the filament shows a marked tendency for an inter-
calation between high and low fluorescence values in adjacent cells. As a
result of this, they suggest that the fluctuations that originate the pattern
build from the existent intrinsic correlations in nitrogen replete condi-
tions. The authors use this observation, together with their observation in
nitrogen replete conditions, to endorse the two stage development model
presented by (John C. Meeks and Elhai, 2002). This model hypothesizes
that on the early stage, only certain cells are susceptible to initiate the dif-
ferentiation process once the filament is under nitrogen deprivation. And
then the second stage where the cells of this primered clusters compete
to be the one that differentiates.

We have quite a different initial condition in our model, we initiate the
filament with a homogeneous initial condition (all the cells deactivated
and empty). But this should not affect the pattern inception mechanism.
We have already shown in chapter 3 that the initial heterogeneity is ir-
relevant for the formation of the pattern if one considers a noisy gene
expression. This work alone already suggests that existent heterogeneity
of the filament, while could affect which of the cells are more susceptible
to differentiate, cannot be essential to originate a pattern. Additionally,
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5.2 5 cells groups regulate heterocyst selection 123

our model considers instantaneous differentiation to a heterocyst. This
absence of a protoheterocyst stage will probably alter the timescale of our
model with respect to the real system, as described in (Corrales-Guerrero
et al., 2015). Despite these differences, the model presents a remarkably
similar overall behavior of the cell correlations in a wild type filament.
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Figure 5.2: Correlation of the HetN concentration and the HetR activity for the wild type:
The graphs on the left show the evolution of the relationship between the corre-
lation between two cells and their relative distance in the filament. We colored
in green and red all the cell distances and midpoints compressed between the
lowest and the maximum average vegetative intervals between heterocysts in the
wild type for 10h to 96h, with a doted line for the global average.
The graphs on the right show the evolution of the correlation between cells lo-
cated at six particular cell distances in time. To ease visualization, we marked
with a gray doted line the time when the first heterocyst appears in our simula-
tion and a gray band when the pattern arises

First, we can see in fig. 5.2 top that in the interval from the appari-
tion of the first heterocyst to the pattern rising, the effect of the hetero-
cysts over the filament correlation is completely negligible. We will see
later that when the amount of heterocyst increases, this is no longer
true. Due to this we will limit ourselves to the discussion of the pat-
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124 filament correlation in the patAhetF model

tern inception. In this regard, one can observe in fig. 5.2 bottom that
the model correlation between neighboring cells also increase until a
value comparable to the one observed experimentally, around 0.1, be-
fore starting to anticorrelate (as described experimentally in (Corrales-
Guerrero et al., 2015)). This indicates that our system also presents an
initial build up of the HetR concentration until the lateral inhibition of
PatS initiates. This inhibition progressively increases the difference of the
HetR activity between consecutive cells until reaching a -0.4 Pearson cor-
relation coefficient. This rapid increase of the first neighbor anticorrela-
tion shows that, at least in our model, the lateral inhibition acts really
fast over neighboring cells. This creates a noisy alternation between on
and off cells in the filament (represented on the second line of fig. 5.3).

Low High

Fast 1rst Neighbour Competition

Initial random distribution 
with low lateral inhibition

Much slower Group Selection

HetR activity

Figure 5.3: Diagram of the cell selection for
heterocyst differentiation: The scheme shows
the same filament fragment at three different
times after nitrogen deprivation, with the cells
colored with their respective HetR activity (gray
cells represent the rest of the filament). The first
line represents a filament right before the start
of the contiguous anticorrelation, around 1h af-
ter nitrogen deprivation (aND). The second line
correspond to around 2h aND where the con-
tiguous anticorrelation is high, but there is still
some 2-cell correlation. And finally the third row
presents a filament at around 4-5h aND when
the contiguous anticorrelation reaches its max-
imum and the 2-cell intervals start to anticor-
relate. The boxes represent the expected "safe
spaces" that an existent candidate needs to sta-
bilize and differentiate.

But in our model, in agree-
ment with the observations in
(Corrales-Guerrero et al., 2015),
the 2 cell distance correlation
is clearly the most relevant to
the formation of the pattern. We
have already seen that the in-
hibitor correlation between two
cells roughly halves with each
extra cell between them. Then
the interaction between contigu-
ous and 2 cell range cells will
dominate over the rest, espe-
cially in such a noisy system.
Additionally, it is easy to see in
fig. 5.2 bottom that the evolu-
tion of the correlation of cells at
a 2 cell distance reaches its min-
imum right before the comple-
tion of the pattern.

To present the first stage of
our proposed method of selec-
tion is represented in fig. 5.3,
specially on the right side of
the filament fragment. But first,
on the left side of the fragment
you can see a yellow cell which
would be an example of a can-
didate for early differentiation.
That cell had the "good luck" of
being the only one with signi-
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5.2 5 cells groups regulate heterocyst selection 125

ficative HetR expression in its neighborhood (the 5 cell interval centered
in itself, represented as a dashed doted box). Due to this, if this situation
is not perturbed due to stochastic fluctuations, this cell would differenti-
ate. On the other side, we will now focus the group of 5 cells surrounded
by a dotted box. If one observes the "initial" configuration on the first row,
only the leftmost orange and the central pink cells of this group presented
significantly higher activity. But as they were located only 2 cells apart,
they inhibited each other. This allowed the rightmost cell of the group to
increase its activity and start inhibiting the central cell. This can be imag-
ined as if the most secure or lucky of a group of two cells with higher
expression with a lower one between them pushes the increased expres-
sion of the other 2 cells apart. When and if this cell recedes, this fragment
would reach an organized semi stable state that maximizes 4 cell distance
correlation and marks the rise of the pattern fig. 5.2 bottom. To ease the
visualization of this process, we have considered a much more static sit-
uation with lower noise. In the proper modeled filament, this selection
strategy would be complemented with stochastic fluctuations that would
give a more fluid character to the spacial organization.

But if we are saying that the cells "compete" in groups of 5 cells, and
we do not observe any correlation for intervals larger than 5 cells until
the pattern has been established, how can the mean pattern length it
be 10-12 cells? This due to the second stage alluded in the section title.

1 3 5 7 9 11 13 15 17 19
Cell distance

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n 

Co
rr

el
at

io
n 

co
ef

ic
ie

nt WT
Pattern

Size

Mid
Section

fixN correlation in the wild type

66

8

10

12

Ti
m

e 
(h

)

Figure 5.4: Correlation of the fixed nitrogen
concentration for the wild type:
The graphs on the left show the evolution of
the relationship between the correlation between
two cells and their relative distance in the fila-
ment. We colored in green and red all the cell
distances and midpoints compressed between
the lowest and the maximum average vegetative
intervals between heterocysts in the wild type
for 10h to 96h, with a doted line for the global
average.

In our model, once a cell differen-
tiates its inhibitory range increases,
given that it produces both HetN
and fixed nitrogen and the nitrogen
diffuses faster along the filament
(fig. 5.4). This allows the recently
formed heterocyst to completely in-
hibit the differentiation of neighbor-
ing groups or tho push them, analo-
gously as exposed earlier for the in-
tragroup competition. This can be
observed in the wild type movie
as it happens regularly that a light
up cell is rapidly shut off by a
new neighboring heterocyst. Addi-
tionally, this second stage would ex-
plain the increase of the correlation
in activity at 5 cells distance that
starts right when the first hetero-
cyst appears in the system. Then,
while the cells compete inside 5
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cells groups for the first stage, for the second stage, the groups compete
as a whole to differentiate first.

This second stage, as exposed here, is a bit artificial because it de-
pends greatly on the sudden HetN production right after differentiation.
But we think that with the incorporation of a proper nitrogen sensing
in the model, this kind of strategy could still work with a more gradual
HetN and nitrogen activation. The substitution of the HetR basal produc-
tion with a regulated one dependent on the nitrogen concentration in a
cell would increase the responsivity to nitrogen of the cells. Additionally,
the cellular growth should be coupled to nitrogen consumption given that
it is an essential nutrient for the cells. These two effects combined could
allow for a more realistic second stage of pattern inception. Due to this,
we are currently working on a more realistic depiction of both the hetero-
cyst differentiation and the nitrogen regulation that would be necessary
to verify and further this study.

5.3 ∆patS and ∆patA mutations greatly increase intercel-
lular correlation

We repeated the previous study for both the ∆patS and ∆patA and ob-
served, as expected, that in both cases the selection mechanism is simi-
larly distorted, albeit for completely different reasons.

First we will consider the ∆patS mutant, the vegetative cells of this
mutant are not capable to produce enough lateral inhibitor to avoid the si-
multaneous differentiation of multiple contiguous cells. The much lower
expression of redundant genes such as patX limits the extension of the
clusters of cells with a high expression, avoiding a mortal complete dif-
ferentiation of the filament (Elhai and I. Khudyakov, 2018; I. Khudyakov
et al., 2020). In this mutant, the differentiation is merely a race between
almost all the cells of the filament, given that it is really homogeneous.
The average activity in the filament 5h aND is 0.83± 0.02. Additionally,
as can be observed in fig. 5.5 top, the filament only present positive cor-
relations that decay with the cell distance up to the apparition of the first
heterocyst. And from that point the high presence of heterocysts com-
pletely dominates the correlation of activity, which is exactly equal than
the HetN one. This decaying profile (fig. 5.5 top left) is really similar to the
one observed for the inhibitor in fig. 5.1 bottom left. But in this case, we
are not sure of what is causing it, given that the only interaction between
cells is both inhibitory and heavily reduced in this mutant. We expected
to observe an uncorrelated filament without much spacial organization.
But instead, we found activation clusters of roughly the pattern size. To
ensure that we were not seeing an artifact, we checked the more proba-
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Figure 5.5: Correlation of HetR activity and HetN concentration for the ∆patS mutant:
The graphs on the left show the evolution of the relationship between the
correlation between two cells and their relative distance in the filament. We
colored in green and red all the cell distances and midpoints compressed
between the lowest and the maximum average vegetative intervals between
heterocysts in the wild type for 10h to 96h, with a doted line for the global
average.
The graphs on the right show the evolution of the correlation between cells lo-
cated at six particular cell distances in time. To ease visualization, we marked
with a gray doted line the time when the first heterocyst appears in our sim-
ulation and a gray band when the pattern arises

ble causes of this. First, we checked if it was the cell division, given that
the daughter cells inherit the cellular concentration of its progenitor. And
then also the border conditions, given that those cells are the ones with
the highest activity (higher than 0.9 at 5h aND). But there is no differ-
ence in the correlation if we completely stop the division, or we take out
50 cells from the filament ends. Indicating that neither of those are caus-
ing for this positive correlation. With our current data, we do not have
a proper explanation for this behavior. We are now running simulations
with different range of ∆patS partial mutation severity to characterize the
transition between the wild type and the ∆patS behavior. It could be an
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128 filament correlation in the patAhetF model

artifact due to the enormous homogeneity in the filament. But we want
to check if the reduction of the inhibitor production rate could somehow
modulate the resolution range of the lateral inhibition. We have seen that,
at full strength in the wild type setting, the lateral inhibition is capable to
completely suppress neighboring cells. And for really low inhibition we
have a larger correlation length which defines activation clusters. Then
maybe this behavior is gradual, and once a cell is not capable to com-
pletely inhibit their immediate neighbors they constitute a cluster that is
capable of inhibiting the neighboring cluster. If this happens, we should
observe a gradual increase of the correlation length with the mutant sever-
ity.

A similar behavior is also observed for the HetR activity correlation
in the ∆patS mutant presented in fig. 5.6.
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Figure 5.6: Correlation of the HetN concentration and the HetR activity for the ∆patA:
The graphs on the left show the evolution of the relationship between the
correlation between two cells and their relative distance in the filament. We
colored in green and red all the cell distances and midpoints compressed
between the lowest and the maximum average vegetative intervals between
heterocysts in the wild type for 10h to 96h, with a doted line for the global
average.
The graphs on the right show the evolution of the correlation between cells lo-
cated at six particular cell distances in time. To ease visualization, we marked
with a gray doted line the time when the first heterocyst appears in our sim-
ulation and a gray band when the pattern arises.
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5.3 ∆patS and ∆patA mutations greatly increase intercellular correlation 129

We can see that for this mutant there is no pattern formation and,
therefore, the filament do not present any correlation on the HetN pro-
duction. We also have a really homogeneous filament, but at a much
lower activity level. At 5h aND we have an average activity of 0.10± 0.02,
with the border cells also being the ones with the highest activity around
0.4. This higher difference reduces the correlation value observed before
the apparition of the first heterocyst. The low average activity is also the
reason why the few heterocysts that appear are capable to completely
eliminate the correlations in the filament. As we have set the activity in
those to 1 the filament variance increases enormously. This is remedied if
we consider the correlations in the HetR concentration instead, as shown
in fig. 5.7.
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Figure 5.7: Correlation of HetR concentration for the ∆patS and ∆patA mutants:
The graphs on the left show the evolution of the relationship between the
correlation between two cells and their relative distance in the filament. We
colored in green and red all the cell distances and midpoints compressed
between the lowest and the maximum average vegetative intervals between
heterocysts in the wild type for 10h to 96h, with a doted line for the global
average.
The graphs on the right show the evolution of the correlation between cells lo-
cated at six particular cell distances in time. To ease visualization, we marked
with a gray doted line the time when the first heterocyst appears in our sim-
ulation and a gray band when the pattern arises
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130 filament correlation in the patAhetF model

It is easy to see that the freezing of the HetR concentration in hete-
rocysys does not affect the correlation over HetR that much. The reason
for this is that we use an integrative threshold to mark a cell for differen-
tiation, and this is already a fairly noisy system. Due to this, the frozen
value would be different for each cell but always higher than the thresh-
old value, which is what one would expect on young heterocysts. It is
well known that the expression of HetR is high in heterocyst (Herrero
and Flores, 2019).

