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Abstract

Using a TVP-VAR analytical framework, this study explores the change and persistence of the
dynamic connectedness of international energy and carbon credit markets. The overall destabili-
sation effects that have been sourced within recent political and epidemiological events, and the
subsequent consequences of shocks such as the negative WTI pricing event, have the potential to be
quite disruptive to the continued growth and development of several regional oil markets. Results
are presented via a comprehensive analysis of the dynamics of extreme risk spillovers for particular
commodity pairs. In particular, WTI and Brent crude oil are found to have transmitted signif-
icant tail uncertainty shocks to other energy markets. However, Shanghai crude oil and carbon
credit markets typically function as shock absorbers. The remaining energy-related commodities
also primarily function as tail uncertainty receivers. Further incorporating EGARCH-based robust-
ness testing procedures, testing for significant market connectedness shocks that manifest within
international energy markets adds further validity to the results. Specifically, results relating to
the substantial rebalancing of information to Shanghai crude oil futures and EUA carbon futures
merit special consideration, as dynamic interactions strengthen evidence supporting their continued
maturation into significant international markets. These findings are particularly interesting to pol-
icymakers and market participants who use such products to hedge against and diversify regional
oil market fluctuations.
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Exploring the dynamic behaviour of commodity market tail risk
connectedness during the negative WTI pricing event

Abstract

Using a TVP-VAR analytical framework, this study explores the change and persistence of the
dynamic connectedness of international energy and carbon credit markets. The overall destabil-
ising effects generated by recent political and epidemiological events, and the subsequent conse-
quences of shocks such as the negative WTI pricing event, have the potential to be disruptive to
the continued growth and development of several regional oil markets. Results are presented via a
comprehensive analysis of the dynamics of extreme risk spillovers for particular commodity pairs.
In particular, WTI and Brent crude oil are found to have transmitted significant tail uncertainty
shocks to other energy markets. However, Shanghai crude oil and carbon credit markets typically
function as shock absorbers. The remaining energy-related commodities primarily function as tail
uncertainty receivers. Further, by incorporating EGARCH-based robustness procedures, tests for
significant market connectedness within international energy markets adds further validity to the
results. Specifically, results relating to the substantial rebalancing of information to Shanghai crude
oil futures and EUA carbon futures merit special consideration, as dynamic interactions strengthen
evidence supporting their continued maturation into significant international markets. These find-
ings are particularly interesting to policymakers and market participants who use such products to
hedge against and diversify regional oil market fluctuations.

Keywords: TVP-VAR; Dynamic Connectedness; Oil Markets; EGARCH; Negative Valuation.
JEL Classification: C01; C58; C22.
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1. Introduction

In the period since early 2020, international energy markets have experienced multiple black
swan events in the form of the worldwide COVID-19 pandemic and the Russia-Ukraine war [Neely,
2022, Kyriazis et al., 2022]. Subsequently, such events have manifested in a range of rare events, such
as a significant negative pricing event in WTI crude oil markets Corbet et al. [2020], the implemen-
tation of price caps, international sanction packages, and the broad restriction of oil trading across
many geographical regions [Girardone, 2022], and the continued growth and necessity to generate
more rapid transitions to renewable sources of energy to reduce reliance on fossil fuels [Ahonen
et al., 2022, Conlon et al., 2022]. The combination of such incidents has generated an environ-
ment through which dynamic interconnectivity between energy markets has changed significantly.
Through the use of a TVP-VAR methodological structure, this research specifically investigates
the change, and persistence of such change, of the dynamic connectedness of international energy
markets, along with the market for EUA carbon credits, as has been previously used as a measure of
carbon market price performance [Ashok et al., 2022]. Robustness testing procedures are developed
through the use of an EGARCH-methodological structure. Such research is particularly impor-
tant when attempting to not only understand the dynamics of international energy markets but
to specifically understand how governments, policy-makers, and market participants can efficiently
overcome the many geographical, political, and environmental risks and challenges to which they
have been confronted.

While considering the interactions between crude oil markets and other energy variants, such
as gasoline and gasoil, the broad destabilisation effects that have been sourced within recent polit-
ical and epidemiological events have also had the potential to be quite disruptive to the continued
growth and development of several new or emerging regional oil markets. This is particularly im-
portant to consider, as significant progress has been observed in recent times with the development
of the Shanghai Futures Exchange (ShFE) Corbet et al. [2022a], which has allowed investors to
trade based on different regional supply and demand dynamics than more traditional energy mar-
kets, for example, those dominated by WTI, and Brent crude oil. Brent crude oil has been broadly
observed as a valuation barometer for crude oil across Europe, the Middle East and Africa. Pre-
vious attempts to develop such regional markets in Singapore, Japan and Dubai have struggled
with liquidity issues; however, the continued growth of the ShFE comes in part from the growth
of regional markets in Asia/Pacific (APAC), Europe, Middle East and Africa (EMEA), and the
Americas (AMERS), and the provision of new arbitrage and hedging opportunities including tai-
lored protection opportunities for Chinese-based refineries. Specifically, ShFE is the world’s first
RMB-dominated crude oil futures product. The following research further considers the develop-
ment of such regional markets and the specific influence that recent black swan events have had.
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Finally, specific regional differentials of dynamic connectedness offer particularly rich information
surrounding both the behaviour and response to the COVID-19 pandemic, particularly as market
participants revise their regional economic expectations in anticipation of the perceived probability
of success of safety measures designed to restrict the contagion effects of the COVID-19 pandemic.1

To ensure utmost clarity, we explicitly define our primary research objective as the exploration
of dynamic connectedness of international energy markets in the wake of significant ’black-swan’
events, such as the negative pricing event in the West Texas Intermediate (WTI) crude oil markets.
We aim to achieve this through a comprehensive analysis of tail risk spillovers across different energy
commodity pairs, using refined extreme risk measures. The central research question we seek to
answer is: ’What are the dynamics of extreme risk spillovers between crude oil futures and other
energy markets in periods of significant instability, and how do these interactions evolve over time?’
This focus distinguishes our work from other studies, and we believe it has potential implications for
our understanding of the resilience of international energy markets and risk management strategies.
Further, we supplement this question with sub-questions addressing the role of specific crude oil
futures (WTI, Brent, Shanghai crude) as transmitters or receivers of extreme risk shocks and
the evolution of their influence in times of market turmoil. Specifically, this research applies a
combination framework of the popular tail risk model of Engle and Manganelli [2004] and the
TVP-VAR connectedness approach of Antonakakis et al. [2020] to explore tail risk connectedness
among several international energy markets. We explore the hypothesis that there is increased
connectedness between WTI crude oil and several important energy commodities (for example,
Brent crude, Shanghai crude, US gasoline, US heating oil, ICE gasoil and EUA carbon futures).
Increased tail risk connectedness implies that the greater exposure to losses in one commodity
market can migrate easily to the other commodity market [Chatziantoniou et al., 2022]. While
several previous studies have investigated market interconnectedness in the context of WTI negative
pricing events, our research seeks to fill a gap in this field by focusing on the dynamics of extreme risk
spillovers across different energy commodity pairs. Prior work has largely focused on direct spillover
effects without explicit attention to extreme risk, which we argue is essential for understanding the
market behaviour during ’black-swan’ events.

