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Abstract

A (full) qk factorial design with replication λ is the multi-set containing all

possible q-ary sequences of length k, each occurring exactly λ times. An m×
n row-column factorial design is any arrangement of λ replicates of the qk

factorial design in an m × n array. We say that the design has strength t if

each row and column is an orthogonal array of strength t. We denote such a

design by Ik(m,n, q, t).

A frequency rectangle of type FR(m,n; q) is an m × n array based on a

symbol set S of size q, such that each element of S appears exactly n/q times

in each row and m/q times in each column. Two frequency rectangles of the

same type are said to be orthogonal if each possible pair of symbols appears

the same number of times when the two arrays are superimposed. By k–

MOFR(m,n; q) we mean a set of k frequency rectangles of type FR(m,n; q) in

which every pair is orthogonal.

In Chapter 4, we give the necessary and sufficient conditions when a row-

column factorial design of strength 1 exists. We show that an array of type

Ik(m,n, q, 1) exists if and only if (a) q|m, q|n and qk|mn; (b) (k, q,m, n) ̸=
(2, 6, 6, 6) and (c) if (k, q,m) = (2, 2, 2) then 4 divides n. In Chapter 5, we

discuss designs of strength 2 and above. We solve the case completely when

t = 2 and q is a prime power: we show that there exists an array of type

Ik(q
M , qN , q, 2) if and only if k ≤M +N , k ≤ (qM −1)/(q−1) and (k,M, q) ̸=

(3, 2, 2). We also show that Ik+α(2
αb, 2k, 2, 2) exists whenever α ≥ 2 and

2α + α+ 1 ≤ k < 2αb− α, assuming there exists a Hadamard matrix of order

4b. For strength 3 we restrict ourselves to the binary case, solving it completely

when q is a power of 2.

In Chapter 6, our focus is on mutually orthogonal frequency rectangles

(MOFR). We use orthogonal arrays and Hadamard matrices to construct sets

of MOFR. We also describe a new form of orthogonality for a set of frequency

rectangles. We say that a k–MOFR(m,n; q) is t–orthogonal if each subset of

size t, when superimposed, forms a qt factorial design with replication mn/qt.

A set of vectors over a finite field is said to be t-independent if each subset

of size t is linearly independent. We describe a relationship between a set of

t–orthogonal MOFR and a set of t-independent vectors. We use known results
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from coding theory and related literature to formulate a table for the size of

a set of t-independent vectors of length N ≤ 16, over F2. We also describe a

method to construct a set of (p−1)–MOFR(2p, 2p; 2) where p is an odd prime,

improving known lower bounds for all p ≥ 19.
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Chapter 1

Introduction

Consider an experiment [4, Sec 9.8] in a manufacturing plant. The process

of manufacturing is as follows. A piece of material is first chosen from eight

available batches and then is prepared by receiving a combination of five treat-

ments (say A, B, C, D and E). The prepared material is then fed into one of

four machines for processing.

The experiment aims to analyse the effect of the treatments on the final

product. Moreover, we are also interested in the effect of the batch chosen

and the machine used for processing. This could be done by carrying out a

factorial experiment using the design given in Table 1.1.

Batches

1 2 3 4 5 6 7 8

M
ac
h
in
es

1 00000 11000 10101 01101 11011 00011 01110 10110

2 11001 00001 01100 10100 00010 11010 10111 01111

3 00111 11111 10010 01010 11100 00100 01001 10001

4 11110 00110 01011 10011 00101 11101 10000 01000

Table 1.1: A 25 Row-column factorial design

Here the binary sequences represent the combination of treatments re-

ceived, and rows and columns denote the processing machine and the batch of
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the material, respectively. For example, the sequence 11010 in column 6 and

row 2, represents that the piece of material is chosen from batch 6, treated

with treatments A, B and D, and processed by Machine 2.

In the field of experimental design, such designs are referred to as row-

column factorial designs. Let [q] = {0, 1, . . . , q − 1}. Formally, the qk (full)

factorial design with replication α is the multi-set consisting of α occurrences

of each element of [q]k; we denote this by α × [q]k. An m × n row-column

factorial design qk is any arrangement of the elements of α× qk into an m× n

array. We say that the rows and columns are blocking factors in the above

design. A blocking factor is a partition (usually equipartition) of the treatment

combinations of the factorial design.

In the above design, the 25 factorial is arranged so that if we fix a position

(corresponding to a treatment), the entries 0 and 1 appear equally often in

each row (or column). This type of regularity is desirable in applications; using

experimental design terminology, the main effects are not “confounded” with

the blocks (see Chapter 3 for more details). In combinatorics, this property

pertains to structures known as frequency rectangles. Formally:

A frequency rectangle (also called F-rectangle) of type FR(m,n; q) is an

m × n array based on a symbol set S of size q, such that each element of

S appears exactly n/q times in each row and m/q times in each column. A

frequency rectangle of type FR(n, n; q) is known as a frequency square.

Frequency rectangles can be thought of as a generalisation of Latin squares.

A Latin square is a frequency rectangle of type FR(n, n;n), that is, a square

array based on n symbols such that each symbol appears exactly once in each

row and in each column.

Two frequency rectangles, F1 and F2, of the same type, are said to be

orthogonal if each possible ordered pair of symbols appear the same number

of times when F1 and F2 are superimposed. A set of frequency rectangles

in which every pair is orthogonal is called a set of mutually orthogonal fre-

quency rectangles (MOFR). In the case of frequency squares and Latin squares,
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we use the terms MOFS and MOLS respectively. We use the notation k–

MOFR(m,n; q) to represent a set of k MOFR of type FR(m,n; q) and the

notation k–MOFS(n; q) when m = n.

Thus the above design (Table 1.1) can also be seen as a set of five mutually

orthogonal frequency rectangles F1, . . . , F5 of type FR(4, 8; 2) (given in Table

1.2) with the property that they form a 25 factorial design upon superimposi-

tion.

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1

1 0 0 1 0 1 1 0

F1

0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1

F2

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

1 1 0 0 1 1 0 0

1 1 0 0 1 1 0 0

F3

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

F4

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 1 1 1 1 0 0

F5

Table 1.2: Five frequency rectangles of type FR(4, 8; 2) which yield the design

in Table 1.1.

It is important to note here that a set of 3 or more MOFR does not always

constitute a row-column factorial design when superimposed. For example,

in Table 1.3 we have three MOFR of type FR(6, 12; 2) that do not form a

row-column factorial design, as the sequences of odd weights (001, 010, 100,

111) appear 6 times while the sequences of even weights (000, 110, 101, 011)

appear 12 times in the superimposed array.
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000 111 000 101 011 110 000 111 000 101 011 110

111 000 000 011 110 101 111 000 000 011 110 101

000 000 111 110 101 011 000 000 111 110 101 011

101 011 110 010 100 001 101 011 110 010 100 001

011 110 101 100 001 010 011 110 101 100 001 010

110 101 011 001 010 100 110 101 011 001 010 100

Table 1.3: Three mutually orthogonal frequency rectangles of type FR(6, 12; 2)

An upper bound on the size of k–MOFR(m,n; q) is given by (see Theorem

6.1):

k ≤ (m− 1)(n− 1)

(q − 1)
.

The upper bounds k ≤ (n − 1)2/(q − 1) ([3]) and k ≤ n − 1 (see Lemma

2.1) for a set of MOFS and a set of MOLS, respectively, can be derived from

the above expression.

A set of MOFR that reaches the upper bound (described above) is known

as complete. Finding complete, or largest possible sets of MOFR is a well-

known problem that has been investigated by many mathematicians as these

structures have applications in the field of experimental design, coding theory,

and cryptology (a survey of applications is given in [5]).

We return now to the experimental application. As we have seen, the fact

that the design in Table 1.1 is composed of frequency rectangles is advanta-

geous in estimating the effects of individual treatment factors. However, if we

are also interested in analysing the interaction between two treatments, it is

desirable to have some additional properties. For example, in order to esti-

mate the effect of the interaction of treatments B and C, ideally, if we fix the

corresponding positions (2nd and 3rd) each possible ordered pair of symbols

(0 and 1) should appear equally often in each column and in each row. By

close inspection, we can see that in the above design (Table 1.1) this property

holds for all two-factor interactions except for AB and CD, in the columns (as

shown in Table 1.4).
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Batches

1 2 3 4 5 6 7 8

M
ac
h
in
es

1 00000 11000 10101 01101 11011 00011 01110 10110

2 11001 00001 01100 10100 00010 11010 10111 01111

3 00111 11111 10010 01010 11100 00100 01001 10001

4 11110 00110 01011 10011 00101 11101 10000 01000

Table 1.4: The interaction factor AB is confounded with the columns.

In the language of experimental design, the interaction effects AB and

CD are confounded with the batches (again, for more details see Chapter

3). Similarly, we want analogous properties if we are interested in estimating

three or higher-factor interactions without confounding. We next introduce

orthogonal arrays that will be useful to define such designs.

An orthogonal array of size N , degree k, strength t based on a symbol set

S of size q, denoted by OA(N, k, q, t), is an N × k array of elements of S such

that if we fix any t columns then each possible t-tuple of symbols appear the

same number of times as a row.

Observe that each column of the design in Table 1.1 is an OA(4, 5, 2, 1)

of strength 1 and each row is an OA(8, 5, 2, 2). For example, the orthogonal

arrays based on column 1 and row 1 of Table 1.1 are given below.
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0 0 0 0 0

1 1 0 0 1

0 0 1 1 1

1 1 1 1 0

OA(4, 5, 2, 1)

0 0 0 0 0

1 1 0 0 0

1 0 1 0 1

0 1 1 0 1

1 1 0 1 1

0 0 0 1 1

0 1 1 1 0

1 0 1 1 0

OA(8, 5, 2, 2)

Table 1.5: Orthogonal arrays based on column 1 and row 1 of the design given

in Table 1.1.

Thus if each block (row and column) of a factorial design forms an orthog-

onal array of strength t, then all t factor interactions are estimable. Now we

give a formal definition of such a design.

We say that a row-column factorial design qk is of strength t if each of its

columns is an orthogonal array of type OA(m, k, q, t) and each of its rows is

the transpose of an OA(n, k, q, t). We denote such a design by Ik(m,n, q, t). In

the case of t = 1 we sometimes drop t and simply write Ik(m,n; q). Note that

in Chapter 4, we refer to the designs of strength 1 as regular designs. Without

loss of generality, we always assume m ≤ n.

In Chapter 2, we give a brief survey and introduction to the mathematical

structures that are closely related to the work done in this thesis, including

frequency rectangles, orthogonal arrays, Hadamard matrices, and linear codes.

Although the focus of this thesis is not applied experimental design, given the

fact that row-column factorial designs are used in practice, we survey these

applications in Chapter 3.

One of the key research questions in this thesis is: For which parameters

k,m, n, q, and t does a row-column factorial design Ik(m,n, q, t) exist?

In Chapter 4 [7], we answer this question for row-column factorial designs

of strength 1. We give three different construction methods to construct the
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designs of strength 1. First, we give a recursive method in which we take the

Kronecker product of smaller designs in order to construct bigger ones. Our

main result related to the recursive construction is as follows:

Theorem 1.1. If there exist r arrays of types Ik(mi, ni, qi, 1), where i ∈ [r],

then there exist an array of type Ik(
∏r−1

i=0 mi,
∏r−1

i=0 ni,
∏r−1

i=0 qi, 1).

The above is generalized to strength t in Chapter 5 [9].

When q is a prime power we use polynomials over the finite field Fq to

construct row-column factorial designs:

Theorem 1.2. Let q ≥ 2 be a prime power. Let M,N ≥ 1 and (M,N, q) ̸=

(1, 1, 2). There exists an array of type IM+N(q
M , qN , q, 1).

This generalizes a result in [2].

Another important construction is the one that extends the design of the

form IM+N(q
M , qN , q, 1) to Ik(q

Mb1, q
Nb2, q, 1) where q divides the product

b1b2:

Theorem 1.3. Let q be a divisor of b1b2. If there exists an array of type

IM+N(q
M , qN , q, 1), then there exists an array of type IM+N+1(q

Mb1, q
Nb2, q, 1).

Consequently, we give the necessary and sufficient conditions when a row-

column factorial design Ik(m,n, q, 1) exists. Our main result in Chapter 4, is

the following:

Theorem 1.4. Let m ≤ n. There exists an array of type Ik(m,n, q, 1) if and

only if q divides m, q divides n, qk divides mn and neither of the following

hold:

(i) k = q = m = 2 and n ≡ 2 (mod 4).

(ii) k = 2 and q = m = n = 6.

In Chapter 5 [9], we examine the existence of row-column factorial designs

of strength 2 and above. We first give some general recursive constructions
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which are applicable to row-column factorial designs of any strength. We

categorize arrays into abelian and non-abelian designs. We say that a design

M = Ik(m,n, q, t) is abelian if there exist two orthogonal arrays R and C of

type OA(n, k, q, t) and OA(m, k, q, t), respectively, such that the cell in the

intersection of row i and column j of M is a vector sum over Fq of row i of

C and column j of R (i.e., that is R is the first row of M and C is the first

column of M and each column of M is a coset of C with row i of R). We

denote such an array by C ⊞R.

Let A be a matrix over the field Fq. By ⟨A⟩, we represent a matrix whose

row vectors are the row space of A. We provide a sufficient condition on the

product CA⊥ (A⊥ is defined in the theorem below) such that C ⊞ ⟨A⟩ is an

abelian row-column factorial design.

Theorem 1.5. Let G be an OA(m, k, q, t) and let ⟨A⟩ be an OA(qN , k, q, t)

where A is an N × k matrix of full rank and N ≤ k. Let A⊥ be a k× (k−N)

matrix whose columns generate the nullspace of A. Suppose that GA⊥ is an

OA(m, k −N, q, k −N). Then G ⊞ ⟨A⟩ is an array of type Ik(m, qN , q, t).

In the case of strength t = 2, q a prime power and the number of rows and

columns are also powers of q, we solve the existence problem completely as

shown in the following result.

Theorem 1.6. Let 2 ≤ M ≤ N , let q be a prime power and let k ≥ 2.

Then there exists an array of type Ik(q
M , qN , q, 2) if and only if k ≤ M + N ,

k ≤ (qM − 1)/(q − 1) and (k,M, q) ̸= (3, 2, 2).

Next, we explore binary designs of the form Ik(m,n, 2, t). We provide some

non-existence results in Lemma 5.22 and Corollary 5.43 that are combined in

the following lemma.

Lemma 1.7. The following designs do not exist:

(i) An array of type I3(4, 4b, 2, 2), where b is odd.

(ii) An array of type I4(8, 8, 2, 3) and I8(16, 16, 2, 3).
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The main results related to these designs are as follows:

Theorem 1.8. If there exists a Hadamard matrix H(4b), then there exists

Ik+α(2
αb, 2k, 2, 2) for any 2 ≤ α; 2α + α + 1 ≤ k < 2αb− α.

The following result relies on the existence of a Hadamard matrix of order

4m, where m is odd, containing two sets of non-trivial columns such that their

sums are orthogonal.

Theorem 1.9. Let m and b be odd. If there exists a Hadamard matrix of order

4m, where m is odd, containing two sets of nontrivial columns such that their

sums are orthogonal, then Ik(4m, 2ab, 2, 2) exists if and only if (k, 4m, 2ab, 2, 2)

is admissible and

(k, 4m, 2ab, 2, 2) ̸∈ {(3, 4m, 4, 2, 2), (3, 4, 4m, 2, 2) | m is odd}.

ar

Theorem 1.10. Let m ≤ 5 and b odd. Then Ik(4m, 2ab, 2, 2) exists for all

admissible

(k, 4m, 2ab, 2, 2) ̸∈ {(3, 4m, 4, 2, 2), (3, 4, 4m, 2, 2) | m is odd}.

We also completely classify binary row-column factorial designs of strength

3 when the dimensions of the array are powers of 2.

Theorem 1.11. Let M ≤ N . Then an array of type Ik(2
M , 2N , 2, 3) ex-

ists if and only if 3 ≤ k ≤ M + N , 3 ≤ M , k ≤ 2M−1 and (k,M,N) ̸∈

{(4, 3, 3), (8, 4, 4)}.

Chapter 6 [8] is dedicated to frequency rectangles. Our main focus is

on binary frequency rectangles, however, where possible we give results that

are applicable to frequency rectangles with more than two symbols. We also

utilize orthogonal arrays and Hadamard matrices to construct sets of MOFR

as indicated in the following results.

Theorem 1.12. Suppose there exists an OA(mn, k, 2, 2). Then there exist

k–MOFR(2m, 2n; 2).
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Theorem 1.13. Suppose there exists a Hadamard matrix H(4a). Then there

exists (4a− 2)–MOFR(4, 2a; 2).

We also show that an OA(2n, k, 2, 2) and a set of k frequency rectangle of

type FR(2, 2n; 2) are equivalent.

Lemma 1.14. There exist k–MOFR(2, 2n; 2) if and only if there exists an

OA(2n, k, 2, 2).

We describe a new form of orthogonality for a set of frequency rectangles.

We say that a setM of frequency rectangles of type FR(m,n; q) is t–orthogonal,

t ≥ 2, if upon superimposition of any t elements in M , each of the possible

qt ordered t–tuples occurs the same number of times (mn/qt) in the resulting

array.

This type of orthogonality is stronger than the one described earlier, as

a set of t–orthogonal frequency rectangles is also a mutually orthogonal set.

The existence of an Ik(m,n, q, t), t ≥ 1 implies the existence of a set of k,

k–orthogonal MOFR of type FR(m,n; q).

A set of vectors is said to be t–independent if each subset of size t is

independent. We also depict a relationship between a set of t–independent

vectors and a set of t–orthogonal MOFR as shown in the following theorem.

Theorem 1.15. Let S be a set of k t-independent vectors in (Fq)
M+N such

that for each v = (v1, . . . , vM+N) ∈ S

(i) (v1, . . . , vM) ̸= (0, . . . , 0),

(ii) (vM+1, . . . , vM+N) ̸= (0, . . . , 0),

then there exists a t–orthogonal k–MOFR(qM , qN ; q).

We include results from the literature which describe bounds on the size

of a set of t–independent vectors over a finite field. By using these results and

known bounds on linear codes, we formulate a table (Table 6.3) which includes

the values for the size of the largest possible set of t–independent vectors in

(F2)
N for all N ≤ 16 and 4 ≤ t ≤ N .
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At the end of Chapter 6, we describe a method to construct a set of p− 1

binary MOFS of order 2p, where p is an odd prime.

Theorem 1.16. Let p ≥ 3 be a prime. Then there exists a set of p− 1 binary

MOFS of order 2p.

This improves the previously known lower bounds for a set of binary MOFS

of order 2p provided in [1] and [6] for all p ≥ 19. It is also the first known

lower bound linear in p.

Finally, in Chapter 7, we explore open problems and future work.
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Chapter 2

Preliminaries and Literature

Review

In this chapter, we give an introduction to the combinatorial structures that

are closely related to the work done in this thesis. We also include a brief

survey of relevant results in each case.

2.1 Latin Squares

The concept of a Latin square is not new in the field of combinatorics; its

origins in the form of a magic square can be found in the Arab world as early

as the ninth century A.D. (see, for example, [8]).

Definition 2.1. A Latin square L is an n×n array of n distinct symbols such

that each symbol appears exactly once in each row and in each column. Let

[n] = {0, 1, 2, 3, . . . , n− 1}. We take the symbol set to be [n].

The study of Latin squares caught more attention of mathematicians in the

late 18th century when Euler posed the famous 36 officers problem [24]. The

problem was to arrange 36 officers of 6 different ranks drawn from 6 different

regiments in a square array such that each line (both vertical and horizontal)

contains an officer from all six regiments and ranks.

Definition 2.2. Two Latin squares L1 and L2 of the same size are said to be
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orthogonal if each ordered pair of symbols appears exactly once when L1 is

superimposed with L2.

The 36 officers problem is then equivalent to the existence of two orthogonal

Latin squares of order 6. Euler remained unsuccessful in obtaining such a pair

for every n ≡ 2 (mod n) and he conjectured that there does not exist a pair

of orthogonal Latin squares for these n. In 1900, Tarry [24] verified that the

conjecture is true when n = 6. Finally, in the late 1950s, by the combined

efforts of Bose, Shrikhande and Parker, it was proved that Euler’s conjecture

is false for all other values of n. They exhibited a pair of orthogonal Latin

squares of order 22 [4] and described a method to construct a pair for every

n ≡ 2 (mod n) and n > 6 [5]. However, it is still not known whether there

exists a set of three Latin squares of order 10 which are orthogonal to each

other (mutually orthogonal).

Definition 2.3. A set M of two or more Latin squares of order n is said to

be a mutually orthogonal set if each pair of Latin squares in M is orthogonal.

We usually call it a set of MOLS (mutually orthogonal Latin squares).

The following lemma shows the upper bound on the size of a set of MOLS.

Lemma 2.1. Let k be the size of a set of MOLS of order n. Then k ≤ n− 1.

Proof. Let L1, L2 be two Latin squares of order n. Without loss of generality,

we may assume that the entries in the first row of L1, L2 are in sequential order

(0, 1, 2, . . . , n− 1). Now consider the first two rows of L1 and L2:

L1 =
0 1 2 . . . n− 1

α − − . . . −
L2 =

0 1 2 . . . n− 1

x − − . . . −

Observe that if L2 is orthogonal to L1, then x ̸∈ {0, α}. Thus there are

n− 2 choices for x and hence there are only n− 2 possible Latin squares that

can be orthogonal to L1. This completes the proof.
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A set of n− 1 MOLS of order n is said to be complete. A complete set of

MOLS can be constructed using finite fields whenever n is a prime power.

Example 2.2. A complete set of mutually orthogonal Latin squares of order

5.

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

0 1 2 3 4

2 3 4 0 1

4 0 1 2 3

1 2 3 4 0

3 4 0 1 2

0 1 2 3 4

3 4 0 1 2

1 2 3 4 0

4 0 1 2 3

2 3 4 0 1

0 1 2 3 4

4 0 1 2 3

3 4 0 1 2

2 3 4 0 1

1 2 3 4 0

Table 2.1: 4 MOLS of order 5.

The method of constructing complete sets of MOLS when n is a prime

power is described in the next section for more general structures called fre-

quency squares. Whether there exists a complete set of MOLS for non-prime

powers is one of the most well-known open questions in the area.

2.2 Frequency Squares

A frequency square is a generalization of a Latin square in which symbols are

allowed to appear more than once in each row and in each column. Formally,

Definition 2.4. A frequency square of type F(n; q) is an n × n array of q

symbols such that each symbol appears exactly n/q times in each row and in

each column.

The orthogonality between a pair of frequency squares is defined as follows.

Definition 2.5. Two frequency squares F1 and F2 of the same type F(n; q) are

said to be orthogonal if each ordered pair of symbols appear the same number

of times when F1 and F2 are superimposed.

Example 2.3. Two orthogonal frequency squares of type F(6; 3):
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0 0 1 1 2 2

0 1 2 0 1 2

1 2 0 2 0 1

1 0 2 0 2 1

2 1 0 2 1 0

2 2 1 1 0 0

F1

1 1 0 0 2 2

0 1 2 1 2 0

2 0 2 1 0 1

0 2 1 2 1 0

2 2 0 0 1 1

1 0 1 2 0 2

F2

Table 2.2: Two MOFS of type F(6; 3)

Observe that when F1 and F2 are superimposed, each of the 32 possible

ordered pair of symbols appears exactly 4 times in the resultant array:

01 01 10 10 22 22

00 11 22 01 12 20

12 20 02 21 00 11

10 02 21 02 21 10

22 12 00 20 11 01

21 20 11 12 00 02

Table 2.3: F1 and F2 superimposed.

We would like to mention here that in the literature a frequency square of

type F(n; q) is often represented by F(n;λ) where λ = n/q is the frequency

of each symbol in each row and in each column. However, we stick to the

notation F(n; q) where q is the size of the symbol set to remain consistent

with the notations used in this thesis. Also, a frequency square in its most

generalized form can have a different frequency for distinct symbols (see [19]

and [10]).

In [18] Hedayat et. al. give an upper bound for the number of MOFS of

type F(n; q) in the form of the following theorem:

Theorem 2.4. The maximal number, k, of orthogonal frequency squares of
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type F(n; q), where n = λq, satisfies the inequality

k ≤ (n− 1)2/(q − 1). (2.1)

Proof. The following proof is based on [18]. Let F1, F2, . . . , Fk be a set of

k mutually orthogonal frequency squares of type F(n; q). Corresponding to

each Fα we define an n2 × q matrix Hα = (h(ij),θ), where i = 1, 2, . . . , n; j =

1, 2, . . . , n, θ runs over the symbols set, and

h(ij),θ =


1 if the symbol θ occurs in the (i, j)th cell of Fα.

0 otherwise.

Let

M = (H1 | H2 | · · · | Hk).

Since each position in the frequency square corresponds to a row of M and

each row of Fα contains each symbol exactly λ times, the n rows of M that

correspond to a fixed row (or a fixed column) of the frequency square contain

the entry 1 exactly at λ places in each column.

Thus, if we add a set of rows that correspond to the ith row of frequency

squares we obtain a row with each entry equal to λ. And since we can make n

such distinct sets, there are n− 1 dependent rows in M . Similarly, by taking

the set of rows corresponding to the columns of frequency squares, we get

another n− 1 dependent rows in M .

Consequently, there are at least 2(n − 1) dependent rows in M , or, the

number of independent rows in M is at most n2 − 2(n− 1) = (n− 1)2 + 1.

This implies

Rank(M) ≤ min{(n− 1)2 + 1, kq},

where Rank(M) denotes the rank of M .

Now consider the product HT
r Hs. First suppose that r = s and consider

a diagonal entry at position (i, i) of HT
r Hr. The ith row of HT

r (and so the
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ith column of Hr) has an entry 1 exactly at nλ places corresponding to the

appearances of ith symbol in Fr. Thus all the diagonal entries in HT
r Hs are

nλ. Since the two distinct symbols cannot occupy the same position in Fr, the

product of ith row of HT
r and jth column of Hs for i ̸= j is zero. Consequently,

we have HT
r Hs = nλIq, where Iq is an identity matrix of order q.

In the case when r ̸= s, the orthogonality of Fr and Fs implies that each

pair of symbols coincides at exactly λ2 places. Hence HT
r Hs = λ2Jq, where

Jq is a square matrix of order q having entry 1 at all places. Therefore, we

obtain:

MTM =


nλIq λ2Jq . . . λ2Jq

λ2Jq nλIq . . . λ2Jq
...

...
. . .

...

λ2Jq λ2Jq . . . nλIq

 .

The eigenvalues of the above matrix, MTM , are nλk, nλ and 0 with mul-

tiplicities 1, k(q − 1) and k − 1 respectively (see Theorem 6.1 in Section 6.2

and Appendix 6.7 for detailed elaboration). Since the sum of multiplicities of

non-zero eigenvalues gives the rank of MTM ,

kq − k + 1 = Rank(MTM) = Rank(M) ≤ min{(n− 1)2 + 1, kq},

which gives the required result.

Note that if we take q = n in the inequality (2.1) we get the upper bound

k ≤ n− 1 in Lemma 2.1 for a set of mutually orthogonal Latin squares.

Definition 2.6. A set of (n− 1)2/(q− 1) frequency squares of type F(n; q) is

said to be complete.

It has been shown that the complete set of frequency squares exists for all

prime power orders and there are several methods to construct such a set using:

factorial designs [18], finite fields [35], affine resolvable designs [28], complete

sets of MOLS [26]. Later Mavron [34] showed that almost all of these methods

can be derived from a single method.
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We include here a method given in Theorem 4.2, in [27, p. 65] which uses

finite fields to construct a complete set of MOFS of type F(qr; q). We generalize

this idea in Theorem 6.12 to construct sets of frequency rectangles. Before

stating the theorem we give a lemma that helps in the proof.

Lemma 2.5. Let q be a prime power and r ≥ 1. Then there exists a set M of

(qr − 1)2/(q − 1) vectors in (Fq)
2r such that:

(i) Any two elements in M are linearly independent and

(ii) For each a = (a1, . . . , a2r) ∈M ,

(a) (a1, . . . , ar) ̸= (0, . . . , 0).

(b) (ar+1, . . . , a2r) ̸= (0, . . . , 0).

Proof. Let u = (a1, . . . , ar) and w = (ar+1, . . . , a2r). Observe that there are

exactly 2qr−1 vectors a in (Fq)
2r in which either u = 0 or w = 0. This implies

there are q2r − 2qr + 1 = (qr − 1)2 vectors which have u ̸= 0 and w ̸= 0. Let

H be the set containing these vectors. For each a ∈ H, there are at most q−1

vectors in H that are scalar multiple of a, this shows that there are at least

(qr − 1)2/(q − 1) vectors in H such that every pair is linearly independent.

Theorem 2.6. [27] There exists a complete set of MOFS of type F(qr; q),

where q is a prime power and r ≥ 1.

Proof. Let M be the set of vectors described in Lemma 2.5. Corresponding to

each a = (a1, . . . , a2r) ∈M we define a polynomial fa:

fa(x1, . . . , x2r) = a1x1 + · · ·+ a2rx2r.

By using the polynomial fa we construct a qr × qr array as follows. Label

the rows and columns of the array by using the set of all r-tuples over the

field Fq. We place the element fa(b1, . . . , br, c1, . . . , cr) in the intersection of

row (b1, . . . , br) and column (c1, . . . , cr) of the qr × qr array.
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Now we show that the array obtained in this way is a frequency square of

type F(qr; q), that is every element of Fq appears exactly qr−1 times in each

row and in each column. Consider a row which is labelled by (b1, . . . , br) and

take an element α ∈ Fq. For this row the equation

fa(b1, . . . , br, xr+1, . . . , x2r) = α

reduces to the equation

K + ar+1xr+1 + · · ·+ a2rx2r = α (2.2)

where K is a constant. Now by of Lemma 2.5(ii)(b), there is at least one

ai ̸= 0, for some r + 1 ≤ i ≤ 2r. We solve the equation (2.2) for that xi,

xi =
1

ai
(α−K − ar+1xr+1 − · · · − ai−1xi−1 − ai+1xi+1 − · · · − a2rx2r). (2.3)

Since there are q elements in Fq and the r − 1 variables on the right side

of equation (2.3) can take any value from Fq, the equation (2.3) has exactly

qr−1 solutions in Fq. This implies that the symbol α appears exactly at qr−1

places in the row (b1, . . . , br). By a similar argument, we can prove that each

symbol appears exactly qr−1 times in each column. Thus the resulting array

is a frequency square of type F(qr; q).