These two mutants represent the two sides of the same coin. If the
lateral inhibition is distorted, the self organized heterogeneity does not
appear and the filament remains in a homogeneous regime with all the
cells with a similar level of HetR. This is exactly equivalent to the obser-
vations done in chapter 3 for the minimal 3 genes model. As these two
mutations can be understood as a reduction (the ∆patA one) or an in-
crease (the ∆patS one) of the HetR production. And as such the filament
states before the first heterocyst appearance are analogous to the ones
presented in fig. 3.14. The only difference is that for the high concentra-
tion homogeneous state, the value is over the differentiation threshold.
Then, if some cells differentiate before due to stochastic fluctuations, the
functional HetN and fixed nitrogen are capable to enforce the spacial or-
ganization and rescue the pattern.

5.4 correlation of ergsgr inhibitor the during the pattern-
ing regime

This is specially evident if one observe the correlations of inhibitor con-
centrations for longer times after nitrogen deprivation. In the wild type
(fig. 5.8 top) once the pattern appears, there is a transition regime in which
the regularity of the heterocysts morph the correlations along the filament.
Once the correlations reach an oscillatory equilibrium, we see the same
periodicity observed in fig. 4.10. As we discussed in the previous chap-
ter, his periodicity is defined by the coupling between the differentiation
rounds and the cell division. In this genetic background, the inhibitor cor-
relations in the patterned regime clearly show the pattern with a high (for
the system standards) anticorrelation length equivalent to half the pattern
length. This constitutes a differentiation valley between two existing het-
erocysts where a new heterocyst will appear.

If we now focus on the ∆patA (fig. 5.8 bottom) we see that the overall
profile of inhibitor correlations does not change because, as the pattern
does not arise, the random heterocyst that appear do not have a signifi-
cant effect over the spatial distribution of inhibitor along the filament. The
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5.4 correlation of ergsgr inhibitor the during the patterning regime 131

concentration of inhibitor is still largely homogeneous in the filament, and
there is no significant long range correlation between cells of the filament.

Finally, the ∆patS (fig. 5.8 middle) shows an intermediate correlation
state between those two.
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Figure 5.8: Correlation of ERGSGR inhibitor concentration for the wild type and the ∆patS
and ∆patA mutants: The graphs on the left show the evolution of the relationship between the
correlation between two cells and their relative distance in the filament. We colored in green
and red all the cell distances and midpoints compressed between the lowest and the maximum
average vegetative intervals between heterocysts in the wild type for 10h to 96h, with a doted
line for the global average. The graphs on the right show the evolution of the correlation between
cells located at six particular cell distances in time. To ease visualization, we marked with a gray
doted line the time when the first heterocyst appears in our simulation and a gray band when
the pattern arises.
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132 filament correlation in the patAhetF model

The overall correlation evolution in this mutant closely mimics the one
of the wild type. After the pattern rise, there is a transition regime until
the correlations reach an oscillatory equilibrium with the same wild type
periodicity. But in this case, the amplitude of the correlation oscillations
is much lower than the wild type’s with a correlation length profile much
more similar to the ∆patA one.

5.5 conclusions and further work

In this chapter, we use intercellular correlation data to propose an alter-
native two staged self organization process to select the heterocyst local-
ization in the filament. Unlike in the previously proposed one (John C.
Meeks and Elhai, 2002), this mechanism does not require the existence of
spacial heterogeneity in the filament to explain the apparent discrepancy
between pattern length and intercellular correlation characteristic length.
In (Risser et al., 2012), the authors suggest that a biased inheritance of
PatN, could favor the differentiation of those cells with less concentra-
tion of this protein. This is due to the inhibitory effect that this protein
has over the cellular expression of patA. Despite this, the fact that some
cells are more susceptible to differentiate would not produce by itself a
longer spatial organization, but it will produce an intrinsic heterogeneity.
Then, some cells will be capable to differentiate much faster than others,
staggering the differentiation round, and therefore easing the intergroup
competition.

We are aware of the model limitations, specially with the instanta-
neous maturation in our heterocysts given the pivotal role that we assign
to the nitrogen signaling in the selection mechanism. This stems for the
simplification of not considering a transitional stage, the protoheterocysts
after the cell commitment. This seems to contradict the extensive cellular
reorganization necessary to transition from an internal oxygen produc-
tion to an anaerobic condition to allow nitrogen fixation. But recent gene
expression studies (Di Patti et al., 2018) show that while hetN expression
starts after commitment, it rises rapidly and coexists with high patS ex-
pression, which decays much slowly after commitment. Additionally, they
report that this occurs while the autofluorescence from photosynthetic
pigments is still receding, with the HetN activation occurring less than
5 hours after half of the autofluorescence. This clearly indicates, while
we are clearly considering shorter maturation times for a heterocyst to
be able to produce nitrogen, we are probably considering much longer
times for the HetN expression. And this two difference could completely
compensate each other.
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5.5 conclusions and further work 133

We are currently working on a more realistic heterocyst differentiation
with a clear timescale separation between HetN and fixed nitrogen pro-
duction. This would require to first incorporate a protoheterocyst stage
where the patS expression decays while the hetN one rises. But also to re-
nounce to the basal HetR production simplification incorporating a dual
regulation of hetR and patA (Bastet et al., 2010; A. M. Muro-Pastor et
al., 2002). The existent one without the phenomenological fixed nitrogen
inhibition and the ntcA one that would only respond to the nitrogen con-
centration in the cell. Then the ∆patS mutant will be less intense because
its effect over hetR and patA expression on nitrogen deprived cells would
reduce.

And finally, more experimental studies with gene expression reporters
are required. The mechanism proposed here agrees with the experimental
observations presented in (Corrales-Guerrero et al., 2015) but the experi-
mental work studying the spatial self organization in the filament is still
really rare. A longitudinal study considering three times corresponding
to the three filament regimes presented here could easily test our hy-
pothesis. One, a few hours after nitrogen deprivation but before the first
heterocyst appearance, a second one right after that appearance before
the full round of differentiation and a last one as late as experimentally
possible. This could easily validate if there is in fact a transformation of
the correlation-cell distance profile. Even a more detailed phenotypical
description of the heterocyst differentiation rounds could provide addi-
tional insight about the expected cell correlation length. Given that our
mechanism requires at least two differentiation waves in each round, the
differentiation should not be sudden along all the filament and appear
more as a cascading effect.
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Part III

N I T R O G E N I N C O R P O R AT I O N I N P L A N T S

Here we will study a particular example of how nitrogen avail-
ability regulates plant growth. We analyze the regulatory net-
work that controls the plant allocation of resources on both
vertical and lateral growth. The knowledge of how this alloca-
tion is decided allows for targeted modifications that would
increase the yield of the plant.





6
T I L L E R I N G R E G U L AT I O N I N R I C E P L A N T S

The green revolution rice presented a mutation in the allele Semi-dwarf1
(sd1) that reduces gibberellin (GA) production/maturation (Monna et al.,
2002; Sasaki et al., 2002; Spielmeyer et al., 2002). This decrease of the GA
abundance allows for an increase in the activity of the SLENDER RICE1

(SLR1) of the growth-repressing DELLA protein family (Itoh et al., 2002).
This increase in SLR1 concentration reduces the overall height of the plant,
while additionally maintaining its sensibility to nitrogen fertilization. This
reduction of size increases the harvest index (grain–straw ratio) to values
near 50% (from an original 30%-79%)(Khush, 1999). Additionally, it al-
lows for higher fertilization because rates of fertilization that produced
exceedingly tall inefficient crops that were easily lodged (flattened by the
wind) now could even double the gross yield of the crop without any
height modification (Khush, 1999). This is possible because GA seems to
control the number of stem internodes that elongate upon bolting (which
defines the number of branches) independently of its effect on internode
elongation (that will result in the plant height)(Rieu et al., 2008). This ex-
istence of parallel regulatory mechanisms (Hedden, 2003) allowed for an
optimization of the crops such that the additional nutrients are directed
mainly to the increase of the seeds that a plant produces without affecting
much of the biomass production.

The widespread augment of fertilization to sustain intensive agricul-
ture caused progressive soil degradation. In recent years, the main focus
of the genetic screening of the green revolution varieties has shifted from
the gross increase of yield with nitrogen fertilization of dwarf varieties
(Khush, 1999) to the search for more specialized sustainable varieties that
reduce soil degradation due to intensive agriculture (Pingali, 2012). This
ideal variety would have optimal productivity with a perfect configura-
tion of short panicles (main branches) with many secondary branches
that contain more and bigger grains. In order to be capable of engineer-
ing such an ideal crop, it is necessary to understand the regulatory path-
ways that intervene in each biological feature and how interconnected
those pathways are. Several genes that control particular traits associated
with rice productivity such as grain number, grain size, panicle size and
tillering have been identified (Y. Xing and Q. Zhang, 2010). Both GN1A
(Ashikari et al., 2005) and APO1 (Ikeda-Kawakatsu et al., 2009) regu-
late grain number, GS3 (Fan et al., 2006), GW2(X.-J. Song et al., 2007),
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138 tillering regulation in rice plants

qSW5(Shomura et al., 2008) and OsSPL16 (Shaokui Wang et al., 2012) reg-
ulate grain size and DEP1 (Xianzhong Huang et al., 2009) controls panicle
size. But we will focus on the genetic regulatory network that controls the
lateral branching in rice (tillering).

It is already well known that the SLR1 also affects tiller formation
through the protection of MOC1 to degradation (Komatsu et al., 2003; X.
Li et al., 2003; Liao et al., 2019; Oikawa and Kyozuka, 2009). But a recent
paper, (K. Wu et al., 2020), presented NGR5 that reduces the transcription
of several genes known to inhibit lateral branching and tiller number (D14

(Arite et al., 2009; Yao et al., 2016), D3 (Ishikawa et al., 2005; Jiang et al.,
2013), OsTB1 (Takeda et al., 2003) and OsSPL14 (Jiao et al., 2010; Miura et
al., 2010)). Specifically, the authors of (K. Wu et al., 2020) found that both
D14 and OsSPL14 function downstream of NGR5, and NGR5 mediates a
nitrogen-promoted increase in tiller number by repressing the inhibitory
functions of D14 and OsSPL14 (and likely of other) branching-regulatory
genes.

This duality in the regulation of the tillering allows the system to
allow to both links the lateral growth with the reduction of the overall
height (through the SLR1 pathway) but not compromise fully to this cou-
pling by having an alternative pathway (through NGR5) that is not di-
rectly related to the height regulation.

Here, we translate this new information into a model that relates the
branching regulation to the well-characterized regulation of the DELLA
proteins to study how these two pathways interplay.

6.1 tiller regulation model

We developed our model through the incorporation of the GA-DELLA in-
teraction presented in (Murase et al., 2008) and later modeled in (Middle-
ton et al., 2012) into the tillering regulation described earlier. This allows
us to reduce the number of parameters to adjust in our model by taking
the equivalent ones from (Middleton et al., 2012).

For simplicity, we chose to model the tillering as a continuous protein
species with a global multiplicative factor called Tfactor to allow higher
flexibility on the parameters’ adjustment. This choice may seem too re-
ductive, but any more realistic alternative would have to consider both
the full branching regulatory system and the sequential and spatially lo-
calized character of a branch initiation. This hugely detailed description
of the system is completely out of the scope of this work, given that our
objective is to present a deterministic mean-field model at the plant level.
To be capable to reproduce the changes in the number of formed branches
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6.1 tiller regulation model 139

for different mutants and experimental conditions, this simple framing is
enough.

We consider both a direct activation of the tillering of the DELLA
proteins (referred to as D during this paper), through MOC1 (which is
not included in the model) and an indirect one through NGR5 (referred
to as A during this paper). This indirect activation of NRG5 is attained by
reducing the production of tiller inhibitors. And both these proteins are
regulated by the GID1(G1)-Gibberellin(GA) complex, which is capable of
both sequestering and degrading those proteins.
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Figure 6.1: GA-GID1 interactions: A) Two-step process to form the functional
GID1-GA complex that involves a GA adsorption and the closing of
a "lid". B-C) GID1-GA complex interactions with the DELLA proteins
and NGR5 (named A during this work) respectively.

This complex works in three steps. First, the GA attaches to the GID1,
forming the complex oGIGA (represented graphically in fig. 6.1 A). This
produces a conformation change that closes the lid enclosing the GA, as
described in (Murase et al., 2008), converting it to cGIGA. Finally, this
GID1-GA complex is now active and capable to link with both NGR5(A)
and DELLA(D). This link could be strong, obtaining the complexes AGG1

and DGG1, and leading to the degradation of A and D respectively. Or
alternatively, it could be weak with a higher dissociation constant, which
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140 tillering regulation in rice plants

results in temporal sequestration of both A and D in the complexes AGG2

and DGG2. These interactions are depicted graphically in fig. 6.1 B-C. As
one can easily see, we have chosen to consider the same interactions with
the GID1-GA complex for NGR5 as the ones described in (Middleton et
al., 2012). This is justified due to the evidence of both GID1-GA-NGR5

interaction and a competitive relationship between SLR1 DELLAs and
NGR5 with respect to GID1 reported in (K. Wu et al., 2020).
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Figure 6.2: Interaction model with a graphical representation of how the individ-
ual mutations affect the system regulation.