The presented tail risk connectedness analysis in this paper specifically investigates the existence
and dynamic changes of systematic tail risk spillovers between major crude oil (WTI, Brent and
Shanghai) and other key oil-related commodities. Corresponding connectedness results demonstrate
the impact of tail risk uncertainty in the crude oil and oil-related commodity markets. Correspond-
ing connectedness results also present evidence of significant uncertainty transmission channels

1Such differential dynamic effects as a result of lockdown differentials have been previously identified by Corbet
et al. [2022b].
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between WTI crude oil and other oil-related commodities for the effect of negative oil events in
April 2020.

This paper has several interesting findings, where pairwise connectedness results are particularly
interesting. WTI and Brent mainly transmit tail uncertainty shocks to other energy markets, while
the remaining assets analysed mainly act as tail uncertainty receivers. During the period spanning
one month before through one month after the negative WTI oil pricing event, there is evidence of
increased connectedness for most WTI-based energy market pairs, indicating greater exposure to
losses in the WTI market, which affects exposure to losses in the corresponding markets. Results
are presented through a detailed analysis of the dynamics of extreme risk spillovers for specific pairs
of commodities, where our results show that the three crude oil futures do not play the same role in
the presented analysis. WTI and Brent transmit tail uncertainty shocks to other energy markets,
while Shanghai crude is a shock receiver in most cases. Whereas the remaining energy-related
commodities also mainly act as tail uncertainty receivers. The pairwise interaction between WTI
and other energy commodities is particularly interesting, where WTI is found to be a transmitter
of extreme risk for EUA, ICE gasoil, US heating oil, and Shanghai crude oil. Shanghai crude
oil receives the largest tail uncertainty from WTI across other pairs. One month before and one
month after the negative WTI oil pricing event, we find evidence of increased connectedness for
most WTI-other energy market pairs. This implies that greater exposure to losses in WTI markets
affects exposure to losses in the corresponding markets.

Including EGARCH-based robustness testing procedures presents additional evidence of the
significant market connectedness shocks manifested in international energy markets due to the
negative crude oil event, further validating the results. For example, on the date of the negative
WTI event from gasoline and heating oil markets, Shanghai crude oil markets were discovered to
be significant net receivers of shocks. Significantly elevated shock transmission is identified between
EUA carbon futures and the heating oil market. In contrast, carbon futures experience significant
shock transmission from gasoline markets on the same day as negative WTI events. Such results
not only confirm the exceptionally dynamic nature and robust interconnectedness of the analysed
markets but also bolster the pervasiveness of the negative WTI pricing event. Specifically, results
relating to the substantial rebalancing of information to Shanghai crude oil and EUA carbon futures
merit special attention. Their dynamic interactions reinforce evidence supporting their ongoing
development to become significant, mature international markets. Such findings are of particular
interest to policymakers and market participants who use such products to hedge and diversify
against regional oil market fluctuations.

The remainder of this paper is structured as follows: the previous literature and theories that
guide the development of our research are summarised in Section 2. Section 3 presents a thorough
explanation of the wide variety of data used in this analysis while presenting a concise overview of
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the methodologies used in Section 4. Section 5 presents the results of the analysis, and subsequent
robustness testing procedures, examining the influence of extreme risk upon pairwise spillovers and
focusing specifically on exploring the effects of negative oil events. Finally, Section 6 concludes.

2. Previous Literature

The following research develops upon a TVP-VAR methodological structure, which has been
used and developed for the purpose of analysing volatility connectedness across several market pairs
such as broad commodity types [Degiannakis et al., 2018, Byrne et al., 2019, Liu and Gong, 2020,
Chatziantoniou et al., 2021, Gong and Xu, 2022], metal markets and clean energy [Song et al.,
2022], between renewables, non-renewables, and carbon emission products [Kang et al., 2019], and
between several commodity markets and both international stock markets [Jebabli et al., 2014,
Darehshiri et al., 2022], and Chinese stock markets [Dai et al., 2022, Dai and Zhu, 2022], and
further, between sectors within Chinese stock markets [Qin et al., 2021], and both derivative and
both foreign exchange products [Tian et al., 2021]. Such TVP-VAR structures develop upon VAR-
based investigations [Cross and Nguyen, 2017], and upon dynamic spillover indices as proposed
by Diebold and Yilmaz [2009, 2012], Diebold and Yılmaz [2014] which have been used to analyse
a variety of financial market-based and regionally-based interactions [Meegan et al., 2018, Corbet
et al., 2018, Mensi et al., 2021, Cioroianu et al., 2021b]. Events analysed using the TVP-VAR
model to measure risk transmission include that of the COVID-19 pandemic [Bouri et al., 2021,
Urom et al., 2021, Elsayed et al., 2022, Samitas et al., 2022, Chai et al., 2022], and spillovers as a
result of both geopolitical risk and economic policy uncertainty [Apostolakis et al., 2021, Gu et al.,
2021, Assaf et al., 2021].

TVP-VAR methodological structures have been used across several areas to isolate and examine
specific market effects; however, most recently, they have been used to focus on the COVID-19
pandemic. Ha and Nham [2022] identified that health shocks appear to influence the system-wide
dynamic connectedness during the outbreak of COVID-19, where crude oil and equity markets are
largely found to be the recipients of spillover effects from all the other markets. Interactions be-
tween equity markets are further examined with regional and time-varying differentials by Zhang
et al. [2021], Hung [2021], Umar et al. [2021], Zhang et al. [2021], much of which develops substan-
tially upon the works of Baruník and Křehlík [2018], Diebold and Yilmaz [2009, 2012] and Diebold
and Yılmaz [2014]. Tiwari et al. [2022] investigated time-varying volatility spillovers and connect-
edness among agricultural markets, energy markets and biofuel markets, finding that dynamics
connectedness is stronger within wider quantiles than those surrounding the mean and median of
the conditional distribution, where the right tail is estimated to produce higher estimates than the
left tail. Such an outcome draws particular attention to the importance of systematic risk spillovers
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during extreme market movements. When considering energy, metals and agriculture commodities
during the pandemic, Farid et al. [2022] transmission of return spillovers is stronger in the left and
right tails of the conditional return distribution, and the degree of tail-dependence between the
examined markets was time-varying. Adekoya and Oliyide [2021] summarised that the pandemic
has been largely responsible for risk transmission across various commodity and financial mar-
kets. Further, and focusing on financial market products still in a development stage, Yousaf et al.
[2023] identified interactions between Defi products and equity market sectors such as industrials,
materials and information technology, each identified to be net shock transmitters, while Corbet
et al. [2020] found that cryptocurrency returns are found to be significantly influenced by negative
sentiment relating to COVID-19.2

Specifically, research based on the implementation of sanctions upon the Russian economy has
focused on explaining the effects of the new banking restrictions upon the international banking
system [Girardone, 2022], while Korosteleva [2022] presented evidence of the spillover of risk; as a
result disruptions to Russian energy supply into Europe. Further, [Glambosky and Peterburgsky,
2022] identify significant price return differentials for companies that announced divestment from
Russia after the Russia-Ukraine war compared to those that did not follow suit, while Basnet et al.
[2022] linked the latter decision with poor ESG performance.

3. Data

In our analysis, we first select three major crude oil commodities, including WTI futures, Brent
futures and Shanghai crude oil futures (Shanghai International Energy Exchange Crude Oil Com-
modity Futures). These WTI and Brent oil markets are the benchmarks for the US and wider
markets in Europe, Africa and the Middle East. The newly established Shanghai crude oil mar-
ket is a benchmark for Chinese domestic oil. Our analysis also includes US heating oil futures
(NYMEX No2 Heating Oil), US gasoline futures (NYMEX RBOB Gasoline), and European gasoil
futures (ICE Gas Oil) as they are key refined petroleum products prices (gasoline, heating oil, gas
oil). We also choose European carbon price futures (Intercontinental Exchange Index European
Union Allowance (EUA) in this analysis.

