

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Machine Learning Approaches for

Malware Classification based on

Hybrid Artefacts

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Doctor of Philosophy in Computer Science

at

The University of Waikato

by

Rajchada Chanajitt

2023

Abstract

Malware could be developed and transformed into various forms to deceive

users and evade antivirus and security endpoint detection. Furthermore, if one

machine in the network is compromised, it could be used for lateral movement–

when malware spreads stealthily without sending an alarm to monitoring sys-

tems. Malware attacks pose security threats to modern enterprises and can

cause massive financial, reputation, and data loss to major enterprises. There-

fore, it is important to detect these attacks effectively to reduce the loss to

the minimum level. The current research uses different approaches, including

static and dynamic analysis, to detect and analyze malware categories using

distinct feature sets, such as imported modules, opcodes, and API calls, which

can improve performance in binary and multi-class classification problems.

This thesis proposes a method for identifying and analyzing malware sam-

ples via static and dynamic approaches, including memory analysis and consec-

utive application operation sequences performed on the Windows 10 virtual

environment. Standard classifiers and frequently used sequence models are

utilized to expose the malware characteristics and benefit predictive capabili-

ties. The features used in these algorithms are extracted from the static and

dynamic analysis of malware samples, such as the rich header feature, debug

information, temporary files, prefetch files, and event logs. The measurement

of the classifiers and the degree of correctness are calculated using the accu-

racy, f1-score, Mean Absolute Error (MAE), confusion matrix, and Area under

the ROC Curve (AUC). Combining two feature sets can provide the best clas-

sification performance on static file properties and dynamic analysis results,

regardless of whether applying feature selection or not, achieving the accuracy

and f1 score at 97% for integrating two datasets. For consecutive sequences,

concatenating the Gated Recurrent Unit (GRU) and Transformers model can

yield the highest accuracy at 97% for Noriben operations, while GRU can

achieve the maximum accuracy for Opcode sequences at 89%.

Acknowledgements

Firstly, I would like to thank my supervisors: Bernhard Pfahringer and Heitor

Gomes. Throughout my time as a PhD student, they had encouraged me to

explore the topics that interested me most while providing useful feedback and

guidance. I appreciated Bernhard and Heitor for taking me on as a student,

even though my initial topic was not aligned with their usual research interests.

I was grateful to have been around many interesting people from the Machine

Learning group in the Department of Computer Science. A special thank

you went to Vithya Yogarajan, for the many thought-provoking conversations

and for guidance. The Department of Computer Science had been a wonderful

environment to work in as a student, and I would like to extend my gratitude to

all those who have made my time there an enjoyable period of my life. Lastly,

I would like to thank my family and other friends for the encouragement and

support throughout my studies, for asking me how my research was going when

I started my Ph.D., and for not asking as I drew closer to finishing.

Contents

1 Introduction 1

1.1 Overview and Challenges . 4

1.2 Goals . 6

1.3 Contributions and Thesis Organization 7

1.4 List of Publications . 8

2 Background and Related Work 10

2.1 Static File Analysis . 10

2.2 Static Analysis Tools . 14

2.3 Dynamic analysis . 14

2.4 Dynamic Analysis Tools . 15

2.5 Section Manipulation for Evasion 17

2.6 Environmental Setup . 19

2.7 SHAP Feature Selection . 20

2.8 Experimental Methodology . 21

2.9 Classifiers . 21

2.9.1 Traditional Classifiers 22

2.9.2 Word Embeddings-based Neural Networks 23

2.9.3 Transformers . 23

2.10 Evaluation Measures . 24

2.10.1 Accuracy . 26

2.10.2 F-measure . 26

2.10.3 MAE . 27

2.10.4 mlogloss . 27

2.10.5 AUC-ROC . 27

2.10.6 Confusion Matrix . 27

2.11 Related Works . 28

2.11.1 Binary Classification 28

2.11.1.1 XGBoost . 28

2.11.1.2 Deep learning 29

2.11.1.3 Clustering . 33

2.11.1.4 Transformers 35

v

2.11.2 Multiclass Classification 35

2.11.2.1 Random Forest and XGBoost 35

2.11.2.2 Deep Learning 36

3 Data and Labels 41

3.1 Dataset Sources . 41

3.1.1 Malware Datasets . 42

3.1.2 Benign Datasets . 43

3.2 Static Raw Data . 43

3.2.1 Portable Executable (PE) File Properties 44

3.2.2 Opcode Sequences . 47

3.3 Dynamic Raw Data . 48

3.3.1 Downloading Folders 49

3.3.2 HybridAnalysis Report 52

3.3.3 Memory Artifacts . 59

3.3.4 Noriben Operations . 60

3.4 Label Retrieval . 62

3.5 Code Repository . 63

4 Combining Static and Dynamic Analysis to Improve Machine

Learning-based Malware Classification 65

4.1 Data Collection and Preprocessing 66

4.1.1 Static features . 70

4.1.2 Dynamic features . 71

4.2 Model architectures . 75

4.2.1 Random Forest . 75

4.2.2 XGBoost . 75

4.2.3 Neural Network . 80

4.3 Experimental Results . 81

4.4 Discussion . 84

5 A comparison of Neural Network Architectures for Malware

Classification based on Call Sequences 92

5.1 Data Collection and Preprocessing 93

5.1.1 Noriben sequences for Multi-class Classification 93

5.1.2 API call sequence for Binary Classification 95

5.2 Model architectures . 97

5.2.1 Random Forest . 97

5.2.2 XGBoost . 98

5.2.3 FCNN . 99

5.2.4 GRU and LSTM . 99

vi

5.2.5 Transformers . 100

5.2.6 Combination of GRU and transformers 102

5.2.7 Combination of FCNN and Transformers 102

5.3 Experimental Results . 104

5.4 Discussion . 114

6 Multiclass Malware Classification using either Static Opcodes

or Dynamic API Calls 117

6.1 Data Collection and Preprocessing 118

6.1.1 Opcodes . 118

6.1.2 API calls . 121

6.1.3 Combination of Noriben Sequences and Opcode Sequences123

6.2 Model architectures . 123

6.2.1 Random Forest . 124

6.2.2 XGBoost . 125

6.2.3 MLP . 125

6.2.4 GRU and LSTM . 126

6.2.5 Transformers . 126

6.2.6 Combination of GRU and Transformers 127

6.3 Experimental Results . 127

6.4 Discussion . 133

7 Conclusion 138

7.1 Future Research Directions . 139

List of Figures

2.1 Anatomy of PE Files. Source: Kevin’s Attic for Security Re-

search [32]. 12

2.2 Sample static analysis with attributes such as XOR, Anti-debugger,

Suspicious section data (.ndata), and File metadata. 13

2.3 The ProcessId of ransomware is 7360 with 7892 as ParentProces-

sId, ReadOperationCount as 15790, and WriteOperationCount

as 33260. There is also a text file in the user folder with a sus-

picious filename (ENifoaSvx.README.txt), which is likely to

be a ransomware note. 16

2.4 A sample of raw Noriben CSV output file carving for an appli-

cation process by only considering the Operation column. . . . 18

2.5 Architecture of the dynamic analysis environment. 20

2.6 Multi-head attention algorithm with GlobalAvgPool1D layer

before the softmax output layer. 25

3.1 High-level Diagram for collecting samples and label retrieval. . 43

3.2 The first 10 opcodes for each sample in each malware cate-

gory with Ba(ckdoor), M(iner), R(ansom), Ro(otkit), T(rojan),

V(irus), and O(ther). 48

3.3 An illustration of uploading a file and obtaining a report from

the sandbox site with feature extraction. 53

viii

3.4 A sample of miner analysis via HybridAnalysis whose artifacts

are obtained by only considering < a > HTML tag. For ex-

ample, the HyperText “Allocates virtual memory in a remote

process” and “Write data to a remote process” under Installa-

tion/Persistence are the attributes. 54

3.5 Using Volatility’s apihook plugin shows detection of IAT hook in

User mode for a ransomware sample with the hooked functions

as ShellExecuteExW and HttpOpenRequestW. 61

3.6 Script execution to capture applications’ activities. 62

3.7 The first 10 unique Noriben operations in sequence order, for

some sample applications. 62

3.8 A ransomware sample analyzed via VirusTotal is flagged as ma-

licious with more than 60 antivirus engines in 70 engines. . . . 63

3.9 A benign sample analyzed via VirusTotal is flagged as benign

with zero detection from all antivirus engines. 63

4.1 The bar plot displays the percentage of missing data for the first

50 static features. 67

4.2 The bar plot displays the percentage of missing data for the

first 50 dynamic features. Most missing values that seem equal

mean no report extraction from HybridAnalysis [47] due to the

limited upload file size (100MB). These values are left empty to

avoid confusion with the “false” value in case of no attribute in

the report. 68

4.3 High-level diagram of our Malware Classification setups 69

4.4 SHAP Summary Plot of the top 20 combination features for the

Random Forest. 70

4.5 SHAP Summary Plot of the top 20 combination features for the

XGBoost. 71

4.6 SHAP Summary Plot of the top 20 combination features for the

Neural Network. 71

ix

4.7 One example tree out of an 200 trees XGBoost ensemble on the

initial static features. Red leaves indicate Malware. 88

4.8 One example tree out of an 200 trees XGBoost ensemble on the

initial dynamic features. Red leaves indicate Malware. 89

4.9 One example tree out of an 200 trees XGBoost ensemble on the

initial combination features. Red leaves indicate Malware. . . 90

4.10 ROC Curve for Neural Network Initial Combination Features. 91

4.11 ROC Curve for Neural Network Combination Selected Features. 91

5.1 The bar plot displays the percentage of missing data continu-

ously increasing by sequence length from 1 to 100. 94

5.2 The best FCNN as determined by RandomSearch in Tensorflow. 99

5.3 The best GRU as determined by RandomSearch in Tensorflow. 101

5.4 Confusion matrix among different malware families for a com-

bination of GRU and Transformers. 110

5.5 ROC Curve for a combination of GRU and Transformers. . . . 110

5.6 A comparison of accuracy among sequence models with LSTM

and a hybrid model of Transformers and GRU exhibited very

similar trends. In contrast, GRU had an upward trend, but

dropped when a sequence length was 9000, and then up again. 114

5.7 A comparison of the F1 score among sequence models by al-

most all classifiers showed the same movement as test accuracy

except for Transformers, which had a different pattern after the

sequence length was 4000. 114

5.8 A comparison of MAE among sequence models with Transform-

ers had the highest error value. LSTM and GRU had the least

MAE values, which had a downward trend for a sequence length

between 1000 and 4000. While a combination of Transformers

had an opposite direction, it nearly stayed the same as LSTM

after passing a 4000 in length. 115

x

5.9 A comparison of the ROC Curve among sequence models with

LSTM, GRU, and a combined Transformers and GRU shared a

similar trend since the sequence length is 5000. 115

6.1 High-level diagram of our Opcodes Extraction. 119

6.2 The bar plot displays the percentage of missing data continu-

ously increasing by sequence length from 1 to 100. 120

6.3 SHAP Summary Plot of the top 20 features of opcodes for the

MLP. 122

6.4 SHAP Summary Plot of the top 20 features of APIs for the MLP.122

6.5 The best MLP as determined by RandomSearch in Tensorflow. 126

6.6 Flowchart for GRU and LSTM 128

6.7 The best GRU as determined by Random-Search in Tensorflow. 129

6.8 Confusion matrix among different malware families for opcodes

with a GRU . 136

6.9 ROC Curve for a GRU on opcodes 136

List of Tables

2.1 Some common dynamic features extracted from previous re-

search [44–46]. 15

2.2 A comparison of extant classification literature 40

3.1 Summary of Datasets. 42

3.2 Summary of Data Category for each downloaded source. . . . 44

4.1 Top-10 selected static features from SHAP feature selection for

the Random Forest . 72

4.2 Top-10 selected static features from SHAP feature selection for

the XGBoost . 73

4.3 Top-10 selected static features from SHAP feature selection for

the Neural Network . 74

4.4 Top-10 selected dynamic features from SHAP feature selection

for the Random Forest . 76

4.5 Top-10 selected dynamic features from SHAP feature selection

for the XGBoost . 77

4.6 Top-10 selected dynamic features from SHAP feature selection

for the Neural Network . 78

4.7 Hyperparameter tuning for the Random Forest Classifier on the

full feature set . 79

4.8 Hyperparameter tuning for Random Forest Classifier on SHAP

selected features . 79

4.9 Hyperparameter tuning for XGBoost Classifier on initial features 79

xii

4.10 Hyperparameter tuning for XGBoost Classifier on SHAP se-

lected features . 80

4.11 Neural Network Layers . 81

4.12 Hyperparameter tuning for Neural Network on initial features 81

4.13 Hyperparameter tuning for Neural Network on SHAP selected

features . 82

4.14 Model Evaluation using default hyperparameter settings. . . . 85

4.15 Model Evaluation with hyperparameter tuning. 85

4.16 Model Evaluation for SHapley Additive exPlanations (SHAP)

on three types of features. 85

4.17 Model Evaluation for hyperparameter tuning and SHapley Ad-

ditive exPlanations (SHAP) on three types of features. 86

4.18 Elapsed time used for training for each algorithm on selected

attributes . 86

4.19 Performance for Neural Network for three types of initial fea-

tures with hyperparameter tuning 87

4.20 Static Confusion Matrix for NN. 87

4.21 Dynamic Confusion Matrix for NN. 87

4.22 Combination Confusion Matrix for NN. 87

4.23 Performance for Neural Network for three types of features with

hyperparameter tuning and feature selection 87

4.24 Static Confusion Matrix for NN. 87

4.25 Dynamic Confusion Matrix for NN. 87

4.26 Combination Confusion Matrix for NN. 87

5.1 Top 30 Noriben Operation Description. 95

5.2 Top-10 frequently occurrences of Noriben sequences classified

by two numeric values: (1) average number for each category

and (2) the number of applications for each and every operation-

category pair. 96

5.3 Hyperparameter tuning for Random Forest Classifier. 98

xiii

5.4 Hyperparameter tuning for XGBoost Classifier. 98

5.5 FCNN hyperparameter tuning setup and outcome. 100

5.6 Hyperparameter tuning for GRU and LSTM for Noriben and

API call sequences. 102

5.7 Transformer Layers . 103

5.8 Hyperparameter tuning for Transformers. 104

5.9 Hyperparameter tuning for combining GRU and Transformers. 105

5.10 Hyperparameter tuning for combining FCNN and Transformers. 106

5.11 Cross-validation results for default hyperparameter values on

Noriben operations. 107

5.12 Cross-validation results after hyperparameter tuning on Noriben

operations. 107

5.13 Cross-validation results after hyperparameter tuning for dy-

namic API call sequences [114] on binary classification. . . . 108

5.14 Training time for each algorithm on Noriben operations. . . . 108

5.15 Precision, recall, and F1 score per class for 10-fold cross-validation

on three classifiers (GRU, Transformers, and a hybrid of GRU

and Transformers) on Noriben operations. 109

5.16 Cross-validation results after hyperparameter tuning on differ-

ent max tokens with different sequence lengths for LSTM. . . 111

5.17 Cross-validation results after hyperparameter tuning on differ-

ent max tokens with different sequence lengths for GRU. . . . 111

5.18 Cross-validation results after hyperparameter tuning on differ-

ent max tokens with different sequence lengths for Transformers. 112

5.19 Cross-validation results after hyperparameter tuning on differ-

ent max tokens with different sequence lengths for FCNN. . . 112

5.20 Cross-validation results after hyperparameter tuning on differ-

ent max tokens with different sequence lengths for GRU+Transformers.113

5.21 Cross-validation results after hyperparameter tuning on differ-

ent max tokens with different sequence lengths for FCNN+Transformers.113

xiv

6.1 The top 20 features from SHAP selection on opcode sequences

for each category with “n1” and “n55” exist across all these

categories. 121

6.2 Top 3 opcodes for ransomware, trojan, miner, and benign class

for selected n1 and n55 features. 123

6.3 Hyperparameter tuning for Random Forest Classifier on initial

features . 124

6.4 Hyperparameter tuning for XGBoost Classifier on initial features125

6.5 Hyperparameter tuning for MLP for Opcodes and API calls . 127

6.6 GRU and LSTM hyperparameter tuning for API calls and Op-

codes. 130

6.7 Hyperparameter tuning for Transformers for Opcodes and API

calls . 131

6.8 Hyperparameter search space to tune the combining GRU and

Transformers model. 132

6.9 Model Evaluation using default hyperparameter settings for op-

codes . 132

6.10 Model Evaluation using default hyperparameter settings for API

calls [125] . 133

6.11 Model Evaluation with average 10 fold cross-validation on hy-

perparameter tuning for opcodes 133

6.12 Model Evaluation with average 10 fold cross-validation on hy-

perparameter tuning on API calls [125] 133

6.13 Model Evaluation using default hyperparameter settings for a

combination of Noriben and Opcode Sequences 134

6.14 Model Evaluation with average 10 fold cross-validation on hy-

perparameter tuning on a combination of Noriben and Opcode

Sequences . 134

xv

6.15 Precision, recall, and F1 score per class for 10-fold cross-validation

of opcodes and API calls using GRU and a soft voting classifier

for a combined Noriben and Opcode. 135

6.16 Training time for each algorithm on Static Opcodes and Dy-

namic API calls . 135

Chapter 1

Introduction

Malicious software, commonly known as malware, is any program designed to

disrupt normal functions on computers, servers, and networks to gain access

to sensitive information and unauthorized resource usages, such as mining and

interrupting services. With global internet access and a dramatic increase in

internet usage, malware becomes a significant security threat to society. In ad-

dition, attackers are becoming sophisticated in their methods to conceal their

malicious payloads and evade security mechanisms. For example, cybercrim-

inals send spam emails with infected file attachments or fake websites with

fraudulent content to deliver their malicious payloads. Malware attacks can

cause a disastrous financial impact on businesses through both direct and indi-

rect costs, such as over $49,207,908 in losses caused by ransomware in 2021 [1].

Such security detection is mainly divided into signature-based, behavior-based,

statistical-based, heuristic techniques, and anomaly-based [2]. Each detection

technique has its advantages and disadvantages. For signature-based, it is ef-

fective against known attacks, but it requires an updated database to recognize

unknown malware. For anomaly-based, it can identify changes in behavior

from the baseline and reduce false positives resulting from signature-based;

however, high false alarm rates can be generated if a reliable baseline is not

built [2].

Malware signatures are one of the essential resources provided by security

2

vendors. On the one hand, the signatures could be obtained by inspecting

executables statically. On the other hand, installing a monitoring tool to record

malware behavior is an alternative way, then generating features describing its

dynamic behavior. Provided that debugging is enabled, the code syntax could

reveal anti-detection techniques implemented to thwart reverse engineering and

cause damages after the system is infected. When unseen malware appears,

sophisticated skill is required to analyze and dissect the malware parts, to

determine the position of the actual code execution and the embedded payload

of the main application. The effectiveness of malware detection results could be

improved using machine learning techniques with extensive data analysis [3–5].

Malicious binaries in the Windows Portable Executable (PE) files seriously

threaten organizations. Windows executables, object code, and DLLs use the

Portable Executable (PE) file format [6]. This thesis analyzes EXE files due to

being standalone programs loaded as a new independent process. In contrast,

DLL files need to be loaded into a process and cannot be run independently.

Therefore, the execution of a DLL file depends on the OS loader having to have

created a process that requires using some functions contained in the DLL file.

Regarding malware analysis techniques, they consist of static, dynamic, and

hybrid. The static approach mainly focuses on static properties using stan-

dard data extraction, such as running a strings command to examine printable

characters [7, 8], whereas disassembling the assembly instructions using static

analysis tools, such as IDA pro disassembler and Python-developed modules

to collect static opcodes and API calls, is an advanced static analysis [9, 10].

However, for a better understanding of applications’ inner workings, dynamic

analysis plays an essential role by executing suspicious programs within a vir-

tual sandbox environment and collecting their behavior during the run-time.

Additionally, analysis of malicious code in-depth with interactive mode can be

achieved during advanced dynamic analysis by using a debugger with setting

breakpoints to analyze functions for encoding and encryption throughout a

malware sample and manually unpacking a packed malware sample. To ob-

3

tain complete information on malware analysis, integrating two approaches

(hybrid) can result in a higher detection rate of malware [11, 12]. This thesis

uses three approaches to obtain malware characteristics and behavior.

With the sheer volume of malware instances, machine learning algorithms

plays a vital role in extracting significant features and tackling problems.

Machine learning is the automatic process of discovering hidden insights in

data fabric by using algorithms that could find those insights without being

specifically programmed to create models that solve a particular (or multiple)

problem(s) [13]. For example, deep convolutional neural networks (CNNs)

proved their effectiveness in binary malware detection through image classifi-

cation [14]. In addition, machine learning competitions were opened for data

scientists, allowing access to the public dataset to build their learning models,

submit their predictive results, and finally announce the winner who could

achieve the highest classification performance. The public dataset released for

security researchers was available for download via GitHub [15] or Amazon

S3 [16]. This campaign could attract many researchers to focus on malware

classification and propose innovative approaches. Among malware categories,

the learning model could expose malware’s activities—for example, injected

code, downloaded files, unpacked contents of packed programs, and network

connections. In this thesis, we download binaries from the public repository

and use our custom Python script to extract the features.

In this thesis, we aim to meet two main purposes: (1) to better standard

classifiers for predicting binary classes from static and dynamic artifacts and

(2) to boost the accuracy of predictions of multiclass malware categories for

long Noriben and Opcode sequences. The rest of this chapter discusses the

previously mentioned concepts in more detail and also summarises the contri-

butions and structure of the remainder of the thesis.

4

1.1 Overview and Challenges

Statistics from NetMarketShare [17] indicated that Windows 10 was the most

popular platform in academic and business aspects, at around 90% of computer

users. Additionally, Windows 10 was updated with new security features, com-

pared to prior versions. Due to a popular attack platform, only Windows ex-

ecutables are taken in the experiments. Targeting samples on other operation

systems requires tools and techniques to perform data extraction and prepa-

ration for different data types. In this thesis, we analyze malicious files on

Windows 10 (version 1903) to comprehensively understand integrated static

and dynamic attributes and a long text sequence for improving malware pre-

diction. The following common malware types and definitions are investigated.

• Miner: takes over a computer’s resources to mine digital currency with-

out authorization [18].

• Ransomware: prevents users from accessing their files and demands

a ransom to decrypt them. The trend of this type of attack increases

to threaten data owners to steal (exfiltrate) sensitive documents if the

ransom is unpaid [19].

• Rootkit: enables unauthorized system access to control a computer

remotely and remains hidden without notice [20].

• Trojan: can disguise as legitimate applications to gain access and take

control of the system (e.g. delivered as a Microsoft Word file with embed-

ded malicious VBA macros) or to use existing communication channels

to transfer files which is undetectable by security mechanisms [21].

• Virus: uses malicious code to infect existing system/program files and

requires user interaction to spread on an infected system [22].

• Backdoor: can be a deliberately hidden vulnerability in the software

code, allowing privileged users to bypass standard security mechanisms

[23].

5

A review of research [3, 4, 24–27] performed before the release of Windows

10 showed that mostly only static or a partial dynamic analysis, and a few

integrations of both datasets, were utilized for malware detection. When the

new version of Windows 10 came out, more sophisticated security measures

changed how digital artifacts are used for analysis. For instance, the introduc-

tion of Windows Real-Time Protection (RTP) and Ransomware Protection

provided some features to defend against viruses and other threats. From

Windows 10, the following few types of application files are analyzed: MSI

files (an installer package file format), EXE files (an executable file format),

AppxBundle files (a Windows 8.1 App Bundle Package format), and DOC files

(focusing only on the behavior-based analysis). Due to the archive file formats

of MSI and AppxBundle, embedded EXE files inside the package are extracted

with “msiexec” and “Add-AppxPackage” and executed via an automated Pow-

erShell command. There are options for automatic silent installation of MSI

and AppxBundle files; however, some applications required user interaction to

launch the service after installation. To prevent damage from unknown files,

static analysis came as the first choice when inspecting the characteristics of

binaries.

However, we encounter challenges in classification. For example, advanced

encryption and obfuscation techniques are more developed, to hinder static

inspection. Although various security solutions are available such as antivirus,

SSL certificate encryption, and firewall protection, these countermeasures could

be bypassed. Due to their defensive mode, they required the system to update

signatures consistently to protect the information against malicious activities

or software. In addition, unprecedented malware applications are increasing,

with anti-mechanisms (e.g., anti-debugging, anti-virtualization) obstructing

analysts from observing and detecting malware during runtime. Intrusion

detection techniques based on virtual machine introspection (VMI) for exter-

nally monitoring the runtime state of a system-level virtual machine (VM)

could have high temper resistance compared to the traditional host-based an-

6

tivirus. Nevertheless, we do not place this monitoring on our experiment to

inspect and analyze the code running. Instead, we enable a process monitor

(Procmon) to capture the application operations. According to a study of mal-

ware detection techniques [2], an automated approach by considering feature

selection for data extraction to improve accuracy is needed. Unfortunately,

some approaches, like using the anomaly-based approach, could not extract

the best features to feed into a classifier and a certain amount of malware is a

limitation for evaluations. With inadequate computing and storage resources,

massive malware samples could cause a scalability issue, resulting in many

false positives and negatives.

1.2 Goals

This thesis sets out to improve binary classification performance using static

and dynamic analysis data. In addition, research focuses on improving the

accuracy of predictions of multi-class malware classification from consecutive

Noriben and opcode sequences. In order to achieve these goals, the following

three research directors are formulated. The main research directions are:

• Extensively extract static and dynamic analysis data from the PE header,

sandbox reports, and memory analysis using Python modules. Samples

are downloaded from trusted public sources, and the raw data is stored

as a CSV output file.

• Explore preprocessing data to handle long sequences of both opcode and

Noriben.

• Use a concatenation of models to improve malware classification

• Use hyperparameter tuning for learning approaches to discover the best

classifier for each type of feature set.

Using different feature sets to classify malware categories based on machine

learning models helps improve accuracy. However, the limitation of previous

7

research is an integrated set of data from various sources by automation and

class imbalance. In this thesis, we use an automated custom Python script to

collect and output data as a CSV file for data preprocessing before feeding it

into learning approaches. Nevertheless, an imbalanced dataset in the number

of instances per class is used in our experiments.

1.3 Contributions and Thesis Organization

The main contribution of this thesis is malware classification on Windows

Portable Executable files by applying machine learning approaches and dif-

ferent feature extraction techniques. The hypothesis is that combining static

and dynamic features extracted from memory analysis, sandbox reports, the

sequences of dynamic Noriben operations, and the static opcode sequences

could improve classification performance. The two ways of malware investiga-

tion are as follows:

• Binary classification utilizing data from the dynamic features (Falcon

sandbox reports and memory artifacts) and complement static features.

• Multiclass classification utilizing Noriben time-series data and the static

opcode sequences compared to the public dynamic API calls dataset.

The structure of the remainder of this thesis is as follows:

Chapter 2 describes the source of data collection and the significant fea-

tures used to feed into the algorithms.

Chapter 3 provides background information about static and dynamic

analysis on binaries and setting up the environment to acquire the raw data,

and also reviews the representation learning literature related to utilizing ma-

chine learning approaches on malware classification.

Chapter 4 presents the improvement of classification by implementing

SHAP feature selection on extracted features. The method is evaluated em-

pirically using a combination of static and dynamic features.

8

Chapter 5 shows how the Noriben time-series data captured during the

runtime helped to predict malware categories by applying state-of-the-art se-

quence models and a hybrid approach to extracted sequences.

Chapter 6 introduces a comparison of static opcodes and dynamic API

calls for multiclass malware classification using traditional sequence models.

Chapter 7 provides a summary of the contributions in this thesis and spec-

ulated about future research directions resulting from the undertaken work.

The content of Chapter 4 is based on an article presented at the 8th IEEE

International Conference on Data Science and Advanced Analytics in research

and application tracks, Porto, Portugal. It collected raw data from static

and dynamic, including Noriben operations that are put into a list with the

first occurrence of each operation. The text sequence method described in

Chapter 5 is presented at the 31st International Conference on Artificial Neu-

ral Networks, Bristol (UK). These consecutive Noriben sequences are used in

a separate dataset to observe different predictive results. Finally, chapter 6

compares static opcodes and dynamic API calls presented at the 35th Aus-

tralasian Joint Conference on Artificial Intelligence, Perth, Western Australia.

This extended the work using the same learning approaches as in Chapter 5

and evaluates the classification performance.

1.4 List of Publications

During this research, the following papers are published in peer-reviewed con-

ference proceedings:

• R. Chanajitt, B. Pfahringer and H. M. Gomes, “Combining Static and

Dynamic Analysis to Improve Machine Learning-based Malware Classi-

fication,” 2021 IEEE 8th International Conference on Data Science and

Advanced Analytics (DSAA), 2021, pp. 1-10, doi: 10.1109/DSAA53316.