The full regulation model is represented in the fig. 6.2 together with
the graphical representation of the individual effect on the model of the
experimental conditions considered in (K. Wu et al., 2020). The +GA con-
dition is an exogenous treatment of 100 µM Gibberellin, represented as
an external constant flux of GA to the system. sd1 mutation reduces
gibberellin abundance and is modeled as a reduction of GA produc-
tion. p::GID1 are plants over expressing GID1 under the control of the

140



6.1 tiller regulation model 141

cauliflower mosaic virus (CaMV) 35S promoter, represented as an in-
crease of G1 production. gid1-10 is a gid1 loss-of-function mutant that
impossibilities the formation of all the different G1-GA complexes. And
finally, ngr5 is a mutant with an inactivated NGR5 gene.

6.1.1 Diferential equations for the model dynamics

Using the scheme of interactions presented in fig. 6.2, we obtained the
set of differential equations to obtain the equilibrium states of the system.
If one does not consider the RNA dynamics, one can define the protein
dynamics by applying the strategy shown in eq. (1.18). The temporal evo-
lution equations for all the modeled concentrations are

d[GA]

dt
=ΦGA + ρGA

[D]
KGAD

1+
[D]

KGAD

−αGA[GA] − kGa[G1][GA] + kGd[G1GAo], (6.1)

d[G1]

dt
=ΦG1 + ρG1

[D]
KG1D

1+
[D]

KG1D

−αG1[G1] + kGd[G1GAo] − kGa[G1][GA], (6.2)

d[G1GAo]

dt
=kGa[G1][GA] − kGd[G1GAo] + kLo[G1GAc] − kLc[G1GAo], (6.3)

d[G1GAc]

dt
=kLc[G1GAo] − kLo[G1GAc] − (kCD1a + kCD2a)[G1GAc][D]−

− (kCA1a + kCA2a)[G1GAc][A] + (kCD1d +αDGG)[DGG1]+

+ (kCA1d +αAGG)[AGG1] + kCD2d[DGG2] + kCA2d[AGG2], (6.4)
d[D]

dt
=ρD

1

1+
[D]
KDD

−αD[D] + kCD1d[DGG1] + kCD2d[DGG2]−

− (kCD1a + kCD2a)[G1GAc][D], (6.5)

d[A]

dt
=ρA

[N]
KAN

1+
[N]
KAN

+
[A]
KAA

−αA[A] − (kCA1a + kCA2a)[G1GAc][A]+

+ kCA1d[AGG1] + kCA2d[AGG2], (6.6)
d[DGG1]

dt
=kCD1a[G1GAc][D] − (kCD1d +αDGG)[DGG1], (6.7)

d[DGG2]

dt
=kCD2a[G1GAc][D] − kCD2d[DGG2], (6.8)

d[AGG1]

dt
=kCA1a[G1GAc][A] − (kCA1d +αAGG)[AGG1], (6.9)

d[AGG2]

dt
=kCA2a[G1GAc][A] − kCA2d[AGG2], (6.10)
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d[I]

dt
=ρI

1

1+
[A]
KI

−αI[I], (6.11)

d[T ]

dt
=βT + ρT

[D]
KMOC

1+
[D]

KMOC
+

[I]
KT

−αT [T ], (6.12)

where [GA], [G1], [G1GAo], [G1GAc], [DGG1], [DGG2], [AGG1], [AGG2],
[D], [A], [I] and [T ] are respectively the concentrations of gibberellin, GID1

proteins, GA-GID1 open complex, GA-GID1 close complex, DELLA-GA-
GID1 stable complex, DELLA-GA-GID1 unstable complex, NGR5-GA-
GID1 stable complex, NGR5-GA-GID1 unstable complex, DELLA pro-
teins, NGR5 proteins, tiller inhibitory proteins and the tillers.

Regarding the production, we have βT for the basal production of the
tillers, and ρGA, ρG1, ρD, ρA, ρI, ρT for defining the regulated production
of gibberellin, GID1, DELLA, NGR5, inhibitors and tillering. The linear
degradation rate of each specie is αGA, αG1,αD,αDGG, αA, αAGG, αI, αT

with the specie marked in the subindex.

The affinity constants of the promoter regulation are KGAD, KG1D, and
KMOC for the activation of GA, GID1, and tillers through DELLA. KDD

and KAA define the self-inhibition of DELLA and NGR5. KAN sets de
affinity of the nitrogen to the NGR5 promoter, KI the affinity of NGR5 to
the inhibitor promoter, and KT the affinity of the inhibitors to the tiller
"promoter".

The rates of transformation of the different stages of the GAG1 com-
plex are defined by: kGa and kGd for the association and dissociation
rates of the GAG1 complex; kLo and kLc for the rates for the lid opening
and closing, and finally kCD1a and kCD2a for the formation of the stable
(DGG1) and unstable (DGG2) DELLA complexes while kCA1a and kCA2a

define the NGR5 ones (AGG1 and AGG2).

Finally, ΦGA and ΦG1 are the rates of introduction of exogenous gib-
berellin and GID1 (used for the +GA and p::GID1 experimental condi-
tions).

To simulate the different mutants and experimental conditions, we
will modify a certain parameter to reproduce the experimental effect over
the system. For the +GA condition, we will set a value of ΦGA ̸= 0 (pre-
sented in table 6.1) while for the rest of the conditions this external input
will not exist (ΦWT

GA ≡ 0). Analogously, for the p::GID1 mutant, we will
set a ΦG1 ≡ φG1ρG1 for those mutants and ΦWT

G1 ≡ 0 for all the rest. The
sd1 mutation, a reduction of GA production, is modeled with a modifi-
cation of ρsd1

GA ≡ φsd1ρGA. And both gid1-10 and ngr5 are both loss-of-
function mutants and as such are modeled by setting a certain rate to
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6.1 tiller regulation model 143

0. For gid1− 10 that parameter is the association rate of GID1 and Gib-
berellin (kGa ≡ 0) and for ngr5 is the production rate of NGR5 (ρA ≡ 0).

Given the complexity of our system, we could directly solve it nei-
ther analytically nor numerically. We decided to integrate numerically its
dynamics until it reached an equilibrium state. We set a maximum inte-
gration time of 4000 minutes (a bit less than 3 days). This is an arbitrary
decision chosen to allow the maximum number of possible parameter
sets while being a reasonable maximum value for a growth development
homeostasis in all the experimental conditions. We chose something in
the range of a few days given some transformations integral to the sys-
tem (the opening and closing of the lid act, see value in table 6.1) in
the hour scale. Nevertheless, the model could be readjusted to work in
a shorter or longer timescale just by changing the restriction over the ad-
justed parameters. This is actually easier to do with this full integration
of the dynamics than with the direct solving for steady states.

As we have already mentioned earlier, part of the parameters of our
model, presented in table 6.1, are taken from a previous model (Middle-
ton et al., 2012) of the DELLA regulation of Gibberellin. With the partic-
ular case of ΦGA that has been adapted to properly reflect the treatment
100 µM of GA presented in (K. Wu et al., 2020).

Table 6.1: Subset of the parameter values used for the wild type that we fixed
from the bibliography (Middleton et al., 2012).

Parameter Description Value Units

αGA Lineal degradation rate of Gibberellin 0.2921 min−1

αG1 Lineal degradation rate of GID1 3.51 min−1

αDGG
Lineal degradation rate of the DELLA-GID1-Gibberellin
complex

6.92 min−1

αAGG
Lineal degradation rate of the NGR5-GID1-Gibberellin
complex

6.92 min−1

kGa GID1-Gibberellin complex association rate 1.35 · 10−3 nM−1 ·min−1

kGd GID1-Gibberellin complex dissociation rate 2.84 min−1

kLo GID1 lid opening rate 0.076 min−1

kLc GID1 lid closing rate 0.0251 min−1

kCD1a Binding rate for the stable GID1-GA-DELLA complex 0.01 nM−1 ·min−1

kCD1d Dissociation rate for the stable GID1-GA-DELLA complex 0.133 min−1

kCD2a Binding rate for the unstable GID1-GA-DELLA complex 0.31622 nM−1 ·min−1

kCD2d
Dissociation rate for the unstable GID1-GA-DELLA com-
plex

2.82 min−1

KGAD
Equilibrium constant for the inhibition of Gibberellin pro-
duction through DELLA

638 nM

KG1D
Equilibrium constant for the inhibition of GID1 production
through DELLA

0.56 nM

KDD
Equilibrium constant for the DELLA negative self-
regulation

10 nM

ΦGA
Additional basal production rate of Gibberellin the +GA
condition

8187.076 nM ·min−1
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6.1.2 Parameter adjustment

For the rest of the parameters, presented in table 6.2, we used several
rounds of custom simulated annealing algorithm exploration to set them.

Table 6.2: Subset of parameter values used for the wild type simulations that we
adjusted with a simulated annealing algorithm.

Parameter Description Value Units

βT Basal production rate of tillering 2.582 · 10−2 nM ·min−1

ρGA Maximum regulated production rates of Gibberellin 33736 nM ·min−1

ρG1 Maximum regulated production rates of GID1 0.6803 nM ·min−1

ρD Maximum regulated production rates of DELLA 1.298 · 10−2 nM ·min−1

ρA Maximum regulated production rates of NGR5 0.9832 nM ·min−1

ρI Maximum regulated production rates of tillering inhibitors 7.989 · 10−3 nM ·min−1

ρT Maximum regulated production rates of tillering 3.173 nM ·min−1

αD Lineal degradation rate of DELLA 9.823 · 10−4 min−1

αA Lineal degradation rate of NGR5 7.980 · 10−4 min−1

αI Lineal degradation rate of the tillering inhibitors 4.040 · 10−3 min−1

αT Lineal degradation rate of the tillering 7.172 · 10−3 min−1

kCA1a Binding rate for the stable GID1-GA-NGR5 complex 2.705 · 10−2 nM−1 ·min−1

kCA1d Dissociation rate for the stable GID1-GA-NGR5 complex 4.367 · 10−3 min−1

kCA2a Binding rate for the unstable GID1-GA-NGR5 complex 8.867 · 10−2 nM−1 ·min−1

kCA2d Dissociation rate for the unstable GID1-GA-NGR5 complex 1.169 min−1

KMOC
Equilibrium constant for the DELLA mediated promotion
of tillering

0.8695 nM

KAN
Equilibrium constant for the promotion of NGR5 produc-
tion through nitrogen

4.043 · 10−6 kg/ha

KAA
Equilibrium constant for the NGR5 negative self-
regulation

4.302 · 10−9 nM

KI
Equilibrium constant for the NGR5 mediated inhibition of
the production of tillering inhibitors

0.950 nM

KT
Equilibrium constant for the tillering inhibitors inhibition
of tillering

5.667 · 10−4 nM

φG1
Multiplicative factor for the additional basal production
rate of GID1 in the p::GID1 mutants

91.60 nM ·min−1

φsd1
Multiplicative factor for the reduction of Gibberellin pro-
duction in sd1 mutants

0.1256 DL

Tfactor Multiplicative factor to rescale the tillering 0.7814 nM−1

The only exception is the tillering rescaling factor Tfactor. This factor
will be set for each parameter to have the same dynamical range for all
the adjustments:

Λ ≡
TExp(gid1-10, 180) − TExp(sd1-ngr5+GA, 180)
TSim(gid1-10, 180) − TSim(sd1-ngr5+GA, 180)

144



6.1 tiller regulation model 145

where TExp(M,N) and TSim(M,N) the tillering observed for a certain ex-
perimental condition and nitrogen amount for the experimental data in
(K. Wu et al., 2020) and our model, respectively.

Then we set Tfactor as

Tfactor ≡

{
Λ when Λ < 1

1 when Λ ⩾ 1
(6.13)

With this restriction, eq. (6.13), we would be only rescaling downwards
to shorter dynamical ranges of the tillering. This is a conservative safety
assumption to ensure that we do not accept parameters with a dynamic
range too low. Those parameters would be much less robust to the even-
tual addition of genetic noise to the system. It is also worth noting that
the addition of this factor completely eliminates the identifiability of our
model. But given that was never our intention, together with the huge
parameter space to explore, we decided to prioritize having more leeway
in the parameter selection.

But for this study, we only considered the deterministic mean-field
approach. This approach allows for a much faster exploration of the pa-
rameter space through the Simulated Annealing than the one presented
in section 4.3.2. This allowed us to attempt bolder adjustment strategies,
such as allowing multiple changes of parameters and modifying the en-
ergy function during the search to avoid local minima.

As we are considering only the equilibrium state, the algorithm only
accepted parameters whose full state changed less than 1% in the last
160min of our integration time of 4000min. This is only the automatic
cutoff for the final parameter, we further check it by doing a much longer
simulation for all the experimental conditions to ensure is really in equi-
librium.

The algorithm explores the parameter space, as described in section 1.2.1,
and evaluates each set of parameters using this energy function:

E ≡
∑
M

ωM ·

[[
TExp(M, 90) − TSim(M, 90)

]2
+
[
TExp(M, 180) − TSim(M, 180)

]2]
+

+
∑
N

[
ωWT

4
·
[
TExp(WT ,N) − TSim(WT ,N)

]2
+

ωsd1

4
·
[
TExp(sd1,N) − TSim(sd1,N)

]2
+

+ωSFT ·
([

TExp(WT,N) − TExp(sd1,N)
]
−
[
TSim(WT,N) − TSim(sd1,N)

])2]
,

(6.14)
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where M is the list of experimental conditions considered in (K. Wu et al.,
2020)

M ≡

{
WT , WT+GA, sd1, sd1+GA, gid1-10, gid1-10+GA,
sd1-ngr5, sd1-ngr5+GA, sd1-p::GID1, sd1-p::GID1+GA

}
,

and N is the list of the different nitrogen conditions considered in (K. Wu
et al., 2020), besides 90 and 180 kg/ha (which are considered in the first
term)

N ≡
{
60, 120, 210, 300

}
kg/ha,

and finally the weights ωx are initially set as

ωWT = 5, ωWT+GA = 6, ωsd1 = 4, ωsd1+GA = 4.8,
ωgid1-10 = 3, ωgid1-10+GA = 3.6, ωsd1-ngr5 = 4.8, ωsd1-ngr5+GA = 5, 76,

ωsd1-p::GID1 = 3.6, ωsd1-p::GID1+GA = 4, 32, ωSFT = 3,

but would evolve along the exploration of parameters.