Insert Figure 1 about here

2Further research that provides specific guidance for the following methodological processes are sourced from
examinations focusing on international tourism [Corbet et al., 2022c], the information technology sector Alshater
et al. [2023], precious metals [Umar et al., 2021], cryptocurrency [Conlon et al., 2020, Corbet et al., 2020], and the
role of an external influence such as sentiment [Huynh et al., 2021], media coverage [Umar et al., 2021], and security
breaches [Goodell and Corbet, 2023].
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We obtain daily data of WTI futures, Brent futures, US heating oil futures, US gasoline futures,
European gasoil futures, Shanghai crude oil futures, along with European carbon price futures from
the Eikon database. The sample data covers the period from 26 March 2018 to 9 September 2022
for our analysis. A time series plot of each oil-related futures price is included in Figure 1. First,
all seven price series have had an upward trend after the outbreak of COVID-19. It seems that
the sharp increase in energy prices correlated with the ongoing COVID-19 pandemic. Second, all
energy prices fell sharply during the period surrounding the first negative oil pricing event in April
2020, with different magnitudes experienced [Corbet et al., 2021a,b]. As can be seen, WTI suffered
the largest price drop even compared with other energy-related prices.

Insert Table 1 & Figure 2 about here

Individual returns series are calculated as the first differences of the natural logarithm of the
price series. A time series plot of individual return series is presented in Figure 2. We particularly
focus on the shaded area covering the period 1-month both before and after the April 2020 negative
WTI oil pricing event in Figure 2. As can be seen, all energy return series fluctuated largely
during the first negative oil pricing event in April 2020. In particular, gasoline and Brent returns
are strongly affected by the negative oil pricing event. Moreover, the daily performances for all
return series seem to be larger in 2022. The conflict between Russia and Ukraine may explain this
in February 2022. The return series experienced a much larger increase and subsequent collapse
during the time period surrounding the first negative oil pricing event compared to the periods of
the Russia-Ukraine War beginning in 2022. However, the only exception is that the ICE gas oil
and heating oil returns series experienced a much larger drop in March 2022, which coincides with
the Russia-Ukraine War in 2022, compared with the periods in the surrounding of negative WTI
oil. Table 1 presents the summary statistics for each daily return series. As can be seen, all energy
series have positive returns on average.

4. Methodology

4.1. CAViaR model

The conditional autoregressive value at risk (CAViaR) models of Engle and Manganelli [2004] is
a popular approach which involves autoregressive modelling of the conditional quantiles, and they
make no assumptions about the shape of the conditional distribution. In this study, we apply the
CAViaR approach to estimate the VaR directly, where Bao et al. [2006] shows that it is superior to
other VaR models. We use the asymmetric slope CAViaR to estimate 1% VaRs. The asymmetric
slope CAViaR model is formulated as follows:

7
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fα,t = β0 + β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 (1)

where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure the effects
of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the
leverage effect in the daily returns.

4.2. TVP-VAR approach

The following section is derived from Antonakakis et al. [2020] and provides a brief review of
the TVP-VAR approach. 3 The proposed TVP-VAR-based connectedness approach has become
very popular in the literature as the TVP-VAR connectedness approach does not require choosing
an arbitrary rolling window size, which could lead to a loss of valuable observations and avoids
sensitivity of outlier. The TVP-VAR(p) model may be written as follows:

yt = Atzt−1 + ϵt ϵt | Ωt−1 ∼ N (0,Σt) (2)

vec (At) = vec (At−1) + ξt ξt | Ωt−1 ∼ N (0, t) (3)

where zt−1 = [yt−1, . . . , yt−p]
′
. The time-varying coefficients and time-varying variance-covariance

matrices are used to estimate the generalized connectedness procedure of Diebold and Yılmaz [2014]
that is based on generalized impulse response functions (GIRF) and generalized forecast error vari-
ance decompositions (GFEVD) in accordance with Koop et al. [1996], and Pesaran and Shin [1998].
GIRF is calculated as:

GIRFt (H, δj,t,Ωt−1) = E (yt+H | ej = δj,t,Ωt−1)− E (yt+J | Ωt−1) (4)

3While our choice of Value at Risk (VaR) as a tail risk measure may invite comment, we consider that it ap-
propriate for several reasons. Firstly, VaR remains a widely recognised and easily interpretable measure of risk in
the financial community, lending our research a degree of familiarity and accessibility to academia and practitioners.
Secondly, VaR’s relative simplicity makes them less computationally intensive and more straightforward for empirical
estimation, especially when dealing with multiple market data, as in our study. However, we acknowledge that other
risk measures, such as Expected Shortfall (ES) and Extreme Value at Risk (EVaR), might offer more comprehensive
insight into tail risk. ES, for instance, estimates the expected loss given that a VaR threshold is exceeded and thus
can capture tail risk quite effectively. Similarly, EVaR, by focusing on extreme losses, offers a more robust measure of
tail risk. Nevertheless, these measures come with their own limitations, including higher computational complexity
and potential estimation challenges. Importantly, while our choice of VaR as a tail risk measure is guided by these
considerations, we believe it does not invalidate the potential application of alternative measures like ES and EVaR.
Future research could benefit from employing these measures to provide complementary insights into the dynamics
of extreme risk spillovers in international energy markets.
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Ψj,t(H) =
BH,tΣtej√

Σjj,t

δj,t√
Σjj,t

δj,t =
√
Σjj,t (5)

Ψj,t(H) = Σ
− 1

2
jj,tBH,tΣtej , (6)

We next compute the GFEVD ϕ̃ij,t(H), which represents the pairwise directional connectedness
from j to i and illustrates the influence that the variable j has on variable i in terms of its forecast
error variance share. ϕ̃ij,t(H) is calculated as follows:

ϕ̃ij,t(H) =

∑H−1
t=1 Ψ2

ij,t∑m
j=1

∑H−1
t=1 Ψ2

ij,t

, (7)

where the denominator represents the cumulative effect of all the shocks, while the numerator
illustrates the cumulative effect of a shock in variable i. The total connectedness index (TCI) can
be constructed by:

Ct(H) =

∑m
i,j=1,i̸=j ϕϕ̃ij,t(H)
∑m

i,j=1 ϕϕ̃ij,t(H)
∗ 100 =

∑m
i,j=1,i̸=j ϕ̃ij,t(H)

m
∗ 100 (8)

The total directional connectedness to others measures how variable itransmits its shock to all
other variables j and is defined as:

Ci→j,t(H) =

∑m
j=1,i̸=j ϕ̃ji,t(H)
∑m

j=1 ϕ̃ji,t(H)
∗ 100. (9)

The total directional connectedness from others measures the directional connectedness variable
i receives from variables j and and can be calculated as:

Ci←j,t(H) =

∑m
j=1,i̸=j ϕ̃ij,t(H)
∑m

i=1 ϕ̃ij,t(H)
∗ 100. (10)

The net total directional connectedness can be calculated by subtracting total directional con-
nectedness to others from total directional connectedness from others. The net total directional
connectedness measures the influence that variable i has upon the entire network. The net total
directional connectedness is defined as:

Ci,t = Ci→j,t(H)− Ci←j,t(H) (11)

If Ci,t > 0, it means that variable i influences the network more than the opposite direction. On
the other hand, if Ci,t < 0, then variable i is driven by the network. The net pairwise directional

9
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connectedness can be used for examining bidirectional relationships between variable i and variable
j:

NPDCij(H) =
(
ϕϕ̃jit(H)− ϕ̃ijt(H)

)
∗ 100 (12)

If NPDCij(H) is positive, variable i dominates variable j. If NPDCij(H) is negative, variable
i is dominated by the variable j. The net pairwise directional connectedness between variables i

and j is the difference between the gross shocks transmitted from variable i to variable j and those
transmitted from variable j to variable i.