2021.9564144.

• R. Chanajitt, B. Pfahringer and H. M. Gomes, “A comparison of Neural

9

Network Architectures for Malware Classification based on Noriben Op-

eration Sequences,” Artificial Neural Networks and Machine Learning-

ICANN 2022, Springer, eBook ISBN 978-3-031-15919-0.

• Chanajitt, R., Pfahringer, B., Gomes, H.M., Yogarajan, V. (2022). Mul-

ticlass Malware Classification Using Either Static Opcodes or Dynamic

API Calls. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances

in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(),

vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-

3 30

• Data Extraction Code Repository. https://github.com/rajchadach/

malware.

Chapter 2

Background and Related Work

This chapter provides information about static and dynamic file analysis ap-

plied to benign and malicious files, accompanied by tools used in the research.

The analysis does not include the payload, including malicious code or con-

tent delivered after a system is successfully compromised. The classification

algorithms utilized for training our datasets are also detailed.

2.1 Static File Analysis

In general, Windows Portable Executable (PE) Format consists of executable

(.exe), driver (.sys), and library (.dll) files. Static malware detection does

not require executing the malware and uses the structural information as

file format [28, 29] available in applications. Windows binary consists of PE

header [28], code, data, and resource part. Figure 2.1 shows the file format lay-

out. The PE header has a COFF Header, OPTIONAL Header, and section ta-

bles. We can identify the most relevant information in OPTIONAL HEADER

data directory entries by using the “pefile” [30] Python module to explore

the actual file contents, which might contain executable code, data, imports,

exports, and resources (e.g., icons). There might be more than pre-defined sec-

tion names in Windows: .text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata

and .debug [31].

Additionally, we could locate if there was a Program Database (PDB)

11

associated with an executable when it was built. The PDB file contains infor-

mation about the executables’ creation and the symbols in the latest Code-

View format. A path and filename for the PDB file in the DEBUG directory

could reveal the linkers/compilers and how many times an executable and

the corresponding PDB file are remade by the linker. The DEBUG direc-

tory in the executable is generally in the “rdata” section. The data appended

to the PE file and not mapped into memory is called an overlay, usually at

the end of the file. Similarly, the discovery of the minimum security require-

ment requested by the application could be seen in the application manifest

“requestedExecutionLevel” tag:

• asInvoker: The application run with the same permission as the process

that started it (user’s default security settings).

• highestAvailable: The application run with the highest permission

level.

• requireAdministrator: The application run with administrator per-

mission.

After the structure of PE files was thoroughly analyzed, some common fea-

tures conducted in previous research [33–36] were extracted. In the thesis, we

use only static imported DLLs and API calls obtained from memory analysis.

• Byte code sequence: it is one of the static analysis techniques that

analyzes raw byte contents of binaries. This method is vulnerable to

code obfuscation technologies.

• APIs/System calls: it is based on N-grams and a bag of words1

(counted the words independently without considering their sequences

inside the documents [37]).

1The bag-of-words approach (BOW) is one of the feature extractions for sentences and

documents. It only concerns the occurrence of the words within a document regardless of

the order or structure of words.

12

Figure 2.1. Anatomy of PE Files. Source: Kevin’s Attic for Security Re-

search [32].

• Call gram: it is an extraction of a call graph from a binary program’s

disassembled instructions and then converts the graph to a call gram.

• Control flow graph: a block of assembly instructions represented in

the graph.

• Strings: a search for characters or words to provide information about

the functionality and indicators associated with a PE file [38].

• Byte/Entropy Histogram: an entropy is calculated for each PE sec-

tion independently. It creates a histogram of the binary contents with

a maximum of 256 different bytes and approximates the probability of

each byte multiplied by its count, adding them all up and dividing by

filesize.

• Imported DLLs: scans the Import Address Table for functions to be

imported from DLLs for .exe files.

13

A sample result for static analysis on LockBit ransomware is depicted in

Figure 2.2, achieved by running the “peframe” command-line tool [39]. This

sample file analysis presents a suspicious section name (.ndata) which is not

in the default sections for standard PE files and have been implemented with

packer and encryption.

Figure 2.2. Sample static analysis with attributes such as XOR, Anti-

debugger, Suspicious section data (.ndata), and File metadata.

14

2.2 Static Analysis Tools

Many tools to examine portable executable files are open-source, accessible

publicly, and used by most malware researchers to analyze suspicious files. In

this research, a few tools are used as follows:

PEfile: a multi-platform Python module is used to parse Portable Ex-

ecutable (PE) files [28]. Most of the information in the PE file headers is

accessible as attributes in the PE instance and all the sections’ details and

data. “pefile” [30] could be installed through pip and requires some funda-

mental understanding of a PE file format layout.

Disassembling Tools: We use distinct disassemblers consistent with dif-

ferent file extensions. These tools are freeware to extract assembly instructions

statically in sequential order. In our research, ‘UPX” [40], ‘Zlib” [41], and

‘monodis” [42] are responsible for disassemble executables. If opcodes could

not be extracted via the above-mentioned tools,“objdump” [43] is used instead.

VirusTotal: an online scanning tool for suspicious files and websites. It

allows a maximum file size upload of 650MB and combines the output of over

70 antivirus scanners and URL/domain blacklisting services. In addition, it

offers file submission methods, including the primary public web interface,

desktop uploaders, browser extensions, and a programmatic API. For public

VTAPI, uploading and scanning files or hash validation and accessing finished

scan reports are available with throttling to 4 requests per minute.

2.3 Dynamic analysis

Compared to static analysis, dynamic focuses on malware execution during

the runtime. A controlled environment is configured to prevent suspicious

applications from escaping outside. For instance, by attaching the debugging

to the running application and observing the execution flow, the analyst would

notice the system language, available keyboard layouts, and the decryption

15

process. After the malware files have completed their activities, the RAM

could be captured. Some common features extracted during malware execution

in a virtual environment are:

Processes, devices and drivers Loaded modules

Network socket information Passwords

Order of execution Runtime State

Configuration Information Logged in users

Opened files Unsaved documents

Live registry/CPU registers BIOS memory

Native Opcode at runtime (e.g. ja, adc, sub) Windows’ Prefetch files

Event Logs Encryption/Decryption

Powershell commands Payload

Table 2.1. Some common dynamic features extracted from previous research

[44–46].

We use the same LockBit ransomware analyzed via the static method to ex-

ecute in the virtualized environment. The analysis results from manual running

can be seen in Figure 2.3. We analyze the sample using the Windows Manage-

ment Instrumentation Command-line tool (wmic.exe) and dir command-line.

On the one hand, “wmic” lists the process to get ParentProcessId, ProcessId,

ReadOperationCount, and WriteOperationCount. On the other hand, “dir”

command displays all files and subdirectories contained in a specific directory.

2.4 Dynamic Analysis Tools

The tools used in this research to examine dynamic artifacts are: (1)Noriben

for activity carving, (2) HybridAnalysis site [47] for retrieving sandbox reports,

and (3) Volatility Framework [48] for memory forensics analysis. For volatility,

16

Figure 2.3. The ProcessId of ransomware is 7360 with 7892 as ParentPro-

cessId, ReadOperationCount as 15790, and WriteOperationCount as 33260.

There is also a text file in the user folder with a suspicious filename (ENi-

foaSvx.README.txt), which is likely to be a ransomware note.

it could be installed via “pip”, while Noriben is a Python script that can be

placed anywhere on the machine to monitor application activities.

Volatility: an open-source memory forensics framework that can monitor

runtime processes and the system’s state using the data extracted from volatile

memory (RAM). It can perform reconnaissance on process lists, ports, network

connections, registry files, DLLs, crash dumps, and cached sectors [49]. We

use VMWare Workstation Player [50], a virtualization tool, to create memory

dump files by suspending the virtual machine and taking a snapshot. Volatile

data might be found in files with extensions .vmem, .vmss, or .vmsn. A doubly-

linked list tracks the currently active processes for most standard Windows

calls. However, some malware attempts to hide by de-linking its process from

this list. By searching through all the memory in a RAM dump for the known

structure of a process object’s header and other attributes, Volatility could de-

tect processes unlinked in the standard doubly-linked process list. In addition,

17

some plugins can look for suspicious memory areas within a process and display

them along with their associated assembly code so that an analyst can deter-

mine whether it is suspicious. To ensure which kernel had been loaded, walking

through this list of loaded kernel drivers in the LDR DATA TABLE ENTRY

could provide the name and path of DLLs loaded by the kernel and list registry

hives, including their path on disk and also recently used programs.

HybridAnalysis: this is a website that provides free malware analysis

service with the Falcon Sandbox. It allows users to submit URLs/files for

scanning and searching reports via IP, domain, and hash verification. It also

matches strings, hex patterns, and YARA rules2 at the byte level. However,

there is 100 MB limit for the maximum upload size.

Noriben: a Python-based script [51] that allows automation of the Noriben

execution within a guest VM and retrieves the reports by recording the out-

put into a separate folder. Noriben is a malware analysis sandbox and only

required Sysinternals procmon.exe (or procmon64.exe) to operate. Due to a

whitelist for unwanted noise reduction from system activity, no pre-filtering

is required. Likewise, it could accept varying command line options or user

interactions, such as defining the number of seconds for collecting activity.

The script logs all running processes in CSV format ordered by time, and we

only focus on the tested application in the experiment as shown in Figure 2.4.

In the thesis, we focus on the third column, “Operation”, preprocessed as

learning model inputs. One input is the first occurrence for each operation

stored in a list used as features in Chapter 4. Another is a consecutive 10000

sequence used as features in Chapter 5.

2.5 Section Manipulation for Evasion

To obstruct pattern identification by malware analysts, authors could delib-

erately develop malicious applications by modifying section headers to evade

2YARA rule was one of the approaches to identifying malware by creating rules based

on textual or binary patterns, consisting of two parts: strings definition and condition.

18

Figure 2.4. A sample of raw Noriben CSV output file carving for an appli-

cation process by only considering the Operation column.

security countermeasures or machine learning classifiers, while maintaining

their original functionality and behavior with the following methods.

• Appending random bytes (ascii/zero) to the end of a section or the file

• Modifying the optional header checksum, export, remove the signature

or debug info

• Inserting/re-ordering code

• Implementing packers such as UPX (Ultimate Packer for eXececutables)

[40]

• Encoding and splitting obfuscation

• Renaming/Creating new sections

• Randomizing section names

• Adding an unused function to the import table

• Creating a new entry point (which jumps to the old entry)

These techniques caused trouble for our static analysis and could provide

false positives for some feature extraction. To obtain more accurate data,

19

we need information from dynamic analysis and augmented them, using ex-

tracted features from static and dynamic results, to create a feature set for a

classification task.

2.6 Environmental Setup

To perform dynamic analysis, two guest virtual machines are set to be victim

and server for the application running in a secure environment. We also take

snapshots while they are in a good state. For bi-directional file uploading

and downloading, we use a Ubuntu machine to connect to the guest via the

“vmrun” command–the test environment is shown in Figure 2.5. Its key parts

are as follows:

• Windows10 64-bit guest is set to be the victim. The networking

interface is set to host-only mode with a static IP address to restrict

communication with Remnux Ubuntu (server). In addition, an adminis-

trator account is enabled to run commands and access the system folder

to prevent permission from being denied. Moreover, the Noriben Python

script is placed on the desktop to collect, analyze, and generate a report

during runtime with Sysinternals Procmon put into the python folder

and a ZIP program in the download folder for compression files. Fur-

thermore, we fully disable the User Access Control (UAC) in the virtual

Windows 10 guest machine group policy.

• Remnux ubuntu server is a simulated inetsim server to provide sim-

ulation for internet connection by configuring an IPtable to redirect in-

ternet traffic (port 80 and 443) to a pre-configured port 8443 on the

server. We also modify the DNS configuration and resolve it to the

pre-configured domain name.

• Ubuntu host is an analysis machine to run static and dynamic python

scripts for collecting raw data with output in CSV format to be prepro-

cessed and fed into learning models. Additionally, this machine analyzes

20

other artifacts such as prefetch files, Windows event logs, temporary

folders, and performs a memory dump analysis.

Figure 2.5. Architecture of the dynamic analysis environment.

2.7 SHAP Feature Selection

SHAP (SHapley Additive exPlanations) [52] values represent each feature’s

average impact on each sample prediction, based on all possible features. A

(samples, features) matrix lists the contribution of each feature to each sample

as a prediction. Positive SHAP values indicate positive impacts on a predic-

tion, while negative SHAP values present an opposite direction. The features

are ordered by the influence on the model’s prediction. The x-axis represents

the average of the absolute SHAP value of each feature, and the y-axis has all

the features. Each point on the chart is one SHAP value for a prediction and

feature. The red color means a higher feature value, while blue means a lower

value. Based on the distribution of the red and blue dots, we could get the

global direction of each feature on the final prediction. We could use the sum-

mary plot to provide a rich overview of how each feature impacts the model

for each class. Such feature selection is applied to a combination of static and

dynamic analysis for binary classification and static opcode sequences for mul-

ticlass classification. Applying this feature selection method to our datasets

21

in the thesis provides high classification performance. However, other options

for feature selection should have been considered.

2.8 Experimental Methodology

This thesis makes use of several open-source frameworks. The neural network

and text sequence models presented are mostly implemented using Python

with Tensorflow [53]. All evaluations are done using sklearn metrics [54]. We

use the original open-source transformer [55] for transformer implementations.

All models are fine-tuned by using Keras-tuner [56] on all layers without

freezing. TextVectorization from TensorFlow [53] is used for preprocessing

text sequences and setting the sequence length for the output. RMSprop [57],

an adaptive learning rate optimization algorithm, is used as the optimizer

for default learning approaches presented in this thesis. This optimizer is an

extension of the gradient descent algorithm with momentum, and the founda-

tion of the Adam algorithm [58]. A non-linear sigmoid function is used as the

activation function with a binary-cross-entropy loss for binary classification.

Conversely, a softmax activation function with categorical-cross-entropy loss

is utilized for multi-class problems.

All experiments are validated through stratified 10-fold cross-validation

(CV). Due to resource restrictions, all neural network results are used to train

test hold-out set validation where the results are averaged over thirty run

times. 10-fold CV reduces bias when conducting hyperparameter optimization

and obtaining the best model, making it more reliable. However, the variations

of these thirty independent runs are measured by the standard deviation within

a range of ±0.04.

2.9 Classifiers

This section presents details of the classifiers used in this research. We can

divide the algorithms into three groups: (1) traditional classifiers, including

22

random forest, XGBoost, and neural network (2) word embeddings-based neu-

ral networks, and (3) transformers. Only text sequence models are applied to

text-based data.

2.9.1 Traditional Classifiers

We use supervised machine learning algorithms to build a model to find pat-

terns in a dataset with labels and features. Then, the trained model is em-

ployed to predict a category of a new dataset’s class label. Scikit-learn [54] is

utilized to implement classification models. Most importantly, the model pa-

rameters could be fine-tuned for optimization. In this research, three learning

approaches are applied.

Random forest [59] builds an ensemble of multiple random decision trees

in parallel from random bootstrap samples of the dataset. It benefits from

less vulnerability to over-fitting than decision trees as the number of trees

increases. The ensemble produces the final prediction by an average of all

decision tree predictions.

XGBoost [60], which stands for Extreme Gradient Boosting, is another

decision-tree-based ensemble algorithm that uses a gradient boosting frame-

work. The trees are built in parallel, and a sum of gradient values is used to

evaluate the quality of splits at every possible split in the training set.

The neural network [61] is an algorithm that reflects the behavior of the

human brain to recognize data patterns. These so-called Artificial Neural Net-

works (ANNs) comprises an input layer, one or more hidden layers, and an out-

put layer. Each interconnected node has an associated weight and threshold.

Once an input layer is determined, weights are assigned and passed through

an activation function to generate the output. If that output exceeds a given

threshold, the node is activated, passing data to the next layer in the network.

The above node’s output becomes the input of the subsequent node.

23

2.9.2 Word Embeddings-based Neural Networks

This research uses sequential models popular for processing text sequences,

including LSTM and GRU.

Long Short Term Memory (LSTM) [62] is an advanced Recurrent Neural

Network (RNN). However, RNN could not remember long-term dependencies,

due to the vanishing gradient problem. Thus, LSTM is designed to handle

long-term dependency problems by introducing memory units called cell states,

which maintain their state over time. The LSTM network consists of three

parts: an input gate, a forget gate, and an output gate. Information could

be removed or added from memory and controlled by gates. Over time, the

memory cells learn the essential information based on the weights.

Gated Recurrent Unit (GRU) [62] is a type of Recurrent Neural Network

(RNN) that does not include separate memory cells, which makes it faster

than LSTM. GRUs addresses the vanishing gradient problem by using update

and reset gates. These gates decide what information is allowed through to the

output and could be trained to preserve information from farther back. In ad-

dition, GRU features an additive component, allowing each unit to remember

a feature in the input for a more extended series of steps.

2.9.3 Transformers

Transformer [55] is a neural network that adopts the self-attention mechanism

with no recurrence and convolutions, distinctively weighting the significance

of each part of the input data. It is one of the recent models and is used

primarily in natural language processing (NLP). In addition, it can achieve

state-of-the-art (SOTA) results in many language tasks [63–65]. Self-attention

is a method for the computation of the representation of a sequence, by cap-

turing the relationships between the different elements of the same sequence.

Furthermore, the entire sequence is trained simultaneously in Transformer net-

24

works, enabling the capture of long-range dependencies.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.1)

The equation 2.1 presents the definition of self-attention, which is a map-

ping between a query and a set of key-value pairs to an output. The trans-

former implements scaled dot-product attention. First, a dot product for each

query (q), with all the keys (k), is computed and packed together as Q, K, and

V matrices. Subsequently, it is divided by the square root of the dimension-

ality of each key, d, and proceeded to apply a softmax function and obtained

the weighted sum of the values. In addition, multi-head attention [66] is used.

Multiple weight matrices produce different query, key, and value vectors for

the same word, allowing the model to have multiple representations.

multihead(Q,K, V) = concat(head1, ..., headn)WO (2.2)

The multi-head attention function concatenates the outputs of the num-

ber of linear layers (heads) obtained from each attention function and then

multiplies with the weight matrix to generate the final result, as shown in

equation 2.2. An example of three linear layers giving three attention outputs

concatenated together is depicted in Figure 2.6.

2.10 Evaluation Measures

Classification is about predicting the class labels given input data. For ex-

ample, in binary classification, there are only two possible output classes; in

multiclass classification, more than two possible classes could be present. For

performance evaluation, the evaluation metrics play a vital role. To improve

the model’s overall predictive result, we use different metrics, such as F1-score,

AUC, and confusion matrix, to measure the performance of the classification

task before we put it in place for production on unseen data. However, it

could result in poor predictions when the respective model is deployed on

unseen data without proper evaluation of the model and only depending on

25

Figure 2.6. Multi-head attention algorithm with GlobalAvgPool1D layer

before the softmax output layer.

accuracy, especially for imbalanced data. We also use stratified 10-fold Cross-

Validation to maintain the same class ratio throughout the K folds as the ratio

in the original dataset. This section presents an overview of such evaluation

measures used in this thesis that could help generalize the ML classification

model.

26

2.10.1 Accuracy

Generally, this metric is a ratio of correctly predicted observations to the total

observations. For binary classification, accuracy could be calculated in terms

of positives and negatives as follows:

Accuracy =
TruePositive + TrueNegative

TruePositive + TrueNegative + FalsePositive + FalseNegative

(2.3)

Similarly, accuracy for multi-class classification is directly computed from the

confusion matrix. The formula considers the sum of True Positive and True

Negative elements at the numerator and the sum of all the confusion matrix

entries at the denominator.

2.10.2 F-measure

F-measure or F1-score is used as the primary evaluation measure for binary or

multi-class classification. F1-score is calculated by,

TPR =
TruePositive

TruePositive + FalseNegative

FPR =
FalsePositive

FalsePositive + TrueNegative

Precision =
TruePositive

TruePositive + FalsePositive

Recall =
TruePositive

TruePositive + FalseNegative

F1 Score = 2 ∗ (Precision ∗Recall)

(Precision + Recall)

Micro F1 Score =
sum(F1 Score)

TruePositive + 1
2
∗ (FalsePositive + FalseNegative)

Macro F1 Score =
sum(F1 Score)

number of classes
(2.4)

For multi-classification problems, label-wise macro and micro F1 scores are

used. Macro-F1 is the mean of the label-wise F1 score. Micro-F1 is the

harmonic mean between the micro-recall and micro-precision.

27

2.10.3 MAE

The Mean Absolute Error(MAE) is the average magnitude of the errors in a

set of predictions without considering their direction. It is the average of all

absolute differences between the measured and actual values where all indi-

vidual differences have equal weight to measure how confident a prediction is.

The formula for the MAE is:

MAE =
1

n

n∑
i=1

|xi − x| (2.5)

2.10.4 mlogloss

The ‘mlogloss’ (multiclass categorical cross-entropy) [67] is a probability-based

metric for scoring multiclass problems. It is a default metric set by eval metric

parameter in XGBoost’s configuration. This parameter is configured with

num class and multi:softprob objective.

2.10.5 AUC-ROC

AUC stands for “Area under the ROC Curve” and ranges from 0 to 1. A

ROC curve plots the True Positive Rate (TPR) against the False Positive

Rate (FPR) at various threshold values. The higher the AUC, the better the

model’s performance is. When AUC equals one, the classifier could correctly

differentiate all the Positive and the Negative classes. If, however, the AUC has

been 0, then the classifier would predict in the opposite direction. Any class

can be positive or negative. It depends on which class is selected as positive

and the rest is negative. We use roc auc score with setting “multi class” to

“ovr” to compute the AUC of each class against the rest.

2.10.6 Confusion Matrix

A confusion matrix is a performance measurement where the output could be

two or more classes. It is a table that summarizes the number of correct and

incorrect predictions made by a classifier with count values broken down by

28

each class. It overcomes the limitation of using classification accuracy alone

by providing information about the number of misclassified instances.

2.11 Related Works

Malware detection using machine learning techniques was first addressed by

Schultz [68]. They used static analysis techniques on features, including ex-

tracted strings, imported functions, and contiguous sequences of n bytes (N-

grams). This section presents a literature review related to the research pre-

sented in this thesis. These research efforts are divided into the types of

classification: (i) Binary Classification and (ii) Multi-class classification. A

summary of all relevant works can be seen in Table 2.2. There are no public

model parameter settings, so replicating these models and applying them to

our datasets would be difficult. However, we utilize other datasets by using

our model configurations, they do not work so well. On top of that, we could

not find any detailed results compared to existing works, even if they are using

different datasets.

2.11.1 Binary Classification

2.11.1.1 XGBoost

Kumar and Geetha [69] proposed an XGboost GBDT using limited comput-

ing resources and used the EMBER dataset [70], which was a balanced dataset

for malware and benign applications. As completed by XGBoost, feature im-

portance could be used to reduce the number of features from 2351 to 276.

The authors compared the performance of nine algorithms: Gaussian NB,

KNN, linear support vector classification (SVC), Decision Tree (DT), Ad-

aBoost, Random Forest (RF), extra trees, gradient boosting (GBDT), and

XGBoost. In their experiments, XGBoost outperformed the other algorithms

and became the final classifier. With 276 selected features and hyperparameter

tuning, the model achieved an accuracy of 98.5% and an AUC value of 0.9989.

29

XGBoost and Extremely Randomized Trees algorithms introduced by Jakub

Palsa et al. [34] were applied to two datasets obtained using static and dynamic

analysis. The two classifiers were implemented for each analysis and then used

a voting mechanism for the final result. Four algorithms were compared with

the best classification result obtained from XGBoost, which achieved 91.9%

detection accuracy on the static analysis and 96.48% on the dynamic analysis

dataset.

2.11.1.2 Deep learning

In addition to decision tree-based methods, deep learning has been brought to

malware classification, such as the Static Malware-as-Image Network Anal-

ysis (STAMINA) approach [71] proposed by Intel Labs and the Microsoft

Threat Intelligence Team. 197,604 benign and 584,606 malicious samples

were converted to grey-scale images and split into three parts, with a ratio

of 60 : 20 : 20. The method underwent four stages: image conversion, transfer

learning, evaluation, and interpretation. First, binaries were converted into a

one-dimensional pixel stream and reshaped into two dimensions. Next, they

used pixel file size to determine the image width, and calculated the height by

dividing the number of pixels by the width. Finally, before applying transfer

learning, images were resized to 224 ∗ 224 or 299 ∗ 299. For the STAMINA

model, two approaches were implemented based on image segmentation. How-

ever, the authors ran into several issues, including benign files being much

more extensive than malign ones and their conversion software from binary

to images needing to cope better with massive binaries. Nonetheless, they

reported good performance, achieving an accuracy rate of 95.97% overall and

a false positive rate of 4.49%.

Moreover, Neurlux [44], a deep learning-based combination of convolution

neural networks, BiLSTM, and attention without feature engineering, was pre-

sented for a document classification task. 27,540 Windows x86 executables

from VendorDataset and 42,000 binaries from EmberDataset were used as the

30

dataset. First, the JSON-formatted dynamic analysis reports retrieved from

VendorSandbox and CuckooSandbox were restructured from documents to se-

quences of words by removing special characters (e.g., the brackets). Then,

the document was tokenized to extract words, converting the top 10,000 most

common words into numerical sequences. Lastly, they were formatted using

one-hot encoding. Five features extracted from the reports were analyzed:

API Sequence Calls, Mutexes, File System Changes, Registry Changes, and

Loaded DLLs. The output was a score between 0 and 1 for classification

decisions. Regarding the results, the most attention belonged to file opera-

tions and API calls, and file operations were the best-performing individual

feature. Deep learning methods without feature engineering could identify

malware from dynamic analysis reports as effectively as methods with feature

engineering, with high accuracy at 96.8%.

The work of [72] tried to discover explicit sub-sequences, or episodes, by

investigating N-grams of the API call sequences. High accuracies could be

achieved by using some specialized online algorithms. However, they might

need to be more accurate due to the highly imbalanced dataset, with more

than 90% of the samples detected as malware.

Joshua Saxe et al. [35] proposed the eXpose deep neural network to work

on short character strings, such as malicious URLs, file paths, and registry

keys. The work was evaluated against an N-gram model and manual feature

extraction on three problems. The neural network consisted of three com-

ponents: (1) character-level embeddings to embed the alphabet of printable

English- language characters into a multi-dimensional feature space, (2) feature

detection to detect local sequence patterns and aggregates into a fixed-length

feature vector, and (3) a classifier using a dense neural network. These compo-

nents were optimized using stochastic gradient descent and evaluated against

two baseline approaches on three different problems. First, identifying ma-

licious URLs directly from the URL string by downloading 19067879 unique

URLs, randomly sampled over a roughly two-month period, from VirusTotal.

31

Second, 5590614 unique file paths and 1661716 registry key paths from the

Cuckoo sandbox were analyzed for the second and third problems. Finally,

for labeling URL artifacts, a voting approach was used. If five or more anti-

virus engines assign a “malicious” label to a URL, it was flagged as malicious.

Otherwise, it was labeled as benign. Besides the voting mechanism, the behav-

ioral traces were inspected to label file and registry key paths, counting how

often each unique file path or registry key was created or written. Apparently,

eXpose outperformed the N-gram model and manual feature extraction-based

machine learning baselines, yielding a 5%- 10% higher detection rate at a 0.1%

false positive rate compared to these baselines.

A sliding local attention mechanism model (SLAM) was proposed in [73].

They used API calls (a public dataset for Alibaba’s 3rd Security Algorithm

Challenge [74]) and classified them into benign and malicious samples. Most

samples comprised the benign program and five malicious types (infected virus,

trojan, miner, DDoS Trojan, and extortion virus). Due to an imbalanced

dataset, a random sampling method was adopted to obtain 9192 samples. Af-

ter the APIs’ collection in the Cuckoo sandbox, the word2vec [75] embedding

approach was utilized to convert an API call sequence into a number sequence.

The most commonly used 310 API attributes were selected, and classified into

17 categories, with a maximum sequence length of 2000. The authors could

extract two-dimensional input vectors (API Seq, Category Seq) and then pro-

cess them by a standard convolutional backbone network. According to the

characteristics of the API execution sequence, several adjacent API calls had

a particular local significance. To verify the validity of their feature extraction

method, they used the one-dimensional API index sequence with no struc-

tural information as a comparison and measured by accuracy rate. On aver-

age, nearly three percentage points of the two-dimensional feature extraction

method were higher than the one-dimensional feature extraction method. RF

(Random Forest), ACLM (Attention CNN LSTM model) [76], and TCAM (a

two-stream CNN-Attention model) [77] as comparison models were used to

32

measure model effectiveness. The result showed that SLAM could achieve

better performance, with a higher accuracy of 97%.