We initiated the parameter search with the previous weights except-
ing for ω ′

WT = 2ωWT and ω ′
WT+GA = 2ωWT+GA which in this case em-

phasizes the wild type phenotype. Then, if the system strays too far from
the current best adjustment for too long, we will change the predominant
phenotype. Specifically, we chose that if the algorithm stays for 2500 con-
secutive steps with energy bigger than 1.1EBest we would change its focus.
At that point, we would reset ω ′

WT = ωWT and ω ′
WT+GA = ωWT+GA and

chose which weights with be doubled stochastically between{
WT , sd1, gid1-10,
ngr5, p::GID1, SFT

}
.

All the weights with the selected characteristics in their subindex will be
doubled until the next change. The exploration will continue changing its
focus until it reaches the 1000000 steps or has an acceptance rate lower
than 40% whatever comes first. At that point, we would restart the simu-
lated annealing with the best parameter obtained.

The election of both the energy function and the weights is arbitrary
and heavily influenced by the adjustment of the preliminary parameters.
They changed slightly during the adjustment, but the parameter pre-
sented is the best one from, at least, 10 consecutive explorations with the
methodology presented here. As we will mention later, the third term was
added later in the study specifically to try to solve the biggest deviation
of the model with the experimental data.

146



6.2 reproduction of the experimental results 147

6.2 reproduction of the experimental results

We first consider the experimental data shown in fig. 3B of (K. Wu et
al., 2020) that studies how changes in the provided nitrogen affect the
tillering for several experimental conditions. The comparison between our
model and the observed behavior is shown in fig. 6.3.
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Figure 6.3: Comparison between the modeled and experimental tillering (fig. 3B
of (K. Wu et al., 2020)) for low (90 kg/ha) and high (180 kg/ha) nitro-
gen fertilization in several experimental conditions.

The model is capable of reproducing perfectly the observed behavior
described in (K. Wu et al., 2020), with the only exception of the wild
type behavior. We tried several interaction configurations in which the
NGR5 is the only responding to nitrogen changes, and none presented a
higher difference for the WT than for the sd1 and gid-1 mutants. This was
expected because those mutants increase both the NGR5 and the DELLA
concentration and therefore have a double effect on the tillering.

One can observe that the sensibility of the tillering to all the different
modifications is completely captured. Both the inactivation of ngr5 or the
over expression of either gibberellin (in the +GA condition) or GID1 (in
the p::GID1 condition) produce the same effect, a complete insensitivity to
nitrogen with a minimal tillering number. This is easily explained because
all this modifications produce the same result, a complete inactivation of
the NGR5 promotion of tillering. The only exception to this phenotype
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is the gid-10+GA condition, where the inactivation of the GID1 negates
the effect of the gibberellin over NGR5. We also reproduce the increase of
tillering in the sd1 mutant due to a reduction of the gibberellin concentra-
tion in the system.

The smaller difference between the low and high nitrogen conditions
for the wild type in the model could indicate that maybe there is more in-
fluence of the nitrogen through NGR5 through some other pathway that
is not mediated by the GID1-GA complex. The reasoning behind this hy-
pothesis is the following. We know that the extra wild type tillering must
be mediated through NGR5 because it is not observed in the ngr5 mu-
tant. Additionally, this tillering response to nitrogen cannot be mediated
through the GID1-GA complex because then both the sd1 and, specially,
the gid1-10 mutants would have comparably or even larger increases. But
there is probably some more nuisance with the experimental setups of (K.
Wu et al., 2020) that we do not properly understand. Because if one ag-
gregates the data from fig. 1A of (K. Wu et al., 2020) and the two columns
from the wild type and the sd1 mutant in the same plot (fig. 6.4) it is easy
to see that there is something strange happening. The varieties studied
are the same, but their reaction to nitrogen differs considerably between
the datasets of the two figures.
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Figure 6.4: Comparison between the modeled and experimental tillering (fig. 1A
and 3B of (K. Wu et al., 2020)) for a range of nitrogen fertilization in
the wild type and sd1 conditions.
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As one can clearly see in fig. 6.4, the experimental values for the 90

and 180 kg/ha do not follow the same trend that the rest of the data
points. This is specially evident for the 180 kg/ha wild type, which is also
the more conflicting point in fig. 6.3. The rest of data point show a gradual
increase of tillering in response to increases in nitrogen. Additionally, the
difference between wild type and sd1 conditions remain roughly constant.
It is only in the particular 180 kg/ha dataset where these two mutants
tillering almost overlap. For the rest of the datasets, the model reproduces
remarkably well the experimental observations.

6.3 evolution of the nitrogen efficiency

To further the study of our model, we checked the variation of the nitro-
gen dependence of the tillering for all the mutants in a much larger range.
At the same time, we considered random initial conditions to check if the
system presented hysteresis.
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Figure 6.5: Tillering observed in the model for different experimental conditions
over a large nitrogen fertilization range. To ease visualization given
the amount of concentrated data points, the legend is ordered from
highest to lower tillering. Each point represents the tiller equilibrium
state of 100 simulations for each particular mutant. The initial con-
ditions of each simulation are taken stochastically from a uniform
distribution from 0 to 100 times the equilibrium state for each vari-
able in the wild type equilibrium.

One can observe in fig. 6.5 that the system does not present hystere-
sis for any condition (all the 50 points coincide perfectly) and the overall
behavior described in the previous section. Additionally, all conditions
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with nitrogen sensibility present the same kind of behavior, a logarith-
mic growth of the tillering with respect to the nitrogen. This means that,
at least for our model, nitrogen fertilization is a clear example of a di-
minishing returns in all the considered strains (even without considering
negative effects of intensive nitrogen fertilization in the soil). There is an
initial superlineal growth which is longer for the most efficient strains,
gid-10 and sd1, but even for those this region ends around the low ni-
trogen conditions (90 kg/ha). Despite this, it is worth noting that the
diminishing returns effect strength is proportional to the strain efficiency
over nitrogen. Due to this, if one compares those strains to the wild type,
their efficiency increases with nitrogen.

6.4 epistasis and robustness of the mutations

Finally, we studied intermediate states in a linear transition from each ex-
perimental to the wild type to observe how critical are those conditions.
Here, we present only the high nitrogen fertilization (180 kg/ha) condi-
tions because the behavior for the low nitrogen is equivalent.
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Figure 6.6: Tillering observed in the model for the intermediate states of a linear
transition from the different experimental conditions to the wild type.
To ease visualization given the amount of concentrated data points,
the legend is ordered from highest to lower tillering. Each point repre-
sents the tiller equilibrium state of 100 simulations for each particular
mutant. The initial conditions of each simulation are taken stochasti-
cally from a uniform distribution from 0 to 100 times the equilibrium
state for each variable in the wild type equilibrium.
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To obtain the figure presented in, fig. 6.6 we have considered the vec-
tor in the parameter space that goes from each particular mutant to the
wild type. Then we obtain 50 parameter sets linearly distributed along
that vector. With each parameter set, we will calculate 100 equilibrium
states, initiating the system with a random initial configuration. This ini-
tial condition was taken stochastically from a uniform distribution from
0 to 100 times the equilibrium state for each variable in the wild type
equilibrium. One can see that we do not observe bistability or hysteresis
in the system either, given that all the 100 simulation perfectly stack over
each other.

With respect to the transitions, one can see that the advantageous
unique mutations gid1-10 and sd1 have a fairly linear behavior. This is not
the case for the only unique negative one, the +GA treatment. By looking
at the WT+GA curve, one can see that even with only a 20% of the original
treatment, the model halves its tillering. This could indicate that there is
no need to apply a treatment of 100 µM GA because with one of at least
60 µM GA we would observe similar results.

As we already saw in fig. 6.3, the +GA behavior dominate over the sd1
in sd1+GA. But contrary to what one could expect, the interplay between
the +GA and the gid1-10 effect in the gid1-10+GA condition is more inter-
esting. To discuss it properly, we should first define what a partial gid1-10
mutation means. As the gid1-10 entails a loss of function of GID1, a partial
mutation could either be that a fraction of the proteins produced is com-
pletely faulty or that all of them has a defect that reduces its efficiency in
that same fraction. Both of this mechanistic explanations are equivalent
once one consider concentrations and the mean field approach. Then, by
looking at the gid1-10+GA curve, we can see that a reduction of at least
the 60% on the GID1 efficiency is necessary to start to nullify the GA
treatment. And it isn’t until less than 4% of its initial efficiency where the
tillering improves with respect to the wild type. This means that, while
a perfect disabling of GID1 is not necessary to observe an increase of
tillering, it is necessary to protect such increase from GA treatments.

As could be expected by observing fig. 6.3 the rest of conditions with
only disadvantageous modifications behave quite similarly to WT+GA
curve. Only a similar tradeoff effect, albeit at a much lower degree, is
observed in the sd1-p::GID1 condition. In this condition, we have the ad-
vantageous effect of a reduction of GA production by sd1 mixed with the
negative effect of an over expression of GID1 through p::GID1. Overall,
the overexpresion of p::GID1 dominates, but its reduction of tillering is
attenuated with higher reductions of GA production. This could indicate
that the system is saturated of GID1, and due to this the concentration
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of Gibberellin becomes the bottleneck for the formation of the GID1-GA
complex.

6.5 sensitivity analysis

More information regarding which element is the most sensitive to per-
turbation would inform us about the limiting elements for both the tiller
promotion and inhibition.
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Figure 6.7: Sensibility analysis for the fixed parameters: Sensitivity of the num-
ber of tillers observed in a plant with respect to 10% positive (purple)
and negative (green) changes in the indicated parameters. Changes
are with respect to the wild type. We present the effect for both low
(bright colors) and high (dark colors) nitrogen fertilization.

First, we studied the parameters adapted from the previous model
(Middleton et al., 2012) in fig. 6.7. Those parameters are quite robust to
perturbation, with variations of less than the 2.5% in the tillering. The
ones with the higher effect are the GID1-GA complex related, and the
degradation of both GA and GID1 and the affinity of DELLA to promote
GA production.

On the other hand, the adjusted parameters present a higher effect to
the tillering. But the first seven ones, which are the ones that surpass the
5% modification of the tiller number, are all related directly to tiller or
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Figure 6.8: Sensibility analysis for the adjusted parameters: Sensitivity of the
number of tillers observed in a plant with respect to 10% positive
(purple) and negative (green) changes in the indicated parameters.
Changes are with respect to the wild type. We present the effect for
both low (bright colors) and high (dark colors) nitrogen fertilization.

inhibitor production. This was to be expected, and all of them have more
or less the same impact over the tillering. The only thing that surprised
us of this set is that the system is slightly more sensible to the affinity of
the DELLA proteins to promote tillering (KMOC) than to both the affinity
of the inhibitors to the tillering (KT ) and the NGR5 to the inhibitors (KI).
This would mean that the system is less saturated with DELLA than with
NGR5. But if one observes the production rates of DELLA and NGR5, the
effect over the tillering is almost the same.

With these results, we are not able to properly identify the bottlenecks.
Either there isn’t a clear limiting reactant o the model is too simple to
identify it.

6.6 parameter robustness

Finally, we explored the parameter space, trying to obtain other sets of pa-
rameters that presented a similar agreement with the experimental data.
To do so, we reexplored the parameter space with the same simulated an-
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nealing presented previously. But, in this case, we started each parameter
from a Gaussian distribution around the chosen parameters Pchosen with
a variance of 1. Additionally, we do not consider any weight (all ωx ≡ 0)
and allow for Tfactor > 1 and we stop the exploration once we reach an
energy lower than 1.05Echosen (where Echosen is the energy of the selected
parameters).

0.00 0.05
0

100

200
bT    

0 2 4
1e5

0

200

400

600

rGA

0 10
0

250

500

750
rG1

0 5 10
0

200

400 rA

0.0 0.5
0

500

1000 rD

0.00 0.05 0.10
0

200

400 rI

0 10
0

100

200

300

rT

0.000 0.005 0.010
0

500

1000

aA

0.005 0.010
0

200

400

600
aD

0.01 0.02
0

200

400
aI

0.000 0.025 0.050
0

200

400 aT

0 5 10
0

200

400

600

KMOC

0.0 2.5 5.0
1e 5

0

200

400

600
KAN

0 2
1e 8

0

100

200

300
KAA

0 2 4
0

100

200 KI

0 2 4
1e 3

0

200

400

KT

0.0 0.2 0.4
0

500

1000

kCN1a

0.00 0.05 0.10
0

200

400

600
kCN1d

0.0 0.5 1.0
0

200

400 kCN2a 

0 5 10
0

200

400 kCN2d 

0.0 0.5
0

100

200

300
sd1

0 500 1000
0

100

200 GID1

1.0 1.5
0

100

200

300

Tfactor 

Parameter set:
chosen
best

Figure 6.9: Histograms of all parameters in the model made from 1000 parameter
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With these conditions, we obtained 1350 distinct parameter sets. But,
as one can observe in fig. 6.9, all the parameter values are tightly packed
around the original parameter values (marked with a black dot in the fig-
ure). Additionally, we represented the parameters value for the dynamics
of the DELLA-GID1-GA complex, taken from (Middleton et al., 2012),
with a black dashed line. If one compares the adjusted values with those,
it is easy to see that the GID1-GA mediated degradation in our model is
more important for the NGR5 regulation than for the DELLA’s one. The
affinity of the stable complex kCN1a is the only one with a higher value
than the DELLA equivalent kCD1a. In addition, the value for the dissoci-
ation of the complex without degrade the protein, kCN1d, is much lower
than the DELLA’s one,kCD1d. Then, given that we supposed the same ac-
tive degradation rate for the two species αDGG ≡ αDGG, NGR5 is being
degraded with priority in our model.