5. Empirical results

5.1. Tail risk behaviour

As presented in Figure 3, we present the 1% tail risks for each energy futures price by applying
the CAViaR model of Engle and Manganelli [2004]. The tail risks are estimated by the CAViaR
model using an asymmetric slope specification.4 The overwhelming advantage of the asymmetric
slope specification is that it allows the asymmetric effects to consider the asymmetric responses to
positive and negative returns.

Insert Figure 3 about here

In Figure 3, we identify a number of interesting observations. First, there exists a substantial
variation of 1% VaR tail risks over the sample period from March 2018 to September 2022. Second,
among these series, there is a large elevation in the estimated 1% tail risks for all seven energy-
related series surrounding the first negative oil pricing event in April 2020. Between late March
and May, all tail risk series exhibited evidence of a sudden, sharp shock, corresponding to the first
negative WTI oil events. We also find that both WTI and US gasoline markets experience the
largest spikes while other series experience moderate elevation during the same period.

5.2. Dynamic connectedness behaviour

To achieve the stationary assumption required by the TVP-VAR model, we calculate the first
log difference for each tail risk estimation, which can be interpreted as the changes in expected
uncertainty [Chatziantoniou et al., 2022]. All series are found stationary at the 1% significance

4Our selection of the asymmetric slope specification is also the same as the choice in Chatziantoniou et al. [2022].
We also utilise other model specifications of the CAViaR model and tail risk estimation results; however, the presented
selected was the most suitable.
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level according to various unit root tests.5 We then use changes in expected uncertainty for the
TVP-VAR connectedness approach to estimate extreme risk spillovers - the transmission of greater
exposures to losses for all the above-mentioned energy markets. This section presents connectedness
results.

5.2.1. Dynamic total connectedness

We present the dynamic TCI results in Figure 4, showing the evolution of tail risk connectedness
over time for our selected energy markets. Generally, the value of dynamic TCI connectedness varies
from 42% to 65%. In our presented analysis, connectedness measures the degree of uncertainty
across a series of major oil products and the European benchmark carbon price. The dynamic TCI
seems to be strongly affected by major events.

Insert Figure 4 about here

For example, connectedness appears to rise sharply after the outbreak of COVID-19. Especially
the event of negative WTI oil pricing events further contributes to the uncertainty-contagion across
major energy futures prices. A sharp increase in the dynamic TCI value in March 2020 indicates
the presence of increased market risks. Connectedness also rises sharply in mid-2021 and after the
Russia-Ukraine conflict in 2022.

5.2.2. Dynamic net connectedness

The dynamic net connectedness results are presented in Figure 5. Positive (negative) connect-
edness values indicate a net transmitter (receiver) of tail uncertainty shocks. On the other hand, a
net receiver of tail uncertainty shocks is indicated by negative connectedness values. As shown in
Figure 5, on a net term, WTI, Brent, US gasoline and US heating oil are transmitters, while EUA,
ICE gasoil, and Shanghai crude oil are shock receivers.

Insert Figure 5 about here

5.2.3. Examining dynamic pairwise connectedness

The net pairwise connectedness results that measure the transmission of market uncertainty
shocks for WTI, Brent, Shanghai crude oil, Gasoline, heating oil, ICE gasoil and EUA markets are
presented in Figures 6 and 12, respectively. In these figures, the shaded area covers the period one

5For the purpose of the brevity of presentation, unit root results are omitted from the presentation and are
available from the authors upon request.
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month before and one month after the negative WTI oil pricing event. Net pairwise connectedness
results show the transmissions of greater exposure to losses from one market to another, allowing
us to understand the dynamics of extreme risk spillovers in greater depth.

Insert Figure 6 about here

Two of the most important crude oil futures- WTI and Brent, mainly transmit tail uncertainty
shocks to other energy markets, as shown in Figure 6 and Figure 7, respectively. We focus on extreme
risk spillovers from the WTI to other markets first. WTI is a transmitter for EUA, ICE gasoil, US
heating oil, and Shanghai crude oil. Shanghai crude oil receives the largest tail uncertainty from
WTI compared with the magnitude of connectedness across different pairs. Even more interesting
is that pairwise connectedness for WTI-Shanghai oil climbs to a peak in July 2021. During the
period one month before and one month after the negative WTI oil pricing event, as highlighted
in grey, there is evidence of increased connectedness for most WTI pairs (with the only exception
being the WTI-Brent pair). Such results indicate that greater exposure to losses in the WTI market
affects exposure to losses in the corresponding markets. These results are of particular interest.

Insert Figures 7 & 8 about here

Brent is a transmitter for WTI, EUA, gasoline, heating oil, ICE gasoil and Shanghai crude oil.
Figure 7 also shows pairwise connectedness between Brent and other markets that peaked during
the negative WTI pricing event. Shanghai crude oil futures is another crude oil product included
in our analysis. Pairwise connectedness between Shanghai crude oil and other markets is presented
in Figure 8. Unlike WTI and Brent, Shanghai crude oil futures is mainly a net shock receiver for
most markets. The above results suggest that different crude oil futures do not play the same role
in the network.

Insert Figure 9 & 10 about here

The rest of the analysed energy markets serve, in most cases, as tail uncertainty receivers.
Figure 9 shows that gasoline is a net transmitter for EUA and Shanghai crude oil. The magnitude
of connectedness for gasoline-Shanghai crude oil is larger than those of the gasoline-EUA pair. As
shown in Figure 10, heating oil transmits tail uncertainty for EUA, gasoil, and Shanghai crude oil,
but it receives a market larger amount of uncertainty shocks from WTI, Brent and gasoline. ICE
gasoil is a net recipient except for EUA and Shanghai crude oil, as depicted in Figure 11. The
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European carbon market is a net receiver for all the markets in most periods, which is shown in
Figure 12.

Insert Figure 11 & 12 about here

5.3. Understanding dynamic changes of market connectedness due to the 2020 negative WTI event

We next set out to establish the direct influence of the international negative oil pricing event of
April 2020 upon the connectedness of our investigated markets. While considering a variety of op-
tions within the GARCH-family of models, we focus specifically on the change and volatility effects
using an EGARCH(1,1) methodology, which was selected after developing upon several goodness-
of-fit testing procedures6. We utilise the mean equation of the EGARCH(1,1) methodology as
displayed in equation (13).

ct = a0 + b1ct−1 + b2dt + εt (13)

while we express the variance equation of our EGARCH(1,1) model as follows:

ln(h2
t ) = ω + αεt−1 + γ(|εt−1|−E(|εt−1|)) + β ln(h2

t−1) (14)

In the presented EGARCH(1,1) analysis, ct represents the estimated connectedness as estimated.
We include an additional dt term in equation (14) in our analysis to provide a coefficient relating to
the observed differential respectively for each pre-determined estimation window surrounding the
negative oil pricing event, including [-60,-1], [-40,-1], [-20,-1], [-10,-1], [-5,-1], [-3,-1], [0,+1] [0,+3],
[0,+5], [0,+10], [0,+20], [0,+40], and [0,+60], to test for the change in connectedness both before
and after7. Specifically, the periods [0,+20], [0,+40] and [0,+60] are used to reflect behavioural
differentials, respectively, for the periods one, two, and three months after reflecting the persistence
of the identified change of connectedness.8 In equation (13), ct−1 represents the lagged value of the
individually analysed market connectedness.