Now we show that the two frequency squares defined by two polynomials

fa and fa′ , where a, a′ ∈ M are orthogonal. Let α, β be any two arbitrary

elements of Fq. By condition (i) in Lemma 2.5, the system of equations

fa = a1x1 + · · ·+ a2rx2r = α

fa′ = a′1x1 + · · ·+ a′2rx2r = β

(2.4)

has rank two and, hence, has exactly q2r−2 = qr−1qr−1 solutions in Fq. Thus,

the pair of symbols αβ appears exactly (qr−1)2 times when the two frequency

squares are superimposed.

Next, we give an example to elaborate a little further on the method given

in Theorem 2.6.
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Example 2.7. Suppose we want to construct a complete set of MOFS of type

F(4; 2). In this case q = 2 and r = 2, so we take the field F2. Now consider a

polynomial

f(x1, . . . , x4) = x1 + x2 + x4 (2.5)

over the field F2, where we have chosen a1 = 1, a2 = 1, a3 = 0 and a4 = 1. It is

easy to see that this polynomial satisfies the conditions in Lemma 2.5. Label

the rows and columns of 4× 4 array using all the ordered pairs over F2:

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0)

(0, 1) 1

(1, 0)

(1, 1)

Entry 1 in the highlighted cell is obtained by substituting its row and

column labels in polynomial f , that is f(0, 1, 1, 0) = 0 + 1 + 0 = 1. Similarly,

we can obtain all the other entries of the 4× 4 array.

A complete set of MOFS of type F(4; 2) together with their representative

polynomials is given below:
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x1 + x3

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

x1 + x4

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

x2 + x3

0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

x2 + x4

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

x1 + x2 + x3

0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

x1 + x2 + x4

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

x1 + x3 + x4

0 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

x2 + x3 + x4

0 1 1 0

1 0 0 1

0 1 1 0

1 0 0 1

x1 + x2 + x3 + x4

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

Table 2.4: A complete set of MOFS of type F(4; 2).

A complete set of MOFS can exist for non-prime powers, for example, in

[20] a method is given to construct complete sets of MOFS of type F(4t; 2t)

using a Hadamard matrix. A table was formulated by Laywine and Mullen

[29], which gives the lower bounds (number of constructed MOFS) for different

values of n and λ. The table was improved by Li et. al in 2014 [30]. Recently,

in [6], the authors have shown that there exist at least 17 binary MOFS of

type F(n; 2), where n ≡ 2 (mod 4). They have also proved that a complete

set does not exist for these parameters. In Section 6.5, we show that a set

of p − 1 binary MOFS of order 2p exists whenever p is an odd prime. Thus

improving the lower bound for all cases when p ≥ 19.
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2.3 Frequency Rectangles

A frequency rectangle is a further generalization of a frequency square in which

the number of columns and the number of rows are allowed to have different

values. Formally:

Definition 2.7. A frequency rectangle (also called F-rectangle) of type

FR(m,n; q) is an m×n array based on a symbol set S of size q, such that each

element of S appears exactly n/q times in each row and m/q times in each

column.

The orthogonality between a pair of frequency rectangles is defined as fol-

lows.

Definition 2.8. Two frequency rectangles, F1 and F2, of the same type, are

said to be orthogonal if each possible ordered pair of symbols appear the same

number of times when F1 and F2 are superimposed. A set of k frequency rect-

angles in which every pair is orthogonal is called a set of mutually orthogonal

frequency rectangles, denoted by k–MOFR(m,n; q).

An upper bound,

k ≤ (m− 1)(n− 1)

(q − 1)
. (2.6)

for k–MOFR(m,n; q) can be derived from a more general result proved in [33].

However, we have given an independent proof similar to Theorem 2.4 (see

Theorem 6.1).

Definition 2.9. A k–MOFR(m,n; q) or k–MOFS(n; q) is said to be complete

if k reaches the upper bound given in (2.6).

Complete sets of MOFR of type FR(qM , qN ; q) are known to exist when q

is a prime power [14]. For q a prime power, Mandeli [32] describes a method

to construct a complete set of MOFR(qM , 2qN , q). For m = 4a and n = 4b,

Cheng [9] showed the existence of a complete set of MOFR(m,n; 2) provided

that Hadamard matrices of order 4a and 4b exist. Also, assuming the existence
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of a Hadamard matrix of order 4b, Federer, Hedayat, and Mandeli [14] describe

a method to construct a complete set of MOFR(2, 4b; 2).

We introduce a stronger form of orthogonality called t–orthogonality for a

set of frequency rectangles.

Definition 2.10. A set M of frequency rectangles of type FR(m,n; q) is said

to be t–orthogonal, t ≥ 2, if upon superimposition of any t elements in M ,

each of the possible qt ordered t–tuples occurs the same number of times in

the resulting array.

In Section 6.2, a set of 3–orthogonal 6–MOFR(4, 4; 2) is provided in Ex-

ample 6.2 as an illustration.

Observe that by definition a t–orthogonal (t ≥ 2) set of frequency rectangles

is also a mutually orthogonal set. Further results and the connection of t–

orthogonal frequency rectangles with the set of independent vectors over finite

fields are discussed in Section 6.4.

2.4 Hadamard Matrices

In [17] Hadamard showed that for a square matrix A = (aij) of order n with

complex entries on the unit disc |aij| ≤ 1, the determinant of the matrix

satisfies the inequality:

|detA| ≤ nn/2. (2.7)

However, the name Hadamard matrix is used to refer to real matrices that

satisfy the equality in relation (2.7), formally:

Definition 2.11. A Hadamard matrix Hn is a square matrix of order n, having

entries from the set {1,−1} such that any two rows are orthogonal; that is it

satisfies the equation:

HnH
T
n = nIn. (2.8)

Example 2.8. Below are Hadamard matrices of orders 1, 2, and 4.
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H1 =
[
1
]
, H2 =

[
1 −1
1 1

]
, H4 =


1 1 1 1

1 1 −1 −1
1 −1 −1 1

1 −1 1 −1


By equation (2.8) it is easy to see that the columns of a Hadamard matrix

are also orthogonal. Observe that if Hn is a Hadamard matrix then the ma-

trix obtained by permuting its rows (or columns) and negating any rows (or

columns) will also be a Hadamard matrix; we say that this matrix is equiv-

alent to Hn. Using such transformations we can always transform Hn to an

equivalent matrix with all the entries in the first row and first column equal

to “+1”. Such a matrix is called a normalized Hadamard matrix. In Example

2.8, H1 and H4 are normalized Hadamard matrices.

For a normalized Hadamard matrix Hn, where n > 2, the following lemma

is not difficult to prove.

Lemma 2.9. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two distinct rows,

other than the first, of a normalized Hadamard matrix of order n, n > 2. Then

(i) half of the entries ai are +1′s and half of them are −1′s.

(ii) the multiset {(ai, bi) : i = 1, 2, . . . , n} contains each type of ordered pair

exactly n/4 times.

(iii) the conditions (i) and (ii) are also true for the columns of a normalized

Hadamard matrix.

From the above lemma, we have the following result.

Corollary 2.10. If there exists a Hadamard matrix Hn of order n then n = 1, 2

or n ≡ 0 (mod 4).

Once we have a Hadamard matrix we can use it to construct Hadamard

matrices of larger sizes.

Definition 2.12. Let A = [aij] and B = [bij] be two matrices of sizes m × n

and u × v, respectively. The Kronecker product, A ⊗ B, of A and B is an

mu× nv matrix defined by:
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A⊗B =


a11B . . . a1nB
...

...

am1B . . . amnB

 (2.9)

Now we state the result in the following theorem.

Theorem 2.11. If Hm and Hn are two Hadamard matrices of order m and n

respectively, then their Kronecker product is a Hadamard matrix Hmn of order

mn.

Thus if there exists a Hadamard matrix of order l we can construct

Hadamard matrices of order 2l, 4l, 8l, . . . , so on by using the Hadamard matrix

of order 2.

Example 2.12. By taking the Kronecker product of H2 and H4 in Example

2.8 we get the following Hadamard matrix of order 8:

H8 =



1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1

1 1 1 1 1 1 1 1

1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

1 −1 1 −1 1 −1 1 −1


The following result is due to [2, 12] and is more general than taking the

Kronecker product.

Theorem 2.13 ([2, 12]). If there exist Hadamard matrices of order 4l, 4m, 4n

and 4q then there exist Hadamard matrices of order 8mn and 16lmnq.

There exist several other methods to construct Hadamard matrices that

work for specific orders. For example: Payley constructions that use Ga-

lois fields can be used to construct Hn where either n− 1 is a prime power or

n = 2(s+1) and s ≡ 1 (mod 4) is a prime power [36]; the JohnWilliamson con-

struction which uses a 4× 4 array of circulant matrices [38]; and the Goethals

and Seidel method ([15], [31]). Arguably the most famous unsolved conjecture

on Hadamard matrices is the following.
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Conjecture 2.14. There exists a Hadamard matrix of order 4r, whenever r

is a positive integer.

Before 2005, Hadamard matrices of all orders less than 1000 were found

except the orders; 428, 668, 716, 764 and 892 [13]. In 2005, Kharaghani et. al

were able to construct some new Hadamard matrices by using T-sequences (see

[25]); among these, there was a matrix of order 428. Two years later Djokovic

[13] constructed a Hadamard matrix of order 764 by using a technique called

symmetric difference sets. Currently the only remaining admissible orders less

than 1000 for which it is not known whether a Hadamard matrix exists or not

are 668, 716, and 892.

2.5 Generalisations of Hadamard Matrices

There are several ways to generalise Hadamard matrices depending upon

the contextual aim; whether this lies in obtaining maximal determinants or

in retaining the balancing properties between the rows and columns of the

Hadamard matrices. In this section, we are only interested in the latter case

and shall introduce two of the most relevant generalisations in this channel.

The first one allows the matrices to be rectangular with the balancing proper-

ties in rows and are called partial Hadamard matrices or Hadamard rectangles.

We utilize partial Hadamard matrices in Chapter 6 to construct set of MOFR.

Formally:

Definition 2.13. An m × n matrix H having entries from the set {1,−1}

is called a partial Hadamard matrix if every two rows of H are orthogonal,

equivalently if H satisfies the following relation:

HHT = nIm

We shall denote the partial Hadamard matrix of order m× n by H(m,n).

Similar operations (as in the case of Hadamard matrices) can be performed on

a partial Hadamard matrix H(m,n) to obtain an equivalent normalized partial
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Hadamard matrix having all the entries in the first row and the first column

to be 1.

It is easy to observe that if an H(m,n) exists then so does H(h, n) for all

h < m. Some of the natural questions related to the existence of H(m,n) are:

“For a particular value of n what is the maximum value of m?” and “For a

particular m, what could be the values of n?”. For smaller values of m the

following lemma answers these questions. Here et denotes a row of t 1’s.

Lemma 2.15. [11] Let H be an H(m,n). Then

(i) m ≤ n;

(ii) H(1, n) is equivalent to en;

(iii) if m = 2 then n is even and H is equivalent to

[
en

2
en

2

en
2
−en

2

]
;

(iv) if m > 2 then n is a multiple of 4 and any three rows of H are equivalent

to 
en

4
en

4
en

4
en

4

en
4

en
4
−en

4
−en

4

en
4
−en

4
−en

4
en

4

 ;

(v) if m = 4 then H is equivalent to a H(4, n) of the form
en

4
en

4
en

4
en

4

en
4

en
4
−en

4
−en

4

en
4
−en

4
−en

4
en

4

a −a a −a

 , (2.10)

where a is a row of ±1’s of length n
4
;

(vi) if H is normalized, then all row sums of H except the first are 0.

(vii) if ci represents the column sum of the ith column of H, then
∑n

i=1 c
2
i =

mn.

(viii) if m ≥ 5 and H contains (2.10) as a submatrix, with a = en
4
, then n ≡ 0

(mod 8).
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It is clear that if the Hadamard conjecture is true then the existence prob-

lem of partial Hadamard matrices is completely solved. However, there is a

type of partial Hadamard matrix, called a maximal partial Hadamard ma-

trix, which cannot be extended to a Hadamard matrix. Formally, a partial

Hadamard matrix H(m,n) is said to be maximal if it is not a submatrix of

any H(m+ 1, n). For example, the matrix H(5, 12) given below is a maximal

partial Hadamard matrix [11].

H(5, 12) =


+ + + + + + + + + + + +

+ + + + + + − − − − − −
+ + + − − − + + + − − −
+ + − + − − + + − + − −
+ + − + − − − − + − + +

 .

Here “+” represents 1 and “−” represents a −1.

Similarly, by Lemma 2.15(viii) any matrix of the form:


es es es es

es es −es −es
es −es −es es

es −es es −es

 ,

with s odd is also maximal.

Another important generalisation of Hadamard matrices is square matrices

having entries from a finite group; these are known as generalised Hadamard

matrices. Although we don’t directly make use of these in this thesis, we have

included a brief introduction here as they could be useful in extending the

work in future (see Chapter 7).

Definition 2.14. Let (N, ∗) be a finite group of order w. A square matrix

H = [hij] of order v having entries from N is called a generalised Hadamard

matrix if, for all i ̸= j, the multi-set {hik ∗ h−1
jk : 1 ≤ k ≤ v} contains each

element of N exactly λ times.

Necessarily, w divides v and λ = v/w. We denote such a matrix by

GH(w, λ). A GH(w, λ) with the first row and the first column consisting en-

tirely of the identity element of the group N is called a normalised GH(w, λ).
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Example 2.16. [21] The first matrix below is a normalised GH(4, 1) with

N = Z2×Z2 and the second is a normalised GH(3, 2) over the group N = Z3.


00 00 00 00

00 01 10 11

00 10 11 01

00 11 01 10





0 0 0 0 0 0

0 0 1 1 2 2

0 1 2 0 1 2

0 1 0 2 2 1

0 2 1 2 1 0

0 2 2 1 0 1


.

Following are some common examples and constructions of generalised

Hadamard matrices, the details of which can be found in [21].

1. Let Fq be a finite field, then the multiplication table of Fq is a GH(q, 1)

with N = (Fq,+).

2. If H = [hij] is a GH(w, λ) then the matrix obtained by replacing each

entry hij with its inverse h−1
ij is also a GH(w, λ).

3. If H is a GH(w, λ) and H ′ is a GH(w, λ′) over the same group N then

their tensor product H ⊗H ′is a GH(w, λλ′w) over N .

4. If N is abelian then the transpose of a GH(w, λ) is also a GH(w, λ).

Part (4.) was first given in [23] and was corrected in [7].

2.6 Orthogonal Arrays

This section briefly introduces orthogonal arrays and some elementary results

related to their existence. We also discuss their relation with Hadamard ma-

trices. For a detailed overview, we refer the reader to [20].

Definition 2.15. An orthogonal array OA(n, k, q, t) is an array of size n× k,

having entries from a set S of size q such that every n × t subarray contains

each t−tuple based on S (that is, every element of St) exactly λ times as a

row.



31

Trivially t satisfies the condition 0 ≤ t ≤ k and is called the strength of the

orthogonal array. The parameter λ is known as the index of the array and by

definition satisfies the following relation:

n = λqt (2.11)

As previously we take the symbol set S to be [q].

Example 2.17. Here are examples of orthogonal arrays of strength 2 and 3,

based on symbol sets {0, 1, 2} and {0, 1}, respectively.

0 0 0 0
0 1 1 2
1 0 1 1
0 2 2 1
2 0 2 2
1 1 2 0
1 2 0 2
2 1 0 1
2 2 1 0

Table 2.5: OA(9, 4, 3, 2)

0 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 2.6: OA(8, 4, 2, 3)

Example 2.18. Any n × k array is an orthogonal array of strength zero.

Arrays of strength 1 for any value of k are trivial to construct.

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

Table 2.7: OA(4, 9, 4, 1)

Remark 1. By the definition of an orthogonal array, the following observations

are immediate.

(i) Any orthogonal array of type OA(n, k, q, t) of strength t is an array of

type OA(n, k, q, t′) for any t′ satisfying 0 ≤ t′ ≤ t.
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(ii) Any permutation of rows, columns or symbols will not affect the type of

an orthogonal array.

(iii) Let Ai be an orthogonal array of type OA(ni, k, q, ti) for each i =

1, 2, . . . , r, then the array A,

A =


A1

...

Ar

 ,

obtained by the juxtaposition of these arrays, is an orthogonal array of

type OA(N, k, q, t), where N = n1+ · · ·+nr for some t ≥ min{t1, . . . , tr}.

Generally, the larger the value of t the harder it is to construct an orthog-

onal array. One of the important problems related to orthogonal arrays is to

determine the maximal value of k for fixed values of n, q, and t for which an

OA(n, k, q, t) exists. The first-ever bounds on these parameters were obtained

by Rao [37] in the form of implicit relations known as Rao’s inequalities.

Theorem 2.19. If an OA(n, k, q, t) exists then the following inequalities must

be satisfied:

n ≥
s∑

i=0

(
k

i

)
(q − 1)i, if t = 2s, (2.12)

n ≥
s∑

i=0

(
k

i

)
(q − 1)i +

(
k − 1

s

)
(q − 1)s+1, if t = 2s+ 1, (2.13)

for s ≥ 0.

The above inequalities in the case of strengths 2 and 3 give the following

bounds.

Corollary 2.20. An OA(n, k, q, 2) satisfies the following inequality:

k ≤ n− 1

q − 1
. (2.14)

Corollary 2.21. An OA(n, k, q, 3) satisfies the following inequality:

k ≤ n/q − 1

q − 1
+ 1. (2.15)
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These relations imply that the parameters of the orthogonal arrays given

in Example 2.17 have maximal values for k. Orthogonal arrays which reach

the above bounds for their parameters are called tight.

There are various construction methods that are useful to construct or-

thogonal arrays with some specific set of parameters. The following theorem

is due to the Addelman and Kempthorne [1].

Theorem 2.22. If q is an odd prime power then an OA(2qN , 2(qN − 1)/(s−

1)− 1, q, 2) exists for all N ≥ 2.

Another important construction that uses Galois fields to construct orthog-

onal arrays of strength two is sometimes called the Rao-Hamming construction.

Theorem 2.23. [20, p. 49] For q a prime power there exists an OA(qN , (qN −

1)/(q − 1), q, 2) whenever N ≥ 2.

Hadamard matrices are also useful for constructing orthogonal arrays when

n is a multiple of four, as shown in the following theorem.

Theorem 2.24. [20] A Hadamard matrix of order 4λ exists if and only if there

exist orthogonal arrays OA(4λ, 4λ− 1, 2, 2) and OA(8λ, 4λ, 2, 3).

The existence of a row-column factorial design Ik(m,n, q, t) implies the ex-

istence of orthogonal arrays OA(m, k, q, t) and OA(n, k, q, t). Therefore, any

bound on an orthogonal array signifies a bound on the existence of factorial

designs. In Chapter 5, we use orthogonal arrays of strength 2 to construct

abelian row-column factorial designs of strength 2. Also, some of the bounds

on the parameter k are ascribed to orthogonal arrays. In Chapter 6, we use

orthogonal arrays to construct sets of mutually orthogonal frequency rectan-

gles.
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2.7 Linear Codes

In this section, we discuss the connection between coding theory and the results

that are useful to construct maximal sets of t-independent vectors. Although

our major focus is linear codes we give here some general definitions and ter-

minologies related to the codes. The definitions and notations used here are

consistent with the notations used in [20].

Definition 2.16. A code C of length n over a symbol set (or alphabet) S is any

subset of the set Sn. The elements or vectors in C are called codewords. The

hamming weight w(u) of a codeword u = (u1, . . . , un) is the number of non-

zero components ui. The hamming distance d(u,v) between two codewords u

and v is the number of components at which they contain different symbols.

The minimum distance d of a code C is defined to be the smallest hamming

distance between two distinct codewords in C, i.e.,

d = min{d(u,v) : u,v ∈ C,u ̸= v}.

If a code C has no codeword then we say that the minimum distance d is

undefined and if the code has only one codeword of length n then d is defined

to be n+ 1.

If a code C has M codewords of length n, over a symbol set of size s, and

a minimum distance d, then we refer it to as an (n,M, d)s code.

Example 2.25. Consider C = {00000, 11111, 10101, 10010}. This is a

(5, 4, 2)2 code.

Definition 2.17. If the symbol set of a code is the finite field Fq of order q,

and C is a k-dimensional subspace of the vector space (Fq)
n then C is called a

linear code of dimension k and length n. We call a linear code with minimum

distance d an [n, k, d] q-ary code.

Thus an [n, k, d] q-ary code is also an (n, qk, d)q code. We reserve the former

notation only for a linear code. In the case of a linear code, the minimum
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distance d is the minimum weight among all the nonzero vectors in C, i.e.,

d = min
u∈C
u ̸=0

w(u)

A linear code can be concisely specified with the help of a generator matrix.

Definition 2.18. A generator matrix G of an [n, k, d] linear code C over Fq

is any k × n matrix whose rows form a basis for C.

Note that if G is a generator matrix for C then,

C = {vG : v ∈ Fk
q}.

We can also describe C with the help of an (n − k) × n matrix H, called

parity check matrix, such that C is the null space of H, i.e.,

v ∈ C ⇐⇒ HvT = 0.

If the generator matrix G of a linear code C has the form G = [Ik|A], then

we say that G is in standard form. The following result shows the relationship

between the generator matrix in standard form and the parity check matrix of

a linear code C.

Theorem 2.26. If G = [Ik | A] is a generator matrix of a linear code C, then

H = [−AT | In−k] is a parity check matrix for C.

Example 2.27. [22] The following matrices are respectively generator and

parity check matrices for a [7, 4, 3] binary code.

G =


1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1

 H =


0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .

The next result indicates the relationship between a linear code and a set

of independent vectors, which we make use of in Section 6.4 to construct sets

of frequency rectangles. First, we give here the definition of t–independent

vectors.
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Definition 2.19. A set S of vectors in (Fq)
n is said to be t–independent if

each of its subset of size t is linearly independent.

Theorem 2.28. [10] A linear code C with a parity check matrix H has min-

imum distance d if and only if the matrix H contains a set of d dependent

columns but each set of d− 1 columns is independent.

In the theory of codes, for fixed parameters n and M , a code with the

highest possible d is desirable. Similarly, for fixed n and d, a code of maximum

size is preferred. Therefore a significant effort has been put into finding the

bounds in terms of these parameters. Here we include some of these results.

Theorem 2.29 (Singleton bound). [3] If C is an (n,M, d) q-ary code, then

M ≤ qn−d+1. In the case of linear [n, k, d] code, d ≤ n− k + 1.

Theorem 2.30 (Sphere-packing bound). [3] If C is an (n,M, d) q-ary code

of packing radius ρ = ⌊(d− 1)/2⌋, then

M

(
1 + (q − 1)n+ (q − 1)2

(
n

2

)
+ · · ·+ (q − 1)ρ

(
n

ρ

))
≤ qn,

and in the linear case:

ρ∑
i=0

(q − 1)i
(
n

i

)
≤ qn−k.

The next result gives a lower bound on n for a linear [n, k, d] code, given

its minimum weight and dimension.

Theorem 2.31 (Griesmer Bound). [22] Let C be an [n, k, d] q-ary code with

k ≥ 1. Then

n ≥
k−1∑
i=0

⌈
d

qi

⌉
.

We refer the reader to [22] for a detailed overview of research in this field.

A useful online repository for the bounds on codes over finite fields of size less

than or equal to 9 is available at [16].
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Chapter 3

Applications to Experimental

Designs

3.1 Factorial Designs

Designing an experiment for statistical analysis has long been an integral part

of research in most fields of science. Experiments in the fields of agriculture,

medicine, manufacturing and other industries often involve the study of the

effect of combinations of different input variables on the output product (for

example, some real experiments are given in [10]). One of the common tech-

niques to study such effects is by carrying out a factorial experiment. The

variables under the study are called factors and the different settings for each

variable are termed as levels of that variable. Below we give the formal defini-

tions for these terms. The notations in this section are mostly consistent with

[14].

Definition 3.1. Let k ≥ 2. An experiment that involves the study of effects

and interactions of k factors F1, F2, . . . , Fk that appear at q1, q2, . . . , qk levels,

respectively, is called a factorial experiment. If q1 = · · · = qk = q then we call

such a factorial a symmetrical qk factorial or simply a qk factorial.

Let [q] = {0, 1, . . . , q − 1}. A treatment combination is a combination of

levels of k factors that can be represented by the vector (a1, a2, . . . , ak) ∈ [q]k.
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Example 3.1. Consider an experiment in which we are testing the effect of

four drugs D1, D2, D3 and D4 on the production of milk by cows. For each

drug, there are two possibilities, either a cow has been treated with it or

not. Thus we have four factors and each factor has two levels. There are 16

treatment combinations possible that can conveniently be represented by the

binary strings of length four:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111.

Here the treatment combination 1101, for example, represents that this

particular group of cows is being treated with D1, D2 and D4. Thus it is a

24 factorial experiment. Before proceeding any further we want to include

the definition of treatment contrasts which are parametric functions used to

determine factorial effects.

Definition 3.2. Let τ(a1, a2, . . . , ak) represent the treatment effect corre-

sponding to the treatment combination (a1, a2, . . . , ak). Then a treatment

contrast is defined to be a function:∑
(a1,...,ak)∈[q]k

l(a1, . . . , ak)τ(a1, a2, . . . , ak),

where l(a1, . . . , ak) are real numbers, not all zero and

∑
(a1,...,ak)∈[q]k

l(a1, . . . , ak) = 0.

In the case of the above experiment, let τ(abcd) represent the mean amount

of milk produced by the cows treated with the treatment combination abcd.

The effect of D1 at a particular combination bcd of D2, D3 and D4 can be

measured by the following expression:

L(D1|bcd) = τ(1bcd)− τ(0bcd).

Thus a way of obtaining the total effect L(D1), called the main effect, of drug

D1 is to take the mean of these differences over all the combinations of D2, D3
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and D4, that is:

L(D1) =
1

8

∑
bcd∈[1]3

{τ(1bcd)− τ(0bcd)}

=
1

8

[
{τ(1000)− τ(0000)}+ {τ(1001)− τ(0001)}+ {τ(1010)− τ(0010)}

+ {τ(1100)− τ(0100)}+ {τ(1011)− τ(0011)}+ {τ(1101)− τ(0101)}

+ {τ(1110)− τ(0110)}+ {τ(1111)− τ(0111)}
]

Note that the right-hand side of the above equation is a treatment contrast

to estimate the main effect of drug D1. The number 1/8 depends on further

statistical aims (see Chapter 2 in [14]).

Now the interaction effect D1D2 of the drug D1 with D2 at a particular

combination cd of the drugs D3 and D4 can be estimated by taking the dif-

ference L(D1|1cd) − L(D1|0cd). In turn, a treatment contrast to estimate the

interaction effect L(D1D2) is given by:

L(D1D2) =
1

8

∑
cd∈[1]2

{L(D1|1cd)− L(D1|0cd)}

The interaction of three factors D1D2D3 can be defined in terms of the

interaction of the interaction factor D1D2 with D3 or D1 with D2D3, which are

essentially the same. There are some structural approaches to write treatment

contrasts corresponding to factorial effects that can be found in [14]. For a

detailed review of factorial design experiments, also see [16, 17].

3.2 Row-Column Factorial Designs

In the above experiment, one may also want to study the effect of different age

groups of cows and breeds. Suppose that there are four age groups of cows and

four breeds. This can be done by arranging the 16 treatment combinations in

a 4× 4 array such that each row represents a different breed and each column

represents a different age group of cows as shown in Table 3.1 (this table is

taken from [7]). The rows and columns of the design can be thought of as

blocking factors and such a design is called a full row-column factorial design.
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Age 1 Age 2 Age 3 Age 4

Breed 1 1111 0100 0010 1001

Breed 2 0001 1010 1100 0111

Breed 3 1000 0011 0101 1110

Breed 4 0110 1101 1011 0000

Table 3.1: A regular row-column factorial design of type I4(4, 4; 2).

In Table 3.1 we have given an example of a row-column factorial design in

which each treatment combination appears exactly once. However, in general,

the treatment combinations can appear more than once. Formally,

Definition 3.3. An m×n row-column factorial design qk is any arrangement

of the elements of α × [q]k in an m × n array. Necessarily, mn must be a

multiple of qk.

A blocking factor is a partition (usually equipartition) of the treatment

combinations of the factorial design. While blocking factors help study some

additional information, balance in the treatment combinations within each

block can help avoid estimation bias. Therefore the design needs a more care-

ful arrangement of treatment combinations. There are several structured ap-

proaches in constructing factorial designs with blocking factors ([1, 2, 8, 9, 13]).

However, as mentioned in [11], designs with two forms of blocking have not

been investigated thoroughly.

Consider the design in Table 3.1 (with two forms of blocking). If we look

closely we can see that in each row (or column) at any particular position

i ∈ [4] the entries 0 and 1 each appear twice. Thus half of the entries for

a particular drug in each block are at a high level and half of them are at

a low. These type of regularity properties in the design allows the unbiased

estimation of the main effects; the four drugs, age and breed.

On the other hand, if we fix the first and the fourth coordinates, then pairs

01 and 10 do not appear in the first row. Similarly in the columns, if we choose
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the second and the third coordinate, the design lacks this property. Therefore

the interaction factor D1D4 confounds with the age groups and the interaction

factor D2D3 is not estimable across the breeds.