Of those, there are several sets of parameters that adjusted better the
experimental data. As a reference, we present in fig. 6.10 the set with the
lowest difference with the experimental data.
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Figure 6.10: Comparison between the best parameter set and the experimental data avail-
able. This is a reproduction of both fig. 6.3 and fig. 6.4 with the best set of
parameters.

One can see that, despite being a better fit, the main characteristics
of the model remain the same. It does not improve the wild type dis-
crepancy, which is the main discrepancy of the previous set. Given this,
together with the small dispersion observed in fig. 6.9, one would expect
really similar results for this parameter set. Additionally, the new set of
parameter presents a Tfactor much closer to 1 which would make the dy-
namical range of the model much smaller.
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To study if there is any unexpected relation between parameters, we
performed a pairwise correlation analysis between the parameters over
the full 1350 distinct parameter sets.
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Figure 6.11: Pairwise correlation matrix between the parameters of the different
1350 parameter sets.

The correlation matrix presented in fig. 6.11 shows that the pairwise
correlations between parameters is in general really low. The highest pair-
ings, which we represent in fig. 6.12, are either obvious (such as the βT ,αT

correlation) or directly artificial. The ones that include the Tfactor are all
directly artificial, given that this parameter is a rescaling of the tillering.
Likewise, the (kCN1a,kCN2a) correlation is also artificial because we force
the association rate of the unstable GA-GID1-NGR5 to be higher than
the stable one. This is a typical consideration and imitates de GA-GID1-
DELLA behavior described in (Middleton et al., 2012).

It is easy to see that almost all the scatter plots in fig. 6.12 present an
L shape. This indicates that the available range of one parameter is condi-
tioned by the other, but not linearly and probably not even directly. This
suggests that our model is not overfitting the data, given that we do not
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observe tradeoff relationships between pairs of parameters (fig. 6.11) and
most of them seem to have a similar sensibility to perturbations (figs. 6.7
and 6.8).
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Figure 6.12: Pairwise scatter plot for the 16 parameters with the higher corre-
lation with a linear fit in orange. Red dots mark the value of the
parameter corresponding to the set with the minimal energy, while
black dots represent the value of the parameter corresponding to the
set used in this study.

The large number of parameters makes a completely blind initializa-
tion of the parameters when integrating the dynamics with a maximum
time almost impossible for convergence reasons. Because of this, we can-
not rule out with the current data that there is no other set of parameters
that do not belong to the parameter manifold shown in fig. 6.9. We are
currently repeating this analysis with a larger initial variance to see if
we continue to see this tight distribution of parameters, or obtain a more
diverse set of parameters.
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6.7 conclusions and future work

In (K. Wu et al., 2020), the authors presented NGR5, a new gene that
directly controls the number of tillers that the plant will develop. It is
also shown that this protein is targeted by the Gibberellin-GID1 complex,
which also works in the regulation of the DELLA protein through protea-
somal destruction. We have shown here a minimal model that incorpo-
rates this new gene, NGR5, to the well known DELLA Gibberellin path-
way, and it is capable to perfectly reproduce all the experimental data.

The model backs the hypothesis that NGR5 acts in parallel to the
DELLA proteins. The same mechanism that reduces vertical growth through
the accumulation of the growth repressor DELLA proteins directly in-
duces horizontal growth through the tillering protection of NGR5. Then,
this regulatory structure would allow the plant to direct the overall growth
through the GID1-GA complex. This could explain the maintenance of the
nitrogen sensibility in the sd1 mutants. In the search for the most efficient
dwarf varieties during the Green Revolution, the breeders inadvertently
optimized the regulation of NGR5 alongside the DELLA’s one.

With this interpretation, the different affinities of the complex with
the NGR5 and the DELLA would mark the priority of the system. The
model suggest that natively, the NGR5 is degraded with priority to the
DELLA. This is reasonable from an evolutionary point of view, the plant
prioritizes to stop the formation of new tillers before inducing vertical
growth. Typically, plants grow to offset neighboring plants and receive
more sunlight. Then is more energy efficient to delay the tillering until
reaching the desired height. But what was a favorable trait in the wild, it
is no longer useful in an intensive monoculture. In this situation, all the
plants are equal, and the crops don’t need to compete for sunlight. Due to
this, should it be possible to genetically modify those affinities, it would
be more efficient to prioritize DELLA degradation over NGR5.

Additionally, the model shows that the epistasis between the several
modifications changes considerably with defective modifications. This is
specially relevant in the more nitrogen efficient strain gid1-10. It is shown
that to be insensitive to Gibberellin regulation the disabling of the GID1

proteins must be perfect and robust because even a small quantity of
GID1-GA complex is capable to negate the increase in tillering of this
mutant.

Further work is necessary to confirm these results. First, we should
confirm that there is not another set of parameters outside the observed
attractor. We are already working on that, starting the parameter explo-
ration from a much disperse parameter set. If the final dispersion of pa-
rameter sets do not change, we intend to study how would the system
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react to changes in the Gibberellin-GID1 complex prioritization. And sec-
ondly, we should include a more detailed description of the DELLA dy-
namics. As we could not find any evidence of direct promotion of DELLA
by nitrogen fertilization, we considered a stable self regulated production.
But, if the DELLA production is affected by nitrogen intake, the model ad-
justment could change, reducing their difference with the NGR5 proteins.
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Part IV

F U T U R E P E R S P E C T I V E S

Here we recapitulate the main results over the two biological
systems. Additionally, we will breifly discuss how the basic un-
derstanding over this biological systems can be incorporated
in the current agricultural crop design.





7
C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

There are two main common threads along the two topics discussed dur-
ing this thesis. The first one is their framing, in both cases we model the
genetic regulatory network underlying the responses of the organisms
to environmental changes. This theoretical and mathematical approach
allow us to reduce the system to the minimal expression capable of repro-
ducing the observed behavior. Additionally, the results are usually more
generalizable, given that the model is not a detailed description of a given
system. And the second link is one whose full exploration is beyond the
scope of this thesis. The two regulatory systems respond to the same type
of environmental signal, albeit in completely different regimes, the abun-
dance of nitrogen in the medium. Therefore, in this chapter we will first
summarize the main takeaway messages of each study, and we will later
discuss their possible joint application in crop design.

For the nitrogen fixation cyanobacteria, we knew by previous studies
section 2.2 that several Turing-like minimal 3 gene models were capable
to capture the formation of the pattern even in a discretized growing do-
main such as this. Here, we provide additional insight over this minimal
models through the stability study presented in chapter 3. We show that
a 2-element system with simple diffusible inhibitor (patS) and a localized
activator (hetR) from (Muñoz-García and Ares, 2016) is already capable to
shift the filament between homogeneous and pattern-like heterogeneous
regimes with small changes in the parameter values of the model.

Then, in order to reproduce the ∆patA phenotype, we presented in
chapter 4 a model that includes the requirement of maturation of HetR in
order to act as a transcription factor. We hypothesize that HetF is neces-
sary for this maturation, and PatA would enhance it. The particular role
of this genes is still not well-defined in the literature, but recent experi-
mental studies seem to confirm both the existence of an HetR maturation
process (Xiaomei Xu et al., 2020) and an indirect activator role of hetF
(W.-Y. Xing et al., 2022). There is still no evidence connecting these two
mechanisms, given that they are mediated by different genes, hetL and
patU3, whose role is still somewhat obscure. Despite this, our work fo-
cuses more on patA’s role in heterocyst regulation, so it should not be
greatly modified by the particular configuration of the HetR regulation.
This analysis of the patA mutant is specially relevant because it is a clear
example that one can disrupt the formation of the pattern by affecting
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the intensity of the feedback loops controlled by HetR. Here, patA is hy-
pothesized to have a reinforcing role to hetR regulation. Then, without
patA the fraction of HetR that gets activated is reduced with respect to
the wild type, this mutant seems to lose the compounding effect that al-
lowed the formation of the pattern. This mutant is much less susceptible
to sudden spikes of HetR production, and therefore most of the stochastic
fluctuations get buffered without affecting the overall homogeneity of the
filament. This recovers the idea presented in chapter 3: through modula-
tion of patA expression the filament is capable to transition between the
pattern forming and homogeneous regimes.

This work is later expanded in chapter 5, where we observe a similar
initial homogenization effect for the ∆patS mutant that is corrected with
the apparition of heterocysts and the HetN production. Additionally, we
use the correlations of both the diffusible inhibitor and the level of regu-
latory activity of HetR to propose a new two staged selection method of
heterocysts. This novel mechanism is capable to explain the existence of a
pattern with a characteristic length much larger than the experimentally
observed cell to cell correlation, without the need for an initial intrinsic
spacial organization.

Finally, we present our simple model of the lateral growth (tillering) in
rice, chapter 6, where we study the interplay between two growth strate-
gies. Our model suggest that the regulatory mechanism that controls both
the inhibition of vertical growth and the induction of tillering is evolution-
ary tuned to prioritize the inhibition of vertical growth over the increased
tillering. This happens due to the preferential targeting for degradation
of the tillering inducer NGR5 over the growth inhibitors DELLA. If we
were capable to invert this preference, we could have crops that prioritize
the formation of new tillers over the reduction of height. If validated ex-
perimentally, this could open a new possibility to further enhance tiller
response to increase of nitrogen fertilization. This is specially relevant be-
cause we also observed in our model that the nitrogen fertilization seems
to have diminishing returns in all the strains considered.

As we have already proposed expansions for each particular study in
their respective chapter, we will not reiterate these ideas here. Instead, we
would like to present a more general perspective, that would constitute a
new focus in our research line.

One can see that our plant and cyanobacteria studies are largely inde-
pendent during this thesis, but this does not have to be like this. It is well
characterized that there are several instances of plant-cyanobacteria sym-
biosis (Kollmen and Strieth, 2022), a well studied example being Azolla-
Anabaena (D. J. Hill, 1975; Peters and J C Meeks, 1989). It has been shown
that, besides the obvious growth advantages of the autonomous supple-
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ment of nitrogen fixated by the cyanobacteria, the plant typically shows
also increased resistance to plant diseases (Kollmen and Strieth, 2022).

The Azolla-Anabaena symbiosis is not of direct agricultural interest,
given that Azolla is a fern, but it has been used as a complementary crop
and manure to enricher the soil almost exclusively in traditional agri-
culture of Asian countries as far as 17th century (end of Ming dynasty)
(Pereira, 2018; Watanabe, 1982). But the Azolla fertilization is still not
suitable for intensive agriculture: it cannot sustain high yield rice crops
and has to be tightly controlled to avoid cross contamination of the rice
(Pereira, 2018). Despite these caveats, it can be a used as a complement to
avoid soil degradation. This degradation of the soil is the main caveat of
modern intensive monoculture, that has been shown to accelerate deserti-
fication, and more sustainable practices such as crop rotation techniques
have to be established (Grzebisz et al., 2022).

Besides the application of already existent plant-bacteria symbiosis as
a biological fertilizer, one could imagine the engineering of new symbiosis
through the combination of the basic knowledge in both systems. We
have already modified cyanobacteria for industrial use, in applications
such as wastewater treatment or the fabrication of components such as
ethanol and biomass (Abed et al., 2009; Ehira et al., 2018; Möllers et al.,
2014). We could then expand this genetic manipulation to enforce the
creation of advantageous biofilms in high yield crops. This is already an
open area of research, with recent studies that show promising results in
cotton crops (Triveni et al., 2015) and rice (Álvarez et al., 2020). There are
also recent advances into the alternative option, which is to incorporate
the nitrogen fixation capabilities to an organism that already presents a
symbiotic relationship with a certain crop (M.-H. Ryu et al., 2020).

We believe that knowledge regarding the genetic networks that con-
trol both the nitrogen fixation and incorporation in cyanobacteria and
plants are key to this more applied genetic modification field. Then stud-
ies such as the ones presented here could provide the insight necessary
to successfully engineer a more sustainable crop.
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A
S TA B I L I T Y S T U D Y M O D E L D E D U C T I O N

With the brief biological introduction of the system, presented in chap-
ter 3 along with some more details that will be exposed as the model
approach develops, we can now present the elements that will make up
our model as well as the interactions between them.

modeled elements and reactions :

As we already said our model is composed by just three genes, but we will
also have to consider: the promoters9 of those gens that can be positively 9 As explained in

section 1.1, a promoter
is a region of the gene
that has some affinity
for a certain protein
and controls the genetic
activity.That activity
can be boosted or
reduced depending on
the protein that binds
to the promoter.

regulated by HetR: HetR itself and PatS, the several forms of the proteins
and the Fixed Nitrogen. Then variables considered in this model are:

• Promoters of hetR (Hx): empty promoters (Hx
0) and occupied pro-

moters (Hx
A)

Then by mass conservation of the promoters: Hx = Hx
0 +Hx

A.

• HetR: monomers (r) and dimers (D) that can be inhibited (rrI) or
not (rr).
By mass conservation: R = r+D = r+ 2rr+ 2rrI.

• Inhibitors: PatS (s), HetN (n) and difusible pentapeptide (i).

• Fixed Nitrogen: F

Once we have defined our variables now it is time to enumerate all the
interactions that will be considered in this model:

• Occupation of the promoters:0
We only consider the promoter’s dynamics of the genes that are
regulated by HetR: hetR itself and patS (Herrero et al., 2013).