6EGARCH exploits information contained in realised measures of volatility while providing a flexible leverage func-
tion that accounts for return-volatility dependence. In our selection, other competitive models included EGARCH,
TGARCH, Asymmetric Power ARCH (APARCH), Component GARCH (CGARCH) and the Asymmetric Compo-
nent GARCH (ACGARCH). The optimal model is chosen according to three information criteria, namely the Akaike
(AIC), Bayesian (BIC) and Hannan-Quinn (HQ).

7In total, the results incorporate the information content of 310,896 EGARCH methodologies, through which the
structure of best fit was selected using each the Akaike information criterion (AIC), the Bayesian information criterion
(BIC) and Hannan-Quinn information criterion (HQ) respectively. Each number refers to the specific trading days
relative to each identified event.

8Multiple variations of this analysis were utilised, such as specifically testing the day of, through to tests inclusive
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The EGARCH(1,1) analysis presents the estimated average dynamic connectedness for each
specified time horizon when accounting for international effects. Positive estimates indicate that
the source market is a transmitter of shocks, while negative estimates indicate that the source
market is a receiver. In Tables 2 and 3, we observe the time-varying nature of market connected-
ness in the time surrounding the April 2020 negative WTI oil event. In particular, the changes in
these estimates between the periods [-60,-1] through [-3,-1] and the period after the negative pricing
event are particularly interesting. Focusing specifically on WTI, we observe that at the time [0,+1],
sharp shock transmissions are evident in each market, except for Brent crude. However, the net
transmission of shocks from WTI is found to be far more pertinent for each of the markets for
gasoline, ICE gasoil, and EUA carbon futures throughout the 60 days examined thereafter. The
net change of interaction between the Shanghai crude market and the EUA carbon markets is par-
ticularly interesting in the context of this work. Regarding Shanghai crude oil, it is important to
note China’s unique position in the global oil market. As one of the world’s largest oil importers,
China greatly influences international oil prices. The Shanghai crude market, which trades in the
yuan, is additionally buffered by its relative insulation from global financial influences and direct
dollar-denominated oil price swings. Furthermore, China’s governmental regulations and strategic
oil reserves act as additional shock absorption mechanisms, mitigating extreme risk spillovers. As
for the EUA carbon futures market, it operates within a distinct economic and regulatory frame-
work. The nature of carbon pricing inherently involves a balancing act of market forces and policy
interventions, with regulatory measures often designed to stabilise price fluctuations. This, coupled
with the long-term nature of carbon reduction commitments under the EU Emissions Trading Sys-
tem (ETS), provides inherent resistance to short-term market shocks, enabling the EUA market
to function as a shock absorber. Such evidence further supports the growing positions of both
products within international financial markets.

Insert Tables 2 & 3 about here

When considering the interactions between markets as measured by shocks sourced in Brent
crude, no evidence of any changes are identified with Shanghai crude oil. However, significant
shock transmission is identified from Brent to all other analysed markets, presenting evidence of
the widespread contagion and secondary transmission effects of such a rare market event. The
sharp, seven-fold elevation of shock transmission between oil markets and EUA carbon futures,

the period two weeks thereafter (ten trading days). However, results were indifferent, while theoretical justification
best supported the selection of that presented [Corbet et al., 2022d, Cioroianu et al., 2021a]. Results from these
additional analyses are omitted for brevity of presentation but are available from the authors upon request.
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however, effects are found to dissipate in the medium term thereafter. Such results are particularly
interesting as they suggest that investors were reconsidering their expectations of future carbon
emissions trading behaviour in the context of significant economic shocks. Shanghai crude oil
markets are found to have become significant net receptors of shocks on the exact date of the
negative WTI event from gasoline and heating oil markets. Evidence of significant differentials of
shock transmissions as sources from ICE Gasoil markets is not identified. While finally, significantly
elevated shock transmission is identified between EUA carbon futures and the market for heating
oil, whereas carbon futures are identified to experience substantial shock transmission from Gasoline
markets on the same day the negative WTI events occur.

Our research builds upon and contributes to the literature on volatility spillover effects in com-
modity markets, particularly those focusing on oil and energy-related products. Notably, our find-
ings diverge from, yet deepen, the understanding achieved in earlier works [Du et al., 2011, Nazlioglu
et al., 2013]. For instance, significant works have suggested a more unidirectional volatility spillover
from oil to other commodities [Ahmed and Huo, 2021]. Our analysis, however, highlights a more
complex and multi-directional interconnectedness, where some markets transmit risk while others
absorb shocks. This nuance could be attributed to our focus on extreme tail risks, a less-explored
facet in previous studies. Further, our observation of Shanghai crude and EUA carbon futures
predominantly functioning as shock absorbers contrast with the general perception of emerging
markets as shock transmitters. This challenges previous assumptions and suggests a maturing and
changing role of these markets in the global energy ecosystem. Our findings also corroborate ear-
lier studies that noted the pivotal role of WTI in transmitting volatility to other energy markets
[Liu and Gong, 2020, Corbet et al., 2021c]. However, our work extends this understanding by em-
phasising the magnitude of this transmission during extremely negative WTI pricing events. By
considering the prevalence and intensity of extreme risk spillovers under negative oil price scenar-
ios, our study adds granularity to the existing body of knowledge on market interconnectedness. In
doing so, it underscores the intricacies and potential vulnerabilities of global energy markets, thus
prompting a reevaluation of risk management strategies and regulatory policies. In conclusion, our
study not only resonates with but also advances the literature on volatility spillover, presenting a
more nuanced picture of the international energy market dynamics under extreme risk scenarios.

Such results verify not only the exceptionally dynamic nature and strong interconnectedness
of the markets examined but reinforce the deep-rooted shock that pertained to the negative WTI
pricing event. Specifically, results relating the substantial rebalancing of information to Shanghai
crude oil and EUA carbon futures merit particular attention, where dynamic interactions reinforce
the substantial market maturity that has continued to develop over time. The empirical results
present a clear picture of the unique dynamics that dictate the behaviour of the international energy
markets, particularly under conditions of extreme risk. However, to fully appreciate these dynamics,
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we must delve deeper into their economic underpinnings. The significant influence exerted by WTI
on other energy markets during extreme risk can be explained by several factors. First, the WTI oil
benchmark is deeply integrated into global financial markets, serving as one of a select number of key
barometers of global economic health. Hence, severe negative shocks in the WTI market can erode
confidence and trigger negative sentiment across other energy markets due to its stature and a high
degree of visibility. Second, many institutional investors and financial institutions diversify their
portfolios across various energy markets, creating conduits for transmitting shocks from one market
to another. Thus, a negative shock in the WTI market can lead to significant contagion effects across
other energy markets. Conversely, the resilience of Shanghai crude oil to negative shocks from WTI,
positioning it as a significant shock absorber, can be attributed to the unique characteristics of the
Chinese market. Legal and regulatory differentials, along with vast energy consumption and local
alternatives to oil, partially insulate China from global shocks. The dynamic interaction between
EUA carbon futures and the heating oil market can be understood from the perspective of carbon
pricing. The increasing global emphasis on carbon pricing and environmental sustainability makes
these markets susceptible to negative shocks, particularly during financial stress. These economic
interpretations of our empirical results present the complex mechanisms underpinning extreme risk
spillovers in international energy markets. By demonstrating the mechanisms of shock transmission
and absorption, we further our understanding of these markets’ behaviour during crises, contributing
substantially to the existing body of knowledge on the financial economics of energy markets.