We say that a row-column factorial design is of strength t if each of its

columns is an orthogonal array of type OA(m, k, q, t) and each of its rows is a

transpose of an OA(n, k, q, t). We denote such a design by Ik(m,n, q, t). In the

context of experimental design, in an Ik(m,n, q, t) all subsets of interactions of

size at most t can be estimated without confounding by the row and column

blocking factors. Thus, the design in Table 3.1 is an I4(4, 4, 2, 1) but not an

I4(4, 4, 2, 2). Here we want to remind the reader that, in Chapter 4 a regular

row-column design Ik(m,n, q) is equivalent to Ik(m,n, q, 1).

In experimental design, there is a wide range of designs that can be con-

sidered row-column designs. Almost all of them have the property of being

arranged in a rectangular array and typically (but not always) the rows and

columns act as blocking factors. One of the earliest examples of a row-column

factorial design can be found in [15] in which the following design was featured:

11111 10011 00110 01010 00101 10000 01001 11100

10010 11110 01011 00111 10001 00100 11101 01000

11011 10100 00001 01101 00010 10111 01110 11011

10101 11001 01100 00000 10110 00011 11010 01111

00011 01000 11010 10001 11111 01101 10100 00110

01001 00010 10000 11011 01100 11110 00111 10101

00100 01111 11011 10110 11011 01010 10011 00001

01110 00101 10111 11100 01011 11001 00000 10010

Table 3.2: A Row-column design for a 25-Factorial with 2 replicates

In practical use, sometimes a row-column design of strength 0 (non-regular)

is also useful. The design in Table 3.3 containing six replicates of 4 × 8 fac-

torial was used by CSIRO Division of Forestry [19]. The two factors were the
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four salt-irrigation levels and eight different lots of seeds. It was known that

the effect of growth varies with respect to the distance from the walls of the

glasshouse and also from north to south. Therefore, the row-column design

was constructed to analyse this two-dimensional physical effect.

3 8 2 2 1 7 4 3 1 5 2 1 3 6 4 4
1 4 3 1 2 3 1 8 2 6 4 2 4 5 2 7
4 1 4 7 3 5 2 4 3 3 1 6 2 8 1 2
2 7 1 3 4 6 3 2 4 8 3 4 1 1 2 5

1 5 1 7 2 3 3 2 2 8 3 4 4 6 4 1
3 7 4 8 3 6 2 5 4 2 1 3 1 1 2 4
2 6 3 1 1 8 4 4 3 3 4 5 2 7 1 2
4 3 2 2 4 7 1 6 1 4 2 1 3 8 3 5

4 5 1 8 2 3 1 7 3 2 3 4 2 1 4 6
2 2 2 7 4 8 3 6 1 4 4 1 1 5 3 3
1 6 3 1 3 5 2 8 4 7 1 3 4 2 2 4
3 8 4 3 1 1 4 4 2 6 2 5 3 7 1 2

4 3 2 2 3 6 3 5 1 4 1 7 4 8 2 1
3 2 4 6 1 1 2 7 2 8 4 5 3 4 1 3
2 6 1 5 2 3 4 4 4 1 3 8 1 2 3 7
1 8 3 1 4 7 1 6 3 3 2 4 2 5 4 2

2 4 3 7 4 1 1 3 1 6 2 5 3 2 4 8
4 6 1 5 3 8 4 7 2 3 3 4 2 1 1 2
3 3 2 8 1 4 3 6 4 2 1 1 4 5 2 7
1 7 4 4 2 6 2 2 3 1 4 3 1 8 3 5

4 7 1 2 2 6 3 1 2 4 4 5 3 8 1 3
3 2 3 7 4 1 2 5 4 3 1 6 1 4 2 8
2 3 4 8 3 5 1 7 1 1 2 2 4 6 3 4
1 5 2 1 1 8 4 4 3 6 3 3 2 7 4 2

Table 3.3: Row-column design for a 4× 8 Factorial with 6 replicates

Unbiased estimation of factorial effects sometimes required the treatment

combinations to be arranged in a way that coincides with the structure of a

quasi-Latin rectangle.

Definition 3.4. A quasi-Latin rectangle LR(m,n; q) is an m× n array based

on a symbol set of size q, where q > m, n and q divides the product mn, such

that each symbol appears λ times in the array and no symbol appears more

than once in any row or column.
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A quasi-Latin rectangle in which m = n is called a quasi-Latin square.

Example 3.2. Table 3.4 and Table 3.5 are, respectively, a quasi-Latin square

and a quasi-Latin rectangle based on the symbol set {0, 1, . . . , 7}:

6 5 4 0

1 0 6 7

2 7 1 3

5 2 3 4

Table 3.4: LR(4, 4; 8)

1 2 3 4 5 6

7 0 1 2 3 4

5 6 7 0 1 2

3 4 5 6 7 0

Table 3.5: LR(4, 6; 8)

Quasi-Latin rectangles have been used to construct row-column factorial

designs ([3]). Here if we consider each vector as a symbol then a row-column

factorial design can be thought of a quasi-Latin rectangle. For example, the

following 23 row-column design (I3(4, 4, 2, 1)) featured in [3] corresponds to the

quasi-Latin square given in Table 3.4.

0,1,1 1,0,1 1,1,0 0,0,0

1,0,0 0,0,0 0,1,1 1,1,1

0,1,0 1,1,1 1,0,0 0,0,1

1,0,1 0,1,0 0,0,1 1,1,0

Table 3.6: An I3(4, 4, 2, 1) design.

John and Lewis ([12]) describe a technique to generate row-column designs

by using a generalized cyclic method. Some other examples and techniques to

construct row-column designs are also given in [5], [6] and [4]. Wang [18] defines

a technique to construct a row-column design involving k factors each with two

levels, such that all the main effects are estimable. The procedure involves

careful selection of treatment combinations to generate the first row and the

first column of the design and then complete the table using component-wise

addition modulo 2, to get an Ik(2
M , 2N , 2, 1) where k = M +N . For example,
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11111, 10100, 01100 and 11110, 11101 were used to span the first column and

the first row, respectively, of the following design:

00000 11110 11101 00011

11111 00001 00010 11100

10100 01010 01001 10111

01100 10010 10001 01111

01011 10101 10110 01000

10011 01101 01110 10000

11000 00110 00101 11011

00111 11001 11010 00100

Table 3.7: An I5(2
3, 22, 2, 1) design.

A generalization of row-column design, called generalized confounded row-

column design (GCRC), was introduced by Datta et al. [7], in which the

intersection of rows and columns can contain multiple treatment combinations.

Their construction also utilizes the structure of a Latin square of suitable order.

For example, the following design featured in [7] uses a Latin square of order

four. Here each block corresponds to a cell of a Latin square.

0000 1011 1000 0100 0001 1010 0010 1001

0111 1100 0011 1111 0110 1101 0101 1110

1000 0100 0001 1010 0010 1001 0000 1011

0011 1111 0110 1101 0101 1110 0111 1100

0001 1010 0010 1001 0000 1011 1000 0100

0110 1101 0101 1110 0111 1100 0011 1111

0010 1001 0000 1011 1000 0100 0001 1010

0101 1110 0111 1100 0011 1111 0110 1101

Table 3.8: GCRC based on 24−factorial with block size 22
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In [11], Godolphin described a method to construct row-column designs

with two levels such that all main effects are estimable and the design also

maximizes the possible number of two-factor interactions of interest. The

construction uses a similar approach as in [7] by selecting specific treatment

combinations to generate the first row and the first column of the design. The

generating treatment combinations are grouped in the form of a matrix called

array generator matrix (AGM). In [11], the authors have also described the

properties of the AGMs which dictate the estimability of the main effects and

two-factor interactions in the subsequent design. Consider the following AGM

to construct a 25−factorial in a 22 × 23 array:

G =

(
Gc

Gr

)
=


1 1 1 1 0

1 1 0 0 1

1 0 1 1 0

0 1 1 0 1

0 1 0 0 1



Since the matrix G has rank 5 (full) therefore the resulting design will

consist of a full 25 factorial, and the number of treatment combinations in Gc

and Gr corresponds to the dimension of the resulting array. Now by using the

treatment combinations in Gc and Gr to span, respectively, the first column

and the first row of the design and then completing the table using addition

modulo 2 we get the following design:

00000 10110 01101 11011 01001 11111 00100 10010

11110 01000 10011 00101 10111 00001 11010 01100

11001 01111 10100 00010 10000 00110 11101 01011

00111 10001 01010 11100 01110 11000 00011 10101

Table 3.9: 22 × 23 full factorial row-column design

Since each column in the sub-matrices Gc and Gr is non-zero, the resulting

array contains exactly half the number of zeroes and ones in each column

and row (where the position is fixed). Thus the design in Table 3.9 is an
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I5(2
2, 23, 2, 1). This property in the design enables the estimability of all main

effects. The first two columns in Gc are the same, this leads to the appearance

of only two types of pairs, either {10, 01} or {11, 00}, in each column at the

first and second coordinate. Thus the interaction factor F1F2 is confounded in

the columns. Similarly, F3F4 is also confounded in the columns.

In matrix Gr, the first column is the same as the fourth and the second is

the same as the fifth. This causes the interaction factors F1F4 and F2F5 to be

confounded in the columns. In other words, the design in Table 3.9 lacks the

strength 2 property in these positions and therefore these interaction factors

are confounded.

In [11], the author has also provided an upper bound ω (defined below)

on the maximal number of interaction factors that can be estimated together

with all the main effects in a 2p × 2q row-column design.

Let n = α(2p − 1) + β, where α and β are integers and 0 ≤ β ≤ 2p − 2.

Then

ω =

(
n

2

)
− αβ − (2p − 1)

(
α

2

)
. (3.1)

If we plug in the values of the parameters of the design in Table 3.9 we get

ω = 8. However, the design only estimates the six interaction factors out of

ten. If we take the AGM matrix such that each column of Gc is distinct then

the resulting design would allow the estimation of the maximum number of

interaction factors together with all main effects.

Example 3.3. [11] The following AGM matrix G1 has the same Gc subma-

trix as in G but the Gr contains no identical columns. Therefore, the same

interaction factors are confounded in the columns and there is no interaction

factor confounded in the rows.

G =

(
Gc

Gr

)
=


1 1 1 1 0

1 1 0 0 1

1 0 1 0 1

0 1 1 1 0

0 1 1 0 1
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00000 10101 01110 11011 01101 11000 00011 10110

11110 01011 10000 00101 10011 00110 11101 01000

11001 01100 10111 00010 10100 00001 11010 01111

00111 10010 01001 11100 01010 11111 00100 10001

Table 3.10: An I5(2
2, 23, 2, 1) design.
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Chapter 4

Row-column factorial designs

with multiple levels

4.1 Abstract

An m× n row-column factorial design is an arrangement of the elements of a

factorial design into a rectangular array. Such an array is used in experimental

design, where the rows and columns can act as blocking factors. Formally, for

any integer q, let [q] = {0, 1, . . . , q − 1}. The qk (full) factorial design with

replication α is the multi-set consisting of α occurrences of each element of

[q]k; we denote this by α× [q]k. A regular m×n row-column factorial design is

an arrangement of the elements of α× [q]k into an m×n array (which we say is

of type Ik(m,n; q)) such that for each row (column) and fixed vector position

i ∈ [k], each element of [q] occurs n/q times (respectively, m/q times). Let

m ≤ n. We show that an array of type Ik(m,n; q) exists if and only if (a) q | m

and q | n; (b) qk | mn; (c) (k, q,m, n) ̸= (2, 6, 6, 6) and (d) if (k, q,m) = (2, 2, 2)

then 4 divides n. Godolphin (2019) showed the above is true for the case q = 2

when m and n are powers of 2.

In the case k = 2, the above implies necessary and sufficient conditions

for the existence of a pair of mutually orthogonal frequency rectangles (or F -

rectangles) whenever each symbol occurs the same number of times in a given
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row or column.

Keywords: Row-column factorial design, blocking factor, double confound-

ing, frequency square or F -square, frequency rectangle or F -rectangle, MOFS.

4.2 Introduction

For any integer q, let [q] = {0, 1, . . . , q − 1}. Consider the following example

of an experimental design from [8]. Suppose we wish to study the effects of 4

drugs at two dosage levels while controlling for the effects of 4 breeds and 4 age

groups. We could conduct 16 experiments based on the following row-column

factorial design:

1111 0100 0010 1001

0001 1010 1100 0111

1000 0011 0101 1110

0110 1101 1011 0000

Table 4.1: A regular row-column factorial design of type I4(4, 4; 2).

Here the rows and columns correspond to age groups and breeds, respec-

tively, of calves; with the binary vector in a cell indicating the dosage of each

of the four drugs as one of two levels.

In the above the 16 vectors from [2]4 are arranged in a 4× 4 array, in such

a way that for each row (column) and i ∈ [4], the entries 0 and 1 each appear

twice in position i of a vector in that row (respectively, column). In the context

of experimental design, these properties of regularity mean that if we consider

the set of six effects (the four drugs together with breed and age group), there

is no confounding between any pair of these effects. On the other hand, if we

ignore age and breed effects, the underlying factorial design allows us to also

estimate the effects of any subset of the four types of drug (these are called
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interactions) without confounding. We refer the reader to Chapter 9 of [15]

for more detail of the application of row-column factorial designs to statistical

experimental design.

Formally, the qk (full) factorial design with replication α is the multi-set

consisting of α occurrences of each element of [q]k; we denote this by α× [q]k.

An m × n row-column factorial design qk is any arrangement of the elements

of α × [q]k into an m × n array. Necessarily, qk must divide mn. Without

loss of generality, we always assume m ≤ n. We call such a design regular

if for each row (column) and i ∈ [q], each element of [q] occurs n/q times

(respectively, m/q times). Furthermore, we denote the type of such an array

to be Ik(m,n; q), where regularity is always assumed to hold. Observe that

regularity implies that q divides both m and n. The above example is thus a

regular 4× 4 row-column factorial design 24, or equivalently an array of type

I4(4, 4; 2). Note that an array of type I2(n, n;n) is equivalent to a pair of

orthogonal Latin squares of order n.

We first review the impact of row-column factorial designs within experi-

mental design literature. A blocking factor can be thought of as a partition of

the blocks of a design, typically an equipartition (all subsets in the partition

have equal size) with further properties of regularity to minimize confounding

within the design structure. Blocking factors for factorial designs have been

well-studied ([1], [2], [9], [10], [17]). However, as mentioned in [13], having two

forms of blocking for a factorial design is less well-studied.

Within experimental design, a row-column design can refer to a variety of

combinatorial designs, all with the property of being arranged in a rectangular

array, where the rows and columns are typically (but not always) blocking fac-

tors. This is sometimes referred to as double confounding [13]. To ensure that

certain effects can be estimated without confounding, regularity conditions are

imposed. For example, in a Latin square each symbol occurs once per row and

once per column. In practice non-regular row-column factorial designs are also

sometimes of use. In [25], a non-regular row-column factorial design is given
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which was used by the CSIRO Division of Forestry for a glasshouse experi-

ment. Here the physical distance to the edge of the glasshouse is an important

effect to consider.

A quasi-Latin square is an n × n array such that for some k > n which

divides n2, each entry from [k] occurs n2/k times in the array, with no entry

occurring more than once per row or column. Some of the literature on quasi-

Latin squares features row-column factorial designs [3]. Here if we consider

the vectors as the entries, a row-column factorial design can be thought of as

a quasi-Latin square if no vector occurs more than once in a row or column

(necessarily, m,n < 2k). John and Lewis [16] describe a technique to cyclically

generate some regular row-column factorial designs. Examples of regular row-

column factorial designs are also given in [6], [7] and [5]. Wang [24] constructs

Ik(2
M , 2N ; 2) whenever k = M + N . A variation of row-column factorial de-

signs is considered by [8]: a generalized confounded row-column design can be

thought of as a factorial design arranged into a rectangular array where each

cell contains a constant number of vectors.

Row-column factorial designs with two levels (that is, q = 2) are studied in

[13]. As well as the result in Theorem 4.1 below, designs are also constructed to

estimate paired interactions without confounding by row and column blocking

factors.

Theorem 4.1. [13] Let 1 ≤ M ≤ N . An array of type Ik(2
M , 2N ; 2) (i.e. a

regular 2M×2N row-column factorial design 2k) exists if and only if k ≤M+N

and (k,M,N) ̸= (2, 1, 1).

We next describe the connection between regular row-column factorial de-

signs and frequency rectangles. Given two vectors v = (v0, v1, . . . , vs−1) and

w = (w0, w1, . . . , wt−1), we define v ⊕w to be the concatenation of v and w,

that is:

v ⊕w := (v0, v1, . . . , vs−1, w0, w1, . . . , wt−1).

Next, let A = [aij] and B = [bij] be matrices of the same dimensions, where

each entry of A is a vector of dimension k and each entry of B is a vector of
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dimension ℓ. Then we define C = A⊕B to be the matrix given by C = [cij :=

aij ⊕ bij].

Now, an array of type Ik(m,n; q) can be written in the form F0⊕F1⊕· · ·⊕

Fk−1, where each entry of each Fi, i ∈ [k], has dimension 1. Since regularity is

assumed, each element of [q] occurs precisely n/q times per row and m/q times

per column, for each of the arrays Fi, i ∈ [k]. These arrays are thus frequency

rectangles.

Formally, a frequency rectangle (sometimes known as an F -rectangle) of

type FR(m,n; q) is an m × n array such that each element of [q] occurs n/q

times per row and m/q times per column. Thus, we may write any array of

type Ik(m,n; q) as F0⊕F1⊕· · ·⊕Fk−1, where for each i ∈ [k], Fi is a frequency

rectangle of type FR(m,n; q). We note here that frequency rectangles in the

literature (most often frequency squares or F -squares when m = n) may have

different row/column frequencies for distinct symbols. In this paper we restrict

ourselves to the regular case.

Two frequency rectangles of type FR(m,n; q) are orthogonal if, when su-

perimposed, each ordered pair from [q] × [q] occurs exactly mn/q2 times in

the array. A set of pairwise orthogonal frequency rectangles are called mutu-

ally orthogonal frequency rectangles. These have mostly been studied in the

case m = n, where such structures are called Mutually Orthogonal Frequency

Squares or MOFS), and in particular the case m = n = q, where such struc-

tures are Mutually Orthogonal Latin Squares (MOLS).

The existence problem for pairs of MOFS has been completely solved; the

following theorem is a special case of [18, p. 67]. The exceptions are precisely

the two orders for which pairs of MOLS do not exist, as originally conjectured

by Euler.

Theorem 4.2. There exists a pair of MOFS of type F (n, n; q) (equivalently,

an array of type I2(n, n; q)) if and only if (n, q) ̸∈ {(2, 1), (6, 1)}.

Hedayat, Raghavarao, et al. [14] showed that if a set of k MOFS of type

FR(n, n; q) exists then k ≤ (n− 1)2/(q− 1). When k meets this upper bound
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such a set is called complete. Complete sets of MOFS exist when q = 2 and if

there exists a Hadamard matrix of order n [12]; otherwise they are only known

to exist when n is a prime power [19, 20, 21, 23]. A complete set of MOFS

does not exist when q = 2 and n ≡ 2 (mod 4) [4].

Note that while an array of type Ik(m,n; q) yields a set of k mutually

orthogonal frequency rectangles, the converse is not always true for k ≥ 3, as

seen below. Here we see a set of three mutually orthogonal frequency rectangles

of type FR(6, 12; 2) (overlapped) which is not a regular row-column factorial

design, as the binary sequences of even weights (000, 110, 101, 011) appear

12 times each and the sequences of odd weights (001, 010, 100, 111) appear 6

times each in the resulting array.

000 111 000 101 011 110 000 111 000 101 011 110

111 000 000 011 110 101 111 000 000 011 110 101

000 000 111 110 101 011 000 000 111 110 101 011

101 011 110 010 100 001 101 011 110 010 100 001

011 110 101 100 001 010 011 110 101 100 001 010

110 101 011 001 010 100 110 101 011 001 010 100

Table 4.2: Three mutually orthogonal frequency rectangles of type FR(6, 12; 2)

However, if k = 2 an Ik(m,n; q) is equivalent to a pair of mutually orthog-

onal frequency rectangles of type F (m,n; q).

Theorem 4.3. [11] Let q divide m and n. If q ̸∈ {2, 6} or at least one of n/q,

m/q is even, there exists a pair of mutually orthogonal frequency rectangles of

type F (m,n; q) (equivalently, an array of type I2(m,n; q)).

A set of mutually orthogonal frequency rectangles can also be thought of

as a type of mixed orthogonal array. In general, a mixed orthogonal array

OA(N, sk11 sk22 . . . skvv , t) is an array of size N×k, where k =
∑v

i=1 ki in which ki

columns have symbols from the set [si], such that in any N × t subarray every

possible t-tuple occurs the same number of times. The parameter t is called

the strength of the orthogonal array.
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Given a set F1, F2, . . . , Fk of k mutually orthogonal frequency rectangles

of type F (m,n; q), for each cell (i, j) ∈ [m] × [n], create a row of an mn ×

(k + 2) array by placing the entry in cell (i, j) of Fℓ in column ℓ, with i and

j the entries, respectively, in the final two columns. The result is a mixed

orthogonal array OA(mn, qk,m1, n1, 2); in fact there is equivalence between

the two combinatorial structures.

Thus, from above, an Ik(m,n; q) is equivalent to a mixed orthogonal array

only in the case k = 2. Mixed orthogonal arrays for N ≤ 100 are classified

in [22]. Consequently, it is known whether I2(m,n; q) exists for any m and n

such that mn ≤ 100.

In this paper our main result is to classify the parameters for which there

exists a regular row-column factorial design, generalizing the results of Theo-

rems 4.1, 4.2 and 4.3 above.

Theorem 4.4. Let m ≤ n. There exists an array of type Ik(m,n; q) (that is,

a regular m × n row-column factorial design qk) if and only if q divides m, q

divides n, qk divides mn and neither of the following hold:

(i) k = q = m = 2 and n ≡ 2 (mod 4).

(ii) k = 2 and q = m = n = 6.

In Section 4, we generalize Theorem 4.3 to find necessary and sufficient

conditions for the existence of an array of type I2(m,n; q). We prove the

remaining cases of Theorem 4.4 in Section 5, using the recursive constructions

from Section 2 and the finite field constructions from Section 3.
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4.3 Recursive constructions

In this section we discuss ways in which row-column factorial designs can be

built recursively. We begin with a straightforward lemma.

Lemma 4.5. If there exist arrays of type Ik(m,n; q) and Ik(m
′, n; q) there

exists an array of type Ik(m+m′, n; q). If there exist arrays of type Ik(m,n; q)

and Ik(m,n′; q) there exists an array of type Ik(m,n+ n′; q).

Next we consider a type of Kronecker Product. Let A = [aij] and B = [bij]

be two arrays of sizes m× n and u× v, respectively. The Kronecker product,

A⊗B, of A and B is an mu× nv array defined by:

A⊗B =


a11B . . . a1nB
...

...

am1B . . . amnB


where alkB is a u× v array with the entry (i, j) given by (alk, bij).

It is easy to see that if F and F ′ are two frequency rectangles of type

FR(m,n; q) and FR(m′, n′; q′) respectively, then their Kronecker product F ⊗

F ′ is a frequency rectangle of type FR(mm′, nn′; qq′), where the entries of

[q] × [q′] are mapped to [qq′] by some bijection f . In this fashion, let D =

F0⊕F1⊕· · ·⊕Fk−1 and D′ = F ′
0⊕F ′

1⊕· · ·⊕F ′
k−1 be two row-column factorial

designs of types Ik(m,n; q) and Ik(m
′, n′; q′), respectively, where Fi and F ′

i are

frequency rectangles for each i ∈ [k]. Then we define D ⊠D′ to be the array

given by (F0 ⊗ F ′
0)⊕ (F1 ⊗ F ′

1)⊕ · · · ⊕ (Fk−1 ⊗ F ′
k−1).

Lemma 4.6. If D and D′ are arrays of type Ik(m,n; q) and Ik(m
′, n′; q′),

respectively, then D⊠D′, as defined above, is an array of type Ik(mm′, nn′; qq′).

Proof. It suffices to show that the entries of the cells of D⊠D′ form a regular

factorial design. Let D = F0 ⊕ F1 ⊕ · · · ⊕ Fk−1 and D′ = F ′
0 ⊕ F ′

1 ⊕ · · · ⊕ F ′
k−1

as above.

Consider any (α0, α1, . . . , αk−1) ∈ [qq′]k in a cell of D ⊠D′. Then for each

i ∈ [k], αi = f(ai, bi), for some ai and bi belonging to the symbol sets of Fi
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and F ′
i respectively. Since D is of type Ik(m,n; q), there are precisely mn/qk

cells containing ai in Fi for each i ∈ [k]. Similarly, there are exactly m′n′/(q′)k

cells containing bi in F ′
i for each i ∈ [k]. From the definition of the Kronecker

product, the sequence (α0, α1, . . . , αk−1) appears exactly mm′nn′/(qq′)k times

in D ⊠D′.

Example 4.7. Consider the two arrays D and D′ of type I3(4, 2; 2) and

I3(3, 9; 3) respectively.

000 011 101 110

111 100 010 001

DT

000 011 022 101 112 120 202 210 221

111 122 100 212 220 201 010 021 002

222 200 211 020 001 012 121 102 110

D′

Then by taking the product D⊠D′ and using the bijection (a, b) 7→ 3a+ b

to transform the symbol set, we get an array of type I3(12, 18; 6):

000 011 022 101 112 120 202 210 221 333 344 355 434 445 453 535 543 554

111 122 100 212 220 201 010 021 002 444 455 433 545 553 534 343 354 335

222 200 211 020 001 012 121 102 110 555 533 544 353 334 345 454 435 443

033 044 055 134 145 153 235 243 254 300 311 322 401 412 420 502 510 521

144 155 133 245 253 234 043 054 035 411 422 400 512 520 501 310 321 302

255 233 244 053 034 045 154 135 143 522 500 511 320 301 312 421 402 410

303 314 325 404 415 423 505 513 524 030 041 052 131 142 150 232 240 251

414 425 403 515 523 504 313 324 305 141 152 130 242 250 231 040 051 032

525 503 514 323 304 315 424 405 413 252 230 241 050 031 042 151 132 140

330 341 352 431 442 450 532 540 551 003 014 025 104 115 123 205 213 224

441 452 430 542 550 531 340 351 332 114 125 103 215 223 204 013 024 005

552 530 541 350 331 342 451 432 440 225 203 214 023 004 015 124 105 113

Table 4.3: An array of type I3(12, 18; 6)
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Corollary 4.8. If there exist r arrays of types Ik(mi, ni; qi), where i ∈ [r],

then there exists an array of type Ik(
∏r−1

i=0 mi,
∏r−1

i=0 ni;
∏r−1

i=0 qi).

Trivially there exists an array of type Ik(m,n; 1) for any integers k,m, n.

The following corollary is then immediate.

Corollary 4.9. If there exists an array of type Ik(m,n; q), then there exists

an array of type Ik(mm′, nn′; q) for any integers m′, n′ ≥ 1.

4.4 Prime power constructions

In this section, we construct row-column factorial designs via finite fields of

prime power order q. It is implicitly understood that field elements are rela-

belled to elements of [q] as a final step in construction.

Lemma 4.10. Let M,N ≥ 1 and q ≥ 2 a prime power, with (M,N, q) ̸=

(1, 1, 2). Then there exists a linearly independent set of M +N polynomials:

fr(x0, ..., xM+N−1) = ar,0x0 + ar,1x1 + · · ·+ ar,M+N−1xM+N−1; r ∈ [M +N ]

over the field Fq which satisfy the following two conditions for each r ∈ [M+N ]:

(i) (ar,0, ..., ar,M−1) ̸= (0, ..., 0);

(ii) (ar,M , ..., ar,M+N−1) ̸= (0, ..., 0).

Proof. We split the proof into cases.

Case I: When M = N = 1 and q > 2.

In this case we can take the following two polynomials:

f0(x0, x1) = x0 + x1

f1(x0, x1) = x0 + αx1,

where α is a non-zero element in Fq other than the identity.

Case II (a): When N ≥ 2 and q is a power of 2.
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We remind the reader that since we are working over a field of order q,

1 + 1 = 0 in this case. Consider the identity matrix IM+N of order M + N .

By performing the following two row operations sequentially:

R0 +Rs → Rs for each s ∈ {1, 2, . . . ,M +N − 1};

Rs + (RM+N−1 +RM+N−2)→ Rs for each s ∈ [M ],

(4.1)

we get the following matrix:



R0

c0

1

c1

0

. . .

. . .

cM−1

0

cM

0

cM+1

0

. . .

. . .

cM+N−3

0

cM+N−2

1

cM+N−1

1

R1 1 1 . . . 0 0 0 . . . 0 1 1

...
...

...
. . .

...
...

...
. . .

...
...

...

RM−1 1 0 . . . 1 0 0 . . . 0 1 1

RM 1 0 . . . 0 1 0 . . . 0 0 0

RM+1 1 0 . . . 0 0 1 . . . 0 0 0

...
...

...
. . .

...
...

...
. . .

...
...

...

RM+N−1 1 0 . . . 0 0 0 . . . 0 0 1


Now corresponding to each row Rs = (rs,0, . . . , rs,(M+N−1)) of the above

matrix we define a polynomial fs = rs,0x0 + · · · + rs,(M+N−1)xM+N−1 in Fq,

where s ∈ [M +N ]. Then these polynomials satisfy the conditions (i) and (ii)

and are linearly independent.

Case II (b): When N ≥ 2 and q is not a power of 2.

In this case again take the identity matrix IM+N and by replacing the

second row operation in (4.1) by Rs +RM+N−1 → Rs for each s ∈ [M ], we get

the following matrix:
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R0

c0

2

c1

0

. . .

. . .

cM−1

0

cM

0

cM+1

0

. . .