Azadech et al. [36] proposed a static signature-based malware detection

method based on N-grams of opcodes with different degrees and file signatures.

The data from VXheaven [78] and Windows system files were used (203 as

malware and 216 as benign). There were three phases: extracting opcode

and binary sequences from benign and malicious files, generating N-grams,

and classifying files into benign and malicious groups. Regarding the results,

combining 1, 2, and 3 grams represented a feature set with an accuracy of

78%. In conjunction with the proposed Top-K approach, by not examining

the similarity between two different families to select the topmost similar k

files in an unknown file classification, the highest accuracy was Top-10 on 1,

2, and 3-gram of opcodes, at 86.63%. Likewise, in the combination of opcodes

and binary sequences, the K was chosen to be 3, resulting in an accuracy of

86.39%.

Furthermore, Yu Wang et al. [45] introduced binary malware classification

based on deep recurrent reinforcement learning (DRL). A sequence of API calls

was generated by running the emulation and then choosing one action out of

two: the Continue and the Halt after the execution at the best time. The pro-

duction Microsoft antimalware engine evaluated 75000 files to generate behav-

ioral events by discarding event sequences on files shared between two classes

and containing less than 50 events. Their particular version of the antimalware

engine mapped multiple low-level API calls into a single high-level event, to

deal with polymorphism. The engine recorded 114 event types, including file

IO, registry APIs, networking APIs, thread or process creation and control,

inter-process communication, timing, and debugging APIs. The model’s state

contained three parts: the position (i.e., index) of the current event in the file,

the current event ID, and the histogram of all the previous events. Two criteria

were used to design a reward for each state: (1) a higher reward for a shorter

sequence and a smaller reward for a longer sequence. (2) a larger reward to

33

the event prediction closer to the actual file label. From 20 (K3) consecutive

events on 2000 (N4) files, the result showed that the DRL model halted the

emulation of an unknown file earlier than the engine’s heuristics and improved

malware classification at 91.3%. Compared to the GRU-ESN-based baseline

file classifier [79], the model’s accuracy exhibited a relative increase of 61.5%

at a false positive rate of 1%.

To handle adversarial learning-based attacks, Yu Wang proposed a new

Actor-Critic (AC) deep reinforcement learning [46] instead of the DQN model

[45]. Compared to the DQN approach, the AC model performed better for

all K3 and N4 values, halting execution of unknown files by up to 2.5% and

improving the true positive rate by 6.9%, from 69.5% compared to the DQN

model.

2.11.1.3 Clustering

Research reported in [33] proposed a prototype system for malware classifica-

tion by only focusing on collecting a trace consisting of a sequence of instruc-

tions written to memory or registers. The authors also implemented malware

clustering and code reuse identification between different malware families. A

prototype was developed using PyDBG [80] to collect only a subset of arith-

metic and logic instructions, such as add, adc, sub, and xor, without logging

standard API calls or the instructions executed inside these APIs. More than

16000 malware samples were run and processed in the prototype system. When

the malware process terminated or reached a timeout, a snapshot of the con-

tent of the code segments was captured. After that, a transformation was

applied to combine a sequence of values into pairs or bigrams for obtaining the

final malware traces.

A two-step algorithm [33] that determined the similarity of two malware

activities was built, which outputted a similarity measure (S) that ranged from

0 (completely different) to 1 (identical). The first step created a small “identi-

3a number of consecutive events
4a number of training files

34

fier” to be compared to others using the Jaccard index for fast initial filtering.

Then, a second step was triggered if the Jaccard index of two malware activ-

ities was more significant than the empirically established threshold of 0.34.

Otherwise, the low similarity value was directly used. The conditional second

step was a full-fledged similarity comparison that computed the longest com-

mon subsequence of the entire two traces. When the new sample exhibited a

trace with more significance than a threshold of 70% similarity, one or more

cluster leaders (the selected trace to represent the entire cluster) merged this

sample with the existing cluster, which had the highest similarity. Otherwise,

the sample (and its trace) was put into a new cluster and became the cluster

leader. After a set of initial clusters whose traces shared at least 70% similarity

were obtained, a pairwise comparison between all cluster leaders was performed

using their diff-based longest common subsequence (LCS) algorithm. Finally,

the clusters were merged if their similarity exceeded the same 70% threshold.

The approach produced 7,793 clusters compared to three reference clustering

sets: static (7,900 clusters), behavioral (3,410 clusters), and AV labeling, gen-

erating an average precision value of 0.843 for the first two sets and a value of

0.871 for the last one.

In addition to computing a general similarity or overlap score, identical

parts of traces were also identified to detect code reuse between traces. At least

four consecutive shared instructions were investigated with regular expressions

and matched against the dumped code segment. Based on the overlap between

the two traces, only pairs of clusters with a similarity score between 10% and

30% were checked, resulting in 974 clusters being identified and 15 pairs of ten

different clusters that share code between them. Specifically, seven blocks of

code seem to be reused among samples.

35

2.11.1.4 Transformers

Miles et al. [5] presented the I-MAD (ST+) network that applied the Galaxy

Transformer with Star-Plus Transformer5 on sequences of assembly instruc-

tions for binary malware classification. The Galaxy Transformer consisted

of two pre-training tasks, the Satellite-Planet Transformer and Planet-Star

Transformer, that were utilized to understand the semantic meaning of the as-

sembly functions–consisting of one opcode and two operands at basic blocks6.

The IDA Pro [82], a commercial disassembler, disassembled their executables

and obtained the assembly functions. The balanced dataset was also used; each

consisted of 115,000 to create a block of lengths between 5 to 250 instructions,

resulting in 38,427,440 basic blocks. Regarding the results, the classification

accuracy with 10-fold cross-validation was 97%. This work differed from ours

because we only considered opcodes with no arguments to extract features and

used open-source tools only to disassemble opcodes.

2.11.2 Multiclass Classification

2.11.2.1 Random Forest and XGBoost

Canzanese et al. [83] presented self-protecting servers that could quickly detect

a new malware variant’s execution based on behavioral similarity and use it as

inputs to Random Forests. More than 800 malware samples from blacklisted

sites were collected using the Dionaea honeypot and a custom harvester. The

samples were executed on a custom testbed to mimic the challenges of online

malware classification in the real world.

Three different features were collected: (i) performance monitors from re-

source usage, (ii) the number of calls made to specific kernel functions per

second, and (iii) the number of calls made to each unique sequence of two ker-

nel function calls per second. The resource usage included CPU, disk, network,

5It is an improved version of the Star Transformer [81]
6Basic Block is a sequence of assembly instructions that has no in and out branches and

always executes one after the other.

36

and memory usage statistics, individual processes and threads, VM instances,

and application-specific information, such as web server and database server

statistics. Meanwhile, kernel function calls were captured using an NT Kernel

Tracer custom-built application. After malware execution on the testing plat-

form, 882 distinct malware samples were selected for evaluation. Only four or

more different samples with the same classes were considered to evaluate the

classifier’s performance. The results showed that the correct classification of

malware with labels that defined a specific set of behavioral features was more

accurate than labels that represented a broad range of malicious behavior.

However, additional features and testing on different system configurations

were needed.

In [84], Sumaya introduced the CNN-XGBoost model to convert malware

binaries to greyscale images and classify them into their families. The Mal-

img dataset [85] was used as the dataset, containing 9339 malware examples

categorized into 25 different classes. Next, the author used CNN as a feature

extractor consisting of three layers: a convolution layer, a pooling layer, and

a fully-connected layer to extract features from images. However, instead of

CNN’s most used softmax classifier, the XGBoost layer was added to clas-

sify families. As a result, integrating CNNs with EXtreme Gradient Boosting

provided outstanding performance for malware classification, achieving 98.7%

accuracy.

2.11.2.2 Deep Learning

In [86], Zhihua presented a deep learning method based on greyscale images.

The authors proposed a convolutional neural network (CNN) and the bat

algorithm [87] to resolve data imbalance between different malware families.

The 25 families were collected from the Vision Research Lab [88], generating

9342 greyscale malware images. The binaries were transformed into images and

reshaped to a fixed-size square image before identification and classification

by CNN. Data augmentation was employed for the small number of raw data

37

samples to increase the number of samples and improve image quality. Four

malware detection systems using standard image feature extraction methods

were used for comparison, and the proposed approach could achieve 94.5%

accuracy.

Kolosnjaji et al. [89] proposed a deep hybrid architecture of convolutional

and recurrent neural networks to process API call sequences and classify them

into malware families. On the one hand, the convolutional network counted

the presence and relation of N-grams in system calls, instead of consideration

on the actual position in the input data. On the other hand, the recurrent part

utilized the full sequence information. The dataset was acquired from three

primary sources: Virus Share [90], Maltrieve [91], and some private collections.

Regarding experimental results, a hybrid neural network containing two convo-

lutional layers and one recurrent layer significantly improved HMMs or SVMs

for malware classification. They achieved over 90% accuracy, precision, and

recall for most malware families.

Besides, a malware classification using sequences of API calls by dynamic

execution was proposed in Qian et al. [92]. A set of color mapping rules was

used to turn applications into artificial images, and then used a convolutional

neural network to classify malware into nine different families. 1000 samples in

each family were used as a dataset. The pixels in images represented different

subsets of API calls, with the pixels’ brightness encoding call frequencies. A

standard convolutional neural network then processed the resulting images.

As a result, they achieved very high performance on their specific dataset,

with an F1-score of 99% and only 0.085% for a false positive rate. Other

previous research [93] explored the use of file event streams using LSTM and

GRU architectures for malware detection. The study pointed out that an

LSTM network trained with temporal max-pooling using a logistic regression

classifier (LR-LSTM-MAX) was the best-performing model, achieving a better

than 80% TPR at a 2% FPR.

Regarding the static analysis, ransomware families [94] fingerprinted the

38

environment to evade detection by dynamic analysis. They collected 1787 ran-

somware samples from eight families: cryptolocker, cryptowall, cryrar, locky,

petya, reveton, teslacrypt, and wannacry by VirusTotal, and 100 trusted soft-

ware samples and obtained opcodes by using the IDA Pro disassembler. The

opcode sequences were transformed to N-gram sequences and arranged by

Term frequency-Inverse document frequency (TF-IDF) [95]. The N-grams in

each family by their TF-IDF values were sorted in descending order, select-

ing each family’s top t N-grams (feature N-grams). Then, TF values of the

feature N-grams were fed into five machine learning methods: DecisionTree,

Random Forest, K-Nearest Neighbor, Naive Bayes, and Gradient Boosting

Decision Tree. From each family, N-grams of lengths 2, 3, and 4 were ex-

tracted, with different feature dimensions ranging from 29 to 228. Overall, the

proposed method achieved high accuracy by 3-grams Random Forest, both

multi-classification and binary classification. For multiclass, the best accuracy

was 91.43% with a feature dimension of 123. The highest F1 measure of nearly

99% was attained on wannacry. On the other hand, with a feature dimension

of 180 on binary classification, the accuracy between ransomware and trusted

software was up to 99.3%.

In the work of [96], 2600 samples were run in a virtual machine on Windows

XP, and API call sequences were extracted. A whole set of 534 APIs has been

hooked and mapped to 26 categories. Every sequence of Windows API calls

was mapped to a sequence of A to Z letters. They developed a repository of

2000 fuzzy hash signatures, 400 for each category. 520 samples for each class of

malware (Worm, Backdoor, Trojan-Downloader, Trojan-Dropper, and Trojan-

Spy) were selected. With an N-gram analysis of the categorized sequences,

class-specific patterns for all five classes of malware were retrieved. The ssdeep

algorithm calculated a fuzzy hash matching score between different categorized

sequences to generate a fuzzy hash-based signature ranging from 0 to 100. A

higher fuzzy hash means that the two sequences belong to the same class. It

could achieve an accuracy of approximately 96%.

39

Additionally, a Control Flow Graph (CFG) [97] with N-grams databases

of API sequences was created, using similarity score methods to discover sim-

ilar characteristics among malware families. 15000 malware samples from five

classes (Virus, Trojan, Backdoor, Adware, and Worm) and 4000 benign PE

files were generated after disassembly done by BeaEngine. The execution flow

was illustrated in basic blocks (a set of instructions without branches or con-

trol transfer instructions) and edges. Dice coefficient, Cosine coefficients, and

Tversky Index were used to calculate the similarity between the 2,3 and 4

grams databases. The approach comprised four phases with cumulative learn-

ing by adding malicious and benign samples from the previous phase training

dataset. The false positive rate could be reduced using more benign binaries

to build a training set. A detection rate of 95.06% and the false positive rate

of 26.06% were achieved using 3-grams and dice coefficient.

7T-distributed Stochastic Neighbor Embedding (T-SNE) was a nonlinear dimension re-

duction for embedding high-dimension data in a lower dimensional space.

40

Table 2.2. A comparison of extant classification literature

Authors Techniques
Data Ac-

quisition
Classification

Rajesh Kumar et

al. [69]

Rawbyte histogram, Byte

entropy, Strings, Optional

Header, Sections, Imports and

Exports API

Static

EMBER [70]
Binary

Jakub Paľsa et

al. [34]

Imported modules and functions

and Dynamic API call counts

Static and

Dynamic
Binary

Li Chen, Jugal

Parikh [71]
Grayscale images Static Binary

Chani Jindal et

al. [44]
Word Embeddings, T-SNE7

Static

EMBER [70]

and

Dynamic

Binary

Abdurrahman

Pektaş et al. [72]
N-grams API calls Dynamic Binary

Joshua Saxe et

al. [35]
Short character strings, N-grams Dynamic Binary

Jun Chen et al. [73] API calls, word2vec [75] Static Binary

Azadeh Jalilian et

al. [36]
N-grams Opcodes Static Binary

Yu Wang et

al. [45, 46]
API calls Dynamic Binary

André Ricardo Abed

Grégio et al. [33]
System calls, Clustering Dynamic Binary

Miles Q.Li et al. [5]
Basic Blocks of Assembly Code

(Opcode and Operand)
Static Binary

Raymond Canzanese

et al. [83]
Sensors behavioral features Dynamic Multiclass

Sumaya Saadat et

al. [84]
Grayscale images Static Multiclass

Zhihua Cui et

al. [86]
Grayscale images Static Multiclass

Bojan Kolosnjaji et

al. [89]
API calls Dynamic Multiclass

Mingdong Tang et

al. [92]
Images from API calls Dynamic Multiclass

Hanqi Zhang et

al. [94]
N-grams Opcodes Static

Binary and

Multiclass

Sanchit Gupta et

al. [96]
N-grams API calls Dynamic Multiclass

Anishka Singh et

al. [97]
CFG, N-grams API calls Static Multiclass

Chapter 3

Data and Labels

This chapter presents details of the experimental data, both static and dy-

namic extracted features used to train machine learning models for binary and

multi-class classification. We also describe the labeling process that is used to

establish ground truth information for all data samples. These digital artifacts

could be of utmost importance in forensic investigation, particularly in mal-

ware analysis. Malicious applications often maintains persistence by modifying

an entry in Windows Registry or the Startup folder to continue execution even

after the system reboots. However, they still leave some traces for tracking

system activities. During the data collection and preprocessing, we encounter

encryption on some sample files and larger file size upload for the sandbox site,

resulting in missing collection data, which are imputed with a constant value

to replace all occurrences of missing values. The summary of all datasets and

extracted features are depicted in Table 3.1.

3.1 Dataset Sources

We focus on host-based applications running on the Windows 10 operating

system. The diagram for downloading samples and obtaining labels from pub-

lic sites is shown in Figure 3.1. Both malware and benign applications are

gleaned from publicly available resources, as explained in the following. When

getting samples from these resources, we select well-known and frequently used

42

Dataset
Static Dynamic

PE Opcode Download Noriben Hybrid MemDump

No.features 429 5000 10 10000 58 64

No.classes 2 8 2 8 2 2

No.samples 1600 4000 1600 2000 1600 1600

Table 3.1. Summary of Datasets.

sources popular among security researchers. Table 3.2 depicts the summary

of all samples by category. For benign samples, we use VirusTotal and Hy-

bridAnalysis for cross-verification on the files downloaded from these sources.

In any machine learning problem, some labeled data will be noisy (incorrectly

labeled).

3.1.1 Malware Datasets

We download malware samples from a number of publicly available collections.

These are:

• Virusshare (https://virusshare.com/)

• theZoo - A Live Malware Repository (https://thezoo.morirt.com/)

• DAS MALWERK (http://das-malwerk.herokuapp.com/)

• Contagio Malware Dump (http://contagiodump.blogspot.com/)

• Syrian Malware (https://syrianmalware.com/)

• Malshare (https://malshare.com)

• URLhaus Database (https://urlhaus.abuse.ch/browse/)

• Virusign (http://www.virusign.com/)

• ANY RUN (https://app.any.run/submissions)

43

• Endermanch Repository (https://github.com/Endermanch/MalwareDatabase)

3.1.2 Benign Datasets

The samples for benign applications are freeware downloaded from

• Microsoft store (https://apps.microsoft.com/store/apps)

• Filehorse (https://fileHorse.com)

• Filehippo (https://www.filehippofile.com/)

• Softonic (https://en.softonic.com/windows)

Figure 3.1. High-level Diagram for collecting samples and label retrieval.

3.2 Static Raw Data

An automated Python script is used to crawl files from an analyzing host that

stores malware and benign applications to extract features for static anal-

ysis. The output from the running script is written in CSV format before

44

Type of Datasets Number of instances Category

Static and Dynamic 613 Benign

987 Malware

Noriben Sequence 756 Benign

1244 Malware

Opcode Sequence 744 Benign

3256 Malware

Table 3.2. Summary of Data Category for each downloaded source.

preprocessing. We could divide static data into two parts, one being Portable

Executable (PE) attributes and the other one being sequence of assembly in-

structions. The following subsections describe each dataset.

3.2.1 Portable Executable (PE) File Properties

A custom Python script generates all static features. We use the Python li-

brary modules “pefile” [30] and ‘PyExifTool” [98] to parse a binary file and

carve out meaningful data. In the PE file header, we mainly analyze OP-

TIONAL HEADER to extract static data such as parse debug directory and

get overlay data start offset. We call each Python function for collecting an

attribute (e.g., imported static DLLs, Imphash, manifest, pdbinfo in debug

directory, rich header, overlay, and metadata) in the main function and com-

bining all static results by writing an output file in CSV format. The raw

attributes considered for analysis are as follows:

• ImageBase: an address in the virtual memory when the executable

file is loaded, classified into default imagebase and suspicious imagebase.

(Type: Categorical)

• SI vs. SC: a comparison between the size of the initialized data section

and the code (text) section. (Type: Boolean)

45

• SC vs. FS: a comparison between the size of the code (text) section

and file length specified in bytes. (Type: Boolean)

• Sum of Raw Data: the size of the section or the size of the initial-

ized data on disk. In case of less than VirtualSize, zero is filled for the

remainder of the section. (Type: Categorical)

• Number of Sections: a total number of sections in the section table.

All PE files contain at least two sections: the code and the data sec-

tion. The most commonly presented sections in an executable are: .text,

.data, .rdata, .rsrc, .edata, .idata, and .debug. The research defines this

attribute as normal and suspicious (deviating from normally presented

in an executable). (Type: Categorical)

• Imphash: a unique value of Import Address Table (IAT) generated by

the compiler’s linker, based on the specific order of functions within the

source file. In case two files has similar imphash values, they have the

same IAT, which implies that the files are from the same malware families

or performing similar activities. (Type: Categorical)

• PDB Path: Microsoft linker stores a directory path to a program

database (PDB) file made at link-time in the PE Debug Directory. In this

research, we set TRUE/FALSE for a debug file stored in the User/Document

folder. (Type: Boolean)

• Correlated Imported DLLs: all imported libraries needed for appli-

cations to run. We split library functions into sub-features in terms of

boolean. (Type: Boolean)

• Anti-Debugger: inspects whether anti-debugging is implemented to

hinder debugging tools from observing the flow of malware. We split

the anti-debugging module into sub-features in terms of boolean. (Type:

Boolean)

46

• App Manifest: inspects the privilege of the application request. (Type:

Categorical)

• Rich Header: a checksum match in rich header [99] that is used to

identify similar malware and characterize the built environment. If the

packer is implemented, the rich header might be omitted and/or cor-

rupted. (Type: Categorical)

• Overlay: data appended at the end of PE file and not mapped into

memory. (Type: Categorical)

• File Signature: inspects whether the file’s signature is modified. (Type:

Categorical)

• File modification time vs. Created time: a comparison between

the date the application is compiled and the last modification date/time

of a file. (Type: Boolean)

• XOR: inspects whether XOR is implemented, which is one attribute

used to draw conclusion for encryption. (Type: Boolean)

• Packer: inspects which section implements compression. (Type: Cate-

gorical)

• Entropy: a maximum value of all sections table existing in a file. (Type:

Numeric)

• Obfuscation: statically disassembled binaries by starting from an entry-

point plus 2000 bytes to observe the instructions, without consideration

of “rdtsc/cpuid” or consecutive “mov” instructions. (Type: Categorical)

• File Description vs. Company Name: a comparison between the

file’s description and the company name. (Type: Boolean)

• File Description vs. Product Name: a comparison between the

description of the file and the name of the product that produces the

application. (Type: Boolean)

47

• Internal Name vs. Original Filename: a comparison between the

internal name embedded in the file and the original filename. (Type:

Boolean)

3.2.2 Opcode Sequences

To fully automate the extraction process, a number of Python scripts are im-

plemented. The main steps taken by this automated system for the extraction

of opcode sequences are:

• Checking what kind of compression algorithms is implemented: (1) UPX,

(2) Mono/.Net, (3) Zlib.

• Disassembling the executables to obtain disassembled files.

• Searching and removing flag/segment registers, interrupt instruction, il-

legal/(bad), and dead code.

• Extracting opcodes in a length of first 5000.

All samples are inspected by the “file” command to verify whether they

have a “PE” signature and what type of compression algorithms have been

implemented. Three packer types are investigated: (1) UPX [40], (2) Zlib [41],

and (3) Mono/.Net. For UPX and Zlib, they are parsed to UPX unpacker and

Zlib, respectively. Meanwhile, “monodis” [42] is used to disassemble .NET

Common Intermediate Language (CIL) code and metadata. If it successfully

decompresses files, it write an output file. Otherwise, it is parsed by the

Capstone Python library [100] and then“objdump” [43] with the -d option to

disassemble only sections expected to contain code. Figure 3.2 provides an

example of the first ten opcodes of a sample of each of the seven malware

categories.

48

Figure 3.2. The first 10 opcodes for each sample in each malware cate-

gory with Ba(ckdoor), M(iner), R(ansom), Ro(otkit), T(rojan), V(irus), and

O(ther).

3.3 Dynamic Raw Data

To acquire dynamic features, we create a secure virtualized environment for ap-

plication execution. Before uploading applications to the guest operating sys-

tem, Windows Real-Time Protection (RTP) is disabled automatically. How-

ever, Windows Defender Antivirus remains active and could detect suspicious

files and place them in quarantine. To prevent termination of the active pro-

cess, we pre-install a Microsoft tool named ”gflags.exe” [101] and then spec-

ify the malware name for monitoring silently. Besides, we set up a Custom

Dump to Type 2 to create an entire dump file in case of the process termina-

tion/unresponsiveness. The default location for dump files is %TEMP%/Silent

Process Exit. So, we could obtain a terminated process identifier (PID) for

memory analysis.

During the runtime, we download event logs, prefetch files, temporary file

location, Noriben operations [51] to the analyzing host. We also submit binary

files to HybridAnalysis sandbox [47], which offers public malware analysis ser-

49

vice. Then, we retrieve the reports from the sandbox site and combine them

with our local results for dynamic analysis. In addition, we extract data from

memory analysis which helps malware analysts examine more malware behav-

ior, such as child processes, loading modules, and enabled privileges. From

a forensic’s perspective, memory is fragmented, and not all data might be in

memory at the time of capture. The dumped memory file is parsed by the

Volatility framework [48] for analysis. The forensic artifacts retrieved from

Windows 10 are presented with the ultimate goal of observing abnormal ap-

plication activities.

3.3.1 Downloading Folders

We use our Python script to automate uploading binaries and download eight

directories from the guest machine to the analyzing host after a sample com-

pleted execution via vmrun “CopyFileFromGuestToHost” command for data

extraction. The Python library module to parse files and folders for prefetch

and event logs are “pyscca” [102] and “python-evtx” [103], respectively. All

findings copied from the guest virtual machine are listed below:

• Prefetch: This folder provides storage for recently cached applications

run on the machine. It helps speed up loading applications and records

the last time the application is executed, even if it is uninstalled. All

libraries are loaded and displayed while the application is running. The

location for this file is in the Prefetch folder under the Windows directory.

In addition, we could see a child executable file left in the Program folder

after the application installation from loaded resources.

• User and System Folder: all temporary files that occur from ap-

plication execution are stored in the Temp folder, such as a spawned

application from the main application. Often programs create work-

ing copies of opened documents in this area, changing their extensions.

Some programs delete them when done, and others leave them behind

50

as garbage. The artifacts are stored in two locations for recently viewed

documents in the system: C:\Windows\Temp (Window temporary files)

and C:\Users\%profile% \AppData\Local\Temp (This folder contains

temporary information while a process is creating other files). In the

experiment, we change the location of the default temp folder for the

user and system to a newly created drive to facilitate the collection of

temporary files. By setting Environment Variables in Advanced System

Settings, we type a new path for user variables (TEMP and TMP) to

store files in the temporary folder.

• Event Logs: Windows event logs consist of system and application

records of when applications performed activities on the system. Three

main event categories (system, application, and security) are considered

in combination with Windows PowerShell and Anti-Malware Scan Inter-

face. Such logs are saved in the directory %System32%\winevt\Logs in

binary XML format. For example, they include information like the date

and time, source, fault type, and a Unique ID corresponding to the event

type that incorporates Windows events. We focus on only three types of

event logs, which are:

– Error: indicates an occurrence of a significant problem–for instance,

when a service fails to load at startup.

– Warning: not an important event, but might lead to serious prob-

lems in the future.

– Information: indicates the successful operation of a service, appli-

cation, or driver.

Event log entries comprise the following attributes:

– User: username of the account logged in when the event occurred.

– Event ID: a unique identifier generated by Windows to identify the

event type.

51

– Source: the object which caused the event to occur.

– Computer: computer name where the event occurred.

– Date and time: the date and time when the event occurred.

– Description: details of what happened to launch the event.

In addition, PowerShell commands/scripts could be acquired at the event

log file name “Microsoft-Windows-PowerShell%4Operational.evtx”

by enabling the following options in Group Policy:

– Module log: setting module name such as Microsoft.PowerShell.*

– script block logging: setting to record PowerShell script inputs

called interactively or automatically.

– transcription: setting to capture the input and output of Windows

PowerShell commands as text-based transcripts.

• Registry: It records program execution, application settings, malware

persistence, and other artifacts. UserAssist data is parsed from the

NTUSER.dat registry file and attributes the user’s execution of GUI ap-

plications. Every program executed from explorer.exe generates such a

key. In addition to the user registry file, SYSTEM and SOFTWARE keys

must be considered for the evidence. In Windows 10, the Background

Activity Monitor (BAM) entries within the SYSTEM key detailed the

path of executable files and the last execution date and time, which is in

the folder of the security identifier (SID) associated with a user.

• JumpList: This file records recently viewed or accessed files generated

by the system. It is located in the AutomaticDestinations folder under

the C:\Users\%profile%\AppData\Roaming\Microsoft\Windows\Recent

whose filename is a suffix with AutomaticDestination-ms file.

• Activity Cache: This database file is in SQLite format and shows ap-

plications that are executed within the last 30 days by the user. It con-

tains entries that include files opening/access, program execution with

52

content and associated Unix timestamp, the path for executables, exe-

cutable names, and the expiration time. The database storing the user’s

activity is located in C:\Users\%profile%\AppData\Local\

ConnectedDevices\Platform\L.%profile%\ActivitiesCache.db and each

user account has its own database. This file could be correlated with

prefetch artifacts to track malware activities, thus creating a timeline.

However, some applications might not be displayed in “Timeline” af-

ter being opened. Unfortunately, any information extracted from the

Activity Cache might be incomplete.

• Shortcut files: the recently opened files in the Recent folder that stores

the timestamps, the name and location of the original file, and the volume

name.

• Shimcache: It identifies application compatibility issues for older ver-

sions of Windows and only contained information about executables, the

last modified timestamp of the file, and file size.