6. Concluding comments

International energy markets have, as a result of significant black-swan events, experienced
various rare events in recent years, including a significant negative pricing event in WTI crude oil
markets, the implementation of price caps, international sanction packages, and the broad restriction
of oil trading across many geographical regions. Using a TVP-VAR analytical framework, this
study explores the change and persistence of the dynamic connectedness of international energy
markets, as well as the market for EUA carbon credits. Specifically, this research completes such
a task by applying the popular tail risk model of Engle and Manganelli [2004] and the TVP-VAR
connectedness approach of Antonakakis et al. [2020]. Of particular interest is that we study the
dynamics of extreme risk spillovers for specific pairs by looking at the interactions for each pairwise
connectedness, and for additional methodological robustness, by exploring the effects of negative
oil events and subsequent changes on major oil markets using GARCH analysis. While considering
the interactions between crude oil markets and other energy variants such as gasoline and gasoil,
the broad destabilisation effects that have been sourced within recent political and epidemiological
events have the potential to be quite disruptive to the continued growth and development of several

16



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

regional oil markets.
The results are presented via a comprehensive analysis of the dynamics of extreme risk spillovers

for particular commodity pairs. Crude oil futures do not present evidence of significant influence
in the analysis, as demonstrated by our pairwise results. WTI and Brent transmit tail uncertainty
shocks to other energy markets, whereas Shanghai crude typically acts as a shock absorber. The
remaining energy-related commodities also primarily function as tail uncertainty receivers. The
interaction between WTI and other energy commodities is particularly interesting within this con-
text. WTI is a transmitter of extreme risk for EUA, ICE gasoil, US heating oil, and Shanghai
crude oil. Shanghai crude oil, in particular, receives the greatest tail risk from WTI compared to
other pairs. One month before and one month after the negative WTI oil pricing event, results
indicate increased connectedness for most WTI-other energy market pairs, indicating that greater
exposure to losses in the WTI market directly manifested in exposure to losses across the respective
examined markets.

Incorporating EGARCH-based robustness testing procedures that test for significant market
connectedness shocks that manifested within international energy markets adds further validity to
the results. On the date of the negative WTI event, among several changes of dynamic interaction,
Shanghai crude oil markets were found to be significant net receivers of shocks. Further, signif-
icantly elevated shock transmission is observed between EUA carbon futures and the heating oil
market. In contrast, carbon futures experience significant shock transmission on the same day as
negative WTI events from gasoline markets. Such results not only substantiate the exceptionally
dynamic and robust interconnectedness of the analysed markets but also bolster the pervasiveness
of the negative WTI pricing event. Specifically, results relating to the substantial rebalancing of
information to Shanghai crude oil futures and EUA carbon futures merit special consideration.
Their dynamic interactions strengthen evidence supporting their continued maturation into signifi-
cant international markets. These findings are particularly interesting to policymakers and market
participants who use such products to hedge against and diversify regional oil market fluctuations.
With the analysis and findings presented in this paper, we believe we have addressed our central re-
search question and its related sub-questions satisfactorily. We have unveiled the intricate dynamics
of extreme risk spillovers across international energy markets in periods of upheaval, focusing on
the interconnectedness of WTI, Brent, and Shanghai crude oil futures with other energy markets.
These findings not only enrich our understanding of the complex market mechanisms in play but
also provide actionable insights for market participants seeking to hedge against or diversify oil
market fluctuations.

Our study’s contributions to the existing literature on international energy markets’ intercon-
nectedness during the WTI negative pricing events can be summarised in three main points. First,
our examination of tail risk spillovers provides a more nuanced perspective of market interconnect-
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edness than previous studies. Second, our findings about the differing roles of WTI, Brent, and
Shanghai crude as either transmitters or receivers of extreme risk shocks in different market situa-
tions provide new insights into the role of market structure and market dynamics in extreme risk
transmission. Finally, our methodological approach, which includes the EGARCH-based robustness
testing procedures, introduces a novel way of investigating market connectedness during periods
of instability. These contributions deepen our understanding of market dynamics in times of crisis
and provide useful insights for policymakers and market participants alike.

Overall, our analysis reveals that extreme risk spillovers in international energy markets exhibit
a complex, dynamic behaviour, with different commodities playing transmitter or receiver roles
under different conditions. This finding has immediate implications for market participants and
policymakers who seek to understand the resilience and vulnerability of these markets in the face
of significant disturbances, such as the WTI negative pricing event. For market participants, un-
derstanding the dynamics of extreme risk spillovers is critical for effective risk management. Our
findings suggest that diversification strategies should consider not only the correlations between
different energy markets but also their potential to transmit or absorb extreme risk during periods
of turbulence. The fact that WTI transmits significant tail risk to other energy commodities, in-
cluding EUA, ICE gasoil, US heating oil, and Shanghai crude oil, implies that portfolio managers
and traders dealing with these commodities may need to review their risk mitigation strategies
to manage potential losses during severe market shocks better. For policymakers, evidence sug-
gests that market disturbances can disrupt the equilibrium of energy markets, causing potential
spillover effects on other sectors of the economy. Particularly, the demonstrated susceptibility of
the Shanghai crude oil market to extreme risk shocks from the WTI market could be of strategic
interest to Chinese regulators. The insights provided in this research also underline the importance
of close international cooperation in managing the global energy markets’ stability, particularly
during periods of crisis. The strong interconnectedness between different markets suggests that any
significant shock in one market will likely have repercussions in others, underscoring the need for
joint policy responses. Overall, this research contributes a more nuanced understanding of extreme
risk dynamics in the international energy markets.
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Figure 1: Price performance of analysed assets, USD$
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Note: This figure depicts the daily price of six oil-related futures with European carbon price futures between 26 March
2018 to 9 September 2022. The shaded area covers one month before and after the April 2020 negative WTI oil pricing
event. We obtain daily data on WTI futures, Brent futures, US heating oil futures, US gasoline futures, European gasoil
futures, Shanghai crude oil futures, and European carbon price futures from the Eikon database.
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Figure 2: Time series plot of each daily return series
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Note: This figure depicts the daily return of six oil-related futures with European carbon price futures from 26 March 2018
to 9 September 2022. The shaded area covers the period of one month both before and after the April 2020 negative WTI oil
pricing event. We obtain daily data on WTI futures, Brent futures, US heating oil futures, US gasoline futures, European
gasoil futures, Shanghai crude oil futures, and European carbon price futures from the Eikon database.
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Figure 3: 1% tail risks.
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Note: 1% tail risk is calculated using asymmetric slope CAViaR model, which is formulated as fα,t = β0 + β1fα,t−1(β) +

β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure the effects of

positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect in the daily
returns.
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Figure 4: Total connectedness based on 1% VaR tail risk changes
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Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance, which is formulated as: fα,t = β0 +β1fα,t−1(β)+β2x

+
t−1 +β3x

−
t−1 where fα,t is the VaR at the α level in period

t. β2 and β3 are coefficients that measure the effects of positive and negative returns. The asymmetric slope CAViaR model,
therefore, considers the leverage effect in the daily returns. The shaded area covers the period of one month both before
and after the April 2020 negative WTI oil pricing event.