. . .

cM+N−2

0

cM+N−1

1

R1 2 1 . . . 0 0 0 . . . 0 1

...
...

...
. . .

...
...

...
. . .

...
...

RM−1 2 0 . . . 1 0 0 . . . 0 1

RM 1 0 . . . 0 1 0 . . . 0 0

RM+1 1 0 . . . 0 0 1 . . . 0 0

...
...

...
. . .

...
...

...
. . .

...
...

RM+N−1 1 0 . . . 0 0 0 . . . 0 1


It is easy to see that the corresponding polynomials are linearly independent

in Fq and satisfy the conditions (i) and (ii).

Theorem 4.11. Let q ≥ 2 be a prime power. Let M,N ≥ 1 and (M,N, q) ̸=

(1, 1, 2). There exists an array of type IM+N(q
M , qN ; q).

Proof. First we describe a method to construct a frequency rectangle of type

FR(qM , qN ; q) corresponding to the polynomial fr for each r ∈ [M + N ], as

given by Lemma 4.10.

Label the rows and columns of a qM × qN array, respectively, by using the

set of all M -tuples and N -tuples over the field Fq. Now consider a polynomial

fr(x0, ..., xM+N−1) = ar,0xr,0 + · · ·+ ar,M+N−1xr,M+N−1

over the field Fq that satisfies the conditions given in Lemma 4.10. We place

the element f(b0, ..., bM−1, c0, ..., cN−1) in the intersection of row (b0, ..., bM−1)

and column (c0, ..., cN−1) of the qM × qN array.

Now we show that the array obtained in this way is a frequency rectangle

of type FR(qM , qN ; q), that is every element of Fq appears exactly qN−1 times
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in each row and qM−1 times in each column. Consider a row which is labelled

by (b0, ..., bM−1) and take an element α ∈ Fq. For this row, the equation

fr(b0, ..., bM−1, xM , ..., xM+N−1) = α

reduces to the equation

K + ar,MxM + ...+ ar,M+N−1xM+N−1 = α (4.2)

where K is a constant. Now by axiom (ii) of Lemma 4.10 there exists i ∈

{M,M + 1, . . . ,M + N − 1} such that ar,i ̸= 0. We solve the equation (4.2)

for xi:

xi =
1

ar,i
(α−K − ar,MxM − · · · − ar,i−1xi−1−

ar,i+1xi+1 − · · · − ar,M+N−1xM+N−1) (4.3)

Since there are q elements in Fq and the N − 1 variables on the right side of

(4.3) can take any value from Fq, the equation (4.3) has exactly qN−1 solutions

in Fq. This implies that the symbol α appears exactly at qN−1 places in the row

(b0, ..., bM−1). By a similar argument, we can prove that each symbol appears

exactly qM−1 times in each column. Thus the resulting array is a frequency

rectangle of type FR(qM , qN ; q).

Now to construct an array of type IM+N(q
M , qN ; q). Consider a set of

M +N linearly independent polynomials

fr(x0, ..., xM+N−1) = ar,0x0 + · · ·+ ar,M+N−1xM+N−1; r ∈ [M +N ]

over the field Fq, such that the coefficients satisfy the conditions (i) and (ii) of

Lemma 4.10. As above, for each r ∈ [M +N ] we obtain a frequency rectangle

Fr of type FR(qM , qN ; q)

It remains to show that F0 ⊕ F1 ⊕ · · · ⊕ FM+N−1 is an array of type

IM+N(q
M , qN ; q). To this end, consider any (α0, α1, ..., αM+N−1) ∈ (Fq)

M+N .
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Since the polynomials above are linearly independent, the system of equations:

a0,0x0 + · · · + a0,M+N−1xM+N−1 = α0

a1,0x0 + · · · + a1,M+N−1xM+N−1 = α1

...
. . .

...
...

aM+N−1,0x0 + · · · + aM+N−1,M+N−1xM+N−1 = αM+N−1

has rankM+N and therefore has a unique solution in Fq, which shows that

(α0, α1, ..., αM+N−1) appears in exactly one cell of the array constructed.

Corollary 4.9 implies the following:

Corollary 4.12. If (q,M,N) ̸= (2, 1, 1), there exist an array of type

IM+N(q
Mb1, q

Nb2; q), for any prime power q.

4.4.1 “Sudoku” Frequency Rectangles

In this subsection we take the construction above and take it one step further.

Specifically, we show in Theorem 4.18 that if q divides b1b2 and q is a prime

power, there exists an array of type IM+N+1(q
Mb1, q

Nb2; q).

First we describe a Latin square which has a Sudoku-type property with

q = q1q2 symbols, where q1 and q2 are positive integers and the symbol set is

taken to be [q]. That is, such a Latin square can be partitioned into q1 × q2

subarrays containing each element of [q].

Theorem 4.13. Let q1, q2 ≥ 1. Then there exists a Latin square L(q1, q2) of

order q1q2 such that for each i ∈ [q1] and j ∈ [q2], the set of cells

{(i′, j′) | i ≡ i′ (mod q1), j ≡ j′ (mod q2)}

contain each entry from [q1q2] exactly once.

Proof. In what follows, q = q1q2. Let S0 be the q1 × q2 array where cell (i, j)

of S contains the integer i+ jq1, for each i ∈ [q1] and j ∈ [q2]. Thus the entries

of S0 are the elements of [q], listed in ascending order from the first column:
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0 q1 . . . (q − q1)

1 q1 + 1 . . . (q − q1) + 1

...
...

. . .
...

q1 − 1 2q1 − 1 . . . q − 1

S0

Now we define Si to be the array obtained by adding the symbol i (mod q)

to each cell of S0. Finally, define L(q1, q2) to be the following array of order q:

← q2 → ← q2 → . . . ← q2 →
↑
q1 S0 S1 . . . Sq1−1

↓
↑
q1 Sq1 Sq1+1 . . . S2q1−1

↓

...
...

...
. . .

...

↑
q1 S(q−q1) S(q−q1)+1 . . . Sq−1

↓

L(q1, q2)

Observe that each entry of [q] occurs once per row and once per column;

hence L(q1, q2) is a Latin square.

Example 4.14. We exhibit the construction in the previous theorem in the
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case q = 6, q1 = 2 and q2 = 3:

0 2 4 1 3 5

1 3 5 2 4 0

2 4 0 3 5 1

3 5 1 4 0 2

4 0 2 5 1 3

5 1 3 0 2 4

The Latin square L(2, 3) as defined in Theorem 4.13

Now, a Latin square of order q is also an array of type I1(q, q; q). Thus,

from Corollary 4.9, we have the following corollary.

Corollary 4.15. For any integers µ, λ, q1, q2 ≥ 1, there exists a frequency

rectangle of type FR(qµ, qλ; q) (where q = q1q2) such that for each i ∈ [µq1]

and j ∈ [λq2], the set of cells

{(i′, j′) | i ≡ i′ (mod µq1), j ≡ j′ (mod λq2)}

contain each entry from [q1q2] exactly once.

Example 4.16. If L is the Latin square L(2, 3), then L ⊠ I1(2, 3; 1) yields

a frequency rectangle of type FR(12, 18; 6). The entries in bold show the

elements of [6] occurring in cells of the form (i, j) where i ≡ 1 (mod 4) and

j ≡ 2 (mod 9).
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0 0 0 2 2 2 4 4 4 1 1 1 3 3 3 5 5 5

0 0 0 2 2 2 4 4 4 1 1 1 3 3 3 5 5 5

1 1 1 3 3 3 5 5 5 2 2 2 4 4 4 0 0 0

1 1 1 3 3 3 5 5 5 2 2 2 4 4 4 0 0 0

2 2 2 4 4 4 0 0 0 3 3 3 5 5 5 1 1 1

2 2 2 4 4 4 0 0 0 3 3 3 5 5 5 1 1 1

3 3 3 5 5 5 1 1 1 4 4 4 0 0 0 2 2 2

3 3 3 5 5 5 1 1 1 4 4 4 0 0 0 2 2 2

4 4 4 0 0 0 2 2 2 5 5 5 1 1 1 3 3 3

4 4 4 0 0 0 2 2 2 5 5 5 1 1 1 3 3 3

5 5 5 1 1 1 3 3 3 0 0 0 2 2 2 4 4 4

5 5 5 1 1 1 3 3 3 0 0 0 2 2 2 4 4 4

Table 4.4: A frequency rectangle of type FR(12, 18; 6) by Corollary 4.15

Before we prove Theorem 4.18, we require the following number-theoretic

observation.

Lemma 4.17. Let b1, b2 and q be positive integers such that q divides the

product b1b2. Then there exist positive integers q1 and q2 such that q1q2 = q

and q1 divides b2 and q2 divides b1.

Proof. Let q = ps00 ps11 . . . p
sm−1

m−1 be the prime factorization of q. Since q divides

b1b2, b1 and b2 must be of the form:

b1 = B1 p
α0
0 pα1

1 . . . p
αm−1

m−1 ,

b2 = B2 p
β0

0 pβ1

1 . . . p
βm−1

m−1 ,

where pi does not divide Bj and αi + βi ≥ si for all i ∈ [m] and j ∈ {1, 2}.

Let
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q1 = pu0
0 pu1

1 . . . p
um−1

m−1

and

q2 = pt00 p
t1
1 . . . p

tm−1

m−1 ,

where ti := max{0, si − βi} and ui = si − ti for all i ∈ [m].

Since αi+βi ≥ si, ti ≤ αi for each i ∈ [m], which implies that q2 divides b1.

Also si − βi ≤ ti implies that ui = si − ti ≤ βi and thus q1 divides b2. Finally

observe that q1q2 = q.

Theorem 4.18. Let q be a divisor of b1b2. If there exist an array of type

IM+N(q
M , qN ; q), then there exists an array of type IM+N+1(q

Mb1, q
Nb2; q).

Proof. By Lemma 4.17 we can choose q1, q2 such that q1q2 = q and q1 divides

b2 and q2 divides b1.

Let I ′ be the array I1(q2, q1; 1)⊠ IM+N(q
M , qN ; q) as shown in Table 4.5.

← qN → ← qN → . . . ← qN →
↑
qM IM+N IM+N . . . IM+N

↓
↑
qM IM+N IM+N . . . IM+N

↓

...
...

...
. . .

...

↑
qM IM+N IM+N . . . IM+N

↓

Table 4.5: I ′ = I1(q2, q1; 1)⊠ IM+N(q
M , qN ; q)

Applying Corollary 4.15 with µ = qM−1q2 and λ = qN−1q1, there exists a

rectangular array J ′ of type I1(q
Mq2, q

Nq1; q) such that for each i ∈ [qM ] and
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j ∈ [qN ], the set of cells

{(i′, j′) | i ≡ i′ (mod qM), j ≡ j′ (mod qN)}

contain each entry from [q1q2] exactly once. It follows that the array I ′ ⊕ J ′

contains each sequence of length M+N+1 exactly once. Thus I ′⊕J ′ is of type

IM+N+1(q
Mq2, q

Nq1; q). Finally, by Corollary 4.9, I1(b1/q2, b2/q1; 1)⊠ (I ′ ⊕ J ′)

is an array of type IM+N+1(q
Mb1, q

Nb2; q).

4.5 The case k = 2

In this section we prove Theorem 4.4 in the case k = 2. Given Theorem 4.3, it

suffices to consider the existence of an array of type I2(m,n; q) only in the case

q ∈ {2, 6} and m/q and n/q odd. From Theorem 4.2, arrays of type I2(2, 2; 2)

and I2(6, 6; 6) do not exist. We next give another non-existence result.

Lemma 4.19. There does not exist an array of type I2(2, n; 2) whenever n/2

is odd.

Proof. Consider a frequency rectangle F of type FR(2, n; 2). By permuting

columns we can assume F is in the following form:

0 0 . . . 0 1 1 . . . 1

1 1 . . . 1 0 0 . . . 0

Now consider any other frequency rectangle F ′ of type FR(2, n; 2). Now

since n ≡ 2 (mod 4), F ′ contains at least ⌊n/4⌋ + 1 symbols of the same type

(say 0) in the first n/2 cells of its first row. This implies there are at least

⌊n/4⌋ + 1 1′s in the second half of the first row and consequently we have

⌊n/4⌋ + 1 0′s in the second half of its second row. Thus if we superimpose F

and F ′, we get at least 2×⌊n/4⌋+2 > n/2 = 2n/4 ordered pairs of type (0, 0).

Which shows F and F ′ are not orthogonal.
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Lemma 4.20. Let m/2 and n/2 be odd where n ≥ m > 2. Then there exists

an array of type I2(m,n; 2).

Proof. Let m = 2l1 and n = 2l2, where l1 and l2 are odd and l2 ≥ l1 > 1. Let

l2 = l1 + 2t. Now by Theorem 4.2 there exists an array of type I2(2l1, 2l1; 2).

By Theorem 4.11 and Corollary 4.9 there exists an array of type I2(2l1, 4t; 2).

Thus by Lemma 4.5, there exists an array of type I2(2l1, 2l2; 2).

Next we consider when q = 6. An array of type I2(6, 12; 6) exists by

Theorem 4.3. We also exhibit an array of type I2(6, 18; 6):

13 24 35 40 51 02 15 24 30 43 51 02 10 24 33 45 51 02

34 43 01 52 20 15 34 45 01 52 23 10 34 40 01 52 25 13

43 32 10 25 04 53 41 32 13 20 04 55 41 32 15 23 04 50

22 11 54 03 45 30 22 11 54 05 40 33 22 11 54 00 43 35

50 05 23 31 12 44 53 00 25 31 12 44 55 03 20 31 12 44

04 50 42 14 33 21 00 53 42 14 35 21 03 55 42 14 30 21

Table 4.6: An array of type I2(6, 18; 6).

By Lemma 4.5, we thus obtain the following.

Lemma 4.21. There exists an array of type I2(6l1, 6l2; 6) if and only if

(l1, l2) ̸= (1, 1).

4.6 The case k ≥ 3.

It now suffices to prove the case k ≥ 3 in order to prove Theorem 4.4.

Theorem 4.22. Let k ≥ 3, q|m, q|n and qk|mn. Then there exist an array of

type Ik(m,n; q).
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Proof. Trivially, if an array of type Ik(m,n; q) exists, then an array of type

Iℓ(m,n; q) exists for each 1 ≤ ℓ < k. Thus we may assume that k = max{t :

qt|mn}. Let mn = qkb.

Consider the prime factorization of q:

q = ps00 ps11 . . . p
sl−1

l−1 .

For each r ∈ [l], let ir = max{t : qtr|m} and jr = max{t : qtr|n}, where

qr = psrr . Thus m and n can be expressed as:

m = qi00 . . . q
il−1

l−1 pα0
0 . . . p

αl−1

l−1 a1, n = qj11 . . . qjll pβ0

0 . . . p
βl−1

l−1 a2 (4.4)

with αr, βr < sr and pr ∤ a1 and pr ∤ a2 for each r ∈ [l]. Now for any c ∈ [l] we

have the following two cases:

Case I: When αc + βc < sc.

In this case, ic+jc is the largest power of qc which divides mn, and thus ic+

jc is the largest power of qc which divides k. By Corollary 4.12, if (ic, jc, qc) ̸=

(1, 1, 2), there exists an array of type Ik(q
ic
c p

αc
c , qjcc p

βc
c ; qc), where k = ic + jc.

However if (ic, jc, qc) = (1, 1, 2), then sc = 1, αc = βc = 0 and 23 does not

divide mn, contradicting k ≥ 3.

Case II: When αc + βc ≥ sc.

Since αc, βc < sc, this implies αc + βc < 2sc and therefore ic + jc + 1 is the

largest power of qc which divides k. By combining Theorem 4.11 and Theorem

4.18 we obtain an array of type Ik(q
ic
c p

αc
c , qjcc p

βc
c ; qc) where k = ic + jc + 1.

Thus in both cases for each c ∈ [l] we obtain an array of type

Ik(q
ic
c p

αc
c , qjcc p

βc
c ; qc) and by taking their Kronecker product (see Corollary 4.8),

we can construct an array of type Ik(
m
a1
, n
a2
; q) where a1 and a2 are defined in

equation (4.4). Finally, by applying Corollary 4.9 we obtain an array of type

Ik(m,n; q), which completes the proof.

The previous section and Theorem 4.22 together imply Theorem 4.4.
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Chapter 5

Row-column factorial designs

with strength at least 2

5.1 Abstract

The qk (full) factorial design with replication λ is the multi-set consisting of

λ occurrences of each element of each q-ary vector of length k; we denote

this by λ × [q]k. An m × n row-column factorial design qk of strength t is an

arrangement of the elements of λ× [q]k into an m×n array (which we say is of

type Ik(m,n, q, t)) such that for each row (column), the set of vectors therein

are the rows of an orthogonal array of degree k, size n (respectively, m), q levels

and strength t. Such arrays are used in experimental design. In this context,

for a row-column factorial design of strength t, all subsets of interactions of

size at most t can be estimated without confounding by the row and column

blocking factors.

In this manuscript, we study row-column factorial designs with strength

t ≥ 2. Our results for strength t = 2 are as follows. For any prime

power q and assuming 2 ≤ M ≤ N , we show that there exists an array

of type Ik(q
M , qN , q, 2) if and only if k ≤ M + N , k ≤ (qM − 1)/(q − 1)

and (k,M, q) ̸= (3, 2, 2). We find necessary and sufficient conditions for

the existence of Ik(4m,n, 2, 2) for small parameters. We also show that
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Ik+α(2
αb, 2k, 2, 2) exists whenever α ≥ 2 and 2α + α + 1 ≤ k < 2αb − α,

assuming there exists a Hadamard matrix of order 4b.

For t = 3 we focus on the binary case. Assuming M ≤ N , there exists an

array of type Ik(2
M , 2N , 2, 3) if and only if M ≥ 5, k ≤M +N and k ≤ 2M−1.

Most of our constructions use linear algebra, often in application to existing

orthogonal arrays and Hadamard matrices.

Mathematics Subject Classification: 05B15, 05B20, 15B34.

Keywords: Row-column factorial design, Hadamard matrix, orthogonal ar-

ray, Hadamard code, linear code, linear orthogonal array.

5.2 Introduction

For any integer s, let [s] = {0, 1, . . . , s − 1}. An orthogonal array of size N ,

degree k, q levels and strength t, denoted OA(N, k, q, t) is an N ×k array with

entries from [q] such that in every N × t submatrix, every 1 × t row vector

appears N/qt times. The qk (full) factorial design with replication λ is the

multi-set consisting of λ occurrences of each element of [q]k; we denote this by

λ× [q]k.

Anm×n row-column factorial design qk is any arrangement of the elements

of λ × [q]k into an m × n array. We say that such an array has strength t if

for each row (column), the set of vectors therein are the rows of an orthogonal

array of size k, degree n (respectively, m), q levels and strength t. That is, if

we consider any subset of t positions within the vectors in a fixed row (or col-

umn), we obtain a [q]t full-factorial design with replication n/qt (respectively,

m/qt). We denote such a row-column factorial design by Ik(m,n, q, t), where

the replication number or index λ of the design is given by λ = mn/qk.

For example, in Table 5.1 the elements of [3]4 are arranged into a 9×9 array

such that the vectors in each row and column are the rows of an OA(9, 4, 3, 2).

Thus this is an array of type I4(9, 9, 3, 2).
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0000 1011 2022 0112 1120 2101 0221 1202 2210

0111 1122 2100 0220 1201 2212 0002 1010 2021

0222 1200 2211 0001 1012 2020 0110 1121 2102

1021 2002 0010 1100 2111 0122 1212 2220 0201

1102 2110 0121 1211 2222 0200 1020 2001 0012

1210 2221 0202 1022 2000 0011 1101 2112 0120

2012 0020 1001 2121 0102 1110 2200 0211 1222

2120 0101 1112 2202 0210 1221 2011 0022 1000

2201 0212 1220 2010 0021 1002 2122 0100 1111

Table 5.1: A row-column factorial design I4(9, 9, 3, 2).

Within experimental design, a row-column design can refer to a variety of

combinatorial designs, all with the property of being arranged in a rectangular

array, where regularity conditions may be imposed in order to estimate effects

without confounding. Table 5.1, for example, could be used to study the effects

of 4 drugs on cows, each at 3 dosage levels while controlling for the effects of 9

breeds (the rows) and 9 age groups (the columns). Here the vector (2, 0, 2, 2)

in the first row and third column indicates that the first breed and third age

group are given the highest dosage of the first, third and fourth drug and the

lowest dosage of the second drug. The property of being an array of type

I4(9, 9, 3, 2) eliminates, for example, confounding between breed or age group

and the interaction between any pair of drugs. We refer the reader to [13] and

[7] for a literature review on the application of row-column factorial designs to

statistical experimental design.

In this paper two arrays are equivalent under any: (a) reordering of rows;

(b) reordering of columns; (c) reordering of levels (applied globally); and (d)

reordering of the entries in each vector (with the same reordering applied
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globally). It is also convenient to use the terms “array” and “matrix” inter-

changeably. When linear algebra is applied we often work over the field of

order q, with an understanding that when q is a prime power, the levels are

relabelled with [q] as a final step.

By definition, if there exists an array of type Ik(m,n, q, t) then qk|mn and

there exists an OA(m, k, q, t) and there exists an OA(n, k, q, t). If (k,m, n, q, t)

is a 5-tuple satisfying these three necessary conditions we say that (k,m, n, q, t)

is admissible.

Necessary conditions for the existence of orthogonal arrays of strength t

imply further necessary conditions for the existence of row-column factorial

designs of strength t. It is impractical to list all known necessary conditions

(in particular as t grows large); we refer the reader to surveys in III.6 and III.7

of the Handbook of Combinatorial Designs [4]. Elementary conditions imply

that t ≤ k and qt divides both m and n. In summary:

Lemma 5.1. If (k,m, n, q, t) is admissible then qt | m, qt | n, qk | mn and

t ≤ k.

Necessary and sufficient conditions for a row-column factorial design of

strength 1 are given in [13], generalizing [7] and [16].

Theorem 5.2. [13] Let m ≤ n. There exists Ik(m,n, q, 1) (that is, an m× n

row-column factorial design qk of strength 1) if and only if:

i. q | m and q | n;

ii. if k = q = m = 2 then 4 divides n; and

iii. (k,m, n, q) ̸= (2, 6, 6, 6).

Note that an array Ik(n, n, q, t) implies the existence of a set of k mutually

orthogonal frequency squares (MOFS) of size n based on a set of size q. Thus,

the existence of row-column factorial designs also relates to the existence of

frequency squares and Latin squares. For example, the exceptions in the previ-

ous theorem include pairs of orthogonal Latin squares of orders 2 and 6, which
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are well-known not to exist. Some results, including a table of lower bounds,

related to the existence of MOFS can be found in [2, 10, 11].

In this manuscript we focus on row-column factorial designs of strength

2 and higher. Binary row-column factorial designs of strength 1 which come

as close as possible to strength 2 are studied in [7], in the case when the

dimensions of the array are powers of 2. The motivation in [7] is to be able

to estimate as many two-factor interactions as possible without confounding,

given fixed parameters.

In the binary strength 2 case we will frequently make use of Hadamard

matrices. A Hadamard matrix H(n) is a square matrix of order n, having

entries from the set {1,−1} such that any two rows are orthogonal, i.e., it

satisfies the equation: H(n)H(n)T = nIn. If a Hadamard matrix H(n) exists,

then either n = 2 or n is divisible by 4. However, the converse is an open

problem known as the Hadamard conjecture; the smallest value for which it is

not known whether a Hadamard matrix exists or not is 668 [6].

The following lemma gives a relationship between binary orthogonal arrays

of strength 2 and 3 and the Hadamard matrices of order 4m.

Lemma 5.3. [8, p. 148] Let m ≥ 4. Orthogonal arrays OA(4m, 4m − 1, 2, 2)

and OA(8m, 4m, 2, 3) exist if and only if there exists a Hadamard matrix order

4m.

It is worth mentioning how orthogonal arrays can be constructed from

Hadamard matrices as per the previous lemma, as this idea is frequently ap-

plied in Sections 5 and 6, where we focus on binary arrays. Let H be a

Hadamard matrix of order 4m. Assume that H is in normalized form; that

is, we assume the first row and column of H only contain the entry 1. Now

delete the first column and replace each −1 with 0. The resultant array is an

OA(4m, 4m − 1, 2, 2). Next, consider the array [H | −H]T and again replace

each −1 with 0; the resultant array is an OA(8m, 4m, 2, 3). The rows of such

an array are the codewords of a code known as a Hadamard code [9].

For a binary vector v, we often say that its weight ω(v) is equal to the
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number of 1’s in v. It is also often convenient to say that two binary vectors

v and w of length 4k are orthogonal if each has weight 2k and v ·w = k. So

in a binary orthogonal array of strength 2, each pair of columns is necessarily

orthogonal.

The previous lemma, together with the Bose-Bush bound for orthogonal ar-

rays ([4]; [12] originally) implies the following necessary conditions for strength

2 row-column factorial designs.

Lemma 5.4. Let m ≤ n. If there exists an array of type Ik(m,n, q, 2), then

k ≤ (m−1)/(q−1). If there exists an array of type Im−1(m,n, 2, 2), then there

is a Hadamard matrix of order m.

Since the Hadamard conjecture is a well-studied but unsolved open prob-

lem, it is likely that generalizing Theorem 5.2 to the strength 2 case, that is

finding necessary and sufficient conditions for the existence of a row-column

factorial design of strength 2, is untenable even in the binary case.

The following result on strength 3 binary orthogonal arrays is well-known

[4, 14].

Lemma 5.5. If an OA(m,n, 2, 3) exists, then m ≤ 2n−1. Moreover, an

OA(2n−1, n, 2, 3) exists, the rows of which are all the binary vectors of length

n and odd weight.

Let C and R be orthogonal arrays each of degree k with q levels with the

zero vector in the first row. We define C ⊞ R to be the array such that row i

and column j contains the vector sum, calculated in Fq, of the ith row of C and

the jth row of R. In turn, we call an array L of type Ik(m,n, q, t) abelian if and

only if there exists C and R such that L = C⊞R, where C is an OA(m, k, q, t)

and R is an OA(n, k, q, t). (Here we use C and R to remind the reader that

the first Column and first Row of L are, respectively, the orthogonal arrays C

and R.) If the replication is 1, then such an array is abelian if and only if it

is the subarray of the addition table for Fk
q . Most constructions in this paper

are abelian, however Section 5 contains some non-abelian constructions.
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In Section 2, we give some general recursive constructions that apply to all

row-column factorial designs. In Section 3 we focus on the abelian case, using

linear algebra to show that row-column factorial designs can be constructed

from orthogonal arrays and matrices with certain independence properties.

These are applied in Section 4 where we consider the strength 2 case with an

arbitrary number of levels. We solve this case completely when the number of

levels q is a prime power and the dimensions of the array are each a power of

q; see Theorem 5.19. This generalizes the binary case solved in [7].

In Section 5 we find necessary and sufficient conditions for the existence

of Ik(4m,n, 2, 2) whenever m ≤ 5; or m is odd assuming the existence of

a Hadamard matrix of order 4m, containing two sets of non-trivial columns

such that their sums are orthogonal (see Conjecture 5.27). We also show that

Ik+α(2
αb, 2k, 2, 2) exists whenever α ≥ 2 and 2α+α+1 ≤ k < 2αb−α, assuming

there exists a Hadamard matrix of order 4b (Theorem 5.36). Finally in Section

6 we consider the strength 3 binary case, solving this whenever the dimensions

are powers of 2 (Theorem 5.40).

5.3 General results

In this section we list some general observations and results that can be applied

to row-column factorial designs of any strength.

We start with some straightforward lemmas.

Lemma 5.6. If D is an array of type Ik(m,n, q, t) then:

• D is also an array of type Ik(m,n, q, t′) for each t′ such that 1 ≤ t′ ≤ t;

• there exists an array of type Ik′(m,n, q, t′) for each k′ such that 1 ≤ k′ ≤

k.

Lemma 5.7. If there exist arrays of type Ik(m,n, q, t) and Ik(m
′, n, q, t)

there exists an array of type Ik(m + m′, n, q, t). If there exist arrays of type

Ik(m,n, q, t) and Ik(m,n′, q, t) there exists an array of type Ik(m,n+n′, q, t).
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The proof of the following lemma is a Kronecker product construction based

on a similar construction for orthogonal arrays (Theorem III.7.20 from [4],

originally [3]).

Lemma 5.8. If there exist arrays of type Ik(m,n, q, t) and Ik(m
′, n′, q′, t) then

there exists an array of type Ik(mm′, nn′, qq′, t).

Proof. Let D and D′ be arrays of type Ik(m,n, q, t) and Ik(m
′, n′, q′, t), re-

spectively. We construct an mm′ × nn′ array D ⊠ D′ as follows. For each

(i, j) ∈ [mm′] × [nn′], write i = xm′ + x′ and j = yn′ + y′ where x ∈ [m],

x′ ∈ [m′], y ∈ [n], y′ ∈ [n′], noting that the choices of x, x′, y and y′ are unique

and depend on i and j. In cell (i, j) we place the vector q′D(x, y) +D′(x′, y′),

where D(x, y) and D′(x′, y′) are the vectors in cells (x, y) and (x′, y′) of D and

D′, respectively.

We next verify that D ⊠ D′ is an array of type Ik(mm′, nn′, qq′, t). Fix a

set T of t coordinates in column j of D ⊠ D′ and let (v1, v2, . . . , vt) ∈ [qq′]t.

As above, write j = yn′ + y′ for unique y ∈ [n], y′ ∈ [n′]. For each α ∈ [t], let

xα ∈ [q] and x′
α ∈ [q′] be unique solutions to vα = xαq

′ + x′
α.

Since D is of strength t, the vector (x1, x2, . . . , xt) appears n/qt times in

column y of D in the set of positions T . Similarly, the vector (x′
1, x

′
2, . . . , x

′
t)

appears n′/(q′)t times in column y′ of D′ in the same set of positions T . Thus

(v1, v2, . . . , vt) appears precisely nn′/(qq′)t times in column j of D ⊠ D′. By

the same argument in transpose, each vector in [qq′]t appears mm′/(qq′)t in

each row of D ⊠D′.