After we investigate all downloaded folders, the last four artifacts do not

provide substantial results. That means no useful recording from experimental

data to state the misbehavior of the application. So, we do not consider this

when preparing data as inputs to learning models.

3.3.2 HybridAnalysis Report

HybridAnalysis is a free automated malware analysis service that allows users

to drag/drop and browse a file with a maximum uploaded size of 100MB.

In addition to file scanning, the site provides a report search via IP address,

domain, and hash. We use our Python script to perform a file submission,

download a report, and carve out significant data for learning models. To

download the sandbox report, we access the HybridAnalysis site by sending

an HTTP request via public API [47] with the environment identifier to retrieve

the data and write the output as an HTML file. This sandbox provides analysis

53

environment options with Windows 7 64-bit as the highest operating system.

A diagram for uploading an executable and retrieving a report is presented

in Figure 3.3. After we open the output file, we only consider malicious,

suspicious, and informative indicators. For each indicator, we mainly focus on

the anchor element (<a> HTML element) under the group elements (<span

class=“list-group-item-heading”> HTML element) and save it in CSV format

to be preprocessed later. A sample of the file analysis from the site is depicted

in Figure 3.4. The difference in operating systems has no hindrance to analysis.

We use the Pandas merge Python module to combine sandbox reports and

other features on a filename column. All dynamic features acquired from

the analysis site and preprocessed as boolean attributes for machine learning

models are listed below:

Figure 3.3. An illustration of uploading a file and obtaining a report from

the sandbox site with feature extraction.

• Opens the Kernel Security Device Driver (KsecDD) of Win-

dows: checks whether the Kernel Security Device Driver is opened.

• Modifies Software Policy Settings/proxy settings/system Cer-

tificates: checks whether configured settings are modified, such as proxy

settings, system certificates, and auto-execute functionality.

• Creates or modifies windows services: checks whether a new win-

dows service on the system is launched.

• Queries sensitive IE security settings: queried sensitive information

from the Internet Explorer security settings.

• Contains ability to elevate/lookup privileges: an ability to query

and escalate privileges.

54

Figure 3.4. A sample of miner analysis via HybridAnalysis whose artifacts are

obtained by only considering < a > HTML tag. For example, the HyperText

“Allocates virtual memory in a remote process” and “Write data to a remote

process” under Installation/Persistence are the attributes.

• Enumerate process/module/thread: an ability to perform process,

module, and/or thread enumeration.

• Retrieve keyboard strokes: an ability to capture keyboard usage

while the user is typing messages on the system.

• POSTs/GETs files to a webserver: checks whether it sends a request

to some web-servers.

• Opens file with deletion access rights: checks whether files are

opened with deleted privilege access.

• Cryptographic Related: checks if an encryption/decryption function

is called during runtime.

• Drop files/executable files: checks whether an executable file is dropped

onto the compromised machine.

• Disables Command Prompt (cmd)/Disables Windows Registry

55

Editor (regedit): checks if a function to disable running the command

prompt is called.

• Contains ability to query machine time/timezone/version: an

ability to query the machine timezone, machine version, and volume

information.

• Pattern Matching YARAmatch: checks whether there is a match

with a YARA rule [47].

• Pattern Matching DownloadFileFromInternet: checks whether there

is a match for a file downloaded from the Internet.

• URL IPaddr in Binary: checks whether there is a URL and/or IP

address embedded in the binary file.

• Contact Random DNS/Contacts diff hosts: checks whether there

is an attempt to contact different hosts with random domain names.

• Unusual ports for process and protocol: checks whether there is

unusual connection establishment.

• Touches files in the Windows directory: an attempt to interact

with files in prohibited Windows directories for persistence in order to

maintain access in the future.

• Connects to LPC ports: an attempt to connect via an LPC port for

persistence.

• Monitors specific registry key for changes: monitors any registry

key change attempts for persistence.

• Contains ability to lookup the windows account name: an ability

to search for Windows’s account for persistence.

• Writes data to a remote process: an attempt to write data to a

remote process for persistence.

56

• Allocates virtual memory in a remote process: checks whether

there is allocated virtual memory for persistence.

• Marks file for deletion: an attempt to mark some files for persistence.

• Environment Awareness Sleep: checks whether the sleep function is

called.

• Anti-Virtualization/Anti-VM trick: checks whether virtualization

detection is triggered during the application’s installation.

• Executes WMI queries known to be used for VM detection:

checks whether there is a reference to a WMI query string known for

VM detection, remote access, or request to get CPU temperature, BIOS

version, and serial number.

• References security-related windows services: checks whether there

is a reference to windows security services.

• Remote Access Reads terminal service related keys (often RDP

related): checked whether it attempts to perform an RDP connection.

• Remote Access Contains indicators of bot communication com-

mands: checks if it contains bot commands for remote execution.

• Spreading Opens the MountPointManager: checks whether it uses

MountPointManager to spread an infection.

• AR Creates guarded memory regions (anti-debugging trick to

avoid memory dumping): checks whether it creates a memory section

to avoid memory dumping.

• AR PE file contains zero-size sections/PE file has unusual en-

tropy sections/Unusual PE file contains unusual section name:

checkes whether the PE file contains zero-size sections or sections of an

unusual entropy.

57

• AR Possibly checks for known debuggers/analysis tools: checks

whether there is a debugging and/or monitoring tool installed on the

system.

• AR Contains ability to register a top-level exception handler

(often used as an anti-debugging trick): an ability to register ex-

ception handler which is often used as an anti-debugging trick.

• Unusual Imports suspicious APIs/References suspicious sys-

tem modules: checks for imports of inappropriate modules to install

applications.

• Unusual Installs hooks/patches the running process: hooks or

patches the process in case of an error occurring at runtime.

• Read keyboard layout/Unusual Reads information about sup-

ported languages: an ability to read keyboard layout/language sup-

ported on the infected machine.

• Unusual Matched Compiler/Packer signature: checks whether there

is a match for the compiler/packer signature.

• Unusual Contains ability to reboot/shutdown the operating sys-

tem: an ability to run a command to reboot or shutdown the system

after activity completion.

• Unusual Contains native function calls: checks whether there are

any unusual native function calls.

• Unusual Tries to access unusual system drive letters: an attempt

to access or query a system drive.

• Contains ability to open/control a service: an ability to open/control

a new service.

58

• Fingerprint Reads the active computer name, the cryptographic

machine GUID: fingerprints the computer name and cryptographic

machine GUID.

• Queries kernel debugger information/Queries process informa-

tion: queries the kernel debugger and process information.

• Creates a resource fork (ADS) file (often used to hide data)/Checks

for a resource fork (ADS) file: checks for the creation of an alternate

data stream file, which is often used to hide data.

• Check Presence of an Antivirus engine/adware detecting tool:

checks for any antivirus tools running on the infected machine.

• Terminates other processes using tskill/taskkill: terminates pro-

cesses by using the tskill or taskkill command.

• Process deletes itself : checks whether a process deleted itself after

activity completion on the infected machine.

• Hide tracks of having downloaded a file from the internet/hide

a process launching it with different user credentials/Modifies

file/console tracing settings: checks whether there is an attempt to

download files from the Internet by the current user.

• Opened the service control manager: launches the service control

manager to install or open services.

• Runs shell commands: executes shell scripts or commands on the

infected machine.

• Loads the .NET runtime environment/Loads the visual basic

runtime environment: loads the .NET framework or Visual Basic

language to complete the application installation.

• Contains ability to start/interact with device drivers/Contains

ability to find and load resources of a specific module/Contains

59

ability to register hotkeys: an ability to access device drivers and

load resources onto the infected machine.

• Unique CLSIDs touched in registry: an access to the unique number

of a software application.

• Extracted Files: checks whether there are hidden files in binaries such

as ransom note files.

• Connection via port 80/443: checks whether there is standard HTTP

and HTTPS connection establishment.

3.3.3 Memory Artifacts

In addition to sandbox data, we analyze the virtual memory file captured

after completing execution. After the virtual machine is suspended for taking

a snapshot, the machine is reverted to a clean initial snapshot. Volatility [48]

parsed the 4GB memory dump (.vmem) file via our custom Python script to

capture memory artifacts. While conducting the memory dump analysis, the

following raw attributes are extracted:

• Wow64: checks whether the process uses a 32-bit address space on a

64-bit kernel. (Type: Numeric)

• Number of Pstree: lists the processes in tree shape by using indention

and periods. This measures the number of parent and child processes.

(Type: Numeric)

• LDR InLoad InInit InMem: do memory-mapped files with the three

PEB lists, which shows the TRUE/FALSE status if the PE exists in the

PEB lists. (Type: Boolean)

• Dll Command:displays a process’s loaded DLLs with the executed com-

mands by walking through the doubly-linked list pointed by the PEB’s

InLoadOrderModuleList. (Type: Boolean)

60

• Spawn process: checks whether there are child processes with the same

parent processID. (Type: Boolean)

• psxview hidden process: compares active process indicated within

PsActiveProcessHead with other sources of process listings. A ”False”

in any source indicated that the respective process was missing. (Type:

Boolean)

• Virtual Address Descriptor (VAD) and page permissions: checks

whether PAGE EXECUTE READWRITE found in running process. If

it exists, it means no memory-mapped file is occupying the space. (Type:

Boolean)

• Creates mutants: scans physical memory for KMUTANT objects with

pool tag scanning to display named mutex of the running process if it

exists. This feature is correlated with the result from the HybridAnalysis

report. (Type: Boolean)

• Privilege: shows process privileges that are not enabled by default but

explicitly enabled. We split these privileges into separate columns for

preprocessing. (Type: Boolean)

• API hooks: shows hook mode, hook type, victim module, and function

in memory when checking for hooks. We split these API hooks into

separate columns for preprocessing. (Type: Boolean)

A sample of memory analysis with Volatility [48] written to an output text

file is shown in Figure 3.5. The result is obtained using the apihook Volatility

plugin to enumerate IAT, EAT, and Inline hooks, and list all hooked functions

and modules relevant to the application process.

3.3.4 Noriben Operations

We use Noriben [51], a Python-based script that works jointly with Sysinternals

Procmon, to automatically collect, analyze, and report on the application’s

61

Figure 3.5. Using Volatility’s apihook plugin shows detection of IAT hook

in User mode for a ransomware sample with the hooked functions as ShellEx-

ecuteExW and HttpOpenRequestW.

activities during the runtime. We put the Noriben Python script [51] onto the

Windows desktop with the Sysinternals Procmon in the Python folder. First,

the script is called via PowerShell command line during the runtime by setting

the number of seconds to collect activity for 300 seconds (5 mins), as shown

in Figure 3.6. We create an output folder named “Noriben Logs” to store

logging files and then use “zip” [104] to compress the output and download it

62

to the analyzing host for analysis. Finally, to extract a sequence of operations,

we decompress it by using the Python module “zipfile” [105] to extract all

CSV files, focus only on the filename and test application, and generate a CSV

output file to combine with other findings. An example of the first ten Noriben

operations with no repeated occurrences is given in Figure 3.7.

Figure 3.6. Script execution to capture applications’ activities.

Figure 3.7. The first 10 unique Noriben operations in sequence order, for

some sample applications.

3.4 Label Retrieval

To derive labeling, we use API public service from VirusTotal [106]. At first, we

verify these files by searching reports via SHA256 hash to fetch the predictive

label. Otherwise, binaries are uploaded. To flag as malware on a given file, at

least 40 of 70 antivirus engines provided by VirusTotal [106] are considered for

binary classification while using five antivirus engines at minimum to verify

multiclass malware problems. Moreover, we use the Microsoft Virus/Threat

detection feature to verify the types of malware. The scanning results for some

sample ransomware and benign uploaded to VirusTotal are shown in Figure

3.8 and 3.9, respectively.

63

Figure 3.8. A ransomware sample analyzed via VirusTotal is flagged as

malicious with more than 60 antivirus engines in 70 engines.

Figure 3.9. A benign sample analyzed via VirusTotal is flagged as benign

with zero detection from all antivirus engines.

3.5 Code Repository

The Python codes for data extraction on raw data from Windows Portable

Executable files are put in the Github repository, which can be accessed via:

https://github.com/rajchadach/malware. On the one hand, static and

dynamic extracted features are extracted and produced in the output files

64

as “static.csv” and “hybrid.csv”, combining these two files into a single file

before performing data preprocessing. We read static and hybrid CSV files and

then merge them on the filename column using the Pandas Python module.

The final number of features per instance after performing this combination

is 561 features. On the other hand, each operation/instruction is extracted

from applications and inserted into each column to complete the sequence

length for Noriben and opcodes. The output files from these two sequences

are “noriben.csv” and “opcode.csv”, respectively. Later, these sequences are

used by Tensorflow [53] for text preprocessing.

Chapter 4

Combining Static and Dynamic

Analysis to Improve Machine

Learning-based Malware

Classification

Portable Executable (PE) is a file format for executables that could be pro-

duced maliciously in Windows operating systems. The file structure and exe-

cution flow could be changed to deceive standard security detection and pro-

tection measures. For instance, creating a writable file in a user’s temporary

folder to bypass Windows Virus and Threat Protection, whose filename seemed

like a legitimate process (e.g., svchost.exe, chrome32.exe, and dllhost32.exe),

and required no user intervention. In this chapter, we leverage static prop-

erties and dynamic behavior analysis for binary malware classification. For

dynamic analysis, we retrieve information from the HybridAnalysis sandbox

website [47] in conjunction with running malware in an isolated Windows 10

environment to extract memory dumps and then combined it with the sand-

box report. We use three classifiers in our empirical experiments: random

forest [59], gradient boosting [60], and neural networks [61].

66

4.1 Data Collection and Preprocessing

The dataset includes a total of 1600 executable files—9871 malicious and 6132

benign. While the malicious samples come from the VirusShare repository [90],

the benign samples are taken from the FileHorse [108]. The labels are obtained

by searching via SHA256 hash, submitting the files to VirusTotal, and using

at least 40 AV engines to verify them.

A total of 561 features, including static and dynamic features, are gathered

using a Python script. Data shuffling and splitting are performed for all mal-

ware and benign samples, with 80% for training. On average, missing values

are around 4%, with the highest being 13% for one attribute. The percent-

ages of missing values per attribute on static and dynamic features can be

seen in Figure 4.1 and Figure 4.2, respectively. They are replaced by using

Scikit-Learn’s SimpleImputer [54], using the constant strategy and setting a

default for the fill value. We impute numerical data with zero and object data

types with “missing value”. OnehotEncoding [54] is used to convert categori-

cal variables into numerical values, with the “ignore” setting for the handling

of missing values. This setting will output a zero value for an unknown cate-

gorical feature value during transformation. To combine all data preprocessing

steps into one, a ColumnTransformer [54] is used to apply it to all 8 numerical

and 553 categorical features. The diagram for data preprocessing and feature

extraction before passing through learning approaches is depicted in figure 4.3.

Notably, the feature importance analysis is vital in optimizing model per-

formance. SHapley Additive exPlanations (SHAP) [52] is used to calculate

how much each feature contributed to the model’s prediction based on a train-

ing data split from the initial set of features. From the SHAP Python [109],

the TreeSHAP and DeepSHAP functions are applied to the static and dy-

namic attributes described in chapter 2. The features from static-only (429

attributes) and the dynamic-only (132 attributes) full sets are chosen before

1Downloads from VirusShare [90] and VirusSign [107]
2Downloads from FileHorse [108]

67

Figure 4.1. The bar plot displays the percentage of missing data for the first

50 static features.

the two types of selected features were assembled. We use this SHAP Python

library to calculate SHAP values and plot charts. First, the learning model is

trained on the initial training set of features, and each feature’s importance is

obtained by comparing model predictions with and without the feature. Then,

each feature’s SHAP importance is computed individually by taking the aver-

age of the absolute SHAP values across the data. Before the most significant

impact of 50 static and 50 dynamic attributes were chosen, we sort them in

descending order according to their importance. Using the Tree and Deep ex-

plainer, we have generated a summary plot based on SHAP values from train

68

Figure 4.2. The bar plot displays the percentage of missing data for the first

50 dynamic features. Most missing values that seem equal mean no report ex-

traction from HybridAnalysis [47] due to the limited upload file size (100MB).

These values are left empty to avoid confusion with the “false” value in case

of no attribute in the report.

69

Figure 4.3. High-level diagram of our Malware Classification setups

data. The plot aggregates SHAP values for all the features and all samples in

the train data. Then SHAP values are sorted, so the first one shown is the

most important feature. In addition to that, each point on the summary plot

shows the relationship between SHAP value and a feature, ordered by their

importance.

As presented in Figure 4.4 and Figure 4.5, mscoree.dll and Windows De-

fender/Operational are the most influential features. For Random Forest, an

absence of Windows Defender has negative SHAP values, which indicates a

decrease in the predicted malware, changing the predicted absolute malware

probability on average by six percentage points (0.06 on the x-axis). Con-

versely, an absence of Windows Defender in XGBoost has positive SHAP values

that indicates the sample, in the absence of Windows Defender, has higher mal-

ware prediction. The reverse is seen for an imphash 48aa5c8931746a9655524f67-

b25a47ef3, whose higher import hash counts lead to a higher risk of malware.

Whereas, in Figure 4.6, the most influential feature is a comparison be-

tween the size of initialized data and the size of code, followed by Windows

Defender/Operational and ldrmodiles LIM. If the condition of the initialized

data size being less than the code’s size is met, it means higher values resulted

3A hash of the imports in a PE file.

70

in higher benign prediction. In contrast, a low number of undetected samples

by Windows Defender lead to higher malware prediction, similar to XGBoost

output.

Figure 4.4. SHAP Summary Plot of the top 20 combination features for the

Random Forest.

4.1.1 Static features

We conduct data preprocessing on the static features listed in chapter 2 to be

input for learning approaches. For example, we inspect whether an Exclusive

OR (XOR) is implemented in an application by using XORSearch [110] to

detect the string “This program cannot be run in DOS mode” in the DOS

portion of the PE header. We could obtain an XOR encoded key as a return

value. This XOR feature is translated into a boolean feature to be an input for

classifiers. The top 10 significant static features identified by SHAP feature

importance for each model are shown in Table 4.1, 4.2, and 4.3. The shared

attributes among the three classifiers are highlighted, with five out of ten.

71

Figure 4.5. SHAP Summary Plot of the top 20 combination features for the

XGBoost.

Figure 4.6. SHAP Summary Plot of the top 20 combination features for the

Neural Network.

4.1.2 Dynamic features

We use the downloaded four dynamic artifacts described in chapter 3 and

combine them with the Falcon Sandbox [47] report for the classifiers using

72

Table 4.1. Top-10 selected static features from SHAP feature selection for

the Random Forest

Static Features Description
Shared

Attributes

ws2 32.dll/wininet.dll

initcommoncontrolsex

checked a library import for loading common control classes

from Comctl32.dll before creating a common control.
XGB,NN

ws2 32.dll/wininet.dll

internetopena

checked a library import for initializing an application’s use

of the Win32 Internet functions.
XGB,NN

Number of Sections
checked the total number of sections in the data directory

more than default sections.
XGB

Imphash
“import hash” was a hash over the imported functions by PE

file.
XGB,NN

kernel32.dll WriteFile

ReplaceFileW Write-

ProcessMemory

checked a library import for writing files or processes in

memory, replacing files with write access.
XGB,NN

user32.dll mapwindow-

points

checked a library import for mapping a set of points from

one window’s coordinate space to another window’s

coordinate space.

XGB,NN

user32.dll translate-

acceleratorw

checked a library import for a Windows Message key on the

keyboard was pressed.
XGB

kernel32.dll CreateFileA

CreateFileW Create-

DirectoryW

checked a library import for creating or opening a file and a

new directory.
NN

user32.dll isdialog-

messagew

checked a library import for a message dialog box if it

processes the message.
N/A

user32.dll monitorfrom-

point

checked a library import for handling the display monitor

containing a specified point.
N/A

the Pandas merge Python module on the filename column. Regarding the

features from downloaded files from the guest VM, all loaded resources for a

prefetch file, especially in APPDATA ROAMING, and temporary files in the

Temporary File Location (User/System/Program File Folder) of the executa-

bles are examined. Using a process list obtained from “updateProcList”, we

could observe any potentially loaded resources/child processes for running ap-

plications and include them in memory extraction. As input for training the

model, loaded prefetch resources, temporary files, event logs, and registry are

converted into boolean attributes, such as LOAD APPDATA RESOURCE,

Load VISUALBASIC.DLL, Temp File Executable, Windows Defender, and

NT Persistence.

We extract anti-debugging library functions imported statically and convert

73

Table 4.2. Top-10 selected static features from SHAP feature selection for

the XGBoost

Static Features Description
Shared

Attributes

ws2 32.dll/wininet.dll

initcommoncontrolsex

checks a library import for loading common control classes

from Comctl32.dll before creating a common control.
RF,NN

kernel32.dll exitprocess

checks a library import for ending the calling process and all

its threads which provides a clean process shutdown. If a

process is terminated by calling TerminateProcess, the DLLs

attached to that process are not notified of the process

termination.

NN

Number of Sections
checks the total number of sections in the data directory

more than default sections
RF

user32.dll translate-

acceleratorw

checks a library import for a Windows Message key on the

keyboard is pressed.
RF

ws2 32.dll/wininet.dll

internetopena

checks a library import for initializing an application’s use of

the Win32 Internet functions.
RF,NN

gdi32.dll

checks whether there are statically imported gdi32.dll’s

functions containing the Windows GDI (Graphical Device

Interface) to draw two-dimensional objects to video displays

and printers.

N/A

psapi.dll enumprocesses

enumprocessmodules
checks a library import for retrieving the process identifier. N/A

Imphash
“import hash” is a hash over the imported functions by PE

file.
RF,NN

user32.dll mapwindow-

points

checks a library import for mapping a set of points from one

window’s coordinate space to another window’s coordinate

space.

RF,NN

kernel32.dll WriteFile

ReplaceFileW Write-

ProcessMemory

checks a library import for writing files or processes in

memory, replacing files with write access.
RF,NN

them as boolean features. However, we do not employ debugging tools in our

virtualized environment so the application could continue its activities without

interruption. Meanwhile, we also retrieve an anti-virtualization detection from

the HybridAnalysis sandbox site, which reports that one hundred and seventy-

five applications enabled anti-virtualization, which may halt the execution

process.

In the analysis of Windows Application, System, PowerShell, and De-

fender/Operational event logs by extracting Defender/Operational events, two

event ids (Event ID: 1116-malware detected, Event ID: 1117-malware action

taken) are used as the sole inputs for a classifier. These two event logs provide

74

Table 4.3. Top-10 selected static features from SHAP feature selection for

the Neural Network

Static Features Description
Shared

Attributes

ws2 32.dll/wininet.dll

internetopena

checks a library import for initializing an application’s use of

the Win32 Internet functions.
RF,XGB

kernel32.dll WriteFile

ReplaceFileW Write-

ProcessMemory

checks a library import for writing files or processes in

memory, replacing files with write access.
RF,XGB

kernel32.dll exitprocess

checks a library import for ending the calling process and all

its threads, providing a clean process shutdown. If a process

is terminated by calling TerminateProcess, the DLLs

attached to that process are not notified of the process

termination.

XGB

Imphash
“import hash” is a hash over the imported functions by PE

file.
RF,XGB

ws2 32.dll/wininet.dll

initcommoncontrolsex

checks a library import for loading common control classes

from Comctl32.dll before creating a common control.
RF,XGB

Overlay

Data is appended to the end of the file. This data could be

significant, such as setup packages. Malware applications

could load more suspicious code into memory from the

overlay once they have appropriate permissions.

N/A

kernel32.dll CreateFileA

CreateFileW Create-

DirectoryW

checks a library import for creating or opening a file and a

new directory.
RF

user32.dll messageboxa

checks a library import for displaying a dialog box that

contained a system icon, a set of buttons, and a brief

application-specific message, such as status or error

information, to contact a user. The message box returns an

integer value indicating which button the user clicked.

N/A

kernel32.dll GetModule-

FileNameW

GetModuleHandleW

GetModuleHandleExW

GetModuleHandleExA

getmodulehandlea

checks a library import to retrieve the fully qualified path for

the file containing the specified module. The current process

must have loaded the module.

N/A

user32.dll mapwindow-

points

checks a library import for mapping a set of points from one

window’s coordinate space to another window’s coordinate

space.

RF,XGB

a 70% accurate thread detector, which means that it was a strong feature by

itself, but some malware could be undetected. However, using more sophis-

ticated machine learning approaches could improve the detection rate. The

Windows Defender detector’s output is transformed into a boolean feature to

feed into classifiers. Additionally, the Noriben output [51] is used as a feature

by representing a list of the one-time occurrence for the process operations

75

ascending by time, such as ReadFile, QueryDirectory, and TCP Connect. The

top 10 significant dynamic features as selected by SHAP for each model are

shown in Table 4.4, 4.5, and 4.6. Among these tables, only Cryptographic

Related is shared across all three classifiers. Overall, about two-fifths of the

selected dynamic features are novel, whereas the remaining parts are used

before in prior works [44,73].

4.2 Model architectures

In the following sections, we describe the implementation of three machine

learning algorithms used in our binary classification: Random Forest, XG-

Boost, and neural networks. The list of tuning ranges across all tables is used

to search values for each parameter when performing hyperparameter search

space. As detailed in all tables, we start with the initial parameter values for

all learning approaches.

4.2.1 Random Forest

The Random Forest model is implemented using Scikit-Learn [54]. To obtain

the best model, the model’s hyperparameters are tuned through grid search

using 10-fold cross-validation. Micro-F1 is used as the objective to maximize

the grid search. This scoring will calculate each label’s metrics and find the

unweighted mean. The hyperparameter search spaces are run through the

entire set and SHAP selected features. The eight hyper-parameters subject to

the grid search, their respective ranges of possible values, and selected values

attaining the highest accuracy performance are presented in Table 4.7 and

Table 4.8, respectively.

4.2.2 XGBoost

The XGBoost model is implemented using the XGBClassifier from Scikit-

Learn [54]. We use Ray Tune [111] to perform a grid search by setting re-

76

Table 4.4. Top-10 selected dynamic features from SHAP feature selection for

the Random Forest

Dynamic Features Location Description
Shared

Attributes

Hook type Inline
Memory

Dump

could be called inline patching. The target API

function’s first few bytes (instructions) are

modified (patched) with a jump statement to

redirect the API to the malicious code. So, the

malicious code could intercept the input

parameters, filter output, and turn the control

back to the original function.

N/A

Contains the ability

to query machine

time/timezone/version

Falcon

Sandbox site

checks whether an application could query for

timezone information and version.
XGB

Hooking Mod windows.

storage.dll

Memory

Dump

detects API hook associated with a set of

procedures and driver functions to ensure that

Windows programs operate properly.

XGB

Priv SeAuditPrivilege
Memory

Dump

the privilege that causes the system to grant all

read access control to any files, regardless of the

access control list (ACL) specified for the file. It

generates audit-log entries, allowing users to add

them to the security log.

N/A

Hook type EAT
Memory

Dump

hooks functions in the target DLL by modifying

entries in the PE File Exports section (EAT). It

works for libraries that are delay loaded.

Subsequent calls to LoadLibrary on the target

DLL would return the reference to the already

loaded library that had its EAT entry for the

target process patched.

N/A

Executes WMI

queries/Contains

references to

WMI/WMIC

Falcon

Sandbox site

the Windows Management Instrumentation

(WMI), which could query the repository to

retrieve class, instance, or schema data.

N/A

childPPID

Falcon

Sandbox site

and Memory

Dump

checks whether an application spawns child

processes in memory and what activities they

perform.

N/A

80/443
Falcon

Sandbox site

checks whether an application establishes a

connection via port 80/443.
N/A

Cryptographic

Related

Falcon

Sandbox site

checks whether an application calls for crypto

functions during runtime.
XGB,NN

Disables Command

Prompt

(cmd)/Windows

Registry Editor

(regedit)

Falcon

Sandbox site

checks if a function to disable running the

command prompt is presented.
XGB

source per trial to “gpu’ to determine an effective set of values for the essential

hyper-parameters. We also use ‘logloss’ and ‘auc’ as the evaluation metrics

77

Table 4.5. Top-10 selected dynamic features from SHAP feature selection for

the XGBoost

Dynamic Features Location Description
Shared

Attributes

psxview all
Memory

Dump

checks memory-mapped files by enumerating

processes from seven data sources and

cross-referenced them to observe malicious

discrepancies. We also verify the process with

“pslist” result, whether it is zero threads, zero

handles, or a non-empty exit time to set as a

boolean feature. However, three DLLs listed in

process memory and the mapped path in VAD

cross-referencing would also be considered to

uncover hidden processes.