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 5: Net connectedness based on 1% VaR tail risk changes
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Note: The 1% tail risk is calculated using asymmetric slope CAViaR model, which is formulated as fα,t = β0+β1fα,t−1(β)+

β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure the effects of

positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect in the daily
returns.
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Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance. The 1% tail risk is calculated using the asymmetric slope CAViaR model, which is formulated as fα,t = β0 +

β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure

the effects of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect
in the daily returns. The shaded area covers one month before and after the April 2020 negative WTI oil pricing event.

29



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofFigure 7: Pairwise connectedness between Brent and other markets
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Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance. The 1% tail risk is calculated using the asymmetric slope CAViaR model, which is formulated as fα,t = β0 +

β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure

the effects of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect
in the daily returns. The shaded area covers the period of one month both before and after the April 2020 negative WTI
oil pricing event.
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ofFigure 8: Pairwise connectedness between Shanghai crude oil and other markets
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Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance. The 1% tail risk is calculated using the asymmetric slope CAViaR model, which is formulated as fα,t = β0 +

β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure

the effects of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect
in the daily returns. The shaded area covers the period of one month both before and after the April 2020 negative WTI
oil pricing event.
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ofFigure 9: Pairwise connectedness between gasoline and other markets
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Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance. The 1% tail risk is calculated using the asymmetric slope CAViaR model, which is formulated as fα,t = β0 +

β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure

the effects of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect
in the daily returns. The shaded area covers the period of one month both before and after the April 2020 negative WTI
oil pricing event.
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ofFigure 10: Pairwise connectedness between heating oil and other markets
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Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance. The 1% tail risk is calculated using the asymmetric slope CAViaR model, which is formulated as fα,t = β0 +

β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure

the effects of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect
in the daily returns. The shaded area covers one month before and after the April 2020 negative WTI oil pricing event.
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ofFigure 11: Pairwise connectedness between ICE. gasoil and other markets

(a) WTI

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

II III IV I II III IV I II III IV I II III IV I II III
2018 2019 2020 2021 2022

(b) Brent

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

II III IV I II III IV I II III IV I II III IV I II III
2018 2019 2020 2021 2022

(c) Shanghai Crude Oil

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

II III IV I II III IV I II III IV I II III IV I II III
2018 2019 2020 2021 2022

(d) Gasoline

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

II III IV I II III IV I II III IV I II III IV I II III
2018 2019 2020 2021 2022

(e) Heating Oil

-5

0

5

10

15

II III IV I II III IV I II III IV I II III IV I II III
2018 2019 2020 2021 2022

(f) EUA

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

II III IV I II III IV I II III IV I II III IV I II III
2018 2019 2020 2021 2022

Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance. The 1% tail risk is calculated using the asymmetric slope CAViaR model, which is formulated as fα,t = β0 +

β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure

the effects of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect
in the daily returns. The shaded area covers one month before and after the April 2020 negative WTI oil pricing event.
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ofFigure 12: Pairwise connectedness between EUA and other markets
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Note: Results are obtained from a TVP-VAR model with a lag length of order one, and a 20-step ahead forecast error
variance. The 1% tail risk is calculated using the asymmetric slope CAViaR model, which is formulated as fα,t = β0 +

β1fα,t−1(β) + β2x
+
t−1 + β3x

−
t−1 where fα,t is the VaR at the α level in period t. β2 and β3 are coefficients that measure

the effects of positive and negative returns. The asymmetric slope CAViaR model, therefore, considers the leverage effect
in the daily returns. The shaded area covers the period one month before and after the April 2020 negative WTI oil pricing
event.
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Table 1: Summary statistics for each daily return series

WTI Brent Shanghai Gasoline Heating oil ICE. Gasoil EUA

Mean 0.000543 0.000172 0.0003 0.0001 0.0004 0.0004 0.0009
Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Max 0.3196 0.1908 0.1216 0.2239 0.1236 0.1399 0.1614
Min -0.2822 -0.2797 -0.1387 -0.3853 -0.2475 -0.4085 -0.1942
Std Dev. 0.02916 0.0245 0.0201 0.0280 0.0224 0.0246 0.0256
Skewness 0.0869 -1.7163 -0.2922 -2.6842 -1.5265 -3.0482 -0.8016
Kurtosis 37.2837 30.4722 10.6803 45.2931 23.443 56.8643 11.2011

Note: This table reports the descriptive statistics of the return series of six major oil-related futures with European carbon
price futures from 26 March 2018 to 9 September 2022. Returns are calculated as the first differences of natural logarithms
of price series.
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[0,+40] [0,+60]

-0.711*** -0.571***
(6.00) (5.87)
0.053 0.320
(0.17) (1.27)

1.155*** 1.011***
(7.49) (8.01)

0.813*** 0.694***
(17.55) (18.42)
0.170** 0.201***
(2.95) (4.25)

1.275*** 1.049***
(12.80) (12.82)

-0.038 0.142
(0.10) (0.46)

1.737*** 1.497***
(11.69) (12.35)

1.493*** 1.238***
(22.68) (23.02)

0.591*** 0.522***
(6.45) (6.95)

1.768*** 1.437***
(12.16) (12.02)
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Table 2: EGARCH-estimated connectedness change as a result of 2020 negative oil event, sourced from WTI and Brent Crude

Connectedness To [-60,-1] [-40,-1] [-20,-1] [-10,-1] [-5,-1] [-3,-1] [0,+1] [0,+3] [0,+5] [0,+10] [0,+20]

Testing connectedness change from: West Texas Intermediate Oil

Brent -0.071 -0.542*** -1.098*** -1.121*** -1.174*** -1.125** -1.460 -0.969 -0.651 -0.686** -0.759***
(0.71) (4.56) (6.70) (4.79) (3.55) (2.67) (0.86) (1.16) (1.54) (2.71) (4.48)

Shanghai -1.353*** -1.024*** -0.435 -0.455 -0.355 -0.407 4.285* 0.640 -0.025 -0.046 0.092
(5.44) (3.36) (1.02) (0.75) (0.42) (0.38) (2.04) (0.30) (0.02) (0.07) (0.21)

Gasoline -0.186 0.094 0.889*** 1.138*** 1.262** 1.456** 4.287*** 3.053** 1.885*** 1.587*** 1.393***
(1.44) (0.59) (4.09) (3.69) (2.90) (2.64) (4.92) (2.80) (3.41) (4.80) (6.31)

ICE Gasoil 0.318*** 0.587*** 0.794*** 0.680*** 0.636*** 0.639*** 2.441*** 1.570*** 1.215*** 1.132*** 1.028***
(7.60) (11.94) (11.59) (6.76) (4.45) (3.50) (3.31) (4.38) (6.76) (10.77) (15.18)

Heating Oil 0.164*** 0.331*** 0.453*** 0.432*** 0.398* 0.416* 1.047 0.186 0.128 0.106 0.152
(3.47) (5.80) (5.71) (3.82) (2.50) (2.05) (1.27) (0.46) (0.63) (0.87) (1.85)

EUA Carbon 0.012 0.356*** 0.798*** 0.885*** 0.906** 0.999** 7.016*** 3.678*** 2.061*** 1.699*** 1.571***
(0.14) (3.37) (5.46) (4.26) (3.10) (2.68) (4.69) (5.04) (5.58) (7.74) (10.90)