It remains to show that each vector in [qq′]k appears the same number of

times in the array D ⊠D′. The idea is similar to above. Let (v1, v2, . . . , vk) ∈

[qq′]k. For each α ∈ [k], let xα ∈ [q] and x′
α ∈ [q′] be unique solutions to

vα = xαq
′ + x′

α. By the parameters of D and D′, the vectors (x1, x2, . . . , xk)

and (x′
1, x

′
2, . . . , x

′
k) appear mn/qk and m′n′/(q′)k times, respectively, in the

arrays D and D′. Thus (v1, v2, . . . , vk) appears precisely mm′nn′/(qq′)k times

in the array D ⊠D′.
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The m × n matrix of 0 vectors of dimension k is trivially an array

Ik(m,n, 1, t) for any 1 ≤ k ≤ t. The following corollary is then immediate.

Corollary 5.9. If there exists an array Ik(m,n, q, t), then there exists an array

Ik(mm′, nn′, q, t) for any integers m′, n′ ≥ 1.

5.4 Abelian row-column factorial designs

In this section, we find necessary and sufficient conditions on orthogonal arrays

C and R such that C⊞R is a row-column factorial design of strength t, where

at least one of C or R is a vector space.

Since every row (column) in C⊞R is equivalent to the first row (respectively,

column), we have the following observation.

Lemma 5.10. Let C be an OA(m, k, q, t) and let R be an OA(n, k, q, t). Then

L = C ⊞ R is an array of type Ik(m,n, q, t) if and only if L is a row-column

factorial design, that is, the multiset of entries of the cells of L is the λ× [q]k

factorial design.

We next consider the extreme case when every row is a factorial design.

Lemma 5.11. If there exists an orthogonal array OA(m, k, q, t) then there

exists an array of type Ik(m, qk, q, t).

Proof. Let R be an OA(qk, k, q, t) where t ≤ k and the row vectors of R are

the factorial design [q]k. Let C be an OA(m, k, q, t). Since the entries in each

row of C ⊞ R are trivially [q]k, by the previous lemma C ⊞ R is an array of

type Ik(m, qk, q, t).

In the following, given a matrix A over the field Fq, let ⟨A⟩ be a matrix

whose row vectors are the row space of A; that is the vector space generated

by the row vectors of A. An orthogonal array is called linear if its rows form

a vector space (assuming without loss of generality that the zero vector is one

of the rows). The theory of linear orthogonal arrays is closely related to that

of linear codes; see for example Section 4.3 of [8].



87

The following lemma is in some ways a standard result in this area, stem-

ming from the original result by Bose (1961) [1] which links the two theories.

This lemma is also implied by Theorem 3.27 and Theorem 3.29 in [8]. We

include a proof for thoroughness.

Henceforth we say that a set S of vectors is t-independent if every t-subset

of S is linearly independent [5].

Lemma 5.12. Let A be an m × n matrix of rank m over the field Fq where

m ≤ n. Let 2 ≤ t ≤ m. Then ⟨A⟩ is an OA(qm, n, q, t) if and only if the set

of columns of A is t-independent.

Proof. Let C be a subset of t distinct column vectors of A. Let B be the m× t

sub-matrix which is A restricted to these columns.

If C is a dependent set, there exists a non-zero vector w such that Bw = 0.

Then, by the fundamental theorem of linear algebra, the vector w does not

occur in ⟨B⟩. In turn, within the set of vectors of ⟨A⟩, within the t positions

determined by the columns of C, the ordered sequence w does not occur. Thus

⟨A⟩ does not have strength t.

Conversely, suppose that C is an independent set. Let w ∈ Ft
q. Since B

has rank t, there are qm−t vectors v such that Bv = w. In turn, within the

set of vectors of ⟨A⟩, within the t positions determined by the columns of C,

each element of (Fq)
t occurs qm−t times.

Corollary 5.13. Let K be a binary m× (n−m) matrix. Then ⟨[I | K]⟩ is an

OA(2m, n, 2, 2) if and only if the columns of K are distinct and each column

of K contains at least 2 non-zero elements.

Example 5.14. From the previous corollary, ⟨A⟩ is an OA(26, 8, 2, 2):

A =



1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 1

0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 1
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Theorem 5.15. Let G be an m×k matrix and let A be an N×k matrix of full

rank, each over the field Fq where N ≤ k. Let A⊥ be a k× (k−N) matrix the

columns of which are a basis for the nullspace of A. Then G ⊞⟨A⟩ is an m×qN

row-column factorial design if and only if GA⊥ is an OA(m, k−N, q, k−N).

Proof. Let M = G ⊞ ⟨A⟩ and let vi ∈ Fk
q denote the i

th row vector of G. Then

the elements of the ith row of M form the coset vi + ⟨A⟩ of ⟨A⟩ in Fk
q . Note

that ⟨A⟩ has exactly qk−N distinct cosets in Fk
q . We show that each of these

cosets appears the same number of times as a set of entries in a row of M . To

this end, observe that for 1 ≤ i, j ≤ m:

vi + ⟨A⟩ = vj + ⟨A⟩ ⇐⇒ vi − vj ∈ ⟨A⟩ ⇐⇒ viA
⊥ = vjA

⊥.

Thus the set of entries in two rows of M are identical if and only if the corre-

sponding rows in GA⊥ are identical. Thus M is a row-column factorial design

(that is, the set of entries of M form a factorial design) if and only if each

element of (Fq)
k−N occurs the same number of times as a row of GA⊥. In

turn, this is true if and only if GA⊥ is an OA(m, k −N, q, k −N).

Theorem 5.16. Let G be an OA(m, k, q, t) and let ⟨A⟩ be an OA(qN , k, q, t)

where A is an N × k matrix of full rank and N ≤ k. Let A⊥ be a k× (k−N)

matrix whose columns generate the nullspace of A. If GA⊥ is an OA(m, k −

N, q, k −N), then G ⊞ ⟨A⟩ is an array of type Ik(m, qN , q, t).

Proof. Let M = G ⊞ ⟨A⟩. The result follows from Theorem 5.15 and Lemma

5.10.

In the next example (and in Section 5) we make use of the result (well-

known to coding theorists) that over any field, the nullspace of the matrix

[I | K] is equal to the columnspace of the matrix [−KT | I]T (Remark 1.5, [4,

p. 677]).

Example 5.17. We continue with Example 5.14 to show that G ⊞ ⟨A⟩ is an

I8(12, 2
6, 2, 2), using Theorem 5.16 the following G = OA(12, 8, 2, 2).
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A⊥ =



1 0

0 1

1 1

1 0

0 1

1 1

1 0

0 1


G =



0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 1

1 0 0 0 1 1 1 0

0 1 0 0 0 1 1 1

1 0 1 0 0 0 1 1

1 1 0 1 0 0 0 1

0 1 1 0 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 1 0 1 0

1 1 1 0 1 1 0 1

0 1 1 1 0 1 1 0

0 0 1 1 1 0 1 1



GA⊥ =



0 0

0 1

1 0

0 1

1 0

0 0

1 1

0 0

1 0

1 1

0 1

1 1


The following is a generalization of Theorem 5 in [13].

Theorem 5.18. Let q be a prime power. Let M,N ≥ 1 and k ≤ M + N .

Suppose there exists a k ×M matrix A and a k ×N matrix B such that:

(a) the k × (M +N) matrix [A | B] has rank k;

(b) the rows of A are a t-independent set of vectors; and

(c) the rows of B are a t-independent set of vectors.

Then there exists an abelian array of type Ik(q
M , qN , q, t).

Proof. Assuming the conditions of the theorem, the rows of [A | B] are a

linearly independent set of k vectors:

(ar,0 + ar,1 + · · ·+ ar,M+N−1); r ∈ [k] (5.1)

in the vector space FM+N
q such that:

(i) The set of vectors {(ar,0, ..., ar,M−1) : r ∈ [k]} is t-independent; and

(ii) the set of vectors {(ar,M , ..., ar,M+N−1) : r ∈ [k]} is t-independent.

Corresponding to each vector in (5.1) we construct a qM × qN array Ar by

using a polynomial fr, where
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fr(x0, ..., xM+N−1) = ar,0x0 + · · ·+ ar,M+N−1xM+N−1.

Label the rows and columns of Ar by using the set of all M -tuples

and N -tuples, respectively, over the field Fq. We place the element

f(b0, ..., bM−1, c0, ..., cN−1) in the intersection of row (b0, ..., bM−1) and column

(c0, ..., cN−1) of the array Ar.

We next form an array D by overlapping the arrays Ar, r ∈ [k]. That is,

cell (i, j) of D contains a vector of dimension k the rth coordinate of which is

the entry of cell (i, j) of Ar. We claim that the array D is an Ik(q
M , qN , q, t).

We first show that D is an array of strength t. Let T be a subset of [k] of

size t and consider a sequence (α1, . . . , αt) in [q]t. For a fixed column in D,

the system of equations

fr(x0, . . . , xM+N−1) = αr; r ∈ T

reduces to:

ar,0x0 + ar,1x1 + · · ·+ ar,M−1xM−1 = αr +Kr; r ∈ T

where Kr is a constant in Fq for each r ∈ T .

By condition (i), the above system with M variables has rank t. Therefore

it has exactly qM−t solutions in Fq. Thus each column of D is an orthogonal

array of type OA(qM , k, q, t). Similarly, we can show that each row of D

also forms an orthogonal array of type OA(qN , k, q, t). Hence the strength t

condition is satisfied.

Now to show that D is a qk-full factorial design. Consider a sequence

(α0, α1, . . . , αk−1) in Fk
q . Since the system of equations:

ar,0x0 + ar,1x1 + · · ·+ ar,M+N−1xM+N−1 = αr, r ∈ [k],

has M +N variables and rank k, it has exactly qM+N−k solutions in Fq. Thus

each sequence in Fk
q appears exactly qM+N−k times in D.
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5.5 Strength 2 with arbitrary number of levels

In this section we consider row-column factorial designs of the form

Ik(q
M , qN , q, 2). We aim to prove the following theorem.

Theorem 5.19. Let 2 ≤ M ≤ N , let q be a prime power and let k ≥ 2.

Then there exists an array of type Ik(q
M , qN , q, 2) if and only if k ≤ M + N ,

k ≤ (qM − 1)/(q − 1) and (k,M, q) ̸= (3, 2, 2).

Lemma 5.8 and the previous theorem imply the following corollary.

Corollary 5.20. Let q1 ≤ q2 ≤ · · · ≤ qα be powers of distinct primes and

(k,M, q1) ̸= (3, 2, 2). Let q = q1q2 . . . qα, k ≤ (qM1 − 1)/(q − 1), 2 ≤ M ≤ N

and 2 ≤ k ≤M +N . Then there exists an array of type Ik(q
M , qN , q, 2).

The elements of [2]2 form the rows of an OA(4, 2, 2, 2). In turn, Lemma

5.11 implies the existence of I2(4, 4, 2, 2). This observation, together with the

following two lemmas and Theorem 5.18, will imply the Theorem 5.19.

Lemma 5.21. Let N ≥ M ≥ 2 be integers and q ≥ 2 be a prime power,

with M + N ≤ (qM − 1)/(q − 1) and (M, q) ̸= (2, 2). Then there exists an

(M +N)×M matrix A and an (M +N)×N matrix B such that:

(a) [A | B] has full rank;

(b) no two rows of A are parallel; and

(c) no two rows of B are parallel.

Proof. We split the proof in different cases. In each case we describe a square

matrix L = [A | B] with the required properties.

Case I: When M = 3 and q = 2.

In this case, 3 ≤ N ≤ 4. For N = 4 we define the matrix L to be,
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L =



1 0 0 0 1 1 0

0 1 0 1 1 0 0

0 0 1 1 1 1 0

1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 1


(5.2)

The above matrix has full rank over F2 and also satisfies the conditions (b)

and (c). Now for the case N = 3, we can take the 6× 6 sub-matrix (as shown

in (5.2)) of the above matrix obtained by deleting the final row and column.

Observe that this matrix also has full rank and satisfies the conditions in the

lemma.

For all other cases, we take L to be of the form:

L =



IM IM O

CM − IM CM O

S O IN−M


(5.3)

Where IM is an identity matrix of order M and O is a matrix of zeroes of

appropriate size. Matrices CM and S are to be defined later.

Label the columns of the matrix L in (5.3) by ci, i ∈ [M +N ]. Note that

for any choices of matrices CM and S, the column operations;

cM+i − ci −→ cM+i, for each i ∈ [M ], (5.4)

transfers the matrix L into a lower triangular matrix with entry 1 on the main

diagonal. Thus condition (a) is satisfied for any choice of CM and S.

Case II: When M ≥ 4.

In this case let CM be a M ×M matrix with exactly one 0 in each row and

column, 1’s on the main diagonal and 1’s in every other cell. Observe that
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condition (c) is satisfied. Let D be the set of all rows in IM and CM − IM . It

is easy to see that no two vectors in D are parallel. Let W be the largest set

of non-parallel vectors in FM
q containing D. Then |W | = (qM − 1)/(q − 1) ≥

M +N . We define S to be the matrix each of whose row is a distinct element

in W \D. Thus condition (b) is satisfied.

In the remaining cases the matrix S can be obtained in the similar manner

from the corresponding CM , again satisfying condition (b).

Case III: When 2 ≤M ≤ 3 and q is odd.

In this case we define the matrices CM ,M ∈ {2, 3} to be:

C2 =

(
2 2

1 2

)
and C3 =


2 0 1

1 2 0

0 1 2

 .

Case IV: When M = 3 and q = 2l, l ≥ 2.

In this case we define C3 as follows.

C3 =


α + 1 1 1

1 α + 1 1

1 1 α + 1

 ,

where α is a primitive element of the field Fq.

Lemma 5.22. If b is odd, there does not exist an array of type I3(4, 4b, 2, 2).

Proof. Suppose that an array D exists of type I3(4, 4b, 2, 2). Then each column

of D is an OA(4, 3, 2, 2). By inspection, the vectors in any column of D are

either all the vectors of even weight or all the vectors of odd weight; we refer

to these columns as type A or B, respectively.

A

000

101

011

110

B

001

100

010

111
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Since the vectors in A and B form a partition of F3
2 and the entries of D

form a factorial design, D must contain exactly 2b columns of each type.

Now consider a row R in D; by permuting columns we may assume without

any loss of generality that the first two coordinates of the entries in R have

the following form:

B1︷ ︸︸ ︷
00 00 . . . 00 |

B2︷ ︸︸ ︷
01 01 . . . 01 |

B3︷ ︸︸ ︷
10 10 . . . 10 |

B4︷ ︸︸ ︷
11 11 . . . 11

where each Bi has size b. Let x be the number of zeros at the third coordinate

in B1, then without loss of generality x ≥ (b + 1)/2. By the strength two

property, the number of zeros in the third coordinate in B2, B3 and B4 is

b− x, b− x and x respectively. This implies that there are x vectors of type A

in each Bi. Consequently, R contains 4x ≥ 2b+ 2 vectors of type A. This is a

contradiction since D contains exactly 2b columns of each type.

5.6 Binary row-column factorial designs of

strength 2

In this section we restrict ourselves to the binary case. We exploit the the-

ory developed in Section 3 to give existence results for arrays of the form

Ik(4m,n, 2, 2). We focus on the case where m is odd, however the next theo-

rem is also true when m is even. The main results in this section are given in

Theorems 5.36, 5.38 and 5.39.

Theorem 5.23. Let k ≥ 5. Let m ≥ 3 be odd and suppose there exists an

OA(4m, k, 2, 2) with two subsets of column vectors V and W such that:

(i) |V |, |W | ≥ 3;

(ii) there exists v ∈ V \W and w ∈ W \ V such that V \ {v} ≠ W \ {w};

(iii) (
∑

x∈V x) is orthogonal to (
∑

y∈W y).
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Then there exists an abelian Ik(4m, 2k−2, 2, 2).

Proof. Observe that the conditions (i) and (ii) imply k ≥ 5. Let G

be an OA(4m, k, 2, 2) satisfying the conditions of the theorem. Let G =

[v1|v2| . . . |vk]. Without loss of generality, assume that vk−1 ∈ V \ W and

vk ∈ W \ V . Define a (k− 2)× 2 matrix K over F2 such that the first column

of K contains a 1 in the jth row if and only if vj ∈ V . Similarly, the second

column of K contains a 1 in the jth row if and only if vj ∈ W . Observe

furthermore that [KT | I]T has the same property.

Next, let A be the (k−2)×k matrix defined by A = [I | K]. If the columns

of K are identical, then V \ {v} = W \ {w}, a contradiction. Moreover, since

|V |, |W | ≥ 3, the columns of K each have at least two 1’s. Thus, by Corollary

5.13, ⟨A⟩ is an OA(2k−2, k, 2, 2).

Define A⊥ = [KT | I]T . Observe that GA⊥ is a 4m×2 matrix with columns

given by
∑

x∈V x and
∑

y∈W y. By definition, GA⊥ is an OA(4m, 2, 2, 2). Thus,

by Theorem 5.16, G ⊞ ⟨A⟩ is an Ik(4m, 2k−2, 2, 2).

Now, observe that the matrix G from Example 5.17 is an OA(12, 8, 2, 2)

with the property that v1+v3+v4+v6+v7 is orthogonal to v2+v3+v5+v6+v8.

Moreover, G embeds in the Hadamard matrixH(12) of order 12 (had.12, [15]).

Thus we have the following corollary.

Corollary 5.24. There exists an abelian Ik(12, 2
k−2, 2, 2) where 8 ≤ k ≤ 11.

Corollary 5.25. There exists an abelian Ik(20, 2
k−2, 2, 2) where 8 ≤ k ≤ 19.

Proof. The following is a transpose of an OA(20, 8, 2, 2) which has the property

that v1 +v3 +v4 +v6 +v7 is orthogonal to v2 +v3 +v5 +v6 +v8. The result

follows by Theorem 5.23.



96



1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0

1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1

1 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 1

1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1


The above array consists of columns 2 to 9 of the Hadamard matrix

(had.20.toncheviv, [15]) with the permutation (2 4)(5 7)(3 8 6 9) applied

to its columns.

Corollary 5.26. For any odd m ≥ 3, there exists an Ik(4m, 2k−2, 2, 2) where

8 ≤ k ≤ 11.

Proof. By Theorem 5.19 there exists an Ik(16, 2
k−2, 2, 2) where 8 ≤ k ≤ 15.

Thus the result follows by previous two corollaries and Lemma 5.7.

Via a counting argument, Theorem 5.23 cannot work for m odd if k ≤

6. We outline this argument in the conclusion in Lemma 5.47. Moreover,

computational results show that k = 7 does not work in the cases m ∈ {3, 5}.

The above and Theorem 5.23 thus motivate the following conjecture, which

is stronger than the Hadamard conjecture.

Conjecture 5.27. For each odd m, there exists a Hadamard matrix 4m which

yields an orthogonal array OA(4m, 8, 2, 2) satisfying the conditions of Theorem

5.23.

If the above conjecture is true, then by Theorem 5.23, there exists an

Ik(4m, 2k−2, 2, 2) for any 8 ≤ k ≤ 4m− 1.

We next focus on a strategy for the case k ≤ 7. Our constructions are

typically non-abelian. In the following, ⊕ is a binary operation that gives the

concatenation of two vectors. That is,

(a1, a2, . . . , ar)⊕ (b1, b2, . . . , bs) = (a1, a2, . . . , ar, b1, b2, . . . , bs).
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The following lemma is implied by the definition of an orthogonal array. Note

that 1 is the vector containing only 1’s.

Lemma 5.28. Consider a set S of 2k binary vectors of dimension k + 2 with

the following properties:

• For each v ∈ [2]k, the vector v ⊕ (i, j) ∈ S, for some i, j ∈ [2];

• For each (i, j) ∈ [2]2, there are precisely 2k−2 vectors in S of the form

v ⊕ (i, j) for some v;

• The vector v ⊕ (i, j) ∈ S if and only if (1+ v)⊕ (i, j) ∈ S.

Then the vectors of S are the rows of an OA(|S|, k + 2, 2, 2).

Lemma 5.29. Let {w,x,y, z,1} be a set of linearly independent binary vectors

of dimension k ≥ 5. Consider the 4 × 2k array of vectors of dimension k + 2

given by C⊞R, where R is the set of 2k vectors with 0 in the final two positions

and

C = (w ⊕ (0, 0),x⊕ (0, 1),y ⊕ (1, 0), z⊕ (1, 1))T .

Then the elements in each column of C⊞R can be rearranged so that each row

is an OA(2k, k + 2, 2, 2).

Proof. Observe that H is a 4× 8 subarray of C ⊞R:

H =

w x y z t u s v

x w t u y z v s

y t w s x v z u

z u s w v x y t

,

where s = w + y + z, t = w + x + y, u = w + x + z, v = x + y + z and the

vectors in the first, second, third and fourth rows are concatenated with (0, 0),

(0, 1), (1, 0) and (1, 1), respectively.

Next, let H ′ be the 4 × 8 array formed by replacing each vector a in H

with the vector a + (1 ⊕ (0, 0)). We next arrange the entries in each column

of [H | H ′]. We mark the elements of H as follows:
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H =

w x◦ y∗ z t u∗ s◦ v

x∗ w t u◦ y◦ z v s∗

y t∗ w◦ s x v◦ z∗ u

z◦ u s w∗ v∗ x y t◦

.

Next, rearrange the elements in each column of H so that elements with the

same mark are in the same row, with a corresponding permutation applied to

each column of H ′. Let the resultant 4× 16 matrix be J .

Now, replace each vector of the form a in J with the vector (v⊕ (0, 0))+a

to obtain a 4×16 matrix J ′. Observe that for each row of K = [J | J ′] and for

each g ∈ G = ⟨w,x,y, z,1⟩, there exists i and j such that g⊕ (i, j) is in that

row. Moreover, each column from K is a column from C ⊞ R with elements

permuted.

Let G, z0 + G, . . . , zα−1 + G be the cosets of G in (F2)
k, where α = 2k−5.

For each i ∈ [α], let Ki be formed from K by replacing each entry a of K with

(zi ⊕ (0, 0)) + a.

Then, observe that [K0 | K1 | · · · | Kα] can be formed from C ⊞ R by

permuting the elements in each column. Moreover, the resultant rows each

now satisfy the conditions of Lemma 5.28.

Example 5.30. Let w = 10000,x = 10111,y = 01101, and z = 01011. Then

H and H ′ in the proof of above lemma are as follows:

H =

1000000 1011100◦ 0110100∗ 0101100 0101000 0110000∗ 1011000◦ 1000100

1011101∗ 1000001 0101001 0110001◦ 0110101◦ 0101101 1000101 1011001∗

0110110 0101010∗ 1000010◦ 1011010 1011110 1000110◦ 0101110∗ 0110010

0101111◦ 0110011 1011011 1000011∗ 1000111∗ 1011111 0110111 0101011◦

H ′ =

0111100 0100000◦ 1001000∗ 1010000 1010100 1001100∗ 0100100◦ 0111000

0100001∗ 0111101 1010101 1001101◦ 1001001◦ 1010001 0111001 0100101∗

1001010 1010110∗ 0111110◦ 0100110 0100010 0111010◦ 1010010∗ 1001110

1010011◦ 1001111 0100111 0111111∗ 0111011∗ 0100011 1001011 1010111◦

.
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Corollary 5.31. Let G = OA(4m, k+2, 2, 2) be an orthogonal array such that

the rows partition into sets of 4 vectors of the form

{w ⊕ (0, 0),x⊕ (0, 1),y ⊕ (1, 0), z⊕ (1, 1)}

where {w,x,y, z,1} is a linearly independent set. Let R be the set of 2k vectors

with 0 in the final two positions. Then the elements in each column of G⊞R

can be rearranged to create an Ik+2(4m, 2k, 2, 2).

Proof. From the previous lemma it suffices to check that G⊞ R is a factorial

design. Let A be a k × (k + 2) matrix of the form [I | 0]. Observe that

R = ⟨A⟩. The nullspace of A is generated by the columns of A⊥ = [0 | I]T .

Thus the columns of GA⊥ are the last two columns of G which are by definition

orthogonal. The result then follows from Theorem 5.15.

Corollary 5.32. There exists I7(12, 32, 2, 2).

Proof. We present an orthogonal array of type OA(12, 7, 2, 2) in Table 5.2,

that satisfies the conditions of Corollary 5.31. The dashed lines partition the

rows into three sets of the form {w ⊕ (0, 0),x ⊕ (0, 1),y ⊕ (1, 0), z ⊕ (1, 1)}

such that in each case {w,x,y, z,1} is linearly independent.
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1 0 0 0 0 0 0

0 1 1 0 1 0 1

0 1 0 1 1 1 0

1 0 1 1 1 1 1

1 0 1 1 1 0 0

0 0 0 0 1 0 1

0 0 1 0 0 1 0

1 1 1 0 0 1 1

0 1 1 1 0 0 0

1 1 0 1 0 0 1

1 1 0 0 1 1 0

0 0 0 1 0 1 1



Table 5.2: An orthogonal array of type OA(12, 7, 2, 2).

We next generalize the above ideas to the case where linear independence

is not assumed.

Lemma 5.33. Let m = 2α where α ≥ 2 and (F2)
α = {ei | i ∈ [m]}. That is,

label the binary vectors of dimension α with e0, e1, . . . em−1. Let vi, i ∈ [m] be

any vectors (possibly non-distinct) of dimension k ≥ α+m+ 1. Consider the

m× 2k array of vectors of dimension k+α given by C ⊞R, where the rows of

R are the set of 2k vectors with 0 in the final α positions and the ith row of C

is given by vi⊕ ei, where i ∈ [m]. Then the elements in each column of C⊞R

can be rearranged so that the vectors in each row form an OA(2k, k + α, 2, 2).

Proof. r in Let e0 = 0 be the first row of R. Let G be the subgroup generated



101

by the set of vectors {vi : i ∈ [m]}∪{1}. Then |G| = 2ℓ for some 1 ≤ ℓ ≤ m+1.

Let G = {gi | i ∈ [2ℓ]} where g0 = 0. Define a 2ℓ×(k+α) array R0 so that row

i of R0 is gi ⊕ 0, i ∈ [2ℓ]. Let K0 be the m× 2ℓ array of vectors of dimension

k + α given by C ⊞R0.

Next, let z0 + G, z1 + G, . . . , zβ−1 + G be the cosets of G in (F2)
k, where

β = 2k−ℓ. For each j ∈ [β], let Kj be formed from K0 by adding zj⊕0 to each

vector in K0. Next, cyclically permute the elements in each column of Kj by

j places (modulo m) to create K ′
j.

Note that L = [K ′
0 | K ′

1 | · · · | K ′
β−1] is equal to C ⊞R after a permutation

of the elements in each column. Moreover, let S be the set of vectors of

dimension k + α that occur in a given row of L. Then we claim the following:

(a) For each w ∈ [2]k, the vector w ⊕ ei ∈ S, for some ei ∈ (F2)
α;

(b) For each ei ∈ (F2)
α, there are precisely 2k−α vectors in S of the form

w ⊕ ei for some w;

(c) For each ei ∈ (F2)
α, the vector w⊕ei ∈ S if and only if (w+1)⊕ei ∈ S.

Similarly to Lemma 5.28, if this claim is true, it follows that the set of vectors

in S form the rows of an orthogonal array of strength 2. So it suffices to show

that the above claim is true.

To see (a), let j ∈ [β]. Observe that in every row of Kj and for every

element w ∈ zj +G, the vector w⊕ ei occurs in that row. The same property

holds for K ′
j. Next, from the conditions of the lemma, β ≥ m; indeed m

divides β. Thus (b) is true. Finally (c), is true because 1 ∈ G.

Corollary 5.34. Let α ≥ 2 and 2α + α + 1 ≤ k. Suppose there exists an

OA(2αb, k+α, 2, 2) such that the last α columns are an OA(2αb, α, 2, α). Then

Ik+α(2
k, 2αb, 2, 2) exists.

Proof. We shall construct the transpose design Ik+α(2
αb, k, 2, 2). Let C be an

OA(2αb, k+α, 2, 2) such that the last α columns are an OA(2αb, α, 2, α). Note

that C can be partitioned into subarrays C0, C1, . . . , Cb−1, each of dimension
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2α × (k + α), such that for each i ∈ [b], the last α columns of Ci contain each

element of (F2)
α exactly once.

Next, let A be the k × (k + α) matrix of the form [I | 0] and let R be an

orthogonal array whose rows are the elements of ⟨A⟩. Observe that the rows

of R are the set of 2k vectors with 0 in the final α positions. Moreover, the

nullspace of A is generated by the columns of A⊥ = [0 | I]T . Thus the columns

of CA⊥ are the last α columns of C.

Thus, by Theorem 5.15, C⊞R is a row-column factorial design. Moreover,

the columns of C ⊞R are each of strength 2 since C is of strength 2. Finally,

apply the previous lemma with m = 2α to rearrange the elements in each

column of subarray Ci ⊞R so that C ⊞R becomes an Ik+α(2
αb, 2k, 2, 2)

The following lemma uses a standard doubling technique.

Lemma 5.35. Suppose there exists a Hadamard matrix of order 4b for some

integer b. Let α ≥ 2. Then there exists an OA(2αb, k + α, 2, 2) such that the

final α columns form an OA(2αb, α, 2, α), for any α ≤ k + α < 2αb.

Proof. We proceed by induction on α. Suppose α = 2. The existence of a

Hadamard matrix of order 4b implies the existence of an OA(4b, k+2, 2, 2) for

any k + 2 ≤ 4b− 1 by Lemmas 5.3 and 5.6. By the definition of the strength

of an orthogonal array, the final two columns must contain each ordered pair

b times, so the final two columns form an OA(4b, 2, 2, 2).