N/A

Disables Command

Prompt

(cmd)/Windows

Registry Editor

(regedit)

Falcon

Sandbox site

checks if a function to disable running the

command prompt is presented.
RF

Cryptographic

Related

Falcon

Sandbox site

checks whether an application calls for crypto

functions during runtime.
RF,NN

Contains ability to

query machine

time/timezone/version

Falcon

Sandbox site

checks whether the application could query for

timezone information and version.
RF

Hooking Mod imm32
Memory

Dump

detects API hooks associated with Windows

Input Method Manager (IMM).
N/A

Hooking user32.dll!get-

activewindow

Memory

Dump

detects API hook associated with handling the

active window attached to the calling thread’s

message queue.

N/A

Priv SeSystemProfile-

Privilege

Memory

Dump

the privilege that used Windows performance

monitoring tools to monitor or profile the system

performance.

N/A

Hooking Mod msimg32
Memory

Dump

detects API hook associated with Graphical

Device Interface (GDI), which is used to draw

lines, boxes, and text of the user interface.

N/A

Unusual ports for

process and protocol

Falcon

Sandbox site

checks whether an application uses unusual

ports or protocols to create a connection.
N/A

Hooking Mod windows.

storage.dll

Memory

Dump

detects API hook associated with a set of

procedures and driver functions to ensure that

Windows programs operate properly.

RF

to measure the classifier’s performance. The ‘logloss’ metric is the default

evaluation metric used with the objective ‘binary:logistic’. The five hyper-

parameters, their ranges of possible values, and the selected best-performing

values are presented in Table 4.9 and Table 4.10, respectively.

A single tree each from the XGBoost ensembles on static features, dy-

78

Table 4.6. Top-10 selected dynamic features from SHAP feature selection for

the Neural Network

Dynamic Features Location Description
Shared

Attributes

Hooking user32.dll!

impersonateddeclient-

window

Memory

Dump

detects API hook associated with enabling a

Dynamic Data Exchange (DDE) to impersonate

a DDE client application’s security context.

N/A

Drop files/executable

files

Falcon

Sandbox site

checks whether temporary writable/hidden files

are extracted from binary files.
N/A

Cryptographic

Related

Falcon

Sandbox site

checks whether an application calls for crypto

functions during runtime.
RF,XGB

POSTs/GETs files

to a webserver

Falcon

Sandbox site

checks whether an application sends a request to

the server via the HTTP GET/POST method.
N/A

Hooking Mod shell32
Memory

Dump

detects API hook associated with Windows Shell

API functions, which are used when opening

web pages and files or inserting code injection.

N/A

Priv SeIncrease-

WorkingSetPrivilege

Memory

Dump

the privilege that allows to increase a process

working set.
N/A

SS Queries sensitive

IE security settings

Falcon

Sandbox site

checks whether an application queries the

security level setting information for Internet

access to run scripts or ActiveX controls.

N/A

SS Opens the Kernel

Security Device

Driver (KsecDD) of

Windows

Falcon

Sandbox site

checks whether an application opens the

Kernel-Mode Security Support Provider Driver

Interface (ksecdd.sys).

N/A

Hooking WS2 32 func
Memory

Dump

detects API hook associated with handling

network connections.
N/A

Hook usermode
Memory

Dump

detects whether the hooking occurs in user-land;

it is the inline hook, which involves rewriting the

target function to redirect control flow to a

custom handler. Inside the handler, the

parameters are preserved, and the handler could

decide whether to execute or analyze the

requested function.

N/A

namic features, and their combination are shown in Figure 4.7, 4.8, and 4.9,

respectively. One could extract rules by tracing the path from the root of

a tree to some leaf. For the ‘static features’ in Figure 4.7, one such path is

mscoree.dll == N/A, FMvs.TS == False, which increased the malware

prediction total by 0.00193, a sum of probability value of reaching leaf nodes

given a specific branch of the tree. We could conclude that WindowsDefender

was a powerful feature. As shown in the summary plot, SHAP analysis has also

been identified as a highly influential factor for improving performance. For the

‘dynamic features’ in Figure 4.8, only one attribute WindowsDefender ==

79

Table 4.7. Hyperparameter tuning for the Random Forest Classifier on the

full feature set

Name
Initial

Parameters
Tuning Ranges Static Dynamic Combination

n estimators 200 range(100,650,50) 300 250 600

criterion gini [‘gini’, ‘entropy’] entropy gini entropy

max depth 15 [6,8,10,12,15,20,25,30] 25 15 20

max features sqrt [‘sqrt’, ‘log2’] sqrt sqrt sqrt

bootstrap True [True, False] True True True

min samples leaf 2 range(2,12,2) 2 2 2

min samples split 2 range(2,12,2) 4 2 6

max leaf nodes 30 range(15,55,5) 30 45 50

Table 4.8. Hyperparameter tuning for Random Forest Classifier on SHAP

selected features

Name
Initial

Parameters
Tuning Ranges Static Dynamic Combination

n estimators 200 range(100,650,50) 100 100 150

criterion gini [‘gini’, ‘entropy’] entropy entropy gini

max depth 15 [6,8,10,12,15,20,25,30] 25 8 30

max features sqrt [‘sqrt’, ‘log2’] sqrt sqrt sqrt

bootstrap True [True, False] True True True

min samples leaf 2 range(2,12,2) 2 2 2

min samples split 2 range(2,12,2) 8 4 2

max leaf nodes 30 range(15,55,5) 50 40 40

False from the root could improve the malware prediction total by 0.00199.

For a combination of static and dynamic, one of the extracted rules was

imphash <> f34d5..., imphash <> 48aa5...,WindowsDefender == False,

which yielded the malware prediction total by 0.00197.

Table 4.9. Hyperparameter tuning for XGBoost Classifier on initial features

Name
Initial

Parameters
Tuning Ranges Static Dynamic Combination

n estimators 200 range(100,650,50) 350 450 250

max depth 6 range(4,20,2) 6 6 4

learning rate/eta 0.001
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
0.002 0.002 0.01

gamma 1.5
[0.8,1.0,1.5,2.0,

2.5,3.0,4.0,5.0]
1.5 2.5 5.0

min child weight 1 range(1,6,2) 1 3 1

80

Table 4.10. Hyperparameter tuning for XGBoost Classifier on SHAP selected

features

Name
Initial

Parameters
Tuning Ranges Static Dynamic Combination

n estimators 200 range(100,650,50) 400 500 550

max depth 6 range(4,20,2) 8 6 8

learning rate/eta 0.001
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
0.002 0.01 0.002

gamma 1.5
[0.8,1.0,1.5,2.0,

2.5,3.0,4.0,5.0]
2.5 3.0 0.8

min child weight 1 range(1,6,2) 1 1 1

4.2.3 Neural Network

The neural network learning model is implemented by using Keras [112] and

TensorFlow [53]. In the beginning, models are trained with a batch size of 10

samples on 200 episodes. The network architecture follows a standard setup us-

ing nonlinear activations and employsBatchNormalization and regularizers to

avoid overfitting [113]. A dropout layer with a dropout rate of 0.2 is inserted

after the first dense layer, followed by a BatchNormalization layer. Then,

seven/eight hidden layers are stacked with a BatchNormalization layer before

the final sigmoid layer to produce the output. The model uses RMSprop opti-

mizer with learning rate 0.002, calculated loss based on binary cross-entropy,

and computed accuracy and f1 score for evaluation. In order to obtain a good

learning model, all hyperparameters are tuned by utilizing Keras Tuner [56]

to perform RandomSearch. The learning rate is reduced when accuracy has

stopped improving for 5 epochs (patience) with the maximum total number

of 20 test trials. Table 4.11 shows the model configuration for each layer. In

addition, the summary of the hyperparameters optimization search space for a

full dataset with and without SHAP feature selection from the RandomSearch

is provided in Table 4.12 and Table 4.13, respectively.

81

Table 4.11. Neural Network Layers

Layers Layer Details

Dense Layer

units: 256, activation Function: swish, use bias: True, kernel initializer:

he uniform, bias initializer: ones, bias regularizer: l2(0.002), kernel regularizer:

l2(0.01), kernel constraint: maxnorm(2.), activity regularizer: l2(0.0001)

Dropout

Layer
Dropout(rate=0.2, seed=5000)

Batch Layer BatchNormalization(trainable=True)

Hidden 7 or 8

Dense Layers

units: 256, activation function: swish, use bias: True, kernel initializer: he uniform,

bias regularizer: l2(0.02), kernel regularizer: l2(0.002), kernel constraint:

maxnorm(1.5), activity regularizer: l2(0.001)

Batch Layer BatchNormalization(trainable=True)

Dense Layer units: 1, activation function: sigmoid, kernel initializer: he uniform

Table 4.12. Hyperparameter tuning for Neural Network on initial features

Name
Initial

Parameters
Tuning Ranges Static Dynamic Combination

batch size 10 range(10,50,5) 20 30 25

epochs 200 range(100,650,50) 600 400 600

optimizer RMSprop
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
Adagrad Adam RMSprop

learning rate 0.002

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

0.01 0.01 0.0002

initial neuron 256 range(128,1024,32) 432 272 576

hidden layers 4 range(2,10) 7 6 7

hidden neurons 256 range(16,512,32)

[176,464,176,

48,496,400,

256]

[80,112,496,

368,208,496]

[288,256,480,

192,256,448,

288]

bias

regularizer
[0.002,0.02]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0002,0.02] [0.01,0.002] [0.0001,0.02]

kernel

regularizer
[0.01,0.002]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.02,0.001] [0.0001,0.001] [0.0001,0.0002]

kernel

constraint
[2.0,1.5] range(1,3,0.5) [1.0,3.0] [2.0,2.0] [2.5,1.5]

activity

regularizer
[0.0001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.01,0.001] [0.02,0.01] [0.002,0.0002]

4.3 Experimental Results

In this section, we present the three algorithms’ classification results on the

three datasets: static features, dynamic features, and their combination. The

predictive performance is measured using four different metrics, including accu-

82

Table 4.13. Hyperparameter tuning for Neural Network on SHAP selected

features

Name
Initial

Parameters
Tuning Ranges Static Dynamic Combination

batch size 10 range(10,50,5) 25 20 10

epochs 200 range(100,650,50) 350 600 100

optimizer RMSprop
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
RMSprop Adagrad RMSprop

learning rate 0.002

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

0.002 0.01 0.0002

initial neuron 256 range(128,1024,32) 240 432 480

hidden layers 4 range(2,10) 8 7 9

hidden neurons 256 range(16,512,32)

[240,464,208,

304,176,272,

112,256]

[176,464,176,

48,496,400,

256]

[320,160,256,

256,256,256,

256,256,256]

bias

regularizer
[0.002,0.02]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0001,0.001] [0.0002,0.02] [0.02,0.001]

kernel

regularizer
[0.01,0.002]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0002,0.001] [0.02,0.001] [0.0002,0.002]

kernel

constraint
[2.0,1.5] range(1,3,0.5) [1.0,2.5] [1.0,3.0] [3.0,2.0]

activity

regularizer
[0.0001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.002,0.0002] [0.01,0.001] [0.02,0.0002]

racy, f1 score, similarly to previous works [71,83], mean absolute error (MAE),

and AUC.

Table 4.14 lists results for running all algorithms with their default pa-

rameter settings and the full datasets. Overall, XGBoost performed the best

by achieving an f1 score of 86% for a combination of static and dynamic at-

tributes. However, the accuracy of running the model on only separate features

with the neural network outperformed XGBoost.

Table 4.15 shows the improvements achieved by adequately tuning the

potential hyperparameters. The overall performance increased for almost all

of the nine method and feature set combinations, compared to the default

performances from Table 4.14. Compared to the other two algorithms, the

neural network enjoyed a dramatic increase in performance and achieved the

83

best accuracy and f1 score. During parameter tuning, using cross-validation

helped avoid overfitting, compared to the default setting. The best results

for every dataset, using the combined dataset of static and dynamic trained

by the neural network, could provide both accuracy and f1 score at 97.3%.

The figure represented the correct class predicted by integrating static and

dynamic features, but the absolute error was 0.04. So a low MAE implied

higher average confidence.

After feature subset selection was applied to the initial set, the results

obtained by the default models were illustrated in Table 4.16. Again, the

neural network performed the best for the overall three sets of features, even

though there was a decrease in the performance of all algorithms, compared

to the “full” dataset results from Table 4.15. It implied that robust classifiers

could extract small amounts of information from low-quality features when

using feature selection.

In addition to the default model configuration, the results for applying

both feature selection and hyperparameter tuning were shown in Table 4.17.

Although this combination improved results over the simple default parame-

ter setting, the overall best results were still achieved without feature selec-

tion. Nevertheless, there was a slight difference in predictive results with and

without feature selection by conducting hyperparameter optimization. SHAP

feature selection has been proven to be very effective to remove redundant, or

irrelevant features, which also helped to improve the effectiveness of various

machine learning algorithms.

In addition to the evaluation metrics reported, we also compared the to-

tal elapsed time on selected features, both with and without hyperparameter

tuning for each estimator, as shown in 4.18. We used stratified 10-Folds cross-

validation. XGBoost and the neural network were trained using the GPU. We

observed that the RandomSearch of the neural network took less time than

GridSearch used for the tree-based approaches. Although a more significant

number of parameters needed to be optimized for the neural network, not all

84

combinations were considered by RandomSearch. Conversely, GridSearch ex-

haustively enumerates all possible combinations. Therefore, Random Forest

training was the slowest and the most exhaustive. XGBoost laid in between,

still exhaustive but benefiting from a GPU. Regarding memory usage, on av-

erage, tuning XGBoost performed worst, utilizing memory up to 9GB of main

memory for a relatively small dataset.

We also analyzed the detailed results of the classification report and con-

fusion matrix generated by the hyperparameter tuning on initial and selected

features; these results are shown in Table 4.19 and Table 4.23, respectively.

Figure 4.11 and Figure 4.12 are the confusion matrices for the globally best-

performing setup. The precision, recall, and F1 score were very high, with

a false positive rate lower than 1.5%. When using only static features, the

false positive rate was slightly higher than the other two feature sets, but less

than 2%. Regarding the false negative rate, using the static features alone

only achieves 9.75%, whereas dynamic or combination features yielded smaller

values of 2.11% and 1.99%, respectively. Nevertheless, the SHAP selection

applied to combination attributes in Figure 4.14 yielded the smallest value for

a false negative rate, compared to others.

Finally, we generated ROC curves for all three classifiers before and after

feature selection, applied to the dataset as in Figures 4.10 and 4.11. Appar-

ently, a gap between the neural network and the tree-based methods could

be noticed. While feature selection slightly decreased the AUC value for the

neural network, XGBoost and Random Forest performance also dropped.

4.4 Discussion

It was possible to obtain highly accurate machine learning models by integrat-

ing static and dynamic analysis artifacts which consistently yielded a higher F1

score for every model than training them separately. The best models achieved

85

Table 4.14. Model Evaluation using default hyperparameter settings.

Features Algorithm Avg. MAE Avg. ACC Avg. F1 Avg. AUC

Static RF 0.193±0.02 0.807±0.02 0.804±0.02 0.785±0.02

XGB 0.160±0.01 0.840±0.01 0.842±0.01 0.852±0.01

NN 0.180±0.03 0.849±0.03 0.849±0.03 0.900±0.03

Dynamic RF 0.182±0.02 0.818±0.02 0.816±0.02 0.800±0.03

XGB 0.171±0.03 0.829±0.03 0.831±0.03 0.833±0.03

NN 0.160±0.02 0.842±0.02 0.842±0.02 0.882±0.02

Combination RF 0.165±0.04 0.835±0.04 0.835±0.04 0.823±0.04

XGB 0.140±0.02 0.860±0.02 0.862±0.02 0.874±0.02

NN 0.158±0.02 0.851±0.03 0.851±0.03 0.916±0.02

Table 4.15. Model Evaluation with hyperparameter tuning.

Features Algorithm Avg. MAE Avg. ACC Avg. F1 Avg. AUC

Static RF 0.189±0.03 0.811±0.03 0.809±0.03 0.791±0.03

XGB 0.158±0.01 0.842±0.01 0.844±0.01 0.853±0.01

NN 0.184±0.05 0.888±0.04 0.888±0.04 0.954±0.03

Dynamic RF 0.173±0.03 0.827±0.03 0.826±0.03 0.814±0.03

XGB 0.166±0.02 0.834±0.02 0.836±0.02 0.838±0.02

NN 0.050±0.04 0.968±0.04 0.968±0.04 0.988±0.03

Combination RF 0.150±0.03 0.850±0.03 0.851±0.03 0.846±0.03

XGB 0.139±0.01 0.861±0.01 0.863±0.01 0.880±0.01

NN 0.041±0.05 0.973±0.04 0.973±0.04 0.988±0.02

Table 4.16. Model Evaluation for SHapley Additive exPlanations (SHAP)

on three types of features.

Features Algorithm Avg. MAE Avg. ACC Avg. F1 Avg. AUC

Static RF 0.199±0.03 0.801±0.03 0.798±0.03 0.777±0.03

XGB 0.163±0.02 0.837±0.02 0.840±0.02 0.856±0.02

NN 0.222±0.02 0.839±0.02 0.839±0.02 0.887±0.03

Dynamic RF 0.174±0.02 0.826±0.02 0.826±0.02 0.818±0.03

XGB 0.179±0.02 0.821±0.02 0.822±0.02 0.821±0.02

NN 0.198±0.02 0.828±0.02 0.828±0.02 0.886±0.02

Combination RF 0.153±0.03 0.847±0.03 0.847±0.03 0.842±0.04

XGB 0.137±0.02 0.863±0.02 0.865±0.02 0.877±0.02

NN 0.174±0.02 0.836±0.03 0.836±0.03 0.889±0.03

an F1 score of up to 97.3%. However, one significant disadvantage was the

labor-intensive nature of data acquisition on the dynamic features compared

to static features. Another issue with the dynamic analysis was that some ap-

plications terminate prematurely or were unlinked in a doubly-linked process

86

Table 4.17. Model Evaluation for hyperparameter tuning and SHapley Ad-

ditive exPlanations (SHAP) on three types of features.

Features Algorithm Avg. MAE Avg. ACC Avg. F1 Avg. AUC

Static RF 0.187±0.03 0.813±0.03 0.813±0.03 0.803±0.04

XGB 0.155±0.02 0.845±0.02 0.847±0.02 0.861±0.02

NN 0.209±0.02 0.873±0.03 0.873±0.03 0.924±0.03

Dynamic RF 0.168±0.02 0.832±0.02 0.833±0.02 0.828±0.03

XGB 0.171±0.01 0.829±0.01 0.830±0.01 0.827±0.02

NN 0.052±0.04 0.965±0.04 0.965±0.04 0.986±0.03

Combination RF 0.153±0.03 0.847±0.03 0.848±0.03 0.843±0.04

XGB 0.136±0.02 0.864±0.02 0.866±0.02 0.872±0.02

NN 0.036±0.05 0.972±0.05 0.972±0.05 0.984±0.03

Table 4.18. Elapsed time used for training for each algorithm on selected

attributes

Algorithm Static Static Dynamic Dynamic Combination Combination

Training Tuning Training Tuning Training Tuning

RF 7s 9h:46m:33s 5s 9h:48m:08s 7s 9h:56m:31s

XGB 11s 5h:52m:48s 16s 5h:57m:20s 22s 6h:38m:03s

NN 16m:20s 3h:56m:45s 18m:54s 4h:12m:59s 39m:22s 3h:22m:51s

list before a memory acquisition was completed. This case could be caused

by ransomware samples encrypting and automatically restarting the machine.

Nonetheless, it still left child processes instantiated from the main applica-

tion process, which could be correlated with significant features retrieved from

prefetch files, event log files, and temporary (temp) files to obtain meaningful

attributes. When applying the algorithm to these features obtained by only

static and dynamic analysis, the detection accuracy was 88% and 96.8%, re-

spectively. Thus, the achieved results showed that training separately on the

given dynamic results increased the accuracy, similar to a combination of static

and dynamic analysis. Conversely, only combination attributes outperformed

other feature sets in the experimental result with SHAP feature selection.

87

Table 4.19. Performance for Neural Network for three types of initial features

with hyperparameter tuning

Static Features Dynamic Features Combination Features

PrecisionRecall f1 score PrecisionRecall f1 score PrecisionRecall f1 score

Malicious 0.98 0.84 0.90 0.98 0.97 0.97 0.99 0.97 0.98

Benign 0.79 0.97 0.87 0.95 0.97 0.96 0.95 0.98 0.96

Table 4.20. Static

Confusion Matrix for

NN.

Table 4.21. Dy-

namic Confusion Ma-

trix for NN.

Table 4.22. Combi-

nation Confusion Ma-

trix for NN.

Table 4.23. Performance for Neural Network for three types of features with

hyperparameter tuning and feature selection

Static Features Dynamic Features Combination Features

PrecisionRecall f1 score PrecisionRecall f1 score PrecisionRecall f1 score

Malicious 0.92 0.87 0.89 0.98 0.96 0.97 0.98 0.97 0.98

Benign 0.80 0.88 0.84 0.94 0.96 0.95 0.96 0.97 0.96

Table 4.24. Static

Confusion Matrix for

NN.

Table 4.25. Dy-

namic Confusion Ma-

trix for NN.

Table 4.26. Combi-

nation Confusion Ma-

trix for NN.

88

F
ig
u
re

4
.7
.

O
n

e
ex

am
p

le
tr

ee
ou

t
of

an
20

0
tr

ee
s

X
G

B
o
os

t
en

se
m

b
le

on
th

e
in

it
ia

l
st

at
ic

fe
at

u
re

s.
R

ed
le

av
es

in
d

ic
at

e
M

al
w

ar
e.

89

F
ig
u
re

4
.8
.

O
n

e
ex

am
p

le
tr

ee
ou

t
of

an
20

0
tr

ee
s

X
G

B
o
os

t
en

se
m

b
le

on
th

e
in

it
ia

l
d

y
n

am
ic

fe
at

u
re

s.
R

ed
le

av
es

in
d

ic
at

e
M

al
w

ar
e.

90

F
ig
u
re

4
.9
.

O
n

e
ex

am
p

le
tr

ee
ou

t
of

an
20

0
tr

ee
s

X
G

B
o
os

t
en

se
m

b
le

on
th

e
in

it
ia

l
co

m
b

in
at

io
n

fe
at

u
re

s.
R

ed
le

av
es

in
d

ic
at

e
M

al
w

ar
e.

91

Figure 4.10. ROC Curve for Neural Network Initial Combination Features.

Figure 4.11. ROC Curve for Neural Network Combination Selected Features.

Chapter 5

A comparison of Neural

Network Architectures for

Malware Classification based on

Call Sequences

This chapter explores utilizing dynamic call sequences captured by the open-

source Noriben tool [51], which employs dynamic analysis in a virtualized

environment. All running processes are recorded in Noriben log files. However,

we focus only on our application process, which writes the output on the

log file over time. The first 10000 operations are each extracts for a total

of 2000 benign and malware samples. A few types of application files are

analyzed: MSI files (an installer package file format), EXE files (an executable

file format), AppxBundle files (a Windows 8.1 App Bundle Package format),

and DOC/DOCX files. Seven malware families are classified: ransomware,

trojan, backdoor, rootkit, virus, miner, and other. We use eight learning

approaches: Random Forest, XGBoost, fully connected neural networks, GRU,

LSTM, Transformers, and two combination approaches.

93

5.1 Data Collection and Preprocessing

This section describes datasets collected with our custom Python script and

a public dataset [114] for predicting eight categories, which consist of Benign

(756), Ransom (139), Trojan (980), Miner (43), Rootkit (10), Back-door (23),

Virus (11), and Other (38). Noriben sequences and API call sequences [114]

are retrieved via dynamic analysis from a virtualized environment.

5.1.1 Noriben sequences for Multi-class Classification

We collect 2000 samples for malware and benign applications from publicly

available sources. Precisely, 1244 malware samples are collected from both

VirusShare and VirusSign 1, and 756 goodware samples are collected from

FileHorse 2. The labels are obtained from two primary sources: uploading

the files to VirusTotal [106] by using at least five or more anti-virus engines

to retrieve a class label and obtaining threat names from the Windows De-

fender/Operational event log. In case an application is not in the seven cat-

egories mentioned before, it would be assigned to the “other” class. We set

up a secure virtualized environment described in chapter 2 to collect dynamic

behaviour. The Windows Defender Real-Time Protection (RTP) is disabled to

allow the malware to run smoothly over the virtual machine. To prevent mal-

ware from actually infecting the Internet, we use host-only networking between

the host and the guest.

Any missing values after the data preprocessing are replaced with a con-

stant default value using Scikit-Learn’s SimpleImputer [54]. Figure 5.1 shows

the percentages of missing values per column. The extracted operation se-

quences are treated like a string of words. Therefore, they have the same

method for data preprocessing, utilizing Tensorflow’s [53] TextVectorization

with a dictionary size of 500 and producing an output in “count” mode. Table

5.2 provides some statistics for the top-10 most frequently occurring Noriben

1Downloads from VirusShare [90] and VirusSign [107]
2Downloads from FileHorse [108]

94

operations. The first number is the average number of times an application in

a family is calling an operation. Only applications that called the operation

at least once are considered for the average. The second number is the total

number of applications in that family that use this operation at least once.

Regarding the applications, less frequent families are more uniform, with the

Figure 5.1. The bar plot displays the percentage of missing data continuously

increasing by sequence length from 1 to 100.

most extreme value for V irus, where 11 samples use almost all of the top 10

operations. However, there is one operation,“RegQuery KeySecurity”, that is

never called. The V irus family is also an outlier concerning the averages, with

each operation being called only a few times, except for “WriteFile”, which

features a very high average call count. The highest average call count is asso-

ciated with the “ReadFile” action in the Miner family, followed by three op-

eration counts that are all featured in the Ransom family: “RegQueryValue”,

“WriteFile”, and “ReadFile”. For the averages for the Benign family, there

95

are no clear-cut patterns. All these averages are in the middle of all the values

for any operations when looking across families.

Table 5.1. Top 30 Noriben Operation Description.

Name Description Name Description

1. Process Start Launching a process
16. QueryBasicInforma-

tionFile

Querying basic

information from a file

2. Thread Create
Creating thread for a

process
17. CreateFileMapping

Creating a mapping for

files

3. Load Image
Loading an imagebase

from a file into memory
18. QuerySecurityFile

Querying a security

setting for a file

4. CreateFile Creating a file
19. QueryStandardInfor-

mation File

Querying a standard

information header from

a file

5. RegOpenKey Opening registry key 20. RegQueryKey Querying a registry key

6. RegQueryValue
Querying a value in

registry key

21. QuerySizeInformation

Volume

Querying size

information from a

volume/drive

7. RegCloseKey Closing registry key
22. QueryAttributeInfor-

mation Volume

Querying attribute

information from a

volume/drive

8. QueryName

InformationFile

Querying file

information

23. RegQueryMultiple-

ValueKey

Querying multiple

values from registry

keys

9. CloseFile Closing a file 24. RegEnumKey
Enumerating keys in

registry

10. RegSetInfoKey
Setting information

value in registry key
25. RegEnumValue

Enumeraring values in

registry

11. ReadFile Reading a file
26.

QueryInformationVolume

Querying the creation

time and the serial

number of a volume

12. RegCreateKey
Creating a key in

registry

27.

QueryAttributeTagFile

Querying a tag attribute

in the DesiredAccess

parameter from a file

13. RegSetValue
Setting a value in

registry key

28. SetRenameInforma-

tionFile

Setting a file to be

allowed for renaming

14. WriteFile Writing a file 29. TCP Connect
Establishing a

connection with TCP

15. QueryDirectory Querying a directory 30. TCP Send Sending data with TCP

5.1.2 API call sequence for Binary Classification

In the work of Oliveira [114], a behavioral malware detection method based

on Deep Graph Convolutional Neural Networks (DGCNNs) [115] for binary

classification was proposed. They extracted the graph structure from the API

96

Table 5.2. Top-10 frequently occurrences of Noriben sequences classified by

two numeric values: (1) average number for each category and (2) the number

of applications for each and every operation-category pair.