Hr
0 + rr

kr
⇄
k−r

Hr
A, (A.1a)

Hs
0 + rr

ks
⇄
k−s

Hs
A. (A.1b)

The first approximation that we realize is to consider that the ac-
tivated dimer have the same affinity for all the promoters of the
several genes regulated by HetR Kr = Ks.
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• Basal production of HetR (Herrero et al., 2013):

Hr
0 −→

βr

Hr
0 + r (A.2)

• Regulated production of HetR and PatS (Herrero et al., 2013) in
vegetative cells:

Hr
A −−−−→

βr+ρr
Hr

A + r, (A.3a)

Hs
A −→

ρs
Hs

A + s. (A.3b)

• Regulated production of HetN (S. M. Callahan and Buikema, 2001)
and fixed Nitrogen in heterocysts:

Heterocyst −→
ρn

Heterocyst+n, (A.4a)

Heterocyst −→
ρF

Heterocyst+ F. (A.4b)

• Conversion of PatS and HetN into the inhibitory form (Rivers et al.,
2018):

s
diffusion−−−−−−→

δs
i, (A.5a)

n
diffusion−−−−−−→

δn
i. (A.5b)

We assume that both PatS and HetN inhibit the HetR regulation in
a similar mechanistic manner (concretely in the form of a diffusible
hexapeptide (Corrales-Guerrero et al., 2013). This hypothesis is sup-
ported by the evidence that both genes require the same hexapep-
tide (ERGSGR) for being able to inhibit heterocyst formation (Rivers
et al., 2018).

• Degradation and dilution of proteins and fixed Nitrogen:

r −→
αr

∅ (A.6a)

rr −→
αd

∅ (A.6b)

rrI −−→
αId

∅ (A.6c)

s −→
αs

∅ (A.6d)

n −−→
αn

∅ (A.6e)

i −→
αi

∅ (A.6f)

F −→
αF

∅ (A.6g)

The degradation terms in fact combine both degradation and di-
lution, since terms for both this effect would have the same form,
they can be combined. As we do not have experimental degradation
rates, the most permissive option is to suppose that each "species"
is degraded with a different rate.
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• HetR dimer formation:

r+ r
kb
⇄
k−b

rr (A.7)

• Inhibition of the HetR dimers (Rivers et al., 2018):

rr+ i+ i ⇄
K2
d

rrI (A.8)

This equation supposes that the inhibition of the dimers is coopera-
tive and that the affinity of the second inhibitor is much bigger than
the affinity of the first one. We also define Kd with the quadratic
form to maintain the units of concentration and then allow the di-
rect comparison between [i] and Kd

2.

We will now use the Mass Action Law to obtain the time evolution
of each of our variables. This proposition assumes that the system is in
thermodynamic equilibrium to affirm that the probability or rate at which
a reaction occurs is proportional to the concentration of the reactants in
that reaction. More specifically, this approximation assumes that there is
a sufficient quantity of perfectly diluted reagents in the system, achieving
that the concentration is homogeneous in the whole cell.

This approach does not have too many problems for chemical reactions
carried out in test tubes since there the reagents are in complete dissolu-
tion isolated from everything that does not interest you for the specific
reaction you are studying. But for in-vivo processes inside the cell this
assertion is already more than questionable due to the high occupation of
the cytosol, in the same way the existence of any free diffusion process in-
side the cells could also be questioned. There are somewhat more sophis-
ticated alternatives that consider the possibility of local concentrations
that we are not going to consider, since for a minimum model this ap-
proximation is sufficient to find coherent results. It should also be noted
that most of the results of the current biochemistry have been obtained
using this assumption.
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original differential equations :

Promoters dynamics:

d[Hr
0]

dt
= −kr[H

r
0][rr] + k−r[H

r
A], (A.9a)

d[Hr
A]

dt
= kr[H

r
0][rr] − k−r[H

r
A], (A.9b)

d[Hs
0]

dt
= −ks[H

s
0][rr] + k−s[H

s
A], (A.9c)

d[Hs
A]

dt
= ks[H

s
0][rr] − k−s[H

s
A]. (A.9d)

HetR dynamics:

d[r]

dt
= βr[H

r
0] +

(
βr + ρr

)
[Hr

A] + 2k−b[rr] − 2kb[r]
2 −αr[r], (A.10a)

d[rr]

dt
= kb[r]

2 − k−b[rr] − kd[rr][i]
2 + k−d[rrI] −αd[rr], (A.10b)

d[rrI]

dt
= kd[rr][i]

2 − k−d[rrI] −αd[rrI]. (A.10c)

PatS dynamics:

d[s]

dt
=
(
1− δHcist

)
ρs[H

s
A] − 2ds[s] −αs[s]. (A.11)

HetN dynamics:

d[n]

dt
= δHcistρn − 2dn[n] −αn[n]. (A.12)

Inhibitor dynamics (of a cell j):

d[i]j
dt

= ds

(
[s]j+1 + [s]j−1

)
+ dn

(
[n]j+1 + [n]j−1

)
+ di

(
[i]j−1 − 2[i]j + [i]j+1

)
−

− kd[rr]j[i]
2
j + k−d[rrI]j −αi[i]j. (A.13)

Fixed Nitrogen dynamics (of a cell j):

d[F]j
dt

= δHcistρF + dF

(
[F]j+1 − [F]j + [F]j−1

)
−αF[F]j. (A.14)

model simplifications :

Our next task is to reduce the number of variables of the system by sup-
posing that any reversible process is much faster than the transcription
and translation required to produce a new protein. Then, as the simula-
tion will be carried out for the slow time of the production of proteins,
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the other processes will already have arrived at the stationary situation.
where the proportion of the reactants is equal to the constant of equilib-
rium of the reaction.

First, we use that the promoter occupation dynamics is much faster than
the hetR transcription and translation necessary to obtain a HetR monomer
to consider that both eqs. (A.9a) and (A.9b) are in equilibrium

(
d[Hr

0]
dt =

d[Hr
A]

dt = 0
)

.

With that, we can obtain the following expression for Kr:

Kr =
[Hr

0][rr]

[Hr
A]

where Kr =
k−r

kr
, (A.15)

and [rr] is the free, non-inhibited, dimer concentration.
Then using that the total amount of promoter sites [Hr] will be constant

[Hr] = [Hr
0] + [Hr

A], (A.16)

we can transform eq. (A.15) using eq. (A.16)

[Hr
A] = K−1

r [rr][Hr
0] = K−1

r [rr]
(
[Hr]− [Hr

A]
)
⇒ Kr

[rr]
=

[Hr]

[Hr
A]

−1 ⇒ [Hr
A] = [Hr]

1

1+ Kr
[rr]

,

to obtain an expression of both [Hr
A] and [Hr

0] that only depends on the
variables [Hr] and [rr]:

[Hr
A] = [Hr]

[rr]
Kr

1+
[rr]
Kr

. (A.17)

[Hr
0] = [Hr]

1

1+
[rr]
Kr

. (A.18)

After that if we introduce eqs. (A.16) and (A.17) into eq. (A.10a) we obtain

d[r]

dt
= βr[H

r] + ρr[H
r]

[rr]
Kr

1+
[rr]
Kr

+ 2k−b[rr] − 2kb[r]
2 −αr[r]

As we suppose that the number of total promoters of hetR is constant we
can absorb the [Hr] into the production constants βr and ρr to reduce the
number of parameters. The resultant expression of the evolution of the
concentration of monomers is:

d[r]

dt
= βr + ρrg

(
[rr]
)
+ 2k−b[rr] − 2kb[r]

2 −αr[r], (A.19)
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where we define:

ϕ([rr]) ≡
[rr]
Kr

1+
[rr]
Kr

. (A.20)

Analogously, using the approximation that Kr = Ka = Ks, we can obtain
the following expression for eq. (A.11):

d[s]

dt
=
(
1− δHcist

)
ρsϕ([rr]) − 2ds[s] −αs[s], (A.21)

Secondly, we are going to consider that both the HetR dimers formation
and inhibition (which in both cases consist on the binding/unbinding
between existent element) is much faster that the protein synthesis. As
a result of this, we can consider that the reactions (A.7) and (A.8) are in
equilibrium and therefore:

[rrI] =
[rr][i]2

K2
d

where K2
d =

k−d

kd
, (A.22)

[rr] =
[r]2

Kb
where Kb =

k−b

kb
. (A.23)

If we introduce eq. (A.22) on eq. (A.13) we obtain:

d[i]j
dt

= ds

(
[s]j+1 + [s]j−1

)
+ dn

(
[n]j+1 + [n]j−1

)
+

+ di

(
[i]j−1 − 2[i]j + [i]j+1

)
−αi[i]j. (A.24)

Additionally the total amount HetR ([R]) in the system will be distributed
as:

[R] = [r] + 2[rr] + 2[rrI] = [r] + 2
[r]2

Kb
+ 2

[r]2

Kb

[i]2

K2
d

(A.25)

thus,

[r] =
−KbK

2
d ±

√
K2
bK

4
d + 8KbK

2
d[R]

(
K2
d + [i]2

)
4
(
K2
d + [i]2

) . (A.26)

This expression eq. (A.26) is the solution of the second grade equation
eq. (A.25) and represents the concentration of free monomers of HetR. Is
it worth noting that we obtained this second grade equation eq. (A.25)
due to the competition between the binding of the inhibitors and the un-
binding of the HetR dimers. We could have considered instead, and we
will in the next section, chapter 4, that the dimerization reaches equilib-
rium much faster than the inhibition. In that case we would lose this com-
petition and the two processes can be considered to act independently of
each other.
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Once we have the expression for the free monomers, we can transform
eq. (A.20) to only depend on the monomers by using eq. (A.23):

ϕ([r],[i]) =

[r]2

Kb
Kr

1+
[r]2

Kb
Kr

=

[r]2

KbKr

1+
[r]2

KbKr

. (A.27)

and likewise eq. (A.24) changes to

d[i]j
dt

= ds

(
[s]j+1 + [s]j−1

)
+ dn

(
[n]j+1 + [n]j−1

)
+

+ di

(
[i]j−1 − 2[i]j + [i]j+1

)
−αi[i]j. (A.28)

Additionally we can obtain the dynamics of this new variable R using
eqs. (A.19), (A.25), (A.10b) and (A.10c):

d[R]

dt
=

d[r]

dt
+

d[rr]

dt
+

d[rrI]

dt
= βr + ρrg

(
[rr]
)
+ 2k−b[rr] −��

��HH
HH

2kb[r]
2 −αr[r]+

+�
���HHHHkb[r]

2−2k−b[rr] −�����
kd[rr][i]

2 +XXXXXk−d[rrI] −αd[rr] +�����
kd[rr][i]

2
j −

XXXXXk−d[rrI] −αd[rrI] =

= βr + ρrg
(
[rr]
)
−αr[r] −αd[rr] −αd[rrI] =

= βr + ρrg
(
[rr]
)
−αr[r] −

[r]2

Kb

(
αd +αId

[i]2

K2
d

)
. (A.29)
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complete model :

With all the simplifications presented before, we obtain the final set of
differential equations that we will use to simulate the behavior of the
system.

dRj(t)

dt
= βr +ϕ(rj,ij,Fj)ρr −αrr(Rj,ij) −

r(Rj,ij)
2

Kb

[
αd +αId

i2j

K2
d

]
(A.30)

dpj(t)

dt
= (1− δhc,j)ϕ(rj,ij,Fj)ρp − 2dppj −αppj (A.31)

dnj(t)

dt
= δhc,jρn − 2dnnj −αnnj (A.32)

dij(t)

dt
= dp(pj−1 + pj+1) + dn(nj−1 +nj+1) + di(ij−1 − 2ij + ij+1) −αiij (A.33)

dFj(t)

dt
= δhc,jρF + dF(Fj−1 − 2Fj + Fj+1) −αFFj (A.34)

with the boundary condition that if j+ 1 or j− 1 is outside the filament
then Xj+1 = 0 or Xj−1 = 0 and where

rj(Rj,ij) =
−KbK

2
d +

√
K2
bK

4
d + 8KbK

2
dRj

(
K2
d + i2j

)
4
(
K2
d + i2j

) , (A.35)

ϕ(rj,ij,Fj)
∗ =

r(Rj,ij)2

KbKr

1+
r(Rj,ij)2

KbKr
+

Fj(t)
Kd

(A.36)

* To be able to reproduce the HetN deletion mutant we add, phenomenology, a lineal
inhibition from the fixed nitrogen products (F), if we do not add this term the deletion
mutant of hetN shows a completely differentiated filament due to the fact that we do not
have considered the nitrogen sensing system (which is mediated through ntcA)
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B
F U L LY M E C H A N I S T I C D E D U C T I O N O F T H E
PATA / H E T F M O D E L

In this section, we will present the rigorous full mechanistic approach
to the modeling of the system as an example of what we could use in
a system with more biochemical information available. This is also why
we chose to not absorb any of the parameters besides the promoters and
the equilibrium constants. But, given that we only have biochemical infor-
mation regarding the affinity between the inhibitor and the HetR dimers,
we will heavily simplify the model in chapter 4 to a more phenomeno-
logical version without competition/interferences between the different
processes.

modeled elements :

With the brief biological introduction of the system, presented in chap-
ter 4, we have enough information to present the elements that will make
up our model and the interactions between them. The variables consid-
ered in this model are:

• Gene promoters of the gen x (Hx): empty promoters (Hx
0) and occu-

pied promoters (Hx
A)

Then by mass conservation of the promoters: Hx = Hx
0 +Hx

A

• HetR: monomers (r) and dimers (d) which in turn we will also di-
vide into two types:

– Not activated dimers (d): free dimer (rr), inhibited dimer (rrI).

– Activated dimers (Arr), inhibited activated dimer (ArrI).

• Inhibitors: PatS (s), HetN (n) and diffusible pentapeptide (i).

• Activators: PatA and HetF that are presented in several forms:

– Free: HetF (f) and PatA (a).