Next assume that the lemma is true for a fixed value of α ≥ 2. then there

exists an L = OA(2αb, 2αb − 1, 2, α) with the specified properties. Observe

that the following matrix L′ is an OA(2α+1b, 2α+1b− 1, 2, 2):

L′ =

[
L L 1

L L 0

]
,

where L is formed from L by replacing each 0 with 1. Moreover, the final α+1

columns of L′ contain each binary sequence of dimension α + 1 exactly once.

Thus the final α + 1 columns form an OA(2α+1b, α + 1, 2, α + 1). Hence an

OA(2α+1b, k+α+1, 2, α+1) can be obtained for any k such that k+α+1 <

2α+1b by deletion of columns. This completes the induction and the proof.
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From the previous lemma and Corollary 5.34, we have the following.

Theorem 5.36. If there exists a Hadamard matrix H(4b), then there exists

Ik+α(2
αb, 2k, 2, 2) for any 2 ≤ α; 2α + α + 1 ≤ k < 2αb− α.

Before we completely deal with the case when m is odd and k is small, we

need some constructions for specific parameters.

Lemma 5.37. There exists I5(12, 8, 2, 2), I6(12, 16, 2, 2) and I4(12, 12, 2, 2).

Proof. In Table 5.3 we present an abelian array of the form C⊞R, where R is

the rowspace of the 3×5 matrix [I3 | 0] and C is an OA(12, 5, 2, 2) (constructed

from 5 columns of a Hadamard matrix of order 12). Now, the columns of the

matrix C[I3 | 0]T are in turn distinct columns of C; thus C[I3 | 0]T is an

OA(12, 3, 2, 2). Hence, by Theorem 5.15, C ⊞ R is a row-column factorial

design. Moreover, each column is an orthogonal array of strength 2. We can

then rearrange the elements in each column to create an I5(12, 8, 2, 2); the

rearrangement is indicated by the use of superscripts. That is, we permute

entries within each column so that vectors with the same superscript belong

to the same row.
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00000A 10000C 01000D 11000B 00100D 10100B 01100A 11100C

00001B 10001D 01001C 11001A 00101C 10101A 01101B 11101D

00110C 10110A 01110B 11110D 00010B 10010D 01010C 11010A

01011D 11011B 00011A 10011C 01111A 11111C 00111D 10111B

01100E 11100G 00100F 10100H 01000H 11000F 00000G 10000E

01111F 11111H 00111E 10111G 01011G 11011E 00011H 10011F

11001G 01001E 10001H 00001F 11101F 01101H 10101E 00101G

11010H 01010F 10010G 00010E 11110E 01110G 10110F 00110H

10010I 00010K 11010J 01010L 10110J 00110L 11110I 01110K

10101J 00101L 11101I 01101K 10001I 00001K 11001J 01001L

10111K 00111I 11111L 01111J 10011L 00011J 11011K 01011I

11100L 01100J 10100K 00100I 11000K 01000I 10000L 00000J

Table 5.3: An array of type I5(12, 8, 2, 2), with rows indicated by superscripts.

In Table 5.4, first consider the matrix A formed by the first 4 columns.

This matrix is abelian of the form C ⊞R, where C is an OA(12, 4, 2, 2) and R

is the rowspace of a 2 × 4 matrix. By Theorem 5.15 (or inspection if easier),

C ⊞ R is a row-column factorial design. Thus [A | A | A], as shown in Table

5.4, is a row-column factorial design with each column an orthogonal array of

strength 2. It thus remains to rearrange the elements within each column so

that the rows are each of strength 2. The superscripts A, B, C and D indicate

4 rows of strength 2. The remaining rows are formed by cyclic shifts of each of

these by 4 rows and then 8 rows; also indicated by superscripts. This results

in the array given in Table 5.5.
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0000A 0001B 1111C 1110D 0000E 0001F 1111G 1110H 0000I 0001J 1111K 1110L

0110J 0111I 1001A 1000B 0110B 0111A 1001E 1000F 0110F 0111E 1001I 1000J

1011B 1010A 0100D 0101C 1011F 1010E 0100H 0101G 1011J 1010I 0100L 0101K

1101D 1100C 0010B 0011A 1101H 1100G 0010F 0011E 1101L 1100K 0010J 0011I

0000L 0001K 1111K 1110L 0000D 0001C 1111C 1110D 0000H 0001G 1111G 1110H

0111H 0110G 1000G 1001H 0111L 0110K 1000K 1001L 0111D 0110C 1000C 1001D

0011C 0010D 1100I 1101J 0011G 0010H 1100A 1101B 0011K 0010L 1100E 1101F

0101I 0100J 1010J 1011I 0101A 0100B 1010B 1011A 0101E 0100F 1010F 1011E

1001K 1000L 0110E 0111F 1001C 1000D 0110I 0111J 1001G 1000H 0110A 0111B

1110E 1111F 0001F 0000E 1110I 1111J 0001J 0000I 1110A 1111B 0001B 0000A

1010G 1011H 0101L 0100K 1010K 1011L 0101D 0100C 1010C 1011D 0101H 0100G

1100F 1101E 0011H 0010G 1100J 1101I 0011L 0010K 1100B 1101A 0011D 0010C

Table 5.4: A factorial row-column design with each row strength 2.
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0000 1010 1001 0011 0101 0111 1100 1011 1110 1101 0110 0000

0110 0100 1010 1101 1100 1111 0001 0111 1011 0001 0010 1000

1011 0001 0010 1000 0110 0100 1010 1101 1100 1111 0001 0111

1101 0010 0100 1110 0000 1000 0101 1110 0111 1011 0011 1001

0000 1000 0101 1110 0111 1011 0011 1001 1101 0010 0100 1110

0111 1011 0011 1001 1101 0010 0100 1110 0000 1000 0101 1110

0011 1100 1111 0101 1001 0001 1111 0100 1010 0110 1000 0010

0101 0111 1100 1011 1110 1101 0110 0000 0000 1010 1001 0011

1001 0001 1111 0100 1010 0110 1000 0010 0011 1100 1111 0101

1110 1101 0110 0000 0000 1010 1001 0011 0101 0111 1100 1011

1010 0110 1000 0010 0011 1100 1111 0101 1001 0001 1111 0100

1100 1111 0001 0111 1011 0001 0010 1000 0110 0100 1010 1101

Table 5.5: An array of type I4(12, 12, 2, 2).

Finally, I6(12, 16, 2, 2) is given in the Appendix. Similarly to above, this is

presented first as an abelian row-column factorial design where each column

is of strength 2. The superscripts indicate how to permute the entries within

each column.

We can now give necessary and sufficient conditions for the case when the

number of rows is congruent to 4 (mod 8), assuming the truth Conjecture 5.27.

Theorem 5.38. Let m and b be odd. If Conjecture 5.27 is true, Then

Ik(4m, 2ab, 2, 2) exists if and only if (k, 4m, 2ab, 2, 2) is admissible and

(k, 4m, 2ab, 2, 2) ̸∈ {(3, 4m, 4, 2, 2), (3, 4, 4m, 2, 2) | m is odd}.

Proof. Since (k, 4m, 2ab, 2, 2) is admissible, from Lemmas 5.1 and 5.4: a ≥ 2,

k ≤ a+ 2, k ≤ 4m− 1 and k ≤ 2ab− 1.

Case 1: a = 2 and b = 1. Then k ≤ 3. Suppose k = 2. Now,

[00, 01, 10, 11]T is an OA(4, 2, 2, 2), so by Lemma 5.11, there exists I2(4, 4, 2, 2).
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Thus by Corollary 5.9, I2(4m, 4b, 2, 2) exists for any integers m and b. Other-

wise k = 3. By Lemma 5.22, I3(4m, 4, 2, 2) does not exists for odd m.

Case 2: a = 2 and b ≥ 3. If m = 1, this is the transpose of Case 1, so we

may assumem ≥ 3. Thus k ≤ 4 implies admissibility. From Lemma 5.37, there

exist I4(12, 12, 2, 2) and I5(12, 8, 2, 2). From Theorem 5.19, I6(8, 8, 2, 2) exists.

In turn, by Lemma 5.6, I4(12, 8, 2, 2) and I4(8, 8, 2, 2) exist. By adjoining

copies of I4(12, 12, 2, 2), I4(12, 8, 2, 2), I4(8, 12, 2, 2) and I4(8, 8, 2, 2) as needed

using Lemma 5.7, there exists I4(4m, 4b, 2, 2) for any m, b ≥ 3.

Case 3: m = 1 and a ≥ 3. Since m = 1, k ≤ 3. Then there exists

I3(4, 8, 2, 2) by Theorem 5.19. Thus there exists I3(4, 2
ab, 2, 2) for any a ≥ 3

by Corollary 5.9.

Case 4: m ≥ 3 and a ∈ {3, 4}. Here k ≤ a+2 implies admissibility. Now,

Ia+2(12, 2
a, 2, 2) exists for each a ∈ {3, 4} from Lemma 5.37. Next, I6(8, 8, 2, 2)

exists by Theorem 5.19. Thus by Lemma 5.7, Ia+2(4m, 2a, 2, 2) exists for any

odd integer m. In turn, Ia+2(4m, 2ab, 2, 2) exists by Corollary 5.9.

Case 5: m ≥ 3 and a = 5. Then k ≤ 7 implies admissibility. Now,

I7(12, 2
5, 2, 2) exists by Corollary 5.32. Also, I7(8, 2

5, 2, 2) exists by Theorem

5.19. Thus by Lemma 5.7 and Corollary 5.9, I7(4m, 25b, 2, 2) exists for all odd

m ≥ 3 and odd b.

Case 6: m ≥ 3 and a ≥ 6. From Corollary 5.26 and assuming the truth

of Conjecture 5.27, Ia+2(4m, 2a, 2, 2) exists for all 6 ≤ a ≤ 4m − 3. Thus

Ik(4m, 2ab, 2, 2) exists for all k ≤ a+ 2.

Observe that Conjecture 5.27 is not necessary for the validity of Theorem

5.38 when a ≤ 5.

Theorem 5.39. Let m ≤ 5 and b odd. Then Ik(4m, 2ab, 2, 2) exists for all

admissible

(k, 4m, 2ab, 2, 2) ̸∈ {(3, 4m, 4, 2, 2), (3, 4, 4m, 2, 2) | m is odd}.
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Proof. From the previous theorem and the fact that Conjecture 5.27 is true

for m ∈ {3, 5}, we can assume m ∈ {2, 4}.

Let m = 2. By Theorem 5.19 there exists I3(8, 4, 2, 2) and I7(8, 8, 2, 2).

Also there exists I5(4b, 8, 2, 2) (and thus I5(8, 4b, 2, 2)) by the previous theorem,

where b ≥ 3 is odd. The result then follows by Lemma 5.7 and Corollary 5.9.

Otherwise m = 4. Then by Theorem 5.19 there exists I3(16, 4, 2, 2) and

Ia+4(16, 2
a, 2, 2) for any 3 ≤ a ≤ 11. Also there exists I6(16, 4b, 2, 2), where

b ≥ 3 is odd, by the previous theorem. The result then follows by Lemma 5.7

and Corollary 5.9.

5.7 Binary row-column factorial designs with

strength t = 3

In this section we restrict ourselves to binary row-column factorial designs of

strength 3. We completely classify these when the dimensions of the arrays

are powers of 2. The aim of this section is to prove the following theorem.

Theorem 5.40. Let M ≤ N . Then an array of type Ik(2
M , 2N , 2, 3) ex-

ists if and only if 3 ≤ k ≤ M + N , 3 ≤ M , k ≤ 2M−1 and (k,M,N) ̸∈

{(4, 3, 3), (8, 4, 4)}.

Lemma 5.41. Let M ≤ N . Then (k, 2M , 2N , 2, 3) is admissible if and only if

3 ≤ k ≤M +N , 3 ≤M and k ≤ 2M−1.

Proof. By Lemma 5.1, 3 ≤ k ≤ M + N and 3 ≤ M . The bound k ≤ 2M−1

(and sufficiency) follows by Lemma 5.5.

To establish the two exceptions in Theorem 5.40, we first need the following

result on orthogonal arrays. This result is a fairly standard observation for

researchers in Hadamard codes but we include a proof for thoroughness.

Lemma 5.42. Let M ≥ 3. In any OA(2M , 2M−1, 2, 3), the weight of any two

rows has the same parity.



109

Proof. Let K be an OA(2M , 2M−1, 2, 3). Without loss of generality assume

that, restricting ourselves to the first two columns of K, the first 2M−2 rows

contain the ordered pairs (1, 1), the next 2M−2 rows contain the ordered pairs

(1, 0), the next 2M−2 rows contain the ordered pairs (0, 1) and the final 2M−2

rows contained the ordered pairs (0, 0).

Let K ′ be the array obtained from K by replacing 0s with −1s. It follows,

from the strength 3 property of the orthogonal array, that: (a) the first 2M−1

rows of K ′ form a Hadamard matrix; (b) the last 2M−1 rows of K ′ form a

Hadamard matrix; and (c) the first 2M−2 rows together with the third set of

2M−2 rows of K ′ forms a Hadamard matrix.

Now, in a normalized Hadamard matrix of order at least 4, the weight

of any row or column is even. Equivalent Hadamard matrices are formed by

rearranging rows or columns, taking a transpose or swapping 0 with 1 in any

row or column. All of these equivalences preserve the property that the weight

of each pair of rows shares the same parity. The result follows.

Corollary 5.43. There exists neither an array of type I4(8, 8, 2, 3) nor an

array of type I8(16, 16, 2, 3).

Proof. If an array of type I4(8, 8, 2, 3) exists, then the vectors in any row or

column, by definition, form an OA(8, 4, 2, 3). Thus, from the previous lemma,

the weight of every vector in the array has the same parity. Hence the vectors

in all the cells of the array do not form a factorial design. Similarly, there does

not exist an array of type I8(16, 16, 2, 3).

We now focus on proving Theorem 5.40 in the case where M ≥ 5. We will

use Theorem 5.18 for this case. We first need some preliminary lemmas.

We remind the reader that a set S of vectors is t-independent if and only

if each subset of S of size t is independent.

Lemma 5.44. Let C be a set consisting of M cyclic permutations of the

vector (1, 1, 1, 1, 0, 0, . . . , 0) over FM
2 , where M ≥ 5 and M ̸= 6. Let
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B = {e1, . . . , eM} be the standard basis for FM
2 . Then the set W = B ∪ C

is 3−independent.

Proof. We first show that the set C is 3−independent. Note that all the

vectors in C have weight 4. Also, any three vectors t,u,v in (F2)
M are linearly

dependent if and only if u+ v = t. Now for any two vectors u and v in C we

have the following possibilities:

Case I: There is at most one i such that ui = vi = 1. In this case

ω(u+ v) ≥ 6 and therefore u+ v ̸∈ C.

Case II: There are exactly two values of i for which ui = vi = 1. In this

case ω(u + v) = 4 and M ≥ 7 (since M ̸= 6). However, notice that the

vector u+ v contains the values 1, 1, 0, 0, 1, 1, 0 at seven consecutive positions

(modulo n) and therefore does not belong to C.

Case III: There are exactly three values of i for which ui = vi = 1. In this

case ω(u+ v) = 2.

From above the weight of the sum of any two elements in C is at least 2

therefore W = B ∪ C is also 3−independent.

Lemma 5.45. For N ≥ M ≥ 5 there exists an Ik(2
M , 2N , 2, 3) if and only if

(k, 2M , 2N , 2, 3) is admissible.

Proof. From Lemma 5.41 and Corollary 5.9, it suffices to assume k =

min{2M−1,M +N}.

We split the proof into different cases. In each case we define a matrix L

satisfying the required conditions of Theorem 5.18.

Case I: M ̸= 6. Let CM be an M ×M matrix such that the rows are the

elements of the set C defined in Lemma 5.44 with the main diagonal of CM

containing only entry 1. Let D be the set of all the rows in IM and CM − IM .

Let W be the set of all vectors of odd weight in FM
2 . By Lemma 5.5, W is a

3-independent set of vectors. Let S be a (k− 2M)×M matrix such that each
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row is a distinct element in W \D. Then the matrix L is as follows.

L =



IM IM 0

CM − IM CM 0

S 0 Ik−2M


(5.5)

Case II: When M = 6. In this case we can take the above matrix L using

the following CM :

CM =



1 1 1 1 0 0

0 1 1 1 1 0

0 0 1 1 1 1

1 0 0 1 1 1

1 0 1 0 1 1

1 0 1 1 0 1


.

Lemma 5.46. There exist I3(8, 8, 2, 3), I4(8, 16, 2, 3), I7(16, 16, 2, 3) and

I8(16, 32, 2, 3).

Proof. The eight binary vectors of dimension 3 give the rows of an

OA(8, 3, 2, 3). Thus by Lemma 5.11, there exists an array of type I3(8, 8, 2, 3).

Next, the 8 binary vectors of dimension 4 and even weight give the rows

of an OA(8, 4, 2, 3). Using Lemma 5.11 again, there exists an array of type

I4(8, 16, 2, 3).

By Theorem 5.18 and the following array L, there exists I8(16, 32, 2, 3).

Moreover, we get I7(16, 16, 2, 3) for free by deleting the last row and column,
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as indicated by dotted lines.

L =



1 0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0

1 1 1 0 1 1 0 1 0

1 1 0 1 1 0 1 1 0

1 0 1 1 0 1 1 1 0

0 1 1 1 1 1 1 0 1


.

We now have all the tools, base cases and exceptions we need to prove

Theorem 5.40. From Lemma 5.45, we may restrict ourselves to the case M ∈

{3, 4} and N ≥ M . If M = 3 then by Lemma 5.41, 3 ≤ k ≤ 2M−1 = 4.

An I3(8, 8, 2, 3) exists by the previous lemma. Thus by Corollary 5.9, there

exists I3(2
M , 2N , 2, 3) whenever M,N ≥ 3. Next, I4(8, 8, 2, 3) does not exist

by Corollary 5.43. However I4(8, 16, 2, 3) exists by the previous lemma. Thus

by Corollary 5.9 there exists an array of type I4(2
M , 2N , 2, 3) whenever M ≥ 3

and N ≥ 4.

Finally suppose that N ≥ M = 4. By Lemma 5.41, 3 ≤ k ≤ 8. Now,

I8(16, 16, 2, 3) does not exist by Corollary 5.43 but I7(16, 16, 2, 3) exists by the

previous lemma and I8(16, 32, 2, 3). The result then follows by Corollary 5.9.

5.8 Conclusion

We first discuss some limitations to the approach given in Section 5. Firstly,

the idea in Theorem 5.23 cannot work for theoretical reasons when k ≤ 6,

and for computational reasons (inspection of possible cases) when k = 7 and

m ∈ {3, 5}. The reason that k ≥ 7 is necessary for the approach is as follows.

The counting argument in the following lemma shows that if m is odd, then in

any OA(4m,n, 2, 2), if the sum of ℓ columns has weight 2m (that is, contains

2m occurrences of 1), then ℓ ≡ 1 or 2 (mod 4). Consider the OA(4m, l, 2, 2)
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formed from the columns of V satisfying the conditions of Theorem 5.23. Then

Lemma 5.47 implies the size of V and W are each at least 5 meaning k is at

least 7.

Lemma 5.47. Let H be an OA(4m, ℓ, 2, 2), where m is an odd integer. Let v

be the sum of columns of H.

• If ℓ ≡ 0 or 3 (mod 4) then ω(v) ≡ 0 (mod 4).

• If ℓ ≡ 1 or 2 (mod 4) then ω(v) ≡ 2 (mod 4).

Proof. Let xi be the weight of the ith row of H. The total number of (1, 1)

pairs such that both of them lie in the same row is given by
∑4m

i=1

(
xi

2

)
. Also,

since each pair of columns contain exactly m (1, 1) pairs, therefore this number

can also be given by m
(
ℓ
2

)
. Thus we have,

4m∑
i=1

(
xi

2

)
= m

(
ℓ

2

)
Since the number of 1s in the array is 2mℓ,

∑
xi = 2mℓ. Therefore,

4m∑
i=1

x2
i = mℓ(ℓ+ 1). (5.6)

Also notice that, x2
i ≡ 1 (mod 4) if xi is odd and x2

i ≡ 0 (mod 4) otherwise.

Thus we have:

ω(v) =
4m∑
i=1

(xi (mod 2)) =
4m∑
i=1

(x2
i (mod 2)) =

4m∑
i=1

(x2
i (mod 4)).

The result is now follows from (5.6) and the fact that m is odd.

We have intentionally structured our paper so that abelian and non-abelian

constructions are distinguished. By inspection, we have determined that there

does not exist an abelian I5(12, 8, 2, 2); a non-abelian example is given in

Lemma 5.37. However we do not know at this stage whether there are infinitely

many parameters for which their exists only a non-abelian binary strength 2

row-column factorial design.

As observed in the introduction, finding necessary and sufficient conditions

for the existence of a strength 2 binary row-column factorial design depends on

the Hadamard conjecture. However, the following may be more within reach.
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Conjecture 5.48. If there exists a Hadamard matrix of order 4m, then there

exists an Ik(4m, 4n, 2, 2) for any n ≥ m, 2k | 16mn and k ≤ 4m− 1, with the

exception m = 1 and n is odd.

From Theorem 5.39, the above conjecture is true for m ≤ 5. For m = 6,

the unknown cases with minimal parameters are: Ik+3(24, 2
k, 2, 2); 5 ≤ k ≤ 11.

From Theorem 5.36 and the existence of a Hadamard matrix of order 12,

Ik+3(24, 2
k, 2, 2) exists for 12 ≤ k ≤ 20.
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Chapter 6

Mutually orthogonal frequency

rectangles

6.1 Abstract

A frequency rectangle of type FR(m,n; q) is an m × n matrix such that each

symbol from a set of size q appears n/q times in each row and m/q times in

each column. Two frequency rectangles of the same type are said to be orthog-

onal if, upon superimposition, each possible ordered pair of symbols appear the

same number of times. A set of k frequency rectangles in which every pair is or-

thogonal is called a set of mutually orthogonal frequency rectangles, denoted by

k–MOFR(m,n; q). We show that a k–MOFR(2, 2n; 2) and an orthogonal array

OA(2n, k, 2, 2) are equivalent. We also show that an OA(mn, k, 2, 2) implies

the existence of a k–MOFR(2m, 2n; 2). We construct (4a−2)–MOFR(4, 2a; 2)

assuming the existence of a Hadamard matrix of order 4a.

A k–MOFR(m,n; q) is said to be t–orthogonal, if each subset of size t,

when superimposed, contains each of the qt possible ordered t-tuples of entries

exactly mn/qt times. A set of vectors over a finite field Fq is said to be t-

independent if each subset of size t is linearly independent. We describe a

method to obtain a set of t–orthogonal k–MOFR(qM , qN , q) corresponding to

a set of t–independent vectors in (Fq)
M+N . We also discuss upper and lower
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bounds on the sizes of sets of t–independent vectors and give a table of values

for binary vectors of length N ≤ 16.

A frequency rectangle of type FR(n, n; q) is called a frequency square and

a set of k mutually orthogonal frequency squares is denoted by k–MOFS(n; q)

or k–MOFS(n) when there is no ambiguity about the symbol set. For p an

odd prime, we show that there exists a set of (p− 1) binary MOFS(2p), hence

improving the lower bounds in (Britz et al. 2020) for p ≥ 19.

MSC 2010 Codes: 05B15

Keywords: Frequency square; frequency rectangle or F-rectangle; MOFR;

MOFS; Hadamard matrix; Orthogonal array.

6.2 Introduction

A frequency rectangle (also called F-rectangle) of type FR(m,n; q) is an m×n

array based on a symbol set S of size q, such that each element of S appears

exactly n/q times in each row and m/q times in each column. Two frequency

rectangles, F1 and F2, of the same type, are said to be orthogonal if each

possible ordered pair of symbols appear the same number of times when F1

and F2 are superimposed. A set of k frequency rectangles in which every pair is

orthogonal is called a set of mutually orthogonal frequency rectangles, denoted

by k–MOFR(m,n; q).

A frequency square of type F(n; q) is a frequency rectangle of type

FR(n, n; q). In the literature, a frequency square of type F(n; q) is usually

denoted by F(n;λ), where λ = n/q is the frequency of each symbol in each

row or each column. However, we stick to the notation F(n; q) where q is the

size of the symbol set to remain consistent with the rest of the notations used.

The definition of orthogonality between two frequency squares is analogous to

frequency rectangles. A set of frequency squares in which each pair is orthogo-

nal is called a set of mutually orthogonal frequency squares or MOFS, denoted

by k–MOFS(n; q) or simply by k–MOFS(n) when there is no ambiguity about
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the symbol set.

In the theory of frequency squares, most of the work has been dedi-

cated to constructing the largest possible sets of MOFS. The upper bound,

k ≤ (n − 1)2/(q − 1), for a k–MOFS(n; q) was first determined by Hedayat,

Raghavarao, and Seiden [12]. The following theorem is a particular case of a

more general result proved in [18]. However, we have included the proof here

for thoroughness. The proof is similar to the one given in [12] for frequency

squares.

Theorem 6.1. [18] If a k–MOFR(m,n; q) exists, then:

k ≤ (m− 1)(n− 1)

(q − 1)
. (6.1)

Proof. Let F1, F2, . . . , Fk be the elements of k–MOFR(m,n; q). Corresponding

to each Fα we define anmn×q matrixHα = (h(ij),β), where i = 1, 2, . . . ,m; j =

1, 2, . . . , n, β runs over the symbols set, and

h(ij),β =


1 if the entry in the (i, j)th cell of Fα is β

0 otherwise.

Observe that each column of Hα contains mn/q 1’s. Let M be an (mn)× (kq)

matrix defined as follows:

M = (H1 | H2 | · · · | Hk).

Since each row of M corresponds to a fixed position (i, j) of the set of

frequency rectangles, by using the properties of frequency rectangles there are

at least (m− 1) + (n− 1) dependent rows in M . Therefore the rank of M ,

Rank(M) ≤ min{(m− 1)(n− 1) + 1, kq}.

Observe that HT
r Hs = (mn/q)Iq when r = s and HT

r Hs = (mn/q2)Jq when

r ̸= s, where Iq is an identity matrix of order q and Jq is a q × q matrix of

ones.

Thus we have the following matrix of dimensions (kq)× (kq);
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MTM =


nλIq λλ′Jq . . . λλ′Jq

λλ′Jq nλIq . . . λλ′Jq
...

...
. . .

...

λλ′Jq λλ′Jq . . . nλIq

 ,

where λ = m/q and λ′ = n/q. The eigenvalues of MTM are nλk, nλ and

0 with multiplicities 1, k(q − 1) and k − 1 respectively (see Appendix 6.7 for

details). Since the sum of multiplicities of non-zero eigenvalues gives the rank

of MTM ,

kq − k + 1 = R(MTM) = R(M) ≤ min{(m− 1)(n− 1) + 1, kq},

which gives the required result.

A k–MOFR(m,n; q) or k–MOFS(n; q) is said to be complete if k reaches

the upper bound described in the above theorem. Complete sets of MOFR of

type FR(qM , qN ; q) are known to exist when q is a prime power [9]. For q a

prime power, Mandeli [17] describes a method to construct a complete set of

MOFR(qM , 2qN , q). For m = 4a and n = 4b, Cheng [4] showed the existence of

a complete set of MOFR(m,n; 2) provided that Hadamard matrices of order 4a

and 4b exist. Also, assuming the existence of a Hadamard matrix of order 4b,

Federer, Hedayat, and Mandeli [9] describe a method to construct a complete

set of MOFR(2, 4b; 2).

In Section 6.3, we include results that further describe the relationship be-

tween Hadamard matrices, orthogonal arrays, and frequency rectangles. An

orthogonal array OA(N, k, q, t) of strength t is an N × k matrix of symbols

based on a set of size q, such that in any N × t submatrix, each possible

ordered t–tuple appears the same number of times as a row. We show that

an orthogonal array OA(n, k, 2, 2) is equivalent to k–MOFR(2, 2n; 2). We also

show that if there exists an orthogonal array OA(mn, k, 2, 2) then there ex-

ists k–MOFR(2m, 2n; 2) and the existence of a Hadamard matrix of order 4a

implies the existence of (4a− 2)–MOFR(4, 2a; 2).

Complete sets of MOFS of type F(qN ; q) are also known to exist when q



122

is a prime power [15, 16, 19, 22]. A complete set of MOFS of type F(4a; 2)

can be constructed by using a Hadamard matrix of order 4a [10]. However,

no complete sets of MOFS for any other set of parameters are known to exist.

In 2001, Laywine and Mullen [15] formulated a table of lower bounds for the

maximum known values for the frequency squares of type F(n; q) where n ≤

100. Later the table was improved by Li et al. [16] in 2014. Recently, in [3],

the lower bounds in the case of k–MOFS(n; q), where n ≡ 2 (mod 4) and q = 2

have been improved to k ≥ 17 and it is also shown there that complete sets do

not exist for these parameters. In Section 6.5, we give a method to construct a

set of (p− 1)–MOFS(2p; 2) where p is an odd prime, thus improving the lower

bounds in [16] and [3] for such p ≥ 19.

We next describe a stronger form of orthogonality for a set of frequency

rectangles. A set M of frequency rectangles of type FR(m,n; q) is said to be t–

orthogonal, t ≥ 2, if upon superimposition of any t elements in M , each of the

possible qt ordered t–tuples occurs the same number of times in the resulting

array. By definition k–MOFR(m,n; q) is 2–orthogonal and any t–orthogonal

set is also t′–orthogonal for any 2 ≤ t′ ≤ t.

Here we include an example to illustrate the definition further.

Example 6.2. Consider the set M = {F1, F2, . . . , F6}, where each Fi is given

in Table 6.1.
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0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

F1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

F2

0 1 0 1

1 0 1 0

1 0 1 0

0 1 0 1

F3

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

F4

0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

F5

0 0 1 1

1 1 0 0

0 0 1 1

1 1 0 0

F6

Table 6.1: 3–orthogonal 6–MOFR(4, 4; 2).