Testing connectedness change from: Brent Crude Oil

Shanghai -0.630* -0.255 0.195 0.109 0.117 -0.023 2.774 0.032 -0.190 -0.197 -0.006
(2.03) (0.67) (0.37) (0.15) (0.11) (0.02) (0.52) (0.01) (0.14) (0.25) (0.01)

Gasoline 0.018 0.618*** 1.628*** 1.849*** 1.996*** 2.153*** 5.379* 3.714*** 2.383*** 2.144*** 2.012***
(0.14) (3.97) (7.65) (6.08) (4.64) (3.93) (2.42) (3.43) (4.35) (6.58) (9.34)

ICE Gasoil 0.672*** 1.099*** 1.454*** 1.333*** 1.339*** 1.366*** 5.287*** 3.143*** 2.215*** 2.044*** 1.876***
(10.85) (15.25) (14.37) (8.86) (6.23) (4.97) (4.75) (5.82) (8.19) (13.09) (19.14)

Heating Oil 0.263*** 0.617*** 0.943*** 0.877*** 0.876*** 0.881** 2.817* 1.048 0.713* 0.668*** 0.699***
(3.45) (6.75) (7.45) (4.83) (3.42) (2.70) (2.13) (1.62) (2.18) (3.41) (5.33)

EUA Carbon 0.515*** 0.933*** 1.469*** 1.506*** 1.564*** 1.643** 9.129*** 4.904*** 2.754*** 2.313*** 2.179***
(4.09) (6.15) (7.00) (5.01) (3.69) (3.04) (4.20) (4.63) (5.13) (7.25) (10.38)

Note: To estimate the change of dynamic connectedness, we utilise the mean equation of the EGARCH(1,1) methodology as displayed in equation (13), express
as ct = a0 + b1ct−1 + b2dt + εt, where ct represents the estimated connectedness as estimated. We specifically examine the time periods: [-60,-1], [-40,-
[-20,-1], [-10,-1], [-5,-1], [-3,-1], [0,+1] [0,+3], [0,+5], [0,+10], [0,+20], [0,+40], and [0,+60], to test for the change in connectedness both before and after.
equation (13), ct−1 represents the lagged value of the individually analysed market connectedness. Further methodological specifications and associated p
and post-estimation testing results are available from the authors upon request. ***, ** and * denote significance at the 1%, 5% and 10% levels, respectivel
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768*** 2.502***
(6.42) (7.09)
.640*** -0.757***
(3.37) (4.88)
.201*** -1.188***
(6.75) (8.20)
0.003 -0.321*
(0.01) (2.22)

400*** 0.378***
(3.71) (4.28)
.600*** -1.373***
10.31) (10.82)
.433* 0.358*

(2.39) (2.40)

.584** 0.517**
(3.02) (3.25)
0.199 0.182
(1.71) (1.90)
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(7.09) (9.39)
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Table 3: EGARCH-estimated connectedness change as a result of 2020 negative oil event, sourced from Shanghai crude, gasoline, ICE gasoil a
heating oil

Connectedness To [-60,-1] [-40,-1] [-20,-1] [-10,-1] [-5,-1] [-3,-1] [0,+1] [0,+3] [0,+5] [0,+10] [0,+20] [

Testing connectedness change from: Shanghai Crude Oil

Gasoline 3.339*** 3.267*** 2.950*** 3.184*** 3.250** 3.356* 2.195 3.578 2.902 2.837** 2.798*** 2.
(9.63) (7.65) (4.89) (3.71) (2.69) (2.18) (0.35) (1.18) (1.89) (3.07) (4.53)

ICE Gasoil -0.345* -0.215 -0.237 -0.141 -0.222 -0.162 -1.006 -0.680 -0.458 -0.276 -0.310 -0
(2.21) (1.13) (0.90) (0.37) (0.42) (0.24) (0.37) (0.51) (0.68) (0.68) (1.14)

Heating Oil 0.174 -0.205 -0.612* -0.350 -0.395 -0.359 -5.705* -2.364 -1.532* -1.310*** -1.280*** -1
(1.17) (1.13) (2.43) (0.98) (0.79) (0.56) (2.22) (1.88) (2.41) (3.43) (5.01)

EUA Carbon 0.277 0.684*** 0.841*** 0.765* 0.619 0.655 -1.369 0.151 0.808 0.834* 0.579*
(1.91) (3.91) (3.46) (2.21) (1.27) (1.06) (0.55) (0.12) (1.31) (2.24) (2.31)

Testing connectedness change from: Gasoline

ICE Gasoil 0.471*** 0.762*** 0.831*** 0.733*** 0.658* 0.565 1.980 0.571 0.351 0.366 0.476** 0.
(5.36) (7.20) (5.59) (3.46) (2.20) (1.49) (1.29) (0.76) (0.92) (1.60) (3.10)

Heating Oil -0.325* -0.500** -0.995*** -0.967** -1.042* -1.132* -3.743 -3.344** -2.360*** -2.141*** -1.887*** -1
(2.45) (3.10) (4.46) (3.05) (2.33) (1.99) (1.63) (2.99) (4.17) (6.35) (8.43) (

EUA Carbon 0.119 0.451* 1.123*** 0.828* 0.651 0.418 4.455* 1.983 0.814 0.548 0.566* 0
(0.80) (2.49) (4.48) (2.32) (1.30) (0.65) (2.06) (1.57) (1.27) (1.42) (2.19)

Testing connectedness change from: ICE Gasoil

Heating Oil 0.133 -0.199 -0.131 0.182 0.293 0.372 -0.245 1.353 0.694 0.483 0.216 0
(0.84) (1.02) (0.48) (0.48) (0.55) (0.55) (0.09) (1.00) (1.02) (1.18) (0.78)

EUA Carbon -0.127 -0.191 -0.251 -0.378 -0.363 -0.379 0.511 0.425 0.223 0.096 0.076
(1.33) (1.64) (1.55) (1.65) (1.13) (0.93) (0.31) (0.53) (0.54) (0.39) (0.46)

Testing connectedness change from: Heating Oil

EUA Carbon 0.218 0.444** 0.443* 0.197 0.256 0.247 5.736** 3.199** 1.775** 1.378*** 1.147*** 1.
(1.73) (2.90) (2.08) (0.65) (0.60) (0.46) (2.63) (3.01) (3.30) (4.27) (5.30)

Note: To estimate the change of dynamic connectedness, we utilise the mean equation of the EGARCH(1,1) methodology as displayed in equation (13), express
as ct = a0 + b1ct−1 + b2dt + εt, where ct represents the estimated connectedness as estimated. We specifically examine the time periods: [-60,-1], [-40,-
[-20,-1], [-10,-1], [-5,-1], [-3,-1], [0,+1] [0,+3], [0,+5], [0,+10], [0,+20], [0,+40], and [0,+60], to test for the change in connectedness both before and after.
equation (13), ct−1 represents the lagged value of the individually analysed market connectedness. Further methodological specifications and associated p
and post-estimation testing results are available from the authors upon request. ***, ** and * denote significance at the 1%, 5% and 10% levels, respectivel
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Highlights

We reveal interconnectedness in global energy markets

We explore the impact of extreme 'black swan' events

WTI is identied as a signiicant role in shock transmission

Shanghai crude and EUA markets are shown to be shock absorbers

We contributed a novel method to investgate market connectedness
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