Noriben

Opera-

tions/

Total

Benign

(756)

Ransom

(139)

Trojan

(980)

Miner

(43)

Rootkit

(10)

Back-

door

(23)

Virus

(11)

Other

(38)

Query

Standard

Information

File

48.4/

602

590.5/

122

2920.6

/964

82.7 /

40
19.7/10 3.0/23 2.2/11

315.9/

38

RegQuery

Value

95.6 /

748

4185.4 /

124

200.9

/971

1955.9

/ 40
331.9/10

164.1 /

23
7.5 /11

2546.5/

38

RegQuery

KeySecurity
62.2/86

2542.7 /

110

2196.7

/202

845.4 /

39
1118.4/8

161.5/

21
0/0

416.2 /

9

RegQuery

Key

224.7/

613

2273.9 /

123

457.9

/969

2456.7

/ 40
894.7/10

181.7 /

23
13.1/11

2299.6

/ 38

Query

Directory

143.4/

373

1029.6 /

98

562.2

/754

135.5/

30

10657.3

/8
3.2/20 1.9/11

203.2 /

25

WriteFile
507.9/

498

3774.1/

98

236.2

/447

200.4/

35
819.6/7 4.3/16 585.0/4

49.4/

31

ReadFile
453.5/

605

2926.5/

124

110.8 /

970

5373.1

/39
1195.6/10 60.2/ 23 34.8/11

308.6/

38

RegOpen

Key

99.4/

748

1292.0/

124

308.8

/971

2081.8/

40
564.8/10

131.1 /

23

19.3

/11

2445.3/

38

CreateFile
172.6/

602

2239.5

/124

255.3

/966

787.6/

40
2592.8/10 30.7 /23 16.0/11

500.5/

38

CloseFile
114.4 /

745

1807.3 /

124

245.8

/971

785.3/

40
2591.7/10 22.5/23 13.6/11

436.4 /

38

call sequences to generate their associated behavioral graphs. There were two

experiments on an imbalanced public dataset [116]: (1) a random undersam-

pling of the majority class (malware) to obtain a balanced dataset containing

1,079 goodware and 1,079 malware samples, and (2) an original imbalanced

dataset consisting of 42,797 malware and 1,079 benign API call sequences.

The API call sequences and the set of API calls were passed to a graph con-

volutional layer to generate behavioral graphs among the API calls. Each

sequence comprised the first 100 uniquely consecutive API calls associated

with the parent process, extracted from the Cuckoo Sandbox reports, and

then classified into binary, representing one as malware and zero as benign.

For feature columns, there were 100 columns ordered by [t 0 ... t 99], which

97

contained an index (between 0 and 306) mapped to 307 distinct API calls by

each index representing the API call name. Their experimental results showed

that the proposed method achieved similar performance to LSTM networks,

around 97% to distinguish between malicious and benign patterns through the

graph structure when trained and tested on a balanced dataset.

5.2 Model architectures

Eight learning algorithms are evaluated for their malware detection perfor-

mance: Random Forest, XGBoost, a fully connected neural network (FCNN),

gated recurrent unit (GRU) and long short-term memory (LSTM), Trans-

formers, and two combination approaches. To the best of our knowledge, the

Transformers [117] are used in static analysis on the Android applications

source code; however, using the full sequences of Noriben operation for mal-

ware prediction has yet to be used before.

For Random Forest and XGBoost, Scikit-Learn [54] is used to construct the

models, while the other six approaches are implemented using TensorFlow [53].

Furthermore, to obtain good performance for these six models, all hyperparam-

eters are tuned using KerasTuner’s [56] RandomSearch. For proper evaluation,

10-fold cross-validation and a scheduled decrease in the learning rate are em-

ployed. We also initialize parameter values for all learning approaches before

performing hyperparameter search space. The tuning ranges are represented

in a list across all tables, which are used for searching for each parameter.

5.2.1 Random Forest

The Random Forest model is implemented using Scikit-Learn [54]. To obtain

the best model, the model’s hyperparameters are tuned using GridSearchCV

10-fold cross-validation, with micro-F1 as the objective function. The eight

hyper-parameters subject to the grid search, their ranges of possible and se-

lected values achieving the highest accuracy performance are presented in Ta-

98

ble 5.3.

Table 5.3. Hyperparameter tuning for Random Forest Classifier.

Name
Initial

Parameters
Tuning Ranges

Best Value

(Noriben)

Best Value

(API calls)

n estimators 200 range(100,600,50) 250 500

criterion gini [‘gini’, ‘entropy’] gini entropy

max depth 14 range(6,20,2) 14 6

max features sqrt [‘sqrt’, ‘log2’] sqrt log2

bootstrap True [True, False] True True

min samples leaf 2 range(2,12,2) 4 2

min samples split 2 range(2,12,2) 2 2

max leaf nodes 30 range(15,55,5) 45 50

5.2.2 XGBoost

The XGBoost model is implemented using the XGBClassifier from Scikit-

Learn [54]. We perform a grid search by using Ray Tune [111] with a resource

per trial to “gpu’ to determine a well-performing set of values for the poten-

tial hyperparameters. ‘mlogloss’ and ‘AUC’ are used as evaluation metrics to

measure the model performance. The five hyper-parameters, their ranges of

possible values, and the selected best-performing values are presented in Table

5.4.

Table 5.4. Hyperparameter tuning for XGBoost Classifier.

Name
Initial

Parameters
Tuning Ranges

Best Value

(Noriben)

Best Value

(API calls)

n estimators 200 range(100,650,50) 200 400

max depth 6 range(4,20,2) 10 14

learning rate/eta 0.001
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
0.02 0.02

gamma 1.5
[0.8,1.0,1.5,2.0,

2.5,3.0,4.0,5.0]
1.5 2.5

min child weight 1 range(1,6,2) 3 1

99

5.2.3 FCNN

The fully connected network is configured using nonlinear activations and em-

ploying BatchNormalization, Dropout, and other regularizers to avoid overfit-

ting. We use RandomSearch to determine the architecture and the best values

for the hyperparameters. Table 5.5 presents the search parameters and the

selected best values, whereas Figure 5.2 depicts the final best architecture for

the FCNN, as obtained by RandomSearch.

Figure 5.2. The best FCNN as determined by RandomSearch in Tensorflow.

5.2.4 GRU and LSTM

LSTM [118] and GRU [62] are standard approaches for sequence learning. We

experiment with Bidirectional3 CuDNNGRU [119] and CuDNNLSTM [119]

3Bidirectional GRU (Bi-GRU) is a type of bidirectional recurrent neural networks that

is used to extract features in both directions from the sequences.

100

Table 5.5. FCNN hyperparameter tuning setup and outcome.

Name Initial Value Tuning Ranges
Best Value

(Noriben)

Best Value

(API calls)

batch size 15 ranges(10,50,5) 40 50

epochs 100 ranges(100,600,50) 300 300

optimizer RMSprop
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
Adam Adagrad

learning rate 0.0002
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
0.0001 0.002

Neurons [256,256,128,128] range(128,1024,32)
[288,448,224,

160]

[832,320,160,

480]

Hidden Layers 5 range(2,10) 7 7

Hidden

Neurons

[256,256,256,

256,256]
range(128,512,32)

[512,448,480,

160,320,128,256]

[224,128,288,

512,352,128,288]

bias

regularizer

[0.002, 0.02,

0.002, 0.002,

0.002]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.02, 0.0002,

0.002, 0.02,

0.0001]

[0.02, 0.02,

0.0001, 0.002,

0.001]

kernel

regularizer

[0.01,0.02,0.01,

0.01,0.01]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.001, 0.01,

0.01, 0.02, 0.002]

[0.0001, 0.02,

0.002, 0.002,

0.0001]

kernel

constraint

[2.0,1.5,1.5,

1.5,1.0]
range(1,3,0.5)

[1.0,3.0,1.0,

2.5,1.5]

[2.5,1.5,2.0,

2.0,2.0]

activity

regularizer

[0.0001,0.001,

0.0001,0.0001,

0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.0002, 0.001,

0.001, 0.01,

0.0002]

[0.02, 0.0001,

0.001, 0.0001,

0.01]

architectures, where a convolutional layer first processes the embedded input.

To determine the best configurations, RandomSearch in Keras is used, and the

setup with outcomes is provided in Table 5.6 and Figure 5.3.

5.2.5 Transformers

Transformers [55] is an attention-based encoder-decoder architecture. The at-

tention mechanism focuses on different tokens while processing words to model

opcode sequences. The first layer is an embedding layer to convert words into

vectors, followed by the positional encoding layer to add the position informa-

tion for each word. Next, all input sequences are encoded to attention rep-

resentations in the encoder layers, consisting of two sub-layers: multi-headed

attention and two fully-connected layers, with a ReLU activation in between.

Multi-headed attention computed the attention weights for the input by pro-

cessing each word separately and had a score corresponding to other words in

101

Figure 5.3. The best GRU as determined by RandomSearch in Tensorflow.

the sequence. The higher the score, the more focus. It, therefore, represents

the attention scores for each target sequence word that also captured the in-

fluence of the attention scores from the input sequence. Later, a hidden state

is passed to the decoding stage after obtaining an output vector on how each

word should attend to all other words. Each hidden state is used to determine

where the network should pay attention. The decoder has a similar two-sub-

layer setup as the encoder, but an attention layer operated slightly differently

to attend to values from the encoder. The decoder receives a start token, a list

of previous outputs, and the encoder outputs as inputs, then generates a to-

ken at a time. Lastly, GlobalAveragePooling1D is added, which averaged over

sequence dimension and returned a fixed-length output vector before feeding

into the last softmax layer to get the word probabilities. The details about the

model’s configuration and optimization from the RandomSearch are provided

in Table 5.7 and Table 5.8, respectively.

102

Table 5.6. Hyperparameter tuning for GRU and LSTM for Noriben and API

call sequences.

Name
Initial

Value
Tuning Ranges

GRU/LSTM

Best Value

(Noriben)

GRU/LSTM

Best Value

(API calls)

batch size 15 range(10,50,5) 25 25

epochs 200 range(50,650,50) 600 600

optimizer RMSprop
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
Adam Adam

learning rate 0.0001
[0.01, 0.02, 0.001, 0.002,

0.0001, 0.0002]
0.0002 0.0002

embedding 128 ranges(256,1024,32) 544 448

embedding

regularizer
0.0001

[0.01, 0.02, 0.001, 0.002,

0.0001, 0.0002]
0.02 0.0001

gru/lstm

units
[512, 256] ranges(128,512,32) [288, 448] [416, 288]

recurrent

regularizer

[0.0001,

0.001]

[0.01, 0.02, 0.001, 0.002,

0.0001, 0.0002]
[0.01, 0.001] [0.01, 0.01]

kernel

regularizer
[0.001, 0.001]

[0.01, 0.02, 0.001, 0.002,

0.0001, 0.0002]
[0.002, 0.01] [0.0002, 0.002]

bias

regularizer
[0.01, 0.02]

[0.01, 0.02, 0.001, 0.002,

0.0001, 0.0002]
[0.01, 0.01] [0.02, 0.01]

kernel

constraint
[2.0, 1.5] range(1,3,0.5) [1.5, 2.0] [1.5, 2.0]

activity

regularizer

[0.0001,

0.0002]

[0.01, 0.02, 0.001, 0.002,

0.0001, 0.0002]
[0.02, 0.002] [0.002, 0.02]

5.2.6 Combination of GRU and transformers

This classifier is created to integrate a GRU and a Transformers network.

Therefore, it is a simple concatenation of the outputs of the penultimate layers

of both networks. Specifically, the output of the final BatchNormalization layer

of the GRU and the output of the final GlobalAveragePooling1D layer of the

Transformers are concatenated and passed to a final softmax layer. The tuning

information for this combination is provided in Table 5.9.

5.2.7 Combination of FCNN and Transformers

This classifier is built as a hybrid architecture of a fully connected neural

network and Transformers. Effectively, the FCNN replaces the GRU in the

previous combination approach. The details of the hyperparameter tuning are

103

Table 5.7. Transformer Layers

Layers Layer Details

(Enc) Embedding

Layer

input dim: input vocab size, output dim: trans dim, mask zero: True,

embeddings initializer: he uniform, embeddings regularizer: l2(1e-4)

(Enc) Positional

Encoding
positional encoding(maximum position encoding, trans dim)

(Enc)

MultiHeadAttention

num heads, key dim:2, dropout:0.1, use bias:True, bias initializer:ones,

kernel initializer:glorot uniform (query, value, key)

(Enc) Dense Layer

units: trans dim, activation function: swish, use bias: True,

kernel initializer: he uniform, bias initializer: zeros, bias regularizer:

l2(1e-3), kernel regularizer: l2(1e-4), kernel constraint: MaxNorm(1.),

activity regularizer: l2(2e-4)

(Enc) Normalize Layer LayerNormalization(epsilon=1e-8)

(Enc FFN) 2 Dense

layers
units: feed forward dim, activation function: relu and units: trans dim

(Enc) Normalize Layer LayerNormalization(epsilon=1e-8)

(Dec) Embedding

Layer

input dim: target vocab size, output dim: trans dim, mask zero: True,

embeddings initializer: he uniform, embeddings regularizer: l2(1e-4)

(Dec) Positional

Encoding
positional encoding(maximum position encoding, trans dim)

(Dec)

MultiHeadAttention

num heads, key dim:2, dropout:0.1, use bias:True, bias initializer:zeros,

kernel initializer:glorot uniform (query, value, key)

(Dec) Dense Layer

units: trans dim, activation function: swish, use bias: True,

kernel initializer: he uniform, bias initializer: zeros, bias regularizer:

l2(1e-3), kernel regularizer: l2(1e-4), kernel constraint: MaxNorm(1.),

activity regularizer: l2(2e-4)

(Dec) Normalize Layer LayerNormalization(epsilon=1e-8)

(Dec)

Encoder-Decoder

attention

MultiHeadAttention(num heads,key dim:2, dropout:0.1, use bias:True,

bias initializer:zeros,kernel initializer:glorot uniform) (query, value, key) and

Dense(trans dim)

(Dec) Dense Layer

units: trans dim, activation function: swish, use bias: True,

kernel initializer: he uniform, bias initializer: zeros, bias regularizer:

l2(1e-3), kernel regularizer: l2(1e-4), kernel constraint: MaxNorm(1.),

activity regularizer: l2(2e-4)

(Dec) Normalize Layer LayerNormalization(epsilon=1e-8)

(Dec FFN) 2 Dense

layers
units: feed forward dim, activation function: relu and units: trans dim

(Dec) Normalize Layer LayerNormalization(epsilon=1e-8)

(Dec) GlobalAverage-

Pooling1D
GlobalAveragePooling1D(decoder)

Dense Layer units: 8, activation function: softmax, kernel initializer: he uniform

shown in Table 5.10.

104

Table 5.8. Hyperparameter tuning for Transformers.

Name Initial Value Tuning Ranges
Best Value

(Noriben)

Best Value

(API calls)

batch size 10 range(10,50,5) 25 45

epochs 100 range(50,650,50) 600 550

optimizer Adam
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
Adam RMSprop

learning rate 0.0001
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
0.0002 0.001

trans dim 512 ranges(512,2048,32) 704 928

num heads 12 ranges(6,20,2) 12 10

feed forward dim 1024 ranges(1024,3172,32) 2048 2944

enc layer 5 ranges(2,10) 2 3

dec layer 5 ranges(1,10) 2 3

embedding

regularizer
[0.001, 0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
[0.002, 0.01] [0.0002, 0.01]

kernel

regularizer
[0.001, 0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
[0.02, 0.01] [0.01, 0.01]

bias regularizer [0.01, 0.02]
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
[0.001, 0.001] [0.0001, 0.01]

kernel constraint [2.0, 1.5] range(1,3,0.5) [2.5, 2.0] [3.0, 2.5]

activity

regularizer
[0.001, 0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
[0.001, 0.002] [0.0001, 0.0001]

5.3 Experimental Results

This section presents experimental results for the eight algorithms applied

to Noriben sequences. We use different evaluation metrics to measure the

performance, including accuracy, F1-measure, Mean Absolute Error (MAE,

and Area Under the receiver operating characteristic Curve (AUC).

Table 5.11 lists results for passing sequences through all algorithms with

their default parameter settings. Overall, GRU performed best out of all eight

classifiers, achieving an accuracy of 76.4%.

Table 5.12 shows significant improvements by properly tuning the poten-

tial hyperparameters. The overall performance increased for all classifications

compared to the default models from Table 5.11. The integration of GRU

with Transformers exhibited the best performance, reaching an accuracy of

97% and achieving the overall best F1, MAE, and AUC results. The figure

represented the correct class, but the absolute error is 0.012. So a low MAE

105

Table 5.9. Hyperparameter tuning for combining GRU and Transformers.

Name Initial Value Tuning Ranges
Best Value

(Noriben)

Best Value

(API calls)

batch size 15 ranges(10,50,5) 25 25

epochs 100 ranges(100,600,50) 300 150

optimizer RMSprop
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
Adam Adagrad

learning rate 0.002

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

0.0001 0.0001

embedding 256 range(256,1024,32) 448 512

embedding

regularizer
[0.001,0.001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0001,0.002,0.01] [0.02,0.01,0.01]

gru units [512, 256] ranges(128,512,32) [224, 384] [224, 224]

recurrent

regularizer
[0.0001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0001,0.002] [0.002,0.0002]

kernel

regularizer

[0.001,0.001,0.001,

0.001,0.01]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.002, 0.01, 0.01,

0.002, 0.01]

[0.0002,0.01,0.01,

0.002,0.0002]

bias regularizer
[0.01,0.02,0.01,0.01,

0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.002,0.002,0.0002,

0.01,0.002]

[0.001,0.0001,0.01,

0.001,0.001]

kernel

constraint

[2.0, 1.5, 1.5, 2.0,

1.0]
range(1,3,0.5)

[3.0, 3.0, 2.0, 1.5,

3.0]
[2.0,3.0,2.5,1.0,3.0]

activity

regularizer

[0.001,0.001,0.001,

0.001,0.0001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.01,0.0001,0.01,

0.01,0.0002]

[0.01,0.0001,0.0001,

0.001,0.01]

trans dim 128 ranges(512,1024,32) 864 896

num heads 4 ranges(6,20,2) 20 6

feed forward dim 1024 ranges(1024,3172,128) 2944 1920

enc layer 3 ranges(2,10) 4 3

dec layer 2 ranges(1,10) 6 7

implied higher average confidence. To measure our model effectiveness, we also

evaluated our models on the public dynamic API call sequences dataset [114],

which contained 42,797 malware and 1,079 goodware. We use the same archi-

tecture presented in eight classifiers for the API calls dataset and optimized

the model parameters. The result showed that an LSTM network could pro-

vide the best predictive result with the F1 score at 99%, as depicted in Table

5.13.

Regarding measuring performance, Table 5.15 lists each class’s precision,

recall, and F1 score. Mostly, the samples are correctly classified into their

106

Table 5.10. Hyperparameter tuning for combining FCNN and Transformers.

Name Initial Value Tuning Ranges
Best Value

(Noriben)

Best Value

(API calls)

batch size 15 ranges(10,50,5) 30 10

epochs 100 ranges(100,600,50) 150 100

optimizer RMSprop

[‘Adam’,‘RMSprop’,

‘Adadelta’,

‘Adagrad’]

RMSprop Adam

learning rate 0.0002
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
0.0001 0.0002

Neurons [256,256,128,128] range(128,1024,32)
[704,224,288,

320]
[640,320,192,128]

Hidden Layers 5 range(2,10) 7 7

Hidden

Neurons

[256,256,256,

256,256]
range(128,512,32)

[192,288,480,

352,480,320,288]

[256,256,256,256,

256,256,256]

bias

regularizer

[0.001,0.002,0.002,

0.001,0.001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.0001,0.02,0.01,

0.02,0.0001,0.002]

[0.0001,0.0001,0.02,

0.02,0.02,0.0002]

kernel

regularizer

[0.01,0.02,0.02,

0.01,0.01,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.002,0.01,0.02,

0.001,0.002,0.002]

[0.01,0.02,0.01,

0.01,0.002,0.01]

kernel

constraint

[2.0,1.5,1.5,1.5,

1.0,1.0]
range(1,3,0.5)

[1.5,1.5,2.5,1.5,

2.0,2.0]

[2.0,2.0,1.0,

1.5,3.0,2.5]

activity

regularizer

[0.0001,0.001,0.0001,

0.0001,0.001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.0002,0.0002,

0.001,

0.01,0.001,0.0001]

[0.001,0.01,0.002,

0.01,0.0002,0.02]

trans dim 512 ranges(512,1024,32) 608 896

num heads 8 ranges(6,20,2) 10 10

feed forward dim 1024 ranges(1024,3172,128) 2176 2688

enc layer 6 ranges(2,10) 6 6

dec layer 6 ranges(1,10) 4 5

embedding

regularizer
[0.001, 0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
[0.01, 0.01] [0.02,0.01]

respective families.

In addition to reports by evaluation metrics, we presented the total elapsed

time on the training default configuration and hyperparameter tuning with ten

maximum trials for each classifier. We use stratified 10-Folds cross-validation

using the GPU. Although RandomSearch considered not all possible combina-

tions, integrating GRU and Transformers took the most prolonged hours for

optimization, as represented in Table 5.14.

We also analyzed the confusion matrix, which compared actual and predic-

tive values, as depicted in Figure 5.4. Each class is calculated. For example,

all columns and rows except the values of the trojan class are classification

107

errors. The matrix showed the domination of the diagonal values, with most

off-diagonal values being very close to zero. This classifier had the best clas-

sification capability for trojans, followed by benign. Figure 5.5 presents ROC

curves generated by combining a GRU with Transformers for all classes. Again,

the almost perfect prediction was achieved across all categories.

Finally, the cross-validation with hyperparameter tuning results is pre-

sented. From Table 5.16 to Table 5.20, they evaluated different max tokens

with distinct sequence lengths on Noriben operations from 1000 to 10000. To

provide a more visual representation, Figure 5.6 to Figure 5.9 provides line

graphs for the various evaluation metrics. It is noteworthy that LSTM, GRU,

and a combined GRU with Transformers exhibited similar trends.

Table 5.11. Cross-validation results for default hyperparameter values on

Noriben operations.

Algorithm Avg. ACC Avg. F1 Avg. MAE Avg. AUC

RF 0.607±0.02 0.607±0.02 0.098±0.01 0.776±0.01

XGB 0.771±0.01 0.771 ±0.01 0.057±0.01 0.869±0.01

LSTM 0.597±0.11 0.601±0.12 0.107±0.03 0.880±0.03

GRU 0.764±0.03 0.765±0.03 0.063±0.03 0.952±0.02

Transformers 0.749±0.04 0.749±0.04 0.066±0.03 0.941±0.02

FCNN 0.653±0.03 0.646±0.03 0.114±0.01 0.923±0.01

GRU + Transformers 0.754±0.05 0.759±0.04 0.066±0.03 0.954±0.02

FCNN + Transformers 0.704±0.05 0.705±0.04 0.095±0.03 0.941±0.03

Table 5.12. Cross-validation results after hyperparameter tuning on Noriben

operations.

Algorithm Avg. ACC Avg. F1 Avg. MAE Avg.AUC

RF 0.637±0.02 0.637±0.02 0.091±0.01 0.793±0.01

XGB 0.798±0.01 0.798±0.01 0.050±0.01 0.885±0.01

LSTM 0.939±0.07 0.941±0.06 0.020±0.02 0.989±0.02

GRU 0.941±0.06 0.942±0.06 0.021±0.02 0.990±0.02

Transformers 0.935±0.06 0.936±0.06 0.029±0.02 0.986±0.02

FCNN 0.882±0.06 0.878±0.06 0.049±0.01 0.967±0.04

GRU + Transformers 0.970±0.06 0.970±0.06 0.012±0.02 0.995±0.02

FCNN + Transformers 0.928±0.06 0.929±0.06 0.021±0.02 0.989±0.02

108

Table 5.13. Cross-validation results after hyperparameter tuning for dynamic

API call sequences [114] on binary classification.

Algorithm Avg. ACC Avg. F1 Avg. MAE Avg.AUC

RF 0.906±0.01 0.906±0.01 0.094±0.01 0.906±0.01

XGB 0.990±0.01 0.990±0.01 0.010±0.01 0.990±0.01

LSTM 0.996±0.002 0.996±0.002 0.008±0.002 0.995±0.003

GRU 0.994±0.002 0.994±0.002 0.014±0.001 0.993±0.003

Transformers 0.992±0.001 0.992±0.001 0.010±0.001 0.984±0.002

NN 0.975±0.001 0.975±0.001 0.053±0.001 0.979±0.003

GRU + Transformers 0.987±0.001 0.987±0.001 0.051±0.001 0.968±0.001

FCNN + Transformers 0.993±0.001 0.993±0.001 0.010±0.001 0.988±0.001

Table 5.14. Training time for each algorithm on Noriben operations.

Algorithm Default Noriben Noriben Default API API

Training Tuning Training Tuning

RF 43s 40h:41m:51s 2m:10s 48h:16m:02s

XGB 2m:28s 9h:43m 6m:17s 84h:07m:53s

LSTM 1h:41s 3h:45s 4h:44m:33s 9h:58m:15s

GRU 1h:39s 3h:08s 3h:57m:15s 8h:54m:55s

Transformers 10h:48m:12s 12h:30m:09s 31h:01m:18s 48h:38m:42s

NN 16m:20s 1h:49m:15s 1h:35m:13s 2h:40m:13s

GRU + Transformers 10h:58m:20s 12h:59m:40s 38h:52m:24s 44h:58m:28s

NN + Transformers 10h:35m:27s 12h:41m:50s 41h:13m:31s 46h:01m:12s

109

M
et

ri
cs

C
la

ss
ifi

er
s

B
en

ig
n

B
ac

k
d

o
or

M
in

er
R

an
so

m
R

o
ot

k
it

T
ro

ja
n

V
ir

u
s

O
th

er

P
re

ci
si

on
G

R
U

0.
95

±
0.

01
1
.0
0
±
0
.0
1

0.
88

±
0.

02
0
.9
8
±
0
.0
1

0.
20

±
0.

03
0.

89
±

0.
02

0.
75

±
0.

02
0.

50
±

0.
02

T
ra

n
sf

or
m

er
s

0.
94

±
0.

01
0.

92
±

0.
01

1
.0
0
±
0
.0
1

0.
90

±
0.

01
0.

70
±

0.
02

0.
95

±
0.

01
1
.0
0
±
0
.0
1

0.
30

±
0.

02

G
R

U
+

T
ra

n
sf

or
m

er
s

0
.9
9
±
0
.0
4

1
.0
0
±
0
.0
1

1.
00

±
0.

30
0.

93
±

0.
16

0
.9
0
±
0
.0
5

0
.9
7
±
0
.2
3

0.
79

±
0.

15
0
.9
7
±
0
.3
0

R
ec

al
l

G
R

U
0.

91
±

0.
01

0.
69

±
0.

02
0.

76
±

0.
02

0.
48

±
0.

02
0.

15
±

0.
03

0.
97

±
0.

01
0.

54
±

0.
03

0.
50

±
0.

02

T
ra

n
sf

or
m

er
s

0.
95

±
0.

01
0.

76
±

0.
02

0.
71

±
0.

01
0.

80
±

0.
01

0.
70

±
0.

02
0.

94
±

0.
01

0.
71

±
0.

03
0.

30
±

0.
02

G
R

U
+

T
ra

n
sf

or
m

er
s

0
.9
6
±
0
.0
6

0
.9
6
±
0
.1
5

0
.9
0
±
0
.3
0

0
.9
3
±
0
.2
0

0
.9
0
±
0
.0
4

0
.9
8
±
0
.0
1

1
.0
0
±
0
.2
2

0
.9
2
±
0
.3
0

F
1-

S
co

re
G

R
U

0.
93

±
0.

02
0.

62
±

0.
02

0.
79

±
0.

02
0.

63
±

0.
02

0.
16

±
0.

03
0.

93
±

0.
01

0.
61

±
0.

03
0.

50
±

0.
02

T
ra

n
sf

or
m

er
s

0.
94

±
0.

02
0.

81
±

0.
02

0.
78

±
0.

01
0.

84
±

0.
01

0.
70

±
0.

02
0.

95
±

0.
01

0.
78

±
0.

03
0.

30
±

0.
02

G
R

U
+

T
ra

n
sf

or
m

er
s

0
.9
7
±
0
.0
4

0
.9
8
±
0
.0
9

0
.9
5
±
0
.3
0

0
.9
3
±
0
.1
8

0
.9
0
±
0
.0
4

0
.9
8
±
0
.1
7

0
.8
8
±
0
.2
0

0
.9
5
±
0
.3
0

T
a
b
le

5
.1
5
.

P
re

ci
si

on
,

re
ca

ll
,

an
d

F
1

sc
or

e
p

er
cl

as
s

fo
r

10
-f

ol
d

cr
os

s-
va

li
d

at
io

n
on

th
re

e
cl

as
si

fi
er

s
(G

R
U

,
T

ra
n

sf
or

m
er

s,
an

d
a

h
y
b

ri
d

of

G
R

U
an

d
T

ra
n

sf
or

m
er

s)
on

N
or

ib
en

op
er

at
io

n
s.

110

Figure 5.4. Confusion matrix among different malware families for a combi-

nation of GRU and Transformers.

Figure 5.5. ROC Curve for a combination of GRU and Transformers.

111

T
a
b
le

5
.1
6
.