– Forming activation complexes: frr and farr.

• Fixed Nitrogen: G
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178 fully mechanistic deduction of the pata/hetf model

modeled reactions :

• Occupation of the promoters:
We only consider the promoter dynamics of the genes that are regu-
lated by HetR: hetR itself, patS and patA (Herrero et al., 2013).

Hr
0 +Arr ⇄

Kr

Hr
A (B.1)

Hs
0 +Arr ⇄

Ks

Hs
A (B.2)

Ha
0 +Arr ⇄

Ka

Ha
A (B.3)

The first approximation that we realize is to consider that the acti-
vated dimer has the same affinity for all the promoters of the several
genes regulated by HetR Kr = Ks = Ka.

• Basal production of HetR (Herrero et al., 2013) and HetF (Risser and
Sean M. Callahan, 2008):

Hr
0 −→

βr

Hr
0 + r (B.4)

Hf
0 −→

βf

Hf
0 + f (B.5)

• Regulated production of HetR, PatS and PatA (Herrero et al., 2013)
in vegetative cells:

Hr
A −−−−→

βr+ρr
Hr

A + r (B.6)

Hs
A −→

ρs
Hs

A + s (B.7)

Ha
A −→

ρa
Ha

A + a (B.8)

• Regulated production of HetN (S. M. Callahan and Buikema, 2001)
and fixed Nitrogen (Fay et al., 1968) in heterocysts:

Heterocyst −→
ρn

Heterocyst+n (B.9)

Heterocyst −−→
ρG

Heterocyst+G (B.10)
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• Conversion of PatS and HetN into the inhibitory form (Rivers et al.,
2018):

s
diffusion−−−−−−→

cs
i (B.11)

n
diffusion−−−−−−→

cn
i (B.12)

We assume that both PatS and HetN inhibit the HetR regulation in
a similar mechanistic manner (concretely in the form of a diffusible
hexapeptide (Corrales-Guerrero et al., 2013). This hypothesis is sup-
ported by the evidence that both genes require the same hexapep-
tide (ERGSGR) for being able to inhibit heterocyst formation (Rivers
et al., 2018).

• Degradation and dilution of proteins and fixed Nitrogen:

r −→
αr

∅ (B.13a)

rr −→
αd

∅ (B.13b)

rrI −−→
αId

∅ (B.13c)

Arr −−→
αAd

∅ (B.13d)

ArrI −−→
αM

∅ (B.13e)

s −→
αs

∅ (B.13f)

n −−→
αn

∅ (B.13g)

i −→
αi

∅ (B.13h)

f −→
αf

∅ (B.13i)

a −→
αa

∅ (B.13j)

G −−→
αG

∅ (B.13k)

The degradation terms in fact combine both degradation and dilu-
tion, since terms for both this effect would have the same form, they
can be combined. There are several degradation rates for the HetR
dimers due to the fact that experimental results indicate that both
inhibited (Risser and Sean M. Callahan, 2009) and activated (Risser
and Sean M. Callahan, 2008) dimers degrade faster than the unal-
tered ones. We consider that the modifications to the degradation
rate are not cumulative, so the inhibited activated dimer(ArrI) will
have αM =max(αAd,αId)

• HetR dimer formation:
r+ r⇄

Kb

rr (B.14)
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• Activation of the HetR dimers§ (Orozco et al., 2006; Risser and Sean§ We initially
considered an even

bigger equivalent
system where the

reaction
rr+ f+ a

ka

⇄
k−a

farr

was substituted by both

rr+ e
ke

⇄
k−e

err

and f+ a ⇄
KA

e.

But, as the PatA and
HetF interactions are
not known, this only

introduced an
additional unknown
parameter to adjust.

M. Callahan, 2008):

rr+ f
kf
⇄
k−f

frr −→
τf

Arr+ f (B.15)

rr+ f+ a
ka
⇄
k−a

farr −→
τa

Arr+ f+ a (B.16)

• Inhibition of the HetR dimers (Rivers et al., 2018):

rr+ i+ i⇄
K2
d

rrI (B.17)

Arr+ i+ i⇄
K2
d

ArrI (B.18)

This equation supposes that the inhibition of the dimers is coopera-
tive and that the affinity of the second inhibitor is much bigger than
the affinity of the first one. We also define Kd with the quadratic
form to maintain the units of concentration and then allow the di-
rect comparison between [i] and Kd

2. Given that there is no evidence
that the inhibitor targets preferentially the activated dimers and the
fact that the experimental stoichiometry of HetR and inhibitors is
1:1 (Feldmann et al., 2011, 2012) we consider that Arr and rr are
indistinguishable for the inhibitor.

original differential equations :

As we already did in the previous appendix A, we can use the Mass Ac-
tion Law over the previous reactions to obtain the time evolution of each
of our variables. Again, this proposition assumes that the system is in ther-
modynamic equilibrium. Then we suppose that a mean field approach to
the cell interior without any intracellular heterogeneity or transport. In
those homogeneous conditions, the probability or rate at which a reac-
tion occurs is proportional to the concentration of the reactants in that
reaction.
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Promoters dynamics:

d[Hr
0]

dt
= −kr[H

r
0][Arr] + k−r[H

r
A], (B.19a)

d[Hr
A]

dt
= kr[H

r
0][Arr] − k−r[H

r
A], (B.19b)

d[Hs
0]

dt
= −ks[H

s
0][Arr] + k−s[H

s
A], (B.19c)

d[Hs
A]

dt
= ks[H

s
0][Arr] − k−s[H

s
A], (B.19d)

d[Ha
0 ]

dt
= −ka[H

a
0 ][Arr] + k−a[H

a
A], (B.19e)

d[Ha
A]

dt
= ka[H

a
0 ][Arr] − k−a[H

a
A]. (B.19f)

HetR dynamics:

d[r]

dt
= βr[H

r
0] +

(
βr + ρr

)
[Hr

A] + 2k−b[rr] − 2kb[r]
2 −αr[r], (B.20a)

d[rr]

dt
= kb[r]

2 − k−b[rr] − kf[rr][f] + k−f[frr] − ka[rr][f][a]+

+ k−a[farr] − kd[rr][i]
2 + k−d[rrI] −αd[rr], (B.20b)

d[rrI]

dt
= kd[rr][i]

2 − k−d[rrI] −αId[rrI], (B.20c)

d[Arr]

dt
= τf[frr] + τa[farr] − kd[Arr][i]2 + k−d[ArrI]−

− kr[H
r
0][Arr] + k−r[H

r
A] − ks[H

s
0][Arr] + k−s[H

s
A]−

− ka[H
a
0 ][Arr] + k−a[H

a
A] −αAd[Arr], (B.20d)

d[ArrI]

dt
= kd[Arr][i]2 − k−d[ArrI] −αM[ArrI]. (B.20e)

PatS dynamics:

d[s]

dt
=
(
1− δHcist

)
ρs[H

s
A] − 2cs[s] −αs[s]. (B.21)

HetN dynamics:

d[n]

dt
= δHcistρn − 2cn[n] −αn[n]. (B.22)

Inhibitor dynamics (of a cell j):

d[i]j
dt

= cs
(
[s]j+1 + [s]j−1

)
+ cn

(
[n]j+1 + [n]j−1

)
− 2di[i]j −αi[i]j−

− 2kd[rr]j[i]
2
j + 2k−d[rrI]j − 2kd[Arr]j[i]

2
j + 2k−d[ArrI]j. (B.23)
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PatA dynamics:

d[a]

dt
= ρa[H

a
A] − ka[rr][f][a] + k−a[farr] + τa[farr] −αa[a]. (B.24)

HetF dynamics:

d[f]

dt
= βf − kf[rr][f] + k−f[frr] + τf[frr]−

− ka[rr][f][a] + k−a[farr] + τa[farr] −αf[f]. (B.25)

Activation complexes dynamics:

d[frr]

dt
= kf[rr][f] − k−f[frr] − τf[frr], (B.26)

d[farr]

dt
= ka[rr][f][a] − k−a[farr] − τa[farr]. (B.27)

Fixed Nitrogen dynamics (of a cell j):

d[G]j
dt

= δHcistρG + dG

(
[G]j+1 − [G]j + [G]j−1

)
−αG[G]j. (B.28)

model simplifications :

Off all the presented variables of our model to reduce the computational
efforts we are only going to simulate a few of them, the ones with the
slowest dynamics (that is the one that involves protein production through
transcription and translation). Those are the total amount of the main reg-
ulator HetR (r), the inhibitor producers PatS (s), the produced fixed Ni-
trogen (G), the inhibiting hexapeptide (i), and the two activating proteins
PatA(a) and HetF(f).

First, we will simplify the promotor occupation dynamics (eqs. (B.19))*.* This first
simplification is

analogous to the one
presented in

appendix A. You can
jump directly to its

final expression
eq. (B.34) if you want.

These reactions are much faster than the hetR transcription and transla-
tion necessary to obtain a HetR monomer (the reactions (B.4) and (B.6)).
Due to this, we can consider that both eqs. (B.19a) and (B.19b) are in
equilibrium

(
d[Hr

0]
dt =

d[Hr
A]

dt = 0
)

.

With that we can obtain the following expression for Kr:

Kr =
[Hr

0][Arr]

[Hr
A]

where Kr =
k−r

kr
. (B.29)

Then using that the total amount of promoter sites [Hr] will be constant

[Hr] = [Hr
0] + [Hr

A], (B.30)
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we can transform eq. (B.29) using eq. (B.30)

[Hr
A] = K−1

r [Arr][Hr
0] =K−1

r [Arr]
(
[Hr] − [Hr

A]
)
⇒ Kr

[Arr]
=

[Hr]

[Hr
A]

− 1 ⇒

⇒ [Hr
A] = [Hr]

1

1+ Kr
[Arr]

,

to obtain an expression of both [Hr
A] and [Hr

0] that only depends on the
variables [Hr] and [Arr]:

[Hr
A] = [Hr]

[Arr]
Kr

1+
[Arr]
Kr

. (B.31)

[Hr
0] = [Hr]

1

1+
[Arr]
Kr

. (B.32)

After that if we introduce eqs. (B.30) and (B.31) into eq. (B.20a) we obtain

d[r]

dt
= βr[H

r] + ρr[H
r]

[Arr]
Kr

1+
[Arr]
Kr

+ 2k−b[rr] − 2kb[r]
2 −αr[r]

As we suppose that the number of total promoters of hetR is constant we
can absorb the [Hr] into the production constants βr and ρr to reduce the
number of parameters. The resultant expression of the evolution of the
concentration of monomers is:

d[r]

dt
= βr + ρrg

(
[Arr]

)
+ 2k−b[rr] − 2kb[r]

2 −αr[r], (B.33)

where we define:

g([Arr]) ≡
[Arr]
Kr

1+
[Arr]
Kr

. (B.34)

Analogously, using the approximation that Kr = Ka = Ks, we can obtain
the following expressions for eqs. (B.21), (B.24) and (B.20d):

d[s]

dt
=
(
1− δHcist

)
ρsg([Arr]) − 2cs[s] −αs[s], (B.35)

d[a]

dt
= ρag

(
[Arr]

)
− ka[rr][f][a] + k−a[farr] + τa[farr] −αa[a], (B.36)

d[Arr]

dt
= τf[frr] + τa[farr] − kd[Arr][i]2 + k−d[ArrI]−

− [Hr]

[
+
((((((((((((
kr

(
1− g

(
[Arr]

))
[Arr] −������

k−rg
(
[Arr]

)]
−

− [Hs]

[
+
hhhhhhhhhhhh
kr

(
1− g

(
[Arr]

))
[Arr] −

XXXXXXk−rg
(
[Arr]

)]
−

− [Ha]

[
+
((((((((((((hhhhhhhhhhhh
kr

(
1− g

(
[Arr]

))
[Arr] −������XXXXXXk−rg

(
[Arr]

)]
−αAd[Arr],
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d[Arr]

dt
= τf[frr] + τa[farr] − kd[Arr][i]2 + k−d[ArrI] −αAd[Arr]. (B.37)

Secondly, we also know that HetR activation (the reactions (B.15) and
(B.16)), which we suppose is an enzymatic reaction, is much faster than
HetR production. As a result of that, we can consider that both the activa-
tion complexes are in equilibrium. Imposing d[frr]

dt =
d[farr]

dt = 0 we obtain:

[frr] = KF[rr][f] where KF =
kf

k−f + τf
(B.38a)

[farr] = KA[rr][f][a] where KA =
ka

k−a + τa
. (B.38b)

We also know that the total amount of proteins a and f†† is conserved for
this equation, then:

[F] ≡ [f] + [frr] + [farr] (B.39a)
[A] ≡ [a] + [farr]. (B.39b)

This conservation can be proven by writing the dynamics of those vari-
ables considering only the activation complex formation:

d[f]

dt
= −kf[rr][f] + k−f[frr] + τf[frr] − ka[rr][f][a] + k−a[farr] + τa[farr],

d[frr]

dt
= kf[rr][f] − k−f[frr] − τf[frr],

d[a]

dt
= −ka[rr][f][a] + k−a[farr] + τa[farr],

d[farr]

dt
= ka[rr][f][a] − k−a[farr] − τa[farr],

d[F]

dt
=

d[f]

dt
+

d[frr]

dt
+

d[farr]

dt
= 0.

d[A]

dt
=

d[a]

dt
+

d[farr]

dt
= 0.