Now if we superimpose any three elements ofM , then each of the 23 possible

ordered 3–tuples occurs twice in the resultant array, as shown in Table 6.2 for

the case of F1, F2, F3 and F1, F4, F6. We leave it to the reader to verify that

it is true for the rest of the cases. Thus M is 3–orthogonal. However, M is

not 4–orthogonal, since the sequences of odd weights do not occur when the

arrays F1, F2, F3, and F5 are superimposed (see Table 6.2).
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000 011 100 111

001 010 101 110

111 100 011 000

110 101 010 001

F1, F2, F3

000 010 101 111

011 001 110 100

100 110 001 011

111 101 010 000

F1, F4, F6

0000 0110 1001 1111

0011 0101 1010 1100

1111 1001 0110 0000

1100 1010 0101 0011

F1, F2, F3, F5

Table 6.2: Superimposed arrays from 6–MOFR(4, 4; 2)

In [20] and [21], row-column factorial designs of strength s are discussed.

A row-column factorial design of strength s, denoted by Ik(m,n, q, s), is an ar-

rangement of mn/qk copies of the qk–factorial design (that is, all the k-tuples

over a set of size q) in an m × n array such that the elements in each row

(column) forms an orthogonal array OA(n, k, q, s) (OA(m, k, q, s)). By defi-

nition, the existence of an Ik(m,n, q, s) (for any s ≥ 1) implies the existence

of k–orthogonal k–MOFR(m,n; q). Conversely, if there exists a k–orthogonal

k-MOFR(m,n; q) then there exists an Ik(m,n, q, 1). Since necessary and suf-

ficient conditions are known for the existence of Ik(m,n, q, 1), we have the

following theorem.

Theorem 6.3. [20] Let m ≤ n. There exists k–orthogonal k–MOFR(m,n; q)

if and only if:

(i) q|m and q|n;

(ii) if k = q = m = 2 then n ≡ 0 (mod 4); and

(iii) (k,m, n, q) ̸= (2, 6, 6, 6).
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A set of vectors over a field Fq is said to be t–independent if each subset of

size t is linearly independent. In Section 6.4, we describe a relationship between

a set of t–independent vectors over a finite field Fq and a set of t–orthogonal

MOFR(qM , qN , q). We also exhibit a table that shows the maximum known

values for numbers of t–independent vectors over F2 by using existence results

for linear codes and some other known results in the literature. We also show

that the existence of an orthogonal array OA(2m, k, 2, t) implies a t–orthogonal

k–MOFR(2m, 2m, 2).

6.3 Orthogonal Arrays and Frequency Rect-

angles

In this section, we use Hadamard matrices and orthogonal arrays to construct

MOFR. A Hadamard matrix H(n) is a square matrix of order n, having entries

from the set {1,−1} such that any two rows are orthogonal; that is it satisfies

the equation:

H(n)H(n)T = nIn.

It has been conjectured that a Hadamard matrix of order 4n exists for each

n [8, 13, 14]. A Hadamard matrix with all the entries in its first column and first

row equal to 1 is called a normalized Hadamard matrix. Any Hadamard matrix

is equivalent to a normalized Hadamard matrix. A normalized Hadamard

matrix has the following combinatorial properties.

Lemma 6.4. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two distinct rows,

other than the first, of a normalized Hadamard matrix of order n, n > 2. Then

(i) half of the entries ai are +1′s and half of them are −1′s.

(ii) the multiset {(ai, bi) : i = 1, 2, . . . , n} contains each type of order pair

exactly n/4 times.

(iii) the conditions (i) and (ii) are also true for any two distinct columns,

other than the first, of a normalized Hadamard matrix.
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A partial Hadamard matrix or Hadamard rectangle is a k × n matrix (k ≤

n), having entries from the set {1,−1} such that any two rows are orthogonal.

Analogously to a normalized Hadamard matrix we can define a normalized

Hadamard rectangle. The conditions (i) and (ii) in the Lemma 6.4 are also

true for a normalized Hadamard rectangle, however, (iii) does not necessarily

hold in the case of a rectangle.

An orthogonal array OA(4a, 4a−1, 2, 2) can be obtained from a normalized

Hadamard matrix by removing the first column and replacing −1’s with 0’s.

The following lemma that describes the relationship between the two structures

is a generalization of the Theorem 7.5 given in [13, p. 148] for the rectangular

case.

Lemma 6.5. Let k < 2b. There exists an OA(2b, k − 1, 2, 2) if and only

if there exists a k × 2b Hadamard rectangle. In particular, there exists an

OA(2b, 2b− 1, 2, 2) if and only if there exists a Hadamard matrix H(2b).

If B is a binary array then we define B to be the array obtained by inter-

changing 0’s and 1’s in B.

Theorem 6.6. Suppose there exists an OA(mn, k, 2, 2). Then there exist k–

MOFR(2m, 2n; 2).

Proof. Let M be an orthogonal array OA(mn, k, 2, 2). Let b = (b1, . . . , bmn)

be any column of M . Define an m× n array B corresponding to this column

as follows:

B =


b1 b2 . . . bn

bn+1 bn+2 . . . b2n
...

...
. . .

...

bn(m−1)+1 bn(m−1)+2 . . . bmn


Now, let Lb be the following array:

Lb =

 B B

B B
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Then Lb is a frequency rectangle of type FR(2m, 2n; 2). Thus, by constructing

an array corresponding to each column of M we obtain a set of k frequency

rectangles of type FR(2m, 2n; 2). The orthogonality of these arrays follows

from the orthogonality of the columns of M .

Corollary 6.7. Suppose there exists a Hadamard matrix H(mn) where 4 di-

vides mn. Then there exist (mn− 1)–MOFR(2m, 2n; 2).

Lemma 6.8. There exist k–MOFR(2, 2n; 2) if and only if there exists an

OA(2n, k, 2, 2).

Proof. Suppose there exists k–MOFR(2, 2n; 2) and denote this set by M . Let

L1, . . . , Lk ∈M . Let ri be the first row of Li. We claim that [r1
T |r2T | . . . |rkT ]

is an OA(2n, k, 2, 2). It is sufficient to show that r1 and r2 are orthogonal.

Without loss of generality, we may assume that L1 has the following form:

L1 =
0 0 . . . 0 1 1 . . . 1

1 1 . . . 1 0 0 . . . 0

Suppose that r2 contains x zeros in the first n positions. Then by the definition

of frequency rectangle the second row of L2, that is r2, contains x zeros in the

last n positions. Therefore, the total number of (0, 0) pairs when L1 and L2

are superimposed is 2x. Since L1 and L2 are orthogonal, 2x = n or x = n/2.

Thus r1 and r2 when superimposed contain each type of pair the same number

of times since x = n− x.

Conversely, corresponding to each column c of an OA(2n, k, 2, 2) we generate

a frequency square Lc which contains c and c as its first and second row

respectively.

Theorem 6.9. Suppose there exists a Hadamard matrix H(4a). Then there

exists (4a− 2)–MOFR(4, 2a; 2).

Proof. Let H be a Hadamard matrix of order 4a in normalized form. Replace

−1’s with 0’s in H. Let ci, i ∈ {1, . . . , 4a} be the columns of H. Without loss



128

of generality we may assume that c1 and c2 have the following form:

c1 c2

1 1

1 1
...

...

1 1

1 0

1 0
...

...

1 0

Since the columns c2, . . . , c4a of H form an OA(4a, 4a − 1, 2, 2), the columns

c3, . . . , c4a have the property that each contains exactly a zeroes and a ones

in the first 2a positions. Let ci = (b1, . . . , b4a) for some i ∈ {3, . . . , 4a}. Define

a 2× 2a array Bi corresponding to ci as follows:

Bi =

[
b1 b2 . . . b2a

b2a+1 b2a+2 . . . b4a

]
Now,

Li =

 B

B


is a FR(4, 2a; 2). Observe that the set {Li : 3 ≤ i ≤ 4a} forms a (4a − 2)–

MOFR(4, 2a; 2).

6.4 t–orthogonal frequency rectangles

Recall that a k–MOFR(m,n; q) is t–orthogonal if each subset of size t, upon

superimposition, givesmn/qt copies of the full factorial design. A set of vectors

is said to be t–independent if each subset of size t is linearly independent.

In this section, we describe a relationship between a set of t–independent

vectors and a set of t–orthogonal frequency rectangles. We also include some

results from the literature about the known bounds for the size of a set of

t–independent vectors. At the end of this section, we formulate a table that
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provides lower bounds on k for a set of t–orthogonal k–MOFR(m,n; 2), by

using existence results on binary linear codes.

Let u = (u1, u2, . . . , uM) and v = (v1, v2, . . . , vN) be vectors over the

field Fq of length M and N , respectively. Then we define u ⊕ v =

(u1, u2, . . . , uM , v1, v2, . . . , vN) to be the vector of length M + N obtained by

the concatenation of u and v. By a cyclic shift of v we mean the vector

v′ = (vN , v1, v2, . . . , vN−1).

We first give here a result that uses orthogonal arrays to construct a set of

t–orthogonal frequency rectangles.

Theorem 6.10. If there exists an OA(2m, k, 2, t) then there exists a t–

orthogonal k–MOFR(2m, 2m; 2).

Proof. Let v be a column vector of an OA(2m, k, 2, t). Construct a frequency

square Fv where column i is the ith cyclic shift of v. Clearly Fv is a frequency

rectangle of type FR(2m, 2m; 2). Now the t–orthogonality of these arrays

follows from the definition of t in OA(2m, k, 2, t).

The converse of the above theorem is not true in general. In Example 6.2

the arrays F1, F2 and F3 form a 3–orthogonal 3–MOFR(4, 4; 2) but there does

not exist an OA(4, 3, 2, 3). However, we have the following result.

Theorem 6.11. If there exists a t–orthogonal k–MOFR(m,n; q), then there

exists an orthogonal array OA(mn, k, q, t).

Proof. Let S = {F1, . . . , Fk} be a t–orthogonal k–MOFR(m,n; q). Corre-

sponding to each Fi ∈ S, we construct a vector fi of length mn as fol-

lows. Let v1, . . . ,vm be, in sequential order, the row vectors of Fi. Let

fi = v1 ⊕ v2 ⊕ · · · ⊕ vm. Let M be the (mn) × k array which contains

each element of {fi : 1 ≤ i ≤ k} as a column vector. Observe that M is

an OA(mn, k, q, t).

Theorem 6.12. Let S be a set of k t-independent vectors in (Fq)
M+N such

that for each v = (v1, . . . , vM+N) ∈ S
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(i) (v1, . . . , vM) ̸= (0, . . . , 0),

(ii) (vM+1, . . . , vM+N) ̸= (0, . . . , 0),

then there exists a t–orthogonal k–MOFR(qM , qN ; q).

Proof. Corresponding to each vector v ∈ S we construct a frequency rectangle

Fv as follows. Let v = (v1, . . . , vM+N). We define a polynomial,

fv =
M+N∑
i=1

vixi.

Now we label the rows and columns of a qM × qN array by using all M–

tuples and N–tuples, respectively, over the field Fq. Let the cell in the

intersection of row (r1, . . . , rM) and column (c1, . . . , cN) contain the entry

fv(r1, . . . , rM , c1, . . . , cN).

To show that Fv is a frequency rectangle, fix a column c of Fv, labeled by

(c1, . . . , cN). Let β ∈ Fq. The number of appearances of β in c is equal to the

number of solutions to the following equation over Fq:

fv(x1, ..., xM , c1, . . . , cN) = β (6.2)

By (i) there is at least one i ∈ {1, . . . ,M} for which vi ̸= 0, thus equation (6.2)

has exactly qM−1 solutions over Fq. This shows that β occurs exactly qM−1

times in c. Similarly, we can show that each element of Fq occurs qN−1 times

in each row of Fv.

Thus {Fv : v ∈ S} is a set of k frequency rectangles of type FR(qM , qN ; q).

It remains to show that this set is t–orthogonal. Let S ′ be a subset of S of size

t and consider a t-tuple α = (α1, . . . , αt) in Fq. Now consider the following

system of equations:

HX = αT

where, X = (x1, . . . , xM+N)
T and H is a t×(M+N) matrix that contains each

element of S ′ as a row. Since S is a t–independent set of vectors, this system of

equations has rank t and therefore there are exactly qM+N−t solutions for each

α ∈ (Fq)
t. Thus the set {Fv : v ∈ S} is t–orthogonal k–MOFR(qM , qN ; q).
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Corollary 6.13. Let t ≥ 1. If there exists a set of k t–independent vectors in

(Fq)
M then there exists a t–orthogonal k–MOFR(qM , qN ; q), where N ≥M .

Proof. Let S be a set of k t–independent vectors. Since t ≥ 1, 0 ̸∈ S. For

each v = (v1, . . . , vM) ∈ S, we define v′ = v ⊕ v ⊕ 0 of length M +N , where

0 is a zero vector of length N −M . Let S ′ = {v′ : v ∈ S}. Observe that S ′ is

t–independent and satisfies the conditions (i) and (ii) of Theorem 6.12.

Theorem 6.14. Suppose there exists a set of k1 3–independent vectors of

length M and a set of k2 3–independent vectors of length N over the field Fq.

Then there exists a 3–orthogonal (k1k2)–MOFR(qM , qN ; q).

Proof. Let S and T be sets of 3–independent vectors of length M and N ,

respectively, where |S| = k1 and |T | = k2. Define S ′ = {u ⊕ v : u ∈ S,v ∈

T}. Observe that S ′ satisfies the conditions (i) and (ii) in Theorem 6.12 and

|S ′| = k1k2. We claim that S ′ is also 3–independent.

Let x,y, z be three distinct elements in S ′. Then x = a ⊕ d, y = b ⊕ e,

and z = c ⊕ f , where a,b, c ∈ S and d, e, f ∈ T . Without loss of generality,

we have the following three cases to consider:

Case I: a,b, c are all distinct. In this case, {a,b, c} is 3–independent (and

thus linearly independent) so in turn {x,y, z} is linearly independent.

Case II: a = b ̸= c. Observe that d ̸= e in this case. Suppose that there

exist α, β, γ ∈ Fq such that:

αx+ βy + γz = 0

Then we have:

αa+ βa+ γc = 0 (6.3)

αd+ βe+ γf = 0 (6.4)

From equation (6.3), (α+β)a = −γc. Since a and c are linearly independent,

γ = 0 and α = −β. But then equation (6.4) implies d = e, which is a

contradiction.

Case III: a = b = c. In this case d, e, f are all distinct and thus {d, e, f} is

3–independent. In turn x,y, z are linearly independent.
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The above results indicate that there is a close relationship between a set of

t–independent vectors over Fq and a set of t–orthogonal frequency rectangles.

This motivates an exploration of the maximum size of sets of t–independent

vectors corresponding to different sets of parameters. For particular values

of N, q and t, let Indq(N, t) denote the maximum possible size of a set of t–

independent vectors of length N over a finite field Fq. In the case of q = 2,

we drop q and simply write Ind(N, t). As we know that any two vectors are

linearly independent if and only if one is not a scalar multiple of the other,

it is easy to see that Indq(N, 2) = (qN − 1)/(q − 1). Also for any t ≥ 2,

Indq(N, t − 1) ≥ Indq(N, t). The values Indq(N, t) when t ≥ 3 are of interest

to researchers in coding theory, combinatorics, and matroid theory [1, 2, 6, 7].

The following result in the case q = 2 is taken from [6].

Theorem 6.15. For q = 2 the following formulae hold:

(a)

Ind(N, 3) = 2N−1, for N ≥ 3. (6.5)

(b)

Ind(N,N − r) = N + 1, for N ≥ 3r + 2, r ≥ 0. (6.6)

(c)

Ind(N,N − r) = N + 2, for N = 3r + i, i = 0, 1, r ≥ 2. (6.7)

Part (b) of the above theorem was later generalized in [7].

Theorem 6.16. [7] Let 2 ≤ t ≤ N . Then Indq(N, t) = N + 1 if and only if

q

q + 1
(N + 1) ≤ t.

The next two results discuss the upper bounds on Indq(N, t) in the case

when t = N .

Theorem 6.17. [1] Let q = ph, where p is a prime. Then
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(a)

Indq(N,N) ≤ q + 1, if N ≤ p. (6.8)

(b)

Indq(N,N) ≤ q +N − p, if q ≥ N ≥ p+ 1 ≥ 4. (6.9)

Theorem 6.18. [2] Let q = ph, where p is a prime, and let N ≤ 2p− 2. Then

(a)

Indq(N,N) ≤ q + 2, if q is even and N = 3 or N = q − 1. (6.10)

(b)

Indq(N,N) ≤ q + 1, otherwise. (6.11)

The following values of Indq(N, t) for q = 3 are listed in [23]:

• Ind3(5, 3) = 20

• Ind3(5, 4) = 11

• Ind3(6, 3) = 56

• Ind3(6, 4) = 13

• Ind3(6, 5) = 13

Next, we discuss the connection between t–independent vectors and the

field of coding theory. In the rest of this section, we restrict ourselves to the

binary case.

A linear code C of length n, dimension k is a subspace of (Fq)
n of dimension

k. Let c1, c2 ∈ C. The hamming distance d(c1, c2) between the codewords c1

and c2 is the number of positions at which they differ. The minimum hamming

distance d is defined as follows.

d = min{d(c1, c2) : c1, c2 ∈ C}

A code with length n, dimension k, and minimum hamming distance d is called

an [n, k, d]-code. The following result shows the relationship between a set of

t–independent vectors and a linear [n, k, d]-code.
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Lemma 6.19. [5] There exists a linear [n, k, d]-code if and only if there exists a

(n−k)×n matrix H such that any d−1 columns of H are linearly independent,

but there exists a set of d columns which are not linearly independent.

Corollary 6.20. If there exists a linear [n, k, d]-code, then Ind(n−k, d−1) ≥

n.

Lemma 6.21. If Ind(n−k, d−1) ≥ n, then there exists a linear [n, k, d′]-code

for some d′ ≥ d.

Proof. Suppose Ind(n−k, d−1) ≥ n. Then there exists a set of n vectors, each

of length n− k such that any subset of d− 1 vectors is linearly independent.

Let H be the (n−k)×n matrix whose columns are these vectors. Let d′ be the

smallest integer such that there exists a set of d′ linearly dependent columns

in H. Clearly d′ ≥ d. Moreover, any subset of d′ − 1 columns of H is linearly

independent. Thus by Lemma 6.19, there exists a linear [n, k, d′]-code.

The following corollary is the contrapositive of the previous lemma.

Corollary 6.22. Suppose that for all d′ ≥ d, there does not exist a linear

[n, k, d′]-code. Then Ind(n− k, d− 1) < n.

Corollary 6.23. Let D be the maximum value such that a linear [n, k,D]-code

exists. Then Ind(n− k,D) < n.

Now we present some known values and bounds on Ind(N, t) for N ≤ 16

in Table 6.3. Since Ind(N, 2) = 2N − 1 and Ind(N, 3) = 2N−1 (from Theorem

6.15(a)), we restrict ourselves to the values t ≥ 4. LetD(n, k) be the maximum

value d such that a linear [n, k, d]-code exists.

Most of the results in Table 6.3 are obtained using an online repository for

linear codes [11] in conjunction with Corollary 6.20 and Corollary 6.23. Some

are obtained using the above results and [23]. The reasoning for each case is

provided in the description. Also, the notation “a – b” in column Ind(N, t)

implies a ≤ Ind(N, t) ≤ b.
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Let us compute Ind(9, 4) as an example. From [11], a [23, 14, 5]-code exists;

by Corollary 6.20 this implies Ind(9, 4) ≥ 23. Also from [11], D(24, 15) = 4.

Thus by Corollary 6.23, Ind(9, 4) < 24. Consequently, we have Ind(9, 4) =

23.

Table 6.3: Values for Ind(N, t) for N ≤ 16

N t Ind(N, t) Description

5 4 6 [23]

5 6 Theorem 6.16

6 4 8 [23]

5, 6 7 Theorem 6.16

7 4 11 [23]

5 9 [23]

6, 7 8 Theorem 6.16

8 4 17 [23]

5 12 A [12, 4, 6]-code exists and D(13, 5) = 5 ([11]).

6 9 Theorem 6.15(b)

7, 8 9 Theorem 6.16

9 4 23 A [23, 14, 5]-code exists and D(24, 15) = 4 ([11]).

5 18 A [18, 9, 6]-code exists and D(19, 10) = 5 ([11]).

6 11 A [11, 2, 7]-code exists and D(12, 3) = 6 ([11]).

7, 8, 9 10 Theorem 6.16
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Table 6.3: (continued)

N t Ind(N, t) Description

10 4 33 A [33, 23, 5]-code exists and D(34, 24) = 4 ([11]).

5 24 A [24, 14, 6]-code exists and D(25, 15) = 5 ([11]).

6 15 A [15, 5, 7]-code exists and D(16, 6) = 6 ([11]).

7 12 Theorem 6.15(c)

8, 9, 10 11 Theorem 6.16

11 4 47 – 57 A [47, 36, 5]-code exists and D(58, 47) = 4 ([11]).

5 34 A [34, 23, 6]-code exists and D(35, 24) = 5 ([11]).

6 23 A [23, 12, 7]-code exists and D(24, 13) = 6 ([11]).

7 16 A [16, 5, 8]-code exists and D(17, 6) = 7 ([11]).

8 12 Theorem 6.15(b)

9, 10, 11 12 Theorem 6.16

12 4 65 – 88 A [65, 53, 5]-code exists and D(89, 77) = 4 ([11]).

5 48 – 58 A [48, 36, 6]-code exists and D(59, 47) = 5 ([11]).

6 24 A [24, 12, 8]-code exists and D(25, 13) = 6 ([11]).

7 24 A [24, 12, 8]-code exists and D(25, 13) = 6 ([11]).

8 14 Theorem 6.15(c)

9, . . . , 12 13 Theorem 6.16
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Table 6.3: (continued)

N t Ind(N, t) Description

13 4 81 – 124 A [81, 68, 5]-code exists and D(125, 112) = 4 ([11]).

5 66 – 89 A [66, 53, 6]-code exists and D(90, 77) = 5 ([11]).

6 27 A [27, 14, 7]-code exists and D(28, 15) = 6 ([11]).

7 25 A [25, 12, 8]-code exists and D(26, 13) = 7 ([11]).

8 15 A [15, 2, 10]-code exists and D(16, 3) = 8 ([11]).

9 15 A [15, 2, 10] Theorem 6.15(c)

10, . . . , 13 14 A [15, 2, 10] Theorem 6.16

14 4 128 – 178 A [128, 114, 5]-code exists and D(179, 165) = 4 ([11]).

5 82 – 125 A [82, 68, 6]-code exists and D(126, 112) = 5 ([11]).

6 31 – 40 A [31, 17, 7]-code exists and D(41, 27) = 6 ([11]).

7 28 A [28, 14, 8]-code exists and D(29, 15) = 7 ([11]).

8 17 A [17, 3, 9]-code exists and D(18, 4) = 8 ([11]).

9 16 A [16, 2, 10]-code exists and D(17, 3) = 9 ([11]).

10, . . . , 14 15 Theorem 6.15(b)
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Table 6.3: (continued)

N t Ind(N, t) Description

15 4 151 – 253 A [151, 136, 5]-code exists and D(254, 239) = 4 ([11]).

5 129 – 179 A [129, 114, 6]-code exists and D(180, 165) = 5 ([11]).

6 37 – 53 A [37, 22, 7]-code exists and D(54, 39) = 6 ([11]).

7 32 – 41 A [32, 17, 8]-code exists and D(42, 27) = 7 ([11]).

8 20 A [20, 5, 9]-code exists and D(21, 6) = 8 ([11]).

9 18 A [18, 3, 10]-code exists and D(19, 4) = 9 ([11]).

10 17 Theorem 6.15(c)

11, . . . , 15 16 Theorem 6.16

16 4 ≥ 256 A [256, 240, 5]-code exists.

5 152 – 254 A [152, 136, 6]-code exists and D(255, 239) = 5 ([11]).

6 47 – 69 A [47, 31, 7]-code exists and D(70, 54) = 6 ([11]).

7 38 – 54 A [38, 22, 8]-code exists and D(55, 39) = 7 ([11]).

8 23 A [23, 7, 9]-code exists and D(24, 8) = 8 ([11]).

9 21 A [21, 5, 10]-code exists and D(22, 6) = 9 ([11]).

10 18 A [18, 2, 12]-code exists and D(19, 3) = 10 ([11]).

11 18 Theorem 6.15(c)

12, . . . , 16 17 Theorem 6.16

If we know the value Indq(N, t) then by using Corollary 6.13 we can con-

struct a set of k = Indq(N, t) t–orthogonal MOFR(qN , qM ; q), where M ≥ N .

However this method provides a lower bound that is, in general, not close to

the actual upper bound. Consider the case when q = 2, t = 3 and N = M = 2.

In this case, Ind(2, 3) does not exist and hence does not provide a lower bound.
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However, by Theorem 6.15(a) we know Ind(4, 3) = 8 and one such set is the

set O (given below) of vectors of odd weight in (F2)
4.

O = {1000, 0100, 0010, 0001, 1110, 1101, 1011, 0111}.

Observe that only 4 elements of O satisfy the conditions of Theorem 6.12.

Thus we can construct a set of 4–MOFR(4, 4; 2) that is 3–orthogonal by using

these elements in O. On the other hand, by inspection, we have found the

following set:

W = {1010, 1001, 1101, 0101, 1110, 0110, 0001, 0010}

which is 3–independent and has 6 elements that satisfy the conditions of The-

orem 6.12. In fact, the first 6 elements listed in W were used to construct

3–orthogonal 6-MOFR(4, 4, 2) in Example 6.2.

This motivates us to propose the following problem.

Problem 6.24. Let S ⊆ (Fq)
M+N . For each set of admissible parameters

t,M,N , and q, determine the maximum size of S such that:

(i) S is t–independent.

(ii) For each v = (v1, . . . , vM+N) ∈ S, (v1, . . . , vM) ̸= (0, . . . , 0) and

(vM+1, . . . , vM+N) ̸= (0, . . . , 0).

6.5 p− 1 binary MOFS of size 2p

In this section, our aim is to describe a method to construct a set of p − 1

mutually orthogonal frequency squares of order 2p, where p is an odd prime.

The construction starts by generating a set of p − 1 frequency squares which

are almost orthogonal. Then we make some small changes in each frequency

square in order to make the set orthogonal. Here we set out some notations

that we use frequently in this section.

Let [n] = {0, 1, . . . , n − 1}, where n is an integer. Let H be an m × n

array. The rows and columns of H are indexed using [m] and [n]. The entry
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in the intersection of row i and column j of the array H is denoted by h(i, j).

As previously, if H is a binary array then H is the array obtained from H by

interchanging zeroes and ones.

Let A and B be two m × n binary arrays. We use the notation |AB|(x,y),

where x, y ∈ {0, 1}, to denote the total number of ordered pairs (i, j) such

that a(i, j) = x and b(i, j) = y, that is the total number of ordered pairs of

type (x, y) obtained when A and B are superimposed. The term orthogonality

between the arrays A and B means a sequence that contains the numbers

|AB|(x,y) for all x, y ∈ {0, 1}. However, the term orthogonal has its usual

meaning, i.e., A and B are said to be orthogonal if each type of ordered pair

appears the same number of times upon superimposition.

Recall that if c = (c0, c1, . . . , cr) is a vector then by the cyclic shift of c

we mean the vector c′ = (cr, c0, c1, . . . , cr−1). Let p be an odd prime. Let

v ∈ (F2)
p be the vector v = (1, 1, . . . , 1, 0, 0, . . . , 0) of weight (p+1)/2. Let vi

denote the vector obtained from v by performing i cyclic shifts. Throughout

this section Ω = {1, . . . , p − 1} and K = {1, . . . , p−1
2
}. We include here some

observations related to the vectors vi.

Lemma 6.25. Let z ∈ [(p + 1)/2]. Upon superimposing vivj, the following

are equivalent:

(a) |vivj|(1,0) = z.

(b) |vivj|(0,1) = z.

(c) |vivj|(0,0) = p−1
2
− z.

(d) |vivj|(1,1) = p+1
2
− z.

Proof. Each vector contains exactly (p− 1)/2 zeroes.

Corollary 6.26. Superimposing vi and vj in either order yields the same

number of ordered pairs of each type, i.e., |vivj|(x,y) = |vjvi|(x,y).

Lemma 6.27. For i ∈ [(p+ 1)/2],
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(a) |v0vi|(1,0) = |v0vi|(0,1) = i.

(b) |v0vi|(0,0) = p−1
2
− i.

(c) |v0vi|(1,1) = p+1
2
− i.

Lemma 6.28. For any i, j ∈ [p] and x, y ∈ {0, 1}, we have the following:

(a) |v0vi|(x,y) = |v0vp−i|(x,y).

(b) |vivj|(x,y) = |v0vr|(x,y), where r ∈ [p], r ≡ j − i (mod p).

Proof. This follows from Corollary 6.26 and the observation |vivj|(x,y) =

|vi+1vj+1|(x,y).

Now we define a set of p − 1 arrays each of which consists of a different

permutation of the vectors vi. These arrays will be our primary building blocks

in defining our frequency squares. Formally, for each α ∈ Ω, let Aα be a p× p

binary array such that for each i ∈ [p] its row i is vr, where r ∈ [p] is the

unique solution to r ≡ αi (mod p). The next lemma records the total number

of order pairs of each type obtained when these arrays are superimposed.

Lemma 6.29. Let α, β ∈ Ω and α ̸= β. Then:

(a) |AαAβ|(1,0) = |AαAβ|(0,1) = (p2 − 1)/4.

(b) |AαAβ|(0,0) = (p− 1)2/4.

(c) |AαAβ|(1,1) = (p+ 1)2/4.