C
ro

ss
-v

al
id

at
io

n
re

su
lt

s
af

te
r

h
y
p

er
p

ar
am

et
er

tu
n

in
g

on
d

iff
er

en
t

m
ax

to
ke

n
s

w
it

h
d

iff
er

en
t

se
q
u

en
ce

le
n

gt
h

s
fo

r
L

S
T

M
.

M
et

ri
cs

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

A
v
g.

A
C

C
0.

89
4±

0.
05

0.
92

7±
0.

07
0.

93
6±

0.
06

0.
88

0±
0.

05
0.

93
9±

0.
06

0.
93

4±
0.

06
0.

93
7±

0.
07

0.
93

2±
0.

07
0.

93
4±

0.
06

0.
92

8±
0.

08

A
v
g.

F
1

0.
89

9±
0.

05
0.

92
8±

0.
07

0.
93

8±
0.

06
0.

88
8±

0.
05

0.
93

9±
0.

06
0.

93
4±

0.
06

0.
93

7±
0.

07
0.

93
4±

0.
07

0.
93

3±
0.

07
0.

92
7±

0.
08

A
v
g.

M
A

E
0.

03
9±

0.
02

0.
02

4±
0.

02
0.

02
1±

0.
02

0.
03

5±
0.

01
0.

02
1±

0.
02

0.
02

3±
0.

01
0.

02
0±

0.
02

0.
02

2±
0.

02
0.

02
3±

0.
02

0.
02

3±
0.

02

A
v
g.

A
U

C
0.

98
7±

0.
01

0.
98

8±
0.

02
0.

98
8±

0.
02

0.
98

1±
0.

02
0.

98
8±

0.
03

0.
99

0±
0.

02
0.

99
1±

0.
02

0.
98

8±
0.

02
0.

99
0±

0.
02

0.
98

8±
0.

02

T
a
b
le

5
.1
7
.

C
ro

ss
-v

al
id

at
io

n
re

su
lt

s
af

te
r

h
y
p

er
p

ar
am

et
er

tu
n

in
g

on
d

iff
er

en
t

m
ax

to
ke

n
s

w
it

h
d

iff
er

en
t

se
q
u

en
ce

le
n

gt
h

s
fo

r
G

R
U

.

M
et

ri
cs

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

A
v
g.

A
C

C
0.

90
9±

0.
06

0.
92

5±
0.

06
0.

93
2±

0.
06

0.
92

8±
0.

05
0.

93
9±

0.
06

0.
93

4±
0.

06
0.

93
3±

0.
07

0.
93

6±
0.

06
0.

91
5±

0.
06

0.
93

3±
0.

07

A
v
g.

F
1

0.
90

6±
0.

06
0.

92
2±

0.
06

0.
93

2±
0.

06
0.

92
4±

0.
05

0.
93

7±
0.

06
0.

93
4±

0.
06

0.
93

6±
0.

07
0.

93
6±

0.
06

0.
91

4±
0.

07
0.

93
4±

0.
07

A
v
g.

M
A

E
0.

04
2±

0.
01

0.
02

9±
0.

01
0.

02
7±

0.
01

0.
03

5±
0.

02
0.

02
3±

0.
02

0.
02

2±
0.

01
0.

02
6±

0.
02

0.
02

1±
0.

01
0.

03
0±

0.
02

0.
02

2±
0.

02

A
v
g.

A
U

C
0.

97
8±

0.
03

0.
98

7±
0.

02
0.

98
9±

0.
01

0.
98

7±
0.

01
0.

98
9±

0.
02

0.
99

0±
0.

01
0.

98
7±

0.
02

0.
99

1±
0.

01
0.

98
7±

0.
02

0.
99

1±
0.

02

112

T
a
b
le

5
.1
8
.

C
ro

ss
-v

al
id

at
io

n
re

su
lt

s
af

te
r

h
y
p

er
p

ar
am

et
er

tu
n

in
g

on
d

iff
er

en
t

m
ax

to
ke

n
s

w
it

h
d

iff
er

en
t

se
q
u

en
ce

le
n

gt
h

s
fo

r
T

ra
n

sf
or

m
er

s.

M
et

ri
cs

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

A
v
g.

A
C

C
0.

81
7±

0.
04

0.
73

6±
0.

02
0.

83
5±

0.
04

0.
79

1±
0.

04
0.

76
7±

0.
03

0.
73

9±
0.

03
0.

73
7±

0.
03

0.
73

6±
0.

03
0.

70
9±

0.
04

0.
81

7±
0.

04

A
v
g.

F
1

0.
82

3±
0.

03
0.

71
5±

0.
02

0.
83

2±
0.

05
0.

79
2±

0.
04

0.
76

3±
0.

03
0.

72
9±

0.
02

0.
73

3±
0.

03
0.

66
6±

0.
03

0.
68

9±
0.

04
0.

81
7±

0.
04

A
v
g.

M
A

E
0.

06
4±

0.
01

0.
10

9±
0.

01
0.

05
8±

0.
01

0.
06

8±
0.

01
0.

08
0±

0.
01

0.
09

6±
0.

01
0.

09
5±

0.
01

0.
11

0±
0.

01
0.

11
0±

0.
01

0.
06

0±
0.

01

A
v
g.

A
U

C
0.

97
0±

0.
01

0.
93

7±
0.

01
0.

97
3±

0.
01

0.
95

6±
0.

01
0.

96
2±

0.
01

0.
94

9±
0.

01
0.

94
8±

0.
01

0.
94

3±
0.

01
0.

94
2±

0.
01

0.
97

5±
0.

01

T
a
b
le

5
.1
9
.

C
ro

ss
-v

al
id

at
io

n
re

su
lt

s
af

te
r

h
y
p

er
p

ar
am

et
er

tu
n

in
g

on
d

iff
er

en
t

m
ax

to
ke

n
s

w
it

h
d

iff
er

en
t

se
q
u

en
ce

le
n

gt
h

s
fo

r
F

C
N

N
.

M
et

ri
cs

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

A
v
g.

A
C

C
0.

82
8±

0.
04

0.
81

4±
0.

03
0.

80
3±

0.
02

0.
78

9±
0.

02
0.

78
9±

0.
02

0.
82

2±
0.

02
0.

81
0±

0.
03

0.
78

6±
0.

02
0.

77
8±

0.
02

0.
81

0±
0.

03

A
v
g.

F
1

0.
83

1±
0.

04
0.

81
5±

0.
03

0.
79

7±
0.

03
0.

77
2±

0.
02

0.
78

8±
0.

03
0.

82
1±

0.
02

0.
81

0±
0.

02
0.

78
5±

0.
03

0.
77

0±
0.

02
0.

81
1±

0.
03

A
v
g.

M
A

E
0.

06
2±

0.
01

0.
06

7±
0.

01
0.

07
7±

0.
01

0.
08

5±
0.

01
0.

08
0±

0.
01

0.
06

6±
0.

01
0.

07
0±

0.
01

0.
08

6±
0.

01
0.

09
1±

0.
01

0.
07

2±
0.

01

A
v
g.

A
U

C
0.

97
3±

0.
01

0.
97

3±
0.

01
0.

96
3±

0.
01

0.
96

1±
0.

01
0.

95
8±

0.
01

0.
97

1±
0.

01
0.

96
6±

0.
01

0.
95

8±
0.

01
0.

95
4±

0.
01

0.
96

6±
0.

01

113

T
a
b
le

5
.2
0
.

C
ro

ss
-v

al
id

at
io

n
re

su
lt

s
af

te
r

h
y
p

er
p

ar
am

et
er

tu
n

in
g

on
d

iff
er

en
t

m
ax

to
ke

n
s

w
it

h
d

iff
er

en
t

se
q
u

en
ce

le
n

gt
h

s
fo

r

G
R

U
+

T
ra

n
sf

or
m

er
s.

M
et

ri
cs

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

A
v
g.

A
C

C
0.

92
6±

0.
06

0.
92

6±
0.

05
0.

88
0±

0.
04

0.
89

8±
0.

05
0.

93
6±

0.
06

0.
93

4±
0.

06
0.

93
4±

0.
06

0.
93

2±
0.

07
0.

93
5±

0.
07

0.
93

6±
0.

06

A
v
g.

F
1

0.
92

7±
0.

06
0.

92
6±

0.
05

0.
87

8±
0.

04
0.

89
9±

0.
05

0.
93

6±
0.

06
0.

93
5±

0.
06

0.
93

6±
0.

06
0.

93
2±

0.
07

0.
93

6±
0.

07
0.

93
7±

0.
06

A
v
g.

M
A

E
0.

02
6±

0.
01

0.
02

7±
0.

01
0.

05
2±

0.
01

0.
04

0±
0.

01
0.

02
0±

0.
02

0.
02

0±
0.

02
0.

02
0±

0.
02

0.
02

4±
0.

02
0.

02
1±

0.
02

0.
02

1±
0.

02

A
v
g.

A
U

C
0.

99
3±

0.
01

0.
99

0±
0.

02
0.

98
4±

0.
02

0.
98

3±
0.

01
0.

99
0±

0.
02

0.
99

1±
0.

02
0.

99
0±

0.
02

0.
99

1±
0.

02
0.

99
1±

0.
01

0.
99

1±
0.

01

T
a
b
le

5
.2
1
.

C
ro

ss
-v

al
id

at
io

n
re

su
lt

s
af

te
r

h
y
p

er
p

ar
am

et
er

tu
n

in
g

on
d

iff
er

en
t

m
ax

to
ke

n
s

w
it

h
d

iff
er

en
t

se
q
u

en
ce

le
n

gt
h

s
fo

r

F
C

N
N

+
T

ra
n

sf
or

m
er

s.

M
et

ri
cs

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

A
v
g.

A
C

C
0.

82
6±

0.
03

0.
90

6±
0.

06
0.

94
3±

0.
07

0.
88

4±
0.

06
0.

88
3±

0.
06

0.
82

8±
0.

06
0.

86
8±

0.
05

0.
83

7±
0.

04
0.

86
6±

0.
05

0.
88

3±
0.

06

A
v
g.

F
1

0.
82

0±
0.

03
0.

90
5±

0.
06

0.
94

3±
0.

07
0.

88
7±

0.
06

0.
88

5±
0.

06
0.

82
9±

0.
06

0.
87

0±
0.

05
0.

83
4±

0.
04

0.
86

3±
0.

06
0.

87
7±

0.
06

A
v
g.

M
A

E
0.

06
0±

0.
01

0.
03

5±
0.

01
0.

01
9±

0.
02

0.
04

6±
0.

01
0.

04
1±

0.
01

0.
06

8±
0.

01
0.

04
6±

0.
01

0.
06

7±
0.

01
0.

05
0±

0.
01

0.
05

4±
0.

01

A
v
g.

A
U

C
0.

97
5±

0.
01

0.
98

5±
0.

02
0.

99
2±

0.
02

0.
98

5±
0.

02
0.

98
5±

0.
01

0.
97

6±
0.

02
0.

98
3±

0.
02

0.
97

1±
0.

01
0.

97
9±

0.
02

0.
98

5±
0.

01

114

Figure 5.6. A comparison of accuracy among sequence models with LSTM

and a hybrid model of Transformers and GRU exhibited very similar trends.

In contrast, GRU had an upward trend, but dropped when a sequence length

was 9000, and then up again.

Figure 5.7. A comparison of the F1 score among sequence models by almost

all classifiers showed the same movement as test accuracy except for Trans-

formers, which had a different pattern after the sequence length was 4000.

5.4 Discussion

We used dynamic analysis to extract Noriben sequences and then preprocessed

and fed them into eight classifiers to predict malware categories. Based on a

115

Figure 5.8. A comparison of MAE among sequence models with Transformers

had the highest error value. LSTM and GRU had the least MAE values, which

had a downward trend for a sequence length between 1000 and 4000. While

a combination of Transformers had an opposite direction, it nearly stayed the

same as LSTM after passing a 4000 in length.

Figure 5.9. A comparison of the ROC Curve among sequence models with

LSTM, GRU, and a combined Transformers and GRU shared a similar trend

since the sequence length is 5000.

116

consecutive sequence of Noriben operations, a hybrid architecture of a GRU

network and Transformers outperformed other approaches, yielding the highest

F1 score of 97%. This combination helped us obtain better results than sim-

pler architectures with only LSTM or GRU. Thus, taking dynamic sequences

captured from Noriben Python script as a model’s input can provide excellent

predictive results. While dynamic analysis information was essential, we only

looked at Noriben operations, which contained information on activities cap-

tured during malware execution. One limitation of our approach was that some

applications encrypted their log files during the experiment, making extracting

raw sequences impossible. In addition to our dynamic Noriben sequences, we

applied our classifiers to the imbalanced public dataset of [116]. The results

showed that our models could correctly classify malware producing high val-

ues for all evaluation metrics. For further improvement, we would need a large

number of samples with more diversity and augment them with other dynamic

artifacts to obtain more feature sets.

Chapter 6

Multiclass Malware

Classification using either Static

Opcodes or Dynamic API Calls

This chapter presents an automated method using static analysis for extracting

opcode sequences of a length of up to 5000 for 4000 samples, and employing

these sequences for classifying potential malware into eight classes, namely ran-

somware, trojan, backdoor, rootkit, virus, miner, benign, and other. We also

compare our work with a public malware dataset that comprised more than

7000 samples in the sequence length of 342 API calls from eight different mal-

ware families. Seven different classifiers are employed to train these datasets:

RF, XGB, MLP, LSTM, GRU, Transformers, and a combination of GRU and

Transformers. Acquiring static data from mnemonic instructions (opcodes) be-

comes prevalent to prevent damage from execution. It could provide a holistic

view of the application statically on what operation to perform, even though

manipulating address parameters and changes in the execution flow could be

obstacles. Obtaining opcode sequences could be conducted by both static and

dynamic analysis [120,121]. Nevertheless, it is less time-consuming to extract

them via static analysis because it can provide an overall picture of what the

program looks like without execution. For dynamic analysis, extracting API

118

calls is the most popular for security researchers to observe functions during

runtime.

6.1 Data Collection and Preprocessing

6.1.1 Opcodes

We focus on “BaseOfCode”, a relative offset of code in code sections (.text)

loaded into the memory. First, we disassemble the application. Then, the

opcode sequences are carved out from the address of the .text section until the

end of the file. Lastly, these sequences are analyzed to identify the behavior

statically. The applications used in this experiment are implemented by: UPX

(Ultimate Packer for eXececutables), .NET assemblies by Microsoft .Net CLI

and Mono, and Zlib compression. An opcode is a part of a machine instruction

that determines the function to be executed by a machine. Each instruction

operated on operands that could be stored in registers, memory, or constants.

The experimental dataset is collected from publicly available sources, com-

prising 32561 malicious files and 7442 benign samples. The labels are obtained

by submitting the files to VirusTotal [106] and using at least five or more anti-

virus engines to assign a class label. The application would be assigned to

the ““other” class if it is not in one of the seven categories. Before training

sequences by learning models, TextVectorization from Tensorflow [53] is used

for preprocessing the opcode sequences.

All missing values are replaced using Scikit-Learn’s SimpleImputer [54],

using the constant strategy with a default fill value. Figure 6.2 shows the per-

centages of missing values per column. The int sequence mode is set to integer

indices, one integer index per token. Also, we set a max token with 5000 vo-

cabulary sizes and the output sequence length to 500. Then an ‘adapt’method

is called on a full dataset to create an index on the vocabulary. We put

1Downloads from VirusShare [90] and URLhaus [122]
2Downloads from FileHorse [108]

119

each opcode per column for all samples by indexing numbers from 1 to 5000

(n1,n2,...,n5000). The opcode for each column can be any value, which means

any operations in the first position. Figure 6.1 shows the system architecture

of such an automated data extraction process.

Figure 6.1. High-level diagram of our Opcodes Extraction.

Moreover, we present the statistics in terms of the minimum and the max-

imum number of total samples, grouped by each type. To select the top 20

MLP significant features, SHapley Additive exPlanations (SHAP) [52] is used.

The DeepSHAP function from the open-source Python package [109] is ap-

plied. First, the learning model is trained on the initial set of features, and

each feature’s importance is obtained by comparing model predictions with

and without the feature on trained data. Each feature’s SHAP importance

is computed individually by taking the average of the absolute SHAP values

across the data and then sorting them in descending order according to their

120

Figure 6.2. The bar plot displays the percentage of missing data continuously

increasing by sequence length from 1 to 100.

importance, before the 20 attributes with the most significant impact were

chosen. The details are depicted in Table 6.1. For instance, the first selected

feature for ransomware is “n1”, while “n68” was for trojan. The opcodes could

be any mov, push, sub, movsx, jmp, std, daa, dec.

Figure 6.3 presents a summary plot of the top Shapley values. According to

their importance, the “n1” feature has the most impact on the model output,

and “n55” is a shared feature that could be seen across all categories. For “n7”,

“n13”, “n31”, “n36”, “n58”, “n59”, “n63”, “n70”, “n66”, “n78”, “n86”, “n90”,

“n95”, “n105”, “n309”, “n399” features, they are rarely used, particularly the

lowest number being in virus class. Additionally, the top 3 opcodes for “n1”

and “n55” features are listed with the total number of occurrences per class in

Table 6.2. Overall, “push” is discovered in all four families, followed by “add”

instruction.

121

Table 6.1. The top 20 features from SHAP selection on opcode sequences for

each category with “n1” and “n55” exist across all these categories.

Type

Minimum/#

of samples

with 5,000

tokens

Total SHAP Selected Features

Ransom-

ware
1/90 194

[n1, n95, n3, n44, n115, n134, n50, n23, n5,

n120, n10, n4, n152, n105, n40, n55, n2, n12,

n45, n14]

Trojan 1/426 2570

[n68, n50, n5, n23, n120, n1, n152, n55, n44,

n399, n115, n31, n25, n78, n40, n59, n45,

n14, n66, n4]

Miner 4/63 135

[n50, n12, n3, n44, n45, n1, n55, n4, n2, n56,

n115, n14, n5, n309, n8, n13, n11, n17, n33,

n15]

Virus 1/26 126

[n291, n230, n170, n131, n3, n25, n2, n4,

n408, n141, n209, n29, n115, n32, n411, n93,

n30, n55, n1, n181]

Rootkit 31/7 16

[n44, n45, n50, n58, n55, n68, n1, n4, n23,

n53, n3, n2, n18, n8, n15, n115, n63, n10,

n12, n56]

Backdoor 10/64 166

[n1, n55, n50, n5, n14, n23, n120, n33, n27,

n7, n152, n18, n49, n53, n40, n36, n56, n25,

n8, n6]

Benign 1/374 741

[n68, n50, n393, n55, n33, n44, n40, n14, n1,

n70, n224, n2, n6, n52, n90, n27, n49, n56,

n17, n86]

Other 1/17 52

[n55, n50, n393, n33, n1, n68, n40, n14, n23,

n2, n152, n52, n49, n6, n3, n18, n56, n4, n27,

n120]

6.1.2 API calls

In addition to opcodes, API call sequences are the most crucial part of the

behavioral-based analysis. In the work of Catak [123], Windows 7 API calls

from application execution in a Cuckoo sandbox were used, using 7107 mali-

cious samples collected from various GitHub pages with the git command-line

utility. Eight classes were tagged by VirusTotal [106] by searching the MD5

signatures. Five of them consisted of 1001 samples, including Worm, Virus,

Trojan, Backdoor, and Downloader, while the other three classes were Spy-

ware (832), Adware (379), and Dropper (891). The study’s objective was to

build a benchmark dataset for Windows API calls of metamorphic malware.

122

The changes in code signatures and environment recognition could conceal

their malicious behavior through anti-analysis techniques for malware analy-

sis [124]. Although this malware type with such capabilities hinders detection

and classification, observing unnecessary API calls could help detect malware

because of similar patterns.

The Windows API is an interface for developing applications on the Win-

dows operating system, in which the application could make a call to request

operating system services. Catak [123] converted their API calls to grayscale

images, generated a 3-channel image representing them for the application, and

then used CNN and LSTM as the classification algorithms to detect malware

families. The unique 342 API calls were such as ldrloaddll, ldrgetproceduread-

dress, and regopenkeyexa as a feature set. Regarding the results, the LSTM

network could provide an accuracy of up to 98.5% for multi-class classification.

With these public API calls, we perform SHAP selection on the dataset, and

the top 20 features are represented in Figure 6.4.

Figure 6.3. SHAP Summary Plot of

the top 20 features of opcodes for the

MLP.

Figure 6.4. SHAP Summary Plot

of the top 20 features of APIs for the

MLP.

123

Category n1 1 n1 2 n1 3 n55 1 n55 2 n55 3

Trojan add (457) mov (372) push (337) inc (190) mov (190) push (177)

Ransom push (69) mov (31) add (23) add (26) mov (23) push (21)

Miner mov (40) push (38) add (8) push (24) add (16) pop (14)

Benign push (237) nop (166) add (134) mov (207) idiv (118) inc (106)

Table 6.2. Top 3 opcodes for ransomware, trojan, miner, and benign class

for selected n1 and n55 features.

6.1.3 Combination of Noriben Sequences and Opcode

Sequences

We join Noriben sequences derived from chapter 5 with Opcode sequences

by matching filenames and obtained 1900 samples with a length of 10000 se-

quences. The samples are classified as Trojan (945), Benign (722), Ransom

(123), Miner (41), Backdoor (24), Virus (11), Rootkit (10), and Other (24).

VotingClassifier from Scikit-learn [54] is applied to these sequences by assem-

bling the predictions of multiple classifiers together and then voting on the

result to improve the performance of a predictive model. There are two types

of voting: (1) Hard voting predicts a class based on the highest majority of

votes, and (2) Soft voting predicts a label based on the largest probability

averaged by each classifier. In this study, we use soft voting, the average prob-

ability of all integrated classifiers to improve the classification performance of

integration of Noriben and Opcode sequences, including Random Forest, XG-

Boost, LSTM, GRU, Transformers, MLP, and a hybrid architecture between

GRU and Transformers.

6.2 Model architectures

This section introduces the seven machine learning algorithms employed for

malware detection, i.e., RF, XGBoost, MLP, LSTM, GRU, and Transformers.

Except for Random Forest and XGBoost, models are implemented using Ten-

124

sorFlow [53]. In order to obtain a good learning model, all hyperparameters

are tuned by utilizing Keras Tuner [56] to perform RandomSearch. The learn-

ing rate is reduced during the hyperparameter search space when the accuracy

metric had stopped improving for ten epochs (patience). The methodology

adopted for automating the opcode extraction, analysis, and malicious behav-

ior identification process is described. A 10-fold cross-validation approach is

used to prevent overfitting. In the table describing hyperparameter tuning,

model parameters are mainly represented in terms of a list. The elements in

the list identify the units and regularizers consistent with the number of lay-

ers configured for each model. Their respective details are presented in the

following subsections.

6.2.1 Random Forest

The Random Forest model is implemented using Scikit-Learn [54]. The model’s

hyperparameters are tuned using GridSearchCV with 10-fold cross-validation

to obtain the desired model. Micro-F1 is used as the objective to maximize the

grid search. The eight hyperparameters subject to the grid search, their re-

spective ranges of possible values, and the respective selected values achieving

the highest accuracy performance are presented in Table 6.3.

Table 6.3. Hyperparameter tuning for Random Forest Classifier on initial

features

Name
Initial

Parameters
Tuning Ranges

Opcode Best

Values

APIs Best

Values

n estimators 200 range(100,650,50) 100 600

criterion gini [‘gini’, ‘entropy’] gini entropy

max depth 14 range(6,20,2) 18 16

max features sqrt [‘sqrt’, ‘log2’] sqrt sqrt

bootstrap True [True, False] True True

min samples leaf 2 range(2,12,2) 4 4

min samples split 2 range(2,12,2) 10 6

max leaf nodes 30 range(15,55,5) 50 50

125

6.2.2 XGBoost

The XGBoost model is implemented using the XGBClassifier from Scikit-

Learn [54]. A grid search from Ray Tune [111] is performed to determine

a well-performing set of values for the hyperparameter search space. This

search uses ‘mlogloss’ (default for multiclass problems) and ‘AUC’ as the eval-

uation metrics to measure the classification performance. Table 6.4 presents

the five hyperparameters, their ranges of possible values, and the selected

best-performing values.

Table 6.4. Hyperparameter tuning for XGBoost Classifier on initial features

Name
Initial

Parameters
Value

Opcode Best

Values

APIs Best

Values

n estimators 200 range(100,650,50) 250 450

max depth 6 range(4,20,2) 14 16

learning rate/eta 0.001
[0.01, 0.02, 0.001, 0.002,

0.0001, 0.0002]
0.02 0.02

gamma 1.5
[0.8,1.0,1.5,2.0,

2.5,3.0,4.0,5.0]
1.5 3.0

min child weight 1 range(1,6,2) 1 1

6.2.3 MLP

We employ nonlinear activations, BatchNormalization, and regularizers to

avoid overfitting for the network architecture. First, a shape of sequences

is provided to an input layer, followed by two dense layers with dropout and

BatchNormalization layers. Then, consecutive multi-dense layers are inserted

before the final output layer, which consists of eight neurons densely connected

to the last batch normalization layer. In the network configuration, “swish”

is an activation function for all layers. The model loss is calculated based

on categorical cross-entropy. The accuracy and f1 score are computed as the

evaluation. To optimize hyperparameters, the model is fine-tuned as provided

in Table 6.5, and the best model obtained by RandomSearch is depicted in

Figure 6.5.

126

Figure 6.5. The best MLP as determined by RandomSearch in Tensorflow.

6.2.4 GRU and LSTM

GRU [62] and LSTM [118] are initiated with an embedding layer, followed by

a convolutional layer and a max-pooling layer. The number of filters in the

convolutional layer is 256, and the kernel size was 4 × 4 with no padding.

Furthermore, Dropout is added between two bi-directional3 CuDNNGRU and

CuDNNLSTM to prevent overfitting and a softmax layer is used to output the

malware family label. Figure 6.6 provides an overview of bidirectional GRU

and LSTM used for multi-class malware classification. The information about

hyperparameters, their ranges of possible values, and their selected values from

the RandomSearch is provided in Table 6.6, and the best model is displayed

in Figure 6.7.

6.2.5 Transformers

Transformers [55] is an attention-based encoder-decoder architecture focused

on different tokens while generating words to model opcode sequences. The

standard Transformers architecture described in [55] is applied for model con-

figuration, and the setup by the RandomSearch with the selected best values

is listed in Table 6.7.

127

Table 6.5. Hyperparameter tuning for MLP for Opcodes and API calls

Name Initial Value Tuning Ranges
Opcode Best

Value

APIs Best

Value

batch size 15 ranges(10,50,5) 50 30

epochs 200 ranges(100,600,50) 200 500

optimizer RMSprop
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
Adam RMSprop

learning

rate
0.0002

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

0.02 0.002

First Two

Dense

Layers

[512,256] range(256,1024,32) [704,704] [768,800]

Hidden

Layers in

Sequential

5 range(2,10) 4 6

Hidden

Neurons in

Sequential

[256,256,256,

256,256]
range(128,512,32) [320,224,288,192]

[448,256,480,

320,192,320]

bias

regularizer

[0.002, 0.001,

0.02]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.001,0.01,

0.002]

[0.02,0.0001,

0.002]

kernel

regularizer

[0.01,0.01,

0.02]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.02,0.01,

0.0001]

[0.001,0.0002,

0.0002]

kernel

constraint
[2.0,1.5,1.5] range(1,3,0.5) [2.5,1.5,2.0] [1.0,3.0,3.0]

activity

regularizer

[0.0001, 0.001,

0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0001, 0.02,

0.0001]

[0.0001,0.0001,

0.0001]

6.2.6 Combination of GRU and Transformers

This classifier is created as a combination of a GRU and a Transformers net-

work. It is a concatenation of the outputs of the last BatchNormalization

layer of the GRU and the final GlobalAveragePooling1D layer of the Trans-

formers and passed to a final softmax layer. The tuning information for this

combination is provided in Table 6.8.

6.3 Experimental Results

This section presents the results of our experiments for malware detection us-

ing opcode instructions for seven learning approaches. The evaluation metrics

128

Figure 6.6. Flowchart for GRU and LSTM

are accuracy, F1-measure, Mean Absolute Error (MAE), and Area Under the

receiver operating characteristic Curve (AUC) to measure the model perfor-

mance.

Table 6.9 lists results for running all algorithms with their default parame-

ter settings on static opcodes. Overall, XGB performed the best for all classi-

fiers by achieving an accuracy of 74%. In contrast, Transformers provided the

outstanding predictive result for dynamic API calls [125] with default model

parameters as shown in Table 6.10. In addition to opcode and API sequences,

the merging of Noriben and opcode sequences with their default parameters is

presented in Table 6.13. XGB again yielded the best result, similar to Table

6.9.