†† On the more simplified model that we will use in chapter 4 we will avoid modeling
the full HetF and PatA dynamics. In order to do so, we will consider that HetF is only
expressed basally at a lower level. Due to this, the total amount of [F] in the system will
be roughly constant and low. Then its concentration will be much lower than the one
of both its substrate, HetR, and assistant, PatA (which are up regulated during nitrogen
deprivation). Due to this, the error associated with considering that all the HetF is active
all the time is low. If all, our simplified model in chapter 4 will overestimate the efficiency
of HetF in cells with low HetR and PatA concentrations. This occurs typically near a
heterocyst where the activation is less relevant anyway due to heavy inhibition.
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Using eqs. (B.38) and eq. (B.39) we can obtain:

[A] = [a] +KA[rr][f][a] ==⇒ [a] =
[A]

1+KA[rr][f]

[F] = [f] +KF[rr][f] +KA[rr][f][a] ==⇒ [F] = [f] +KF[rr][f] +
KA[rr][f][A]

1+KA[rr][f]
==⇒

==⇒[F] +KA[rr][f][F] = [f] +KA[rr][f]
2 +KF[rr][f] +KFKA[rr]

2[f]2 +KA[rr][f][A] ==⇒

==⇒
(
KA[rr]

(
1+KF[rr]

))
[f]2 +

(
1+ [rr]

(
KF +KA

(
[A] − [F]

)))
[f] − [F] = 0

The solutions for this quadratic equation are:

[f] =

−1− [rr]
(
KF +KA

(
[A] − [F]

))
±

√[
1+ [rr]

(
KF +KA

(
[A] − [F]

))]2
+ 4KA[rr]

(
1+KF[rr]

)
[F]

2KA[rr]
(
1+KF[rr]

)
(B.40)

and therefore for [a]†† in equilibrium: †† This same reason
(much lower
concentration of HetF
than PatA) allows us to
simplify PatA
dynamics. We can
consider that
[a] >> [farr] and
therefore [A] ≈ [a].
Then we can directly
simulate the
concentration of free
PatA without
distorting much of the
dynamics.

[a] =
[A]

1+KA[rr][f]
(B.41)

We can obtain the dynamics of [F] and [A] using eqs. (B.25), (B.36) and (B.39)
and eqs. (B.38):

d[A]

dt
=

d[a]

dt
+

d[farr]

dt
= ρag

(
[Arr]

)
−αa[a] (B.42)

d[F]

dt
=

d[f]

dt
+

d[frr]

dt
+

d[farr]

dt
= βf −αf[f]. (B.43)

And using eqs. (B.38) on eqs. (B.37) and (B.20b) we obtain:

d[rr]

dt
= kb[r]

2 − k−b[rr] − τF[rr][f] − τA[rr][f][a] − kd[rr][i]
2 + k−d[rrI] −αd[rr],

(B.44)
d[Arr]

dt
= τF[rr][f] + τA[rr][f][a] − kd[Arr][i]2 + k−d[ArrI] −αAd[Arr]. (B.45)

where
τF = τfKF =

τfkf
k−f + τf

τA = τaKA =
τaka

k−a + τa

(B.46)
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and the expressions for
[
f
(
[rr],[F],[A]

)]
and

[
a
(
[rr],[F],[A]

)]
in equilibrium are

defined by eqs. (B.40) and (B.41).

Lastly, we are going to consider that both HetR dimer formation (bind-
ing and unbinding of two monomers) and HetR inhibition (which consist
of the binding/unbinding between a pair of inhibitors and a HetR dimer)
are much faster than the protein synthesis. As a result of this we can
consider that the reactions (B.14),(B.17), an (B.18) are in equilibrium:

[rr] =
[r]2

Kb
where Kb =

k−b

kb
, (B.47)

[rrI] =
[rr][i]2

K2
d

where K2
d =

k−d

kd
, (B.48)

[ArrI] =
[Arr][i]2

K2
d

where K2
d =

k−d

kd
, (B.49)

First, we will consider the conservation of the total amount of inactivated
HetR and activated dimers for these two interactions:

[R] ≡ [r] + 2[rr] + 2[rrI] (B.50a)
[AR] ≡ [Arr] + [ArrI] (B.50b)

This conservation can be proven by writing the dynamics of those variables
considering only the dimerization and the inhibition:

d[r]
dt = −2kb[r]

2 + 2k−b[rr]
d[rr]
dt = kb[r]

2 − k−b[rr] − kd[rr][i]
2 + k−d[rrI]

d[rrI]
dt = kd[rr][i]

2 − k−d[rrI]


d[R]

dt
=

d[r]

dt
+ 2

d[rr]

dt
+ 2

d[rrI]

dt
= 0.

d[Arr]
dt = −kd[Arr][i]2 + k−d[ArrI]

d[ArrI]
dt = kd[Arr][i]2 − k−d[ArrI]

d[AR]

dt
=

d[Arr]

dt
+

d[ArrI]

dt
= 0.

Therefore,

[R] = [r] + 2
[r]2

Kb
+ 2

[r]2

Kb

[i]2

K2
d

⇒ 1

Kb

(
1+

[i]2

K2
d

)
[r]2 + [r] − [R] = 0 ⇒

⇒ [r] =
−KbK

2
d ±

√
K2
bK

4
d + 8KbK

2
d

(
K2
d + [i]2

)
[R]

4
(
K2
d + [i]2

) =

−1±
√
1+

4[R]
Kb

(
1+

[i]2

K2
d

)
2
Kb

(
1+

[i]2

K2
d

) ,

(B.51)

[AR] = [Arr] + [Arr]
[i]2

K2
d

⇒ [Arr] =
[AR]

1+
[i]2

K2
d

. (B.52)
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Additionally, one should also consider the conservation of the inhibitors:
[I] = [i] + [rrI] + [ArrI]:

[I] = [i] + [rr]
[i]2

K2
d

+ [Arr]
[i]2

K2
d

= [i] +
[r]2

Kb

[i]2

K2
d

+
[AR]

1+
[i]2

K2
d

[i]2

K2
d

⇒

⇒
(
[I] − [i]

)(
K2
d + [i]2

)
=

[r]2

Kb
[i]2 + [AR][i]2 ⇒

⇒ [i]3 +
( [r]2
Kb

+ [AR] − [I]
)
[i]2 +K2

d[i] −K2
d[I] = 0. (B.53)

Then if we solve this cubic equation, we will obtain the expression of free
inhibitor ([i])‡‡.

As a consequence of the Bolzano theorem we can affirm that every
cubic equation with real coefficients has at least one real solution,
the other two solutions may be two distinct real roots, a multiple
real root or two complex conjugated roots. To know which is our
case we can use the cubic discriminant:

∆3 = b2c2 − 4ac3 − ab3d− 27a2d2 + 18abcd, (B.54)

which is positive (∆3 > 0) if the equation has three distinct real
roots, zero (∆3 = 0) if the equation has a multiple root and another
distinct real root and negative (∆3 < 0) if the equation has two
complex conjugated roots and a real root.

Firstly, we will obtain the discriminant for our particular case (eq. (B.53)):

∆3 =

(
[r]2

Kb
+ [AR] − [I]

)2

K4
d−

−4K6
d +

(
[r]2

Kb
+ [AR] − [I]

)3

[I]K2
d−

− 27[I]2K4
d − 18

(
[r]2

Kb
+ [AR] − [I]

)
K4
d[I],

‡‡ This cubic equation appears as a result of considering that a significant amount of in-
hibitor is attached to HetR. Due to this, the inhibitory effect would be less relevant in
cells with more concentration of HetR because the sequestration of the inhibitor would
create a diffusive bottleneck. If one considers instead that the amount of inhibitor in the
system is much higher than the total amount of HetR [R] (given the lower expression of
hetR (Di Patti et al., 2018)), then the error associated to simulate directly the dynamics
of the free inhibitor would be much lower. It simply there won’t be enough inactivated
dimmers [rr] to effectively protect the active ones [Arr] through inhibitor sequestration.
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If we rearrange

∆3 = K4
d

[(
[r]2

Kb
+ [AR] − [I]

)(
[r]2

Kb
+ [AR] +

(
[r]2

Kb
+ [AR] − [I])2[I]

K2
d

− 19[I]

)
−

− 4K2
d − 27[I]2

]

And since we only need to consider if

{ ∆3 < 0

∆3 = 0

∆3 > 0

}
we can ignore the K4

d

factor as K4
d ⩾ 0:

∆3 =

(
[r]2

Kb
+ [AR] − [I]

)(
[r]2

Kb
+ [AR] +

(
[r]2

Kb
+ [AR] − [I])2[I]

K2
d

− 19[I]

)
−

− 4K2
d − 27[I]2.

(B.55)

Using this discriminant we can decide, for each particular case, if we need
to compute all the solutions or only the one that is always real (eq. (B.56)).

One can obtain the solutions using the Cardano’s formula which
estates that given a cubic Polynomial P : ax3 + bx2 + cx+ d = 0 the
solutions are:

x1 = S+ T −
b

3a
(B.56)

x2 = −
S+ T

2
−

b

3a
+

i
√
3

2
(S− T) (B.57)

x2 = −
S+ T

2
−

b

3a
−

i
√
3

2
(S− T), (B.58)

where S =
3

√
R+

√
Q3 + R3, T =

3

√
R−

√
Q3 + R3, and in turn Q =

3ac−b2

9a2
, R = 9abc−27a2d−2b3

54a3
.

And after computing the solutions using eqs. (B.56) to (B.58) with our
particular coefficients from eq. (B.53), we will accept the one with values
between 0 and [I]. This solution will be represented in this document as
[i].
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Then the time evolution of [R] and [AR] and [I] will be:

d[R]

dt
=

d[r]

dt
+ 2

d[rr]

dt
+ 2

d[rrI]

dt
=

= βr + ρrg
(
[AR],[i]

)
−αr[r] − 2τF[rr][f] − 2τA[rr][f][a] − 2αd[rr] − 2αId[rrI] =

= βr + ρrg
(
[AR],[i]

)
− 2τF

[r]2

Kb
[f] − 2τA

[r]2

Kb
[f][a] −αr[r] − 2αd

[r]2

Kb
− 2αId

[r]2[i]2

KbK
2
d

, (B.59)

d[AR]

dt
=

d[Arr]

dt
+

d[ArrI]

dt
= τF[rr][f] + τA[rr][f][a] −αAd[Arr] −αM[ArrI],

= τF
[r]2

Kb
[f] + τA

[r]2

Kb
[f][a] −αAd

[AR]

1+
[i]2

K2
d

−αM

[AR]
[i]2

K2
d

1+
[i]2

K2
d

, (B.60)

d[I]j
dt

=
d[i]

dt
+ 2

d[rrI]

dt
+ 2

d[ArrI]

dt
= ds

(
[s]j+1 + [s]j−1

)
+ dn

(
[n]j+1 + [n]j−1

)
− 2di[i]j −αi[i]j.

(B.61)

And we can obtain the expression for g([AR],[i]) introducing eq. (B.52) on
eq. (B.34) and adding a lineal inhibition from the fixed nitrogen products
([G])¶:

g([AR],[i],[NF]) =

[AR]
Kr

1+
[i]2

K2
d

+
[AR]
Kr

+
[G]
Kd

(B.62)

¶ As we already did in the previous model appendix A we add, phenomenology, a lineal
inhibition from the fixed nitrogen products (G) to our model. Given tot we are not
considering the nitrogen sensing system (which is mediated through ntcA) we have to
add this term to reproduce the nitrogen effect over the heterocyst differentiation
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complete model :

With all the simplifications presented before, we present here the final set
of differential equations that can be used use to reproduce the behavior
of the system with a more identifiable version of our model.

dRj

dt
= βr + ρrg

(
ARj,ij

)
− 2τF

r2j

Kb
fj − 2τA

r2j

Kb
fjaj −αrrj − 2αd

r2j

Kb
− 2αId

r2j i
2
j

KbK
2
d

(B.63)

dARj

dt
= τF

r2j

Kb
fj + τA

r2j

Kb
fjaj −αAd

ARj

1+
i2j
K2
d

−αM

ARj
i2j
K2
d

1+
i2j
K2
d

(B.64)

dAj

dt
= ρag

(
ARj,ij

)
−αaaj (B.65)

dFj

dt
= bf −αffj (B.66)

dsj

dt
= (1− δhc,j)ρsg

(
ARj,ij

)
− 2cssj −αssj (B.67)

dnj

dt
= δhc,jρn − 2cnnj −αnnj (B.68)

dIj

dt
= dp(pj−1 + pj+1) + cn(nj−1 +nj+1) + di(ij−1 − 2ij + ij+1) −αiij (B.69)

dGj

dt
= δhc,jρG + dG(Gj−1 − 2Gj +Gj+1) −αGGj (B.70)

with the boundary condition that if j+ 1 or j− 1 is outside the filament
then Xj+1 = 0 or Xj−1 = 0 and where

τF = τfKF =
τfkf

k−f + τf
, τA = τaKA =

τaka

k−a + τa
,

g(ARj,ij,NFj) =

ARj
Kr

1+
i2j
K2
d

+
ARj
Kr

+
Gj

Kd

, (B.71)

rj(Rj,ij) =
−KbK

2
d +

√
K2
bK

4
d + 8KbK

2
dRj

(
K2
d + i2

)
4
(
K2
d + i2

) , (B.72)

fj(Rj,ij,Fj,Aj) =

−1−
r2
j

Kb

(
KF+KA

(
Aj−Fj

))
+

√√√√[
1+

r2
j

Kb

(
KF+KA

(
Aj−Fj

))]2
+4FjKA

r2
j

Kb

(
1+KF

r2
j

Kb

)
2KA

r2
j

Kb

(
1+KF

r2
j

Kb

) , (B.73)

aj(Rj,ij,Fj,Aj) =
Aj

1+KA
r2j
Kb

fj

, (B.74)

with ij as the solution of this cubic equation (B.53):

i3j + (
r2j

Kb
+ARj − Ij)i

2
j +K2

dij − IjK
2
d = 0. (B.75)
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