Proof. When we superimpose AαAβ the corresponding rows are vr1(i)vr2(i)

where r1(i), r2(i) ∈ [p] and r1(i) ≡ αi (mod p), r2(i) ≡ βi (mod p) for each

i ∈ [p]. Thus,

|AαAβ|(x,y) =
p−1∑
i=0

|vr1(i)vr2(i)|(x,y) r1(i), r2(i) ∈ [p],

r1(i) ≡ αi (mod p), r2(i) ≡ βi (mod p)

=

p−1∑
i=0

|v0vr(i)|(x,y) r(i) ∈ [p],

r(i) ≡ (β − α)i (mod p) (by Lemma 6.28(b)).
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Since α ̸≡ β (mod p), {r(i) : i ∈ [p]} forms a complete set of residues modulo

p. Thus by using Lemma 6.28(a) we have:

|AαAβ|(x,y) =
p−1∑
i=0

|v0vi|(x,y) = |v0v0|(x,y) + 2

(p−1)/2∑
i=1

|v0vi|(x,y) (6.12)

Now by using the values of |v0vi|(x,y) from Lemma 6.27 we get:

|AαAβ|(1,0) = |AαAβ|(0,1) = 0 + 2

(p−1)/2∑
i=1

i = (p2 − 1)/4,

|AαAβ|(0,0) =
p− 1

2
+ 2

(p−1)/2∑
i=1

(
p− 1

2
− i

)
=

p(p− 1)

2
− 2

(p−1)/2∑
i=1

i =
(p− 1)2

4
.

Now (c) follows since: ∑
x,y∈{0,1}

|AαAβ|(x,y) = p2.

Corollary 6.30. Let α, β ∈ Ω and α ̸= β. Then:

(a) |AαAβ|(1,0) = |AαAβ|(0,1) = (p2 − 1)/4.

(b) |AαAβ|(0,0) = (p+ 1)2/4.

(c) |AαAβ|(1,1) = (p− 1)2/4.

Now let us construct a set of p − 1 frequency squares. Corresponding to

each α ∈ Ω we construct a binary frequency square Lα of order 2p as follows.

Lα =

 Aα Aα

Aα Aα

 (6.13)

For α ̸= β, by Lemma 6.29 and Corollary 6.30 the total number of ordered

pairs (x, y) when Lα and Lβ superimposed are as follows:

|LαLβ|(1,0) = |LαLβ|(0,1) = p2 − 1

|LαLβ|(0,0) = |LαLβ|(1,1) = p2 + 1

(6.14)

Thus we have a set of p − 1 frequency squares that are almost orthogonal.

Now we will make some small changes in order to make these squares pairwise



143

orthogonal. Specifically, in the first and the fourth quadrant, we will flip some

entries in a way that some of these arrays will become orthogonal to each other

without disrupting the orthogonality between other pairs.

We introduce some more terminology here that we will use often in the rest

of this section. Let H1, . . . , Hn be a set of n binary arrays. Let hα(i, j) denote

the entry in the intersection of row i and column j of Hα, where i, j ∈ [n].

Let sα be a 2 × 2 sub-array of Hα. Then the arrays s1, . . . , sn are said to be

coincident if for each α ∈ {1, . . . , n}, sα is of the form:

sα =

 hα(i, j) hα(i, j
′)

hα(i
′, j) hα(i

′, j′)

 , for some fixed i, j, i′, j′ ∈ [n]

that is, each sα is a sub-square of Hα and all sα correspond to the same

positions within Hα.

The next lemma describes the effect on the orthogonality between any two

binary arrays when we flip the entries of a 2× 2 sub-array of one of them.

Lemma 6.31. Let A and B be two binary arrays of size m×n, where m,n ≥ 2.

Let s1, s2 be two 2× 2 coincident sub-arrays of A and B, respectively. Let B′

be the array obtained from B in which s2 is replaced by s2, where s2 =
(
1 0
0 1

)
.

1. If s1 =
(
1 0
1 1

)
, then:

(a) |AB′|(x,y) = |B′A|(x,y) = |AB|(x,y)+1, where x, y ∈ {0, 1} and x ̸= y.

(b) |AB′|(x,x) = |B′A|(x,x) = |AB|(x,x) − 1, where x ∈ {0, 1}.

2. If s1 =
(
1 0
1 0

)
, then |AB′|(x,y) = |B′A|(x,y) = |AB|(x,y), for all x, y ∈

{0, 1}.

3. If B is a binary frequency square then B′ is a binary frequency square.

In what follows it will be useful to give an explicit formula for the entry of

each cell in Aα.
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Lemma 6.32. Let aα(i, j) denote the entry in the intersection of row i and

column j of Aα, where i, j ∈ [p]. Then

aα(i, j) =


0 if (1− p)/2 ≤ j − r ≤ −1 or (p+ 1)/2 ≤ j − r ≤ p− 1

1 otherwise,

where r ≡ αi (mod p) and 0 ≤ r ≤ p− 1.

Now we describe different sets of coincident sub-arrays of Aα that we will

use later on to alter the orthogonality between the arrays. Formally, let aα(i, j)

denote the entry in the intersection of row i and column j of Aα, where i, j ∈

[p]. For each h ∈ K and α ∈ Ω we define:

s(α,h) =


aα(0, h) aα(0,

p−1
2

+ h)

aα(1, h) aα(1,
p−1
2

+ h)

 (6.15)

Then for each h ∈ K the set {s(α,h) : α ∈ Ω} forms a set of coincident sub-

arrays of Aα. The configuration of each sub-array is given in the following

lemma.

Lemma 6.33. For each h, k ∈ K and β ∈ Ω \ {h, h+1, . . . , h+ p−1
2
} we have:

s(h,h) =

 1 0

1 1

 , s(h+k,h) =

 1 0

0 1

 , s(β,h) =

 1 0

1 0

 .

Proof. This follows by Lemma 6.32.

We next verify that the coincident arrays that we later use do not overlap.

The following lemma follows from the definition (6.15) of s(α,h).

Lemma 6.34. Let h, h′ ∈ K such that h ̸= h′. Then for each α ∈ Ω, the set

of cells in s(α,h) is disjoint from the set of cells in s(α,h′).

Consider the set {Aα : α ∈ Ω} in the first quadrant of the arrays Lα (given

in 6.13). By Lemma 6.33 and Lemma 6.31, for each h ∈ K, if we replace

s(h+k,h) with s(h+k,h) for all k ∈ K, the array Lh becomes orthogonal to each
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array in the set {Lh+1, Lh+2, . . . , Lh+(p−1)/2}, while the orthogonality between

rest of the arrays remains unchanged. However, this does not cover the whole

spectrum of the pairs which are subsets of {Lα : α ∈ Ω}. Our next step is to

apply similar transformations to the arrays Aα in the fourth quadrant of Lα.

To ensure that we are covering the whole spectrum without repetitions, we will

use the analogy of a complete graph. That is we want to establish a one-to-one

correspondence between the edges of a complete graph with p−1 vertices such

that each vertex represents a unique frequency square and an edge between

two vertices implies that the two arrays are orthogonal. We start with the

following result from graph theory.

Lemma 6.35. Let Gp−1 be the complete graph with vertex set V = {∞} ∪

{0, 1, . . . , p − 3}. Let Si be the star with edge-set {{i,∞}, {i, i + 1}, {i, i +

2}, . . . , {i, i+ p−3
2
}} (working modulo (p−2) with residues in {0, 1, . . . , p−3}).

Then {S1, S2, . . . , Sp−2} is a partition of the edge set of Gp−1.

Next, we relabel the vertices of the graph Gp−1 by the mapping f : V → Ω

defined as follows:

f(z) =



(p+ 1)/2 if z =∞

p− 1 if z = 0

z if 1 ≤ z ≤ (p− 1)/2

z + 1 if (p+ 1)/2 ≤ z ≤ p− 3.

The relabelling of vertices by using f is shown in the figure given below.
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Figure 1

For each star:

Si = {{i,∞}, {i, i+ 1}, {i, i+ 2}, . . . , {i, i+ (p− 3)/2}},

we define

f(Si) = {{f(i), f(∞)}, {f(i), f(i+1)}, {f(i), f(i+2)}, . . . , {f(i), f(i+(p−3)/2)}}.

Then the set of stars Si for 1 ≤ i ≤ (p− 1)/2 are transformed as described

in the next lemma.

Lemma 6.36. For 1 ≤ i ≤ (p− 1)/2, f(Si) = {{i, i+1}, {i, i+2}, . . . , {i, i+

(p− 1)/2}}.

Proof. Observe that it is true for i = 1. Now for 2 ≤ i ≤ (p − 1)/2, Si
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transforms as follows:

Si
f−→ f(Si)

{i, i+ 1} {i, i+ 1}

{i, i+ 2} {i, i+ 2}

...
...

{i, (p− 1)/2} {i, (p− 1)/2}

{i,∞} {i, (p+ 1)/2}

{i, (p+ 1)/2} {i, (p+ 3)/2}

...
...

{i, i+ (p− 3)/2} {i, i+ (p− 1)/2}

Thus we have the required result.

Consider the following permutation on the set Ω.

ρ(z) =


z if z = (p+ 1)/2

1 if z = (p− 1)/2

(z + p+1
2
) (mod p) otherwise.

By the definition of f and ρ, the remaining set of stars, f(Si) where (p +

1)/2 ≤ i ≤ p− 2 can be expressed as follows.

Lemma 6.37. For 1 ≤ i ≤ (p− 3)/2, f(Si+(p−1)/2) = ρ(f(Si)).

Proof. Let j = i+(p−1)/2, where 1 ≤ i ≤ (p−3)/2. Then (p+1)/2 ≤ j ≤ p−2.

We want to show that f(Sj) = ρ(f(Si)). By using the definitions of f and ρ

the transformations are as follows:



148

Sj
f−→ f(Sj) ρ(f(Si))

ρ←− f(Si)

{j,∞} {j + 1, (p+ 1)/2} = {j + 1, (p+ 1)/2} {i, (p+ 1)/2}

{j, j + 1} {j + 1, j + 2} = {j + 1, i+ 1 + (p+ 1)/2} {i, i+ 1}

...
...

...
...

{j, p− 3} {j + 1, p− 2} = {j + 1, (p− 5)/2 + (p+ 1)/2} {i, (p− 5)/2}

{j, 0} {j + 1, p− 1} = {j + 1, (p− 3)/2 + (p+ 1)/2} {i, (p− 3)/2}

{j, 1} {j + 1, 1} = {j + 1, 1} {i, (p− 1)/2}

{j, 2} {j + 1, 2} = {j + 1, (p+ 3)/2 + (p+ 1)/2} {i, (p+ 3)/2}

...
...

...
...

{j, j + (p− 3)/2} {j + 1, j + (p− 3)/2} = {j + 1, i} {i, i+ (p− 1)/2}

Hence the result.

By combining Lemma 6.36 and Lemma 6.37 we have the following result.

Lemma 6.38. The set of stars {f(Si) : i ∈ K}∪{ρ(f(Si)) : 1 ≤ i ≤ (p−3)/2}

partitions the edge-set of the complete graph Gp−1 with the vertex set Ω.

Now consider the set of sub-arrays {s(α,h) : α ∈ Ω, h ∈ K} defined in

(6.15). Let {A∗
α : α ∈ Ω} be the set of arrays obtained by replacing s(h+k,h)

with s(h+k,h) in Ah+k for each h, k ∈ K. Then we have the following.

Lemma 6.39. Let {A∗
α : α ∈ Ω} be the set of arrays described above.

1. If {α, β} ∈ f(Si) for some 1 ≤ i ≤ (p− 1)/2, then:

(a) |A∗
αA

∗
β|(x,y) = |AαAβ|(x,y) + 1, where x, y ∈ {0, 1} and x ̸= y.

(b) |A∗
αA

∗
β|(x,x) = |AαAβ|(x,x) − 1, where x ∈ {0, 1}.

2. Otherwise: |A∗
αA

∗
β|(x,y) = |AαAβ|(x,y).

Proof. This follows by Lemma 6.33 and Lemma 6.31.

Now we define another set of arrays {A′
α : α ∈ Ω} that we will use in

the fourth quadrant of our final arrays. Formally, let {A′
α : α ∈ Ω} be the

set of arrays obtained by replacing s(h+k,h) with s(h+k,h) in Ah+k for each h ∈
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{1, 2, . . . , p−3
2
} and k ∈ K. Observe that the array A′

α = A∗
α for α ∈ Ω \

{(p + 1)/2, . . . , p − 1} and for α ∈ {(p + 1)/2, . . . , p − 1}, the only difference

between A′
α and A∗

α is that the array A′
α contains s(α,h) and A∗

α contains s(α,h)

for h = (p − 1)/2. Thus we have a similar result as Lemma 6.39 for the set

{A′
α : α ∈ Ω}.

Lemma 6.40. Let {A′
α : α ∈ Ω} be the set of arrays described above.

1. If {α, β} ∈ f(Si) for some 1 ≤ i ≤ (p− 3)/2, then:

(a) |A′
αA

′
β|(x,y) = |AαAβ|(x,y) + 1, where x, y ∈ {0, 1} and x ̸= y.

(b) |A′
αA

′
β|(x,x) = |AαAβ|(x,x) − 1, where x ∈ {0, 1}.

2. Otherwise: |A′
αA

′
β|(x,y) = |AαAβ|(x,y).

Now we give our main result.

Theorem 6.41. Let p ≥ 3 be a prime. Then there exists a set of p− 1 binary

MOFS of order 2p.

Proof. Corresponding to each α ∈ Ω we construct a binary frequency square

Lα of order 2p as follows.

Fα =

 A∗
α Aα

Aα A′
ρ−1(α)

 (6.16)

Let α, β ∈ Ω. Let α′ = ρ−1(α) and β′ = ρ−1(β). Then, for all x, y ∈ {0, 1}:

|FαFβ|(x,y) = |A∗
αA

∗
β|(x,y) + 2|AαAβ|(x,y) + |A′

α′A′
β′ |(x,y) (6.17)

Now consider the following two cases:

Case I: {α, β} ∈ f(Si) for some i ∈ K. Then, by Lemma 6.38, {α, β} ̸∈

ρ(f(Si)) for all i ∈ {1, . . . , (p − 3)/2}. This implies {ρ−1(α), ρ−1(β)} ̸∈ f(Si)

for all i ∈ {1, . . . , (p− 3)/2}. Thus by Lemma 6.39 and Lemma 6.40 we have:

|A∗
αA

∗
β|(x,y) = |AαAβ|(x,y) + 1 whenever x ̸= y

|A∗
αA

∗
β|(x,y) = |AαAβ|(x,y) − 1 when x = y

|A′
α′A′

β′|(x,y) = |Aα′Aβ′ |(x,y) = |AαAβ|(x,y) for all x, y ∈ {0, 1}.
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Therefore, by using Lemma 6.29 and Corollary 6.30 in (6.17) we get:

|FαFβ|(x,y) = p2 for all x, y ∈ {0, 1}.

Case II: {α, β} ̸∈ f(Si) for all i ∈ K. Then, by Lemma 6.38, {α, β} ∈

ρ(f(Si)) for some i ∈ {1, . . . , (p−3)/2}. This implies {ρ−1(α), ρ−1(β)} ∈ f(Si)

for some i ∈ {1, . . . , (p − 3)/2}. Thus by Lemma 6.39 and Lemma 6.40 we

have:

|A′
α′A′

β′|(x,y) = |Aα′Aβ′ |(x,y) + 1 = |AαAβ|(x,y) + 1 whenever x ̸= y

|A′
α′A′

β′|(x,y) = |Aα′Aβ′ |(x,y) − 1 = |AαAβ|(x,y) − 1 when x = y

|A∗
αA

∗
β|(x,y) = |AαAβ|(x,y) for all x, y ∈ {0, 1}.

Therefore, again by using Lemma 6.29 and Corollary 6.30 in (6.17) we get:

|FαFβ|(x,y) = p2 for all x, y ∈ {0, 1}.

This completes the proof.

Next, we include an example here to further illustrate the construction.

Example 6.42. Let us construct a set of 6 binary MOFS of order 14. Here

p = 7, Ω = {1, . . . , 6}, K = {1, 2, 3} and v = (1, 1, 1, 1, 0, 0, 0). The set of Aα

for α ∈ Ω is given in Table 6.4.
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1 1 1 1 0 0 0

0 1 1 1 1 0 0

0 0 1 1 1 1 0

0 0 0 1 1 1 1

1 0 0 0 1 1 1

1 1 0 0 0 1 1

1 1 1 0 0 0 1

A1

1 1 1 1 0 0 0

0 0 1 1 1 1 0

1 0 0 0 1 1 1

1 1 1 0 0 0 1

0 1 1 1 1 0 0

0 0 0 1 1 1 1

1 1 0 0 0 1 1

A2

1 1 1 1 0 0 0

0 0 0 1 1 1 1

1 1 1 0 0 0 1

0 0 1 1 1 1 0

1 1 0 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 1 1 1

A3

1 1 1 1 0 0 0

1 0 0 0 1 1 1

0 1 1 1 1 0 0

1 1 0 0 0 1 1

0 0 1 1 1 1 0

1 1 1 0 0 0 1

0 0 0 1 1 1 1

A4

1 1 1 1 0 0 0

1 1 0 0 0 1 1

0 0 0 1 1 1 1

0 1 1 1 1 0 0

1 1 1 0 0 0 1

1 0 0 0 1 1 1

0 0 1 1 1 1 0

A5

1 1 1 1 0 0 0

1 1 1 0 0 0 1

1 1 0 0 0 1 1

1 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 0

0 1 1 1 1 0 0

A6

Table 6.4: Set of Aα to construct 6–MOFS(14)

Now consider the set of coincident arrays {s(α,1) : α ∈ Ω} described in

(6.15), shown as highlighted cells in Table 6.4. Then A1 contains
(
1 0
1 1

)
,

A2, . . . , A4 contain
(
1 0
0 1

)
and the rest of Aα contain

(
1 0
1 0

)
at this position.

We replace s(α,1) =
(
1 0
0 1

)
with s(α,1) =

(
0 1
1 0

)
in Aα for α ∈ {2, 3, 4}. Similarly,

by replacing s(h+k,h) with s(h+k,h) in Ah+k for h ∈ {2, 3} and k ∈ K, we get the

set {A∗
α : α ∈ Ω}. The first two rows of A∗

α, α ∈ Ω are shown in Table 6.5.

1 1 1 1 0 0 0

0 1 1 1 1 0 0

A∗
1

1 0 1 1 1 0 0

0 1 1 1 0 1 0

A∗
2

1 0 0 1 1 1 0

0 1 1 1 0 0 1

A∗
3

1 0 0 0 1 1 1

1 1 1 1 0 0 0

A∗
4

1 1 0 0 0 1 1

1 1 1 1 0 0 0

A∗
5

1 1 1 0 0 0 1

1 1 1 1 0 0 0

A∗
6

Table 6.5: First two rows of A∗
α to construct 6–MOFS(14)

Now to obtain the set {A′
α : α ∈ Ω}, we repeat the same procedure as above

only this time we do not replace s(h+k,h) with s(h+k,h) when h = (p−1)/2. The
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first two rows of A′
α are shown in Table 6.6. Observe the difference between

A∗
α and A′

α for α ∈ {4, 5, 6} in the highlighted cells of Table 6.5 and Table 6.6.

1 1 1 1 0 0 0

0 1 1 1 1 0 0

A′
1

1 0 1 1 1 0 0

0 1 1 1 0 1 0

A′
2

1 0 0 1 1 1 0

0 1 1 1 0 0 1

A′
3

1 0 0 1 1 1 0

1 1 1 0 0 0 1

A′
4

1 1 0 1 0 1 0

1 1 1 0 0 0 1

A′
5

1 1 1 1 0 0 0

1 1 1 0 0 0 1

A′
6

Table 6.6: First two rows of A′
α to construct 6–MOFS(14)

Now consider the permutation ρ on the set Ω.

ρ =

(
1 2 3 4 5 6

5 6 1 4 2 3

)

Thus we get a set {Fα : α ∈ Ω} of 6 binary MOFS of order 14, where Fα is of

the form:

Fα =

 A∗
α Aα

Aα A′
ρ−1(α)


A complete description of each frequency square Fα is given in Appendix A

(6.6).
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6.6 Appendix A: 6 binary MOFS(14)

1 1 1 1 0 0 0 0 0 0 0 1 1 1

0 1 1 1 1 0 0 1 0 0 0 0 1 1

0 0 1 1 1 1 0 1 1 0 0 0 0 1

0 0 0 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 0 1 1 1 0 0 0

1 1 0 0 0 1 1 0 0 1 1 1 0 0

1 1 1 0 0 0 1 0 0 0 1 1 1 0

0 0 0 0 1 1 1 1 0 0 1 1 1 0

1 0 0 0 0 1 1 0 1 1 1 0 0 1

1 1 0 0 0 0 1 1 1 1 0 0 0 1

1 1 1 0 0 0 0 0 0 1 1 1 1 0

0 1 1 1 0 0 0 1 1 0 0 0 1 1

0 0 1 1 1 0 0 0 1 1 1 1 0 0

0 0 0 1 1 1 0 1 0 0 0 1 1 1

F1

1 0 1 1 1 0 0 0 0 0 0 1 1 1

0 1 1 1 0 1 0 1 1 0 0 0 0 1

1 0 0 0 1 1 1 0 1 1 1 0 0 0

1 1 1 0 0 0 1 0 0 0 1 1 1 0

0 1 1 1 1 0 0 1 0 0 0 0 1 1

0 0 0 1 1 1 1 1 1 1 0 0 0 0

1 1 0 0 0 1 1 0 0 1 1 1 0 0

0 0 0 0 1 1 1 1 1 0 1 0 1 0

1 1 0 0 0 0 1 1 1 1 0 0 0 1

0 1 1 1 0 0 0 0 0 0 1 1 1 1

0 0 0 1 1 1 0 0 1 1 1 1 0 0

1 0 0 0 0 1 1 1 1 1 0 0 0 1

1 1 1 0 0 0 0 1 0 0 0 1 1 1

0 0 1 1 1 0 0 0 0 1 1 1 1 0

F2

1 0 0 1 1 1 0 0 0 0 0 1 1 1

0 1 1 1 0 0 1 1 1 1 0 0 0 0

1 1 1 0 0 0 1 0 0 0 1 1 1 0

0 0 1 1 1 1 0 1 1 0 0 0 0 1

1 1 0 0 0 1 1 0 0 1 1 1 0 0

0 1 1 1 1 0 0 1 0 0 0 0 1 1

1 0 0 0 1 1 1 0 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 0 0 0

1 1 1 0 0 0 0 1 1 1 0 0 0 1

0 0 0 1 1 1 0 1 1 0 0 0 1 1

1 1 0 0 0 0 1 1 0 0 0 1 1 1

0 0 1 1 1 0 0 0 0 0 1 1 1 1

1 0 0 0 0 1 1 0 0 1 1 1 1 0

0 1 1 1 0 0 0 0 1 1 1 1 0 0

F3

1 0 0 0 1 1 1 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 1 1 1 0 0 0

0 1 1 1 1 0 0 1 0 0 0 0 1 1

1 1 0 0 0 1 1 0 0 1 1 1 0 0

0 0 1 1 1 1 0 1 1 0 0 0 0 1

1 1 1 0 0 0 1 0 0 0 1 1 1 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 1 1 1 0

0 1 1 1 0 0 0 1 1 1 0 0 0 1

1 0 0 0 0 1 1 0 1 1 1 1 0 0

0 0 1 1 1 0 0 1 1 0 0 0 1 1

1 1 0 0 0 0 1 0 0 1 1 1 1 0

0 0 0 1 1 1 0 1 1 1 0 0 0 1

1 1 1 0 0 0 0 0 0 0 1 1 1 1

F4

1 1 0 0 0 1 1 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 1 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 0 0 1 0 0 0 0 1 1

1 1 1 0 0 0 1 0 0 0 1 1 1 0

1 0 0 0 1 1 1 0 1 1 1 0 0 0

0 0 1 1 1 1 0 1 1 0 0 0 0 1

0 0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 0 0 0 1 1 1 1 0 0

1 1 1 0 0 0 0 0 0 1 1 1 1 0

1 0 0 0 0 1 1 0 0 0 1 1 1 1

0 0 0 1 1 1 0 1 0 0 0 1 1 1

0 1 1 1 0 0 0 1 1 0 0 0 1 1

1 1 0 0 0 0 1 1 1 1 0 0 0 1

F5

1 1 1 0 0 0 1 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 1 1 1 0

1 1 0 0 0 1 1 0 0 1 1 1 0 0

1 0 0 0 1 1 1 0 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 1 1 0 0 0 0 1

0 1 1 1 1 0 0 1 0 0 0 0 1 1

0 0 0 0 1 1 1 1 0 1 1 1 0 0

0 0 0 1 1 1 0 0 1 1 1 0 1 0

0 0 1 1 1 0 0 1 0 0 0 1 1 1

0 1 1 1 0 0 0 1 1 1 0 0 0 1

1 1 1 0 0 0 0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 0 0 0 1 1 1 1

1 0 0 0 0 1 1 1 1 0 0 0 1 1

F6

Table 6.7: A set of 6 binary MOFS of order 14.
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6.7 Appendix B: Eigenvalues

The eigenvalues of the matrix MTM in the proof of Theorem 6.1 can be

obtained from Lemma 6.44 by substituting c = nλ and d = λλ′, where λ = m/q

and λ′ = n/q.

Lemma 6.43. Let H = aIq + bJq be a q × q matrix, where Iq is an identity

matrix of order q and Jq is a matrix of ones of order q. Then a+ bq and a are

eigenvalues of H with multiplicities 1 and q − 1 respectively.

Proof. Observe that the matrix,

H =



a+ b b . . . b

b a+ b . . . b

...
...

. . .
...

b b . . . a+ b


can be reduced to the following lower triangular matrix:

a+ qb 0 0 . . . 0

b a 0 . . . 0

b 0 a . . . 0

...
...

...
. . .

...

b 0 0 . . . a


Thus the eigenvalues a+ qb and a have multiplicities 1 and q− 1, respectively.

Lemma 6.44. Let N be a (kq)× (kq) matrix of the following form:

N =



cIq dJq . . . dJq

dJq cIq . . . dJq

...
...

. . .
...

dJq dJq . . . cIq


,
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where Iq and Jq are defined in Lemma 6.43. Then N has eigenvalues c+q(k−

1)d, c− qd, and c with multiplicities 1, k − 1, and k(q − 1) respectively.

Proof. By row operations we can row-reduce N to the following matrices

(where 0 is a q × q matrix of zeroes):

cIq dJq − cIq dJq − cIq . . . dJq − cIq

dJq cIq − dJq 0 . . . 0

dJq 0 cIq − dJq . . . 0

...
...

...
. . .

...

dJq 0 0 . . . cIq − dJq



,



cIq + (k − 1)dJq 0 0 . . . 0

dJq cIq − dJq 0 . . . 0

dJq 0 cIq − dJq . . . 0

...
...

...
. . .

...

dJq 0 0 . . . cIq − dJq



.

Now by using Lemma 6.43 the matrix cIq + (k − 1)dJq has eigenvalues c +

q(k − 1)d and c with multiplicities 1 and q − 1, respectively. And the matrix

cIq−dJq has eigenvalues c−qd and c with multiplicities 1 and q−1, respectively.

Consequently the matrix N has eigenvalues c + q(k − 1)d, c− qd, and c with

multiplicities 1, k − 1, and k(q − 1) respectively.
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Chapter 7

Conclusion

In this conclusion, we explore some open problems and ideas for future work.

We also identify key challenges and potential methods or approaches that could

be used to address these open problems and further our understanding.

In Chapter 4, necessary and sufficient conditions for the existence of row-

column factorial designs of strength 1 have been established. Further work in

this direction could be to explore designs of strength 1 containing the maximum

possible number of rows and columns with strength 2 property, that is, a design

in which all main effects are estimable and contains the maximum number of

two-factor estimable interactions. Similarly, we could investigate designs of

strength 2 with the maximum number of estimable three-factor interactions.

In [2] binary designs of strength 1 with the maximum number of estimable

two-factor interactions are discussed where the dimension of design is a power

of 2. Theorem 5.18 could be helpful in the above, however, it would not prove

the maximality of the number of interactions.

In Theorem 5.38 we assumed that the Conjecture 5.27 is true. That is, we

assumed the existence of a Hadamard matrix of order 4m, containing two non-

trivial sets of columns, such that their sums are orthogonal. By inspection, we

notice this conjecture is true for m = 3 and m = 5. This conjecture could be

explored computationally and/or theoretically for larger values of m.

While constructing binary strength 2 row-column factorial designs we clas-
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sified these designs into two categories: abelian and non-abelian on the basis

of construction. In Lemma 5.37, we have given the following non-abelian row-

column designs: I5(12, 8, 2, 2), I6(12, 16, 2, 2) and I4(12, 12, 2, 2). By inspec-

tion, we determined that an abelian I5(12, 8, 2, 2) does not exist. However,

we do not know whether there are infinitely many parameters for which there

exists only a non-abelian binary strength 2 row-column factorial design.

In Chapter 5 we utilized Hadamard matrices in order to construct binary

row-column factorial designs of strength 2. In future work, these constructions

might be generalizable to non-binary designs by using results on generalised

Hadamard matrices.

In Section 6.4, we established a relationship between sets of t-independent

vectors and sets of t–orthogonal frequency rectangles. We also formulated a

table of known values for Ind(N, t) which provides lower bounds for a set of

t-orthogonal frequency rectangles. However, stronger lower bounds might be

obtainable by investigating Problem 6.24.

In Chapter 6, we gave various constructions for a set of MOFR. A further

step in this direction could be to computationally classify all binary MOFR

of small orders; this has already been done in the case of MOFS [1]. We also

showed that a set of p−1 binary MOFS of order 2p exists whenever p is an odd

prime. Additionally, we could look into generalising this construction when p

is odd and composite.

Finally, in this thesis, we only considered designs with symmetrical facto-

rials, that is, factorials in which each factor has the same number of levels.

Future work could include extending this work to designs with asymmetrical

factorials.
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Co-Authorship Forms

The co-authorship forms related to the three articles included in this thesis

are provided on the following pages.