129

Figure 6.7. The best GRU as determined by Random-Search in Tensorflow.

Table 6.11 shows the improvements achieved by adequately tuning the

essential hyperparameters. The overall performance increased for all classifi-

cation models compared to the default performances from Table 6.9. With

the same model configuration as the default parameters, the GRU exhibited

the best performance results by reaching the maximum accuracy at 89%. The

figure represented the correct class, but the absolute error was 0.036. So a low

MAE implied higher average confidence.

In Table 6.12, hyperparameter tuning is conducted on dynamic API dataset

[125] on the same architecture as the static opcodes. In general, the perfor-

mance of all model approaches was obviously increased compared to Table 6.10.

The GRU could provide the best predictive result among other classifiers by

achieving an F1-score of 78%.

In addition, model parameters are tuned on the merged dataset. As shown

in Table 6.14, GRU produced the best result compared to other algorithms.

Moreover, this learning approach was the best classifier when trained on opcode

130

Table 6.6. GRU and LSTM hyperparameter tuning for API calls and Op-

codes.

Name Initial Tuning Ranges API calls (Best) Opcodes (Best)

Value GRU LSTM GRU LSTM

batch size 15 range(10,50,5) 25 20 30 50

epochs 200 range(100,650,50) 350 500 550 200

optimizer RMSprop

[‘Adam’,‘RMSprop’,

‘Adadelta’,

‘Adagrad’]

Adam Adadelta Adam RMSprop

learning

rate
0.0001

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

0.0002 0.02 0.0001 0.0001

embedding 128 ranges(256,1024,64) 448 640 768 704

embedding

regular-

izer

0.0001

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

0.0001 0.0001 0.0002 0.02

gru/lstm

units

[512,

256]
ranges(128,512,32)

[416,

288]

[288,

384]

[224,

512]

[288,

448]

recurrent

regular-

izer

[0.0001,

0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.01,

0.01]

[0.0001,

0.002]

[0.02,

0.0001]

[0.002,

0.0002]

kernel

regular-

izer

[0.001,

0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]]

[0.0002,

0.002]

[0.0001,

0.02]

[0.001,

0.0002]

[0.01,

0.02]

bias regu-

larizer

[0.01,

0.02]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.02,

0.01]

[0.002,

0.001]

[0.01,

0.01]

[0.0002,

0.02]

kernel

constraint
[2.0, 1.5] range(1,3,0.5)

[1.5,

2.0]
[2.0, 3.0] [1.5, 1.5] [1.5, 1.0]

activity

regular-

izer

[0.0001,

0.0002]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.002,

0.02]

[0.001,

0.0001]

[0.01,

0.0002]

[0.01,

0.01]

sequences alone. However, we ran an additional experiment using a soft voting

mechanism by integrating all classification models: RF, XGB, LSTM, GRU,

Transformers, MLP, and concatenation GRU with Transformers, and could

obtain better predictive performance with the highest accuracy at 96%.

We also analyze the detailed results of the classification report obtained by

the hyperparameters on static opcodes, dynamic API calls, and a combination

of Noriben and opcodes with soft voting. Their values are shown in Table

6.15. Remarkably, precision and recall on opcodes and a merged dataset were

more than 90% for Trojan. Nevertheless, Rootkit had the maximum standard

deviation compared to other categories, which meant data were more spread

131

Table 6.7. Hyperparameter tuning for Transformers for Opcodes and API

calls

Name
Initial

Value
Tuning Ranges

Opcode

Best Value

APIs Best

Value

batch size 10 range(10,30,5) 15 15

epochs 100 range(100,600,50) 250 250

optimizer Adam
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
Adam Adam

learning rate 0.0001

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

0.0002 0.0002

trans dim 512 ranges(512,2048,32) 832 640

num heads 8 ranges(6,14,2) 12 12

feed forward dim 512 ranges(1024,3172,32) 1536 1408

enc layer 5 ranges(2,10) 6 6

dec layer 5 ranges(1,10) 4 4

embedding

regularizer
[0.001, 0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0002,

0.0002]

[0.0002,

0.0002]

kernel

regularizer

[0.001,

0.001, 0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.01, 0.002,

0.0002]

[0.01, 0.002,

0.0002]

bias regularizer
[0.01, 0.02,

0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.001, 0.001,

0.0002]

[0.001, 0.001,

0.0002]

kernel

constraint
[2.0, 1.5, 1.0] range(1,3,0.5) [1.5, 2.5, 2.5] [1.5, 2.5, 2.5]

activity

regularizer

[0.001,

0.001, 0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001,

0.0002]

[0.0001,

0.01, 0.01]

[0.0001,

0.01, 0.01]

out in the dataset. Downloader had high precision and recall for API calls,

and high standard deviation could be observed for Dropper and Spyware.

In addition to the reports of the evaluation metrics, we present the total

elapsed time on the training default configuration and hyperparameter tuning

with ten maximum trials for each classifier. We use stratified 10-Folds cross-

validation using the GPU. Although RandomSearch considered not all possible

combinations, Transformers were the most prolonged hours for optimization,

as represented in Table 6.16.

Finally, Figure 6.8 is the confusion matrix that compared the predicted

and expected values. The classification errors were less than 2% except for

“Trojan” and “Other” class. We also generate ROC curves on opcodes as in

132

Table 6.8. Hyperparameter search space to tune the combining GRU and

Transformers model.

Name Initial Value Tuning Ranges
Best Value

(Noriben+Opcode)

batch size 15 ranges(10,50,5) 15

epochs 100 ranges(100,600,50) 400

optimizer RMSprop
[‘Adam’,‘RMSprop’,

‘Adadelta’,‘Adagrad’]
RMSprop

learning rate 0.002
[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
0.0002

embedding 256 range(256,1024,32) 800

embedding

regularizer
[0.001,0.001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
[0.0002,0.002,0.02]

gru units [512, 256] ranges(128,512,32) [320, 480]

recurrent

regularizer
[0.0001,0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]
[0.0002,0.01]

kernel

regularizer

[0.001,0.001,0.001,

0.001,0.01]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.01, 0.001, 0.001,

0.02, 0.0002]

bias regularizer
[0.01,0.02,0.01,0.01,

0.001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.02,0.02,0.0001,

0.01,0.002]

kernel

constraint

[2.0, 1.5, 1.5, 2.0,

1.0]
range(1,3,0.5)

[2.5, 1.0, 2.5, 3.0,

2.5]

activity

regularizer

[0.001,0.001,0.001,

0.001,0.0001]

[0.01, 0.02, 0.001,

0.002, 0.0001, 0.0002]

[0.002,0.0002,0.0001,

0.01,0.002]

trans dim 128 ranges(512,1024,32) 704

num heads 4 ranges(6,20,2) 8

feed forward dim 1024 ranges(1024,3172,128) 2176

enc layer 3 ranges(2,10) 7

dec layer 2 ranges(1,10) 2

Figure 6.9. It showed that all categories could yield an AUC value of almost

90%.

Table 6.9. Model Evaluation using default hyperparameter settings for op-

codes

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

RF 0.736±0.01 0.662±0.01 0.066 ±0.01 0.641±0.01

XGB 0.748±0.01 0.706±0.01 0.063±0.03 0.697±0.01

LSTM 0.723±0.03 0.723±0.03 0.081±0.01 0.921±0.01

GRU 0.709±0.04 0.708±0.05 0.085±0.01 0.918±0.01

Transformers 0.731±0.02 0.729±0.02 0.081±0.01 0.918±0.01

MLP 0.615±0.02 0.602±0.03 0.123±0.01 0.878±0.01

133

Table 6.10. Model Evaluation using default hyperparameter settings for API

calls [125]

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

RF 0.292±0.01 0.250±0.01 0.177±0.01 0.589±0.01

XGB 0.339±0.01 0.320±0.01 0.165±0.03 0.617±0.01

LSTM 0.449±0.02 0.461±0.02 0.146±0.01 0.802±0.01

GRU 0.426±0.02 0.444±0.03 0.148±0.01 0.775±0.01

Transformers 0.461±0.02 0.466±0.02 0.143±0.01 0.813±0.01

MLP 0.278±0.02 0.227±0.04 0.191±0.01 0.661±0.01

Table 6.11. Model Evaluation with average 10 fold cross-validation on hy-

perparameter tuning for opcodes

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

RF 0.747±0.01 0.684±0.01 0.063±0.01 0.664±0.01

XGB 0.745±0.01 0.709±0.01 0.064±0.03 0.705±0.01

LSTM 0.858±0.04 0.856±0.04 0.054±0.01 0.977±0.02

GRU 0.891±0.05 0.890±0.05 0.036±0.01 0.984±0.02

Transformers 0.818±0.03 0.807±0.03 0.077±0.01 0.971±0.02

MLP 0.765±0.02 0.768±0.02 0.087±0.01 0.942±0.01

Table 6.12. Model Evaluation with average 10 fold cross-validation on hy-

perparameter tuning on API calls [125]

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

RF 0.318±0.01 0.280±0.01 0.171±0.01 0.604±0.01

XGB 0.389±0.02 0.377±0.02 0.153±0.01 0.647±0.01

LSTM 0.635±0.06 0.642±0.07 0.117±0.01 0.915±0.04

GRU 0.736±0.09 0.783±0.11 0.075±0.02 0.945±0.05

Transformers 0.626±0.09 0.691±0.10 0.102±0.02 0.905±0.05

MLP 0.681±0.13 0.723±0.15 0.089±0.03 0.917±0.09

6.4 Discussion

We used open-source tools according to different compression methods to ex-

tract opcode sequences from a Windows PE file and then used developed mod-

els to predict categories. We initialized the extraction process by unpacking

such PE files and disassembling them. From the results of our experiments,

the GRU was the best classifier for malware classification, using only static

134

Table 6.13. Model Evaluation using default hyperparameter settings for a

combination of Noriben and Opcode Sequences

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

RF 0.770±0.02 0.721±0.02 0.057±0.01 0.794±0.01

XGB 0.803±0.03 0.784±0.03 0.049±0.01 0.831±0.02

LSTM 0.716±0.03 0.718±0.02 0.075±0.01 0.931±0.01

GRU 0.733±0.03 0.732±0.03 0.070±0.01 0.940±0.01

Transformers 0.665±0.07 0.666±0.07 0.089±0.02 0.903±0.02

MLP 0.739±0.03 0.725±0.05 0.086±0.01 0.944±0.01

GRU+Trans 0.749±0.02 0.750±0.01 0.067±0.01 0.945±0.01

Table 6.14. Model Evaluation with average 10 fold cross-validation on hy-

perparameter tuning on a combination of Noriben and Opcode Sequences

Algorithm Avg. Test Acc Avg. F1 Test Avg. MAE Avg.AUC

RF 0.779±0.02 0.735±0.02 0.055±0.01 0.801±0.01

XGB 0.807±0.03 0.790±0.03 0.048±0.01 0.837±0.03

LSTM 0.950±0.07 0.947±0.08 0.016±0.02 0.991±0.02

GRU 0.952±0.06 0.951±0.06 0.017±0.02 0.991±0.01

Transformers 0.948±0.06 0.948±0.06 0.017±0.02 0.991±0.01

MLP 0.899±0.06 0.901±0.06 0.038±0.01 0.982±0.02

GRU+Trans 0.949±0.07 0.948±0.07 0.015±0.02 0.993±0.01

Soft Voting 0.966±0.06 0.966±0.06 0.009±0.01 0.981±0.03

opcodes and dynamic API calls and a combination of static opcodes with

dynamic Noriben sequences. We also compared opcodes and API calls using

the same model parameters as default and performing hyperparameter tuning.

The predictive result of APIs was lower than opcodes for all algorithms; even

though the samples of public dynamic API calls were greater than opcodes,

they were similar to the imbalanced dataset. Furthermore, we joined Noriben

sequences as described in chapter 5 with opcode sequences. Sequence models

(LSTM, GRU, and Transformers) could achieve higher evaluation metrics than

Random Forest and XGBoost, at approximately 95%. An increase in perfor-

mance for the combined dataset was the highest by integrating all classifiers

and then using a soft voting mechanism to average the predictions. However,

due to programming languages and advanced metamorphic and polymorphic

malware techniques, opcodes may not be extracted by open-source disassem-

135

T
a
b
le

6
.1
5
.

P
re

ci
si

on
,

re
ca

ll
,

an
d

F
1

sc
or

e
p

er
cl

as
s

fo
r

10
-f

ol
d

cr
os

s-
va

li
d

at
io

n
of

op
co

d
es

an
d

A
P

I
ca

ll
s

u
si

n
g

G
R

U
an

d
a

so
ft

vo
ti

n
g

cl
as

si
fi

er
fo

r
a

co
m

b
in

ed
N

or
ib

en
an

d
O

p
co

d
e.

S
ta
ti
c
O
p
co
d
es

D
y
n
a
m
ic

A
P
I
ca
ll
s

C
o
m
b
in
ed

N
o
ri
b
en

a
n
d
O
p
co
d
e

P
re
ci
si
on

R
ec
al
l

f1
sc
or
e

P
re
ci
si
o
n

R
ec
a
ll

f1
sc
o
re

P
re
ci
si
o
n

R
ec
a
ll

f1
sc
o
re

B
en
ig
n

0.
90

±
0.
04

0.
87

±
0.
07

0.
88

±
0.
04

A
d
w
a
re

0
.9
9
±
0
.0
2

0
.6
7±

0
.0
7

0
.8
0±

0
.0
6

B
en
ig
n

0
.9
7
±
0
.0
5

0
.9
7±

0
.0
4

0
.9
7±

0
.0
5

B
ac
k
d
o
or

0.
81

±
0.
05

0.
69

±
0.
16

0.
74

±
0.
10

B
ac
k
d
o
o
r

0
.9
2±

0
.1
2

0
.6
8±

0
.1
0

0
.7
8±

0
.1
0

B
a
ck
d
o
o
r

0
.9
6±

0
.0
7

1
.0
0±

0
.0
0

0
.9
8±

0
.0
4

M
in
er

0.
80

±
0.
17

0.
81

±
0.
14

0.
80

±
0.
14

D
ow

n
lo
a
d
er

0
.9
4
±
0
.0
8

0
.8
2±

0
.1
0

0
.8
8±

0
.0
9

M
in
er

0
.9
7±

0
.1
5

0
.8
5±

0
.2
4

0
.9
1±

0
.2
1

R
an

so
m

0.
92

±
0.
25

0.
74

±
0.
23

0.
82

±
0.
23

D
ro
p
p
er

0
.9
4
±
0
.1
1

0
.7
1±

0
.1
4

0
.8
1±

0
.1
3

R
a
n
so
m

0
.9
7
±
0
.0
9

0
.9
0±

0
.2
4

0
.9
4±

0
.2
1

R
o
ot
k
it

0.
90

±
0.
46

0.
56

±
0.
33

0.
69

±
0.
36

S
p
y
w
a
re

0
.8
8
±
0
.1
6

0
.6
4±

0
.1
1

0
.7
4±

0
.1
2

R
o
o
tk
it

1
.0
0
±
0
.4
0

0
.8
0±

0
.4
0

0
.8
9±

0
.4
0

T
ro
ja
n

0.
90

±
0.
04

0.
95

±
0.
03

0.
93

±
0.
03

T
ro
ja
n

0
.9
0
±
0
.1
3

0
.6
6±

0
.1
0

0
.7
6±

0
.1
1

T
ro
ja
n

0
.9
7±

0
.0
5

0
.9
9±

0
.0
2

0
.9
8±

0
.0
4

V
ir
u
s

0.
88

±
0.
27

0.
48

±
0.
18

0.
62

±
0.
20

W
o
rm

0
.9
6±

0
.0
6

0
.6
4±

0
.0
9

0
.7
7±

0
.0
8

V
ir
u
s

0
.6
4
±
0
.3
2

0
.8
2±

0
.3
2

0
.7
2±

0
.3
1

O
th
er

0.
88

±
0.
40

0.
42

±
0.
12

0.
57

±
0.
18

V
ir
u
s

0
.9
2±

0
.1
4

0
.6
1±

0
.1
0

0
.7
3±

0
.1
1

O
th
er

1
.0
0
±
0
.3
0

0
.7
1±

0
.3
1

0
.8
3±

0
.2
9

T
a
b
le

6
.1
6
.

T
ra

in
in

g
ti

m
e

fo
r

ea
ch

al
go

ri
th

m
on

S
ta

ti
c

O
p

co
d

es
an

d
D

y
n

am
ic

A
P

I
ca

ll
s

A
lg
or
it
h
m

D
ef
au

lt
O
p
co
d
e

O
p
co
d
e

N
o.
of

tu
n
in
g

D
ef
a
u
lt

A
P
I

A
P
I

N
o
.o
f
tu
n
in
g

D
ef
a
u
lt
N
o
ri
+
O
P
S

N
o
ri
+
O
P
S

N
o
.o
f
tu
n
in
g

T
ra
in
in
g

T
u
n
in
g

p
ar
am

et
er
s

T
ra
in
in
g

T
u
n
in
g

p
a
ra
m
et
er
s

T
ra
in
in
g

T
u
n
in
g

p
a
ra
m
et
er
s

R
F

28
m

43
h
:3
2m

8
(g
ri
d
)

1
m

5
3
h
:2
5
m

8
(g
ri
d
)

2
m

4
9
h
:5
0
m

8
(g
ri
d
)

X
G
B

16
m

7h
:2
9m

5
(g
ri
d
)

1
m

1
7
h
:1
9
m

5
(g
ri
d
)

4
m

1
4
h
:4
7
m

5
(g
ri
d
)

L
S
T
M

3h
:2
0m

4h
:5
2m

12
(r
an

d
om

)
1
7
h
:4
8
m

2
0
h
:1
6
m

1
2
(r
a
n
d
o
m
)

2
h
:2
4
m

3
h
:3
9
m

1
2
(r
a
n
d
o
m
)

G
R
U

3h
:0
4m

4h
:3
9m

12
(r
an

d
om

)
1
7
h
:2
5
m

1
9
h
:4
8
m

1
2
(r
a
n
d
o
m
)

2
h
:2
2
m

3
h
:2
4
m

1
2
(r
a
n
d
o
m
)

T
ra
n
sf
or
m
er
s

35
h
:4
1m

47
h
:3
0m

14
(r
an

d
om

)
2
7
h
:3
7
m

4
4
h
:4
1
m

1
4
(r
a
n
d
o
m
)

1
3
h
:1
0
m

5
2
h
:4
8
m

1
4
(r
a
n
d
o
m
)

M
L
P

1h
:0
8m

2h
:4
9m

11
(r
an

d
om

)
2
h
:2
5
m

4
h
:1
8
m

1
1
(r
a
n
d
o
m
)

3
2
m

1
h
:2
9
m

1
1
(r
a
n
d
o
m
)

136

Figure 6.8. Confusion matrix among different malware families for opcodes

with a GRU

Figure 6.9. ROC Curve for a GRU on opcodes

bling tools. Some codes could be missing, and some parts were not interpreted

as functions, so decompiling tools could not detect them. Junk codes ap-

pended in the code section or added in the packer could render the decompiler

137

as broken. Also, encryption application code could be an obstacle to static

analysis. Consequently, the obtained opcodes could be incomplete data and

contain false positives. Our analysis used consecutive static opcode sequences

only to classify categories and not include discovering malware patterns. To

be more specific, the top three opcodes from feature selection indicated each

type’s frequency of occurrence from our samples.

Chapter 7

Conclusion

This thesis began by providing information about utilizing machine learning

techniques in malware and considered predicting labels as a binary and multi-

class classification problem. The main contributions are using data collection

from static and dynamic analysis to characterize and predict class labels by

preprocessing data to create feature sets and benchmark different machine

learning approaches using only static and dynamic features, their combination,

and sequences. We conducted several experiments to achieve two main goals:

• Improving standard classifiers for predicting classes from static and dy-

namic artifacts as a binary classification problem.

• Improving the accuracy of predictions of malware categories for long

Noriben and Opcode sequences.

Regarding the first point, we collected data from static and dynamic anal-

ysis and arranged them into three datasets: (1) static data, (2) dynamic data,

and (3) combined data. We used a Python “pefile” [30] library to carve

out static attributes and acquire dynamic data from HybridAnalysis [47] aug-

mented with memory analysis. Moreover, SHAP feature selection [52] is ap-

plied to a full set of static and dynamic attributes. All three datasets used two

experiments–with and without the SHAP selection method. A neural network

was the best classifier that provided accuracy at approximately 97% for both

139

experiments. Combining static and dynamic artifacts could improve classifi-

cation performance instead of providing only static and dynamic datasets as

model inputs. For feature selection, the predictive result was rather close to

using the full set of the dynamic and combined datasets.

We had two datasets to achieve the second goal: (1) static opcodes and (2)

dynamic Noriben sequences. On the one hand, three compression algorithms

were considered to extract information from static data. On the other hand,

Noriben [51] script was placed on the victim machine to capture application

activities and extract sequences from log files. The aim was to categorize these

sequences into eight classes. Regarding the results, a GRU outperformed the

other algorithms for the first dataset, while a hybrid approach between GRU

and Transformers was the best for the second dataset.

7.1 Future Research Directions

The research presented here suggests a number of directions for future works.

This section discusses some limitations of the thesis and possible research ex-

tensions. There are still some things that need to be addressed in future work.

Most importantly, some ransomware applications encrypted Noriben’s out-

put during runtime, making inaccessible application operations. To obtain a

comprehensive view of all malicious functionality, examine network connection

properties and contents to help discover how it is spreading, such as the C2

mechanics or downloader details, and payload delivery would need to be added

for investigation. We also intend to collect more malware samples to apply our

methods to a larger dataset to verify model effectiveness. The directions of

future works can be described below.

• Multi-Label classification: A sample may belong to multiple labels

when making predictions instead of one class during the classification

task. For example, one sample can belong to trojan and spyware. Multi-

labels could be assigned to a given malware in a malware category, such

140

as using common antivirus engines by uploading binaries and obtain-

ing different labels as return values. Different engines could provide

distinct labels. For example, Trojan’s family could be named Emolet,

Multi.Accesstr, and Downloader. One malware could have similar char-

acteristics to others in terms of causing damage to the system or way

of infection. That means one sample could be associated with several

families. However, providing accurate label outputs requires sophisti-

cated knowledge from various security engines and applying learning

approaches to categorize them.

• Graph Neural Network: As a sequence extracted from binaries, we

could use these sequences to observe behavioral graphs. In the work

of [114], the DGCNN architecture can be replicated to apply to our

multiclass malware classification. Based on many open-source libraries

for graph neural networks, such as the Spektral Python library [126],

GNNs [127] could be built to perform graph classification to make predic-

tions at the level of nodes, edges, or entire graphs. GNNs could discover

insights in a network without creating false connections by analyzing re-

lationships between features (nodes). A feature matrix (N*d) is formed

by stacking feature vectors to create nodes. The value of “N” repre-

sented the number of rows (samples), while the value of “d” represented

the number of features. One-hot encoding replaced categorical features

with binary values to generate an adjacency matrix (edges) and then

generated an undirected graph.

• Reinforcement Learning: In general, reinforcement learning [128] is a

framework for sequential decision-making (e.g. gameplay, machine trans-

lation) and learning from successive experiments. However, reinforce-

ment learning could be applied to classification problems by enabling an

agent to take suitable actions in an environment to maximize cumula-

tive rewards. For instance, Q-Learning [129] is a model-free reinforce-

141

ment learning algorithm that used the current state to make predictions.

It estimated an action taken in a state directly from the interaction

between the agent and the environment. To be more specific, the envi-

ronment could be customized and allowed the agent to learn and solve

the problem. A comparison between action from the epsilon-greedy pol-

icy [130] and the expected action is conducted to obtain the reward for

the current state. The reward is given to one when correctly predicting

the class (identical between predicted and expected value); otherwise,

a minus one is assigned for failure (unidentical between predicted and

expected value). So, the agent would take a series of actions to achieve

the maximum cumulative reward.

• Time Series Forecasting: We could expand collecting data samples

by time series and use them as inputs for sequence models. Given time-

based data, machine learning could analyze and generate good forecasts.

For the static analysis, the binaries could be sorted by creation time

(timestamp) or file modification time by using ExifTool [98] to extract file

metadata and then flag it as malware. At the same time, the data could

be a sequence of command lines and scripts extracted from Windows

Event log entries for dynamic analysis.

References

[1] Ken Kizzee. Cyber attack statistics to know in 2023, Apr 2023. https:

//parachute.cloud/cyber-attack-statistics-data-and-trends/.

[2] Muchammad Naseer, Jack Febrian Rusdi, Nuruddeen Musa Shanono,

Sazilah Salam, Zulkiflee Bin Muslim, Nur Azman Abu, and Iwan Abadi.

Malware detection: issues and challenges. In Journal of Physics: Con-

ference Series, volume 1807, page 012011. IOP Publishing, 2021.

[3] Ferhat Ozgur Catak, Ahmet Faruk Yazı, Ogerta Elezaj, and Javed

Ahmed. Deep learning based sequential model for malware analysis using

windows exe api calls. PeerJ Computer Science, 6:e285, 2020.

[4] Danish Vasan, Mamoun Alazab, Sobia Wassan, Hamad Naeem, Babak

Safaei, and Qin Zheng. Imcfn: Image-based malware classification using

fine-tuned convolutional neural network architecture. Computer Net-

works, 171:107138, 2020.

[5] Miles Q Li, Benjamin CM Fung, Philippe Charland, and Steven HH

Ding. I-mad: Interpretable malware detector using galaxy transformer.

Computers & Security, 108:102371, 2021.

[6] Michael Sikorski and Andrew Honig. Practical Malware Analysis: The

Hands-On Guide to Dissecting Malicious Software. No Starch Press,

USA, 1st edition, 2012.

[7] Prabhu Seshagiri, Anu Vazhayil, and Padmamala Sriram. Ama: static

code analysis of web page for the detection of malicious scripts. Procedia

Computer Science, 93:768–773, 2016.

[8] Doaa Wael, Samir G Sayed, and Nashwa AbdelBaki. Enhanced approach

to detect malicious vbscript files based on data mining techniques. Pro-

cedia Computer Science, 141:552–558, 2018.

[9] Peyman Khodamoradi, Mahmood Fazlali, Farhad Mardukhi, and Ma-

soud Nosrati. Heuristic metamorphic malware detection based on statis-

tics of assembly instructions using classification algorithms. In 2015

143

18th CSI International Symposium on Computer Architecture and Digi-

tal Systems (CADS), pages 1–6. IEEE, 2015.

[10] Alireza Khalilian, Amir Nourazar, Mojtaba Vahidi-Asl, and Hassan

Haghighi. G3md: Mining frequent opcode sub-graphs for metamorphic

malware detection of existing families. Expert Systems with Applications,

112:15–33, 2018.

[11] James B Fraley and Marco Figueroa. Polymorphic malware detection

using topological feature extraction with data mining. In SoutheastCon

2016, pages 1–7. IEEE, 2016.

[12] Anusha Damodaran, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H

Austin, and Mark Stamp. A comparison of static, dynamic, and hybrid

analysis for malware detection. Journal of Computer Virology and Hack-

ing Techniques, 13:1–12, 2017.

[13] Favio Vázquez. The data fabric for machine learning. part 1., Jan 2019.

[14] Mahmoud Kalash, Mrigank Rochan, Noman Mohammed, Neil DB

Bruce, Yang Wang, and Farkhund Iqbal. Malware classification with

deep convolutional neural networks. In 2018 9th IFIP international con-

ference on new technologies, mobility and security (NTMS), pages 1–5.

IEEE, 2018.

[15] 5fingers Yuval Nativ, Lahad Ludar. thezoo - a live malware repository,

Jan 2015.

[16] Richard Harang and Ethan M Rudd. Sorel-20m: A large scale benchmark

dataset for malicious pe detection. arXiv preprint arXiv:2012.07634,

2020.

[17] NetMarketShare. Net marketshare: Operating system market share, Jun

2022.

[18] Paloalto. Cryptominers.

[19] Cybersecurity and Infrastructure Security Agency (CISA). Protect-

ing sensitive and personal information from ransomware-caused data

breaches, 2021.

[20] Veracode. Rootkit: What is a rootkit?

[21] Malwarebytes. Trojan horse – virus or malware?

144

[22] Malak Abdullah I Almarshad, Mohssen MZE Mohammed, and Al-

Sakib Khan Pathan. Detecting zero-day polymorphic worms with jaccard

similarity algorithm. International Journal of Communication Networks

and Information Security, 8(3):203, 2016.

[23] TechTarget. backdoor (computing).

[24] Kyoung Soo Han, Jae Hyun Lim, Boojoong Kang, and Eul Gyu Im. Mal-

ware analysis using visualized images and entropy graphs. International

Journal of Information Security, 14(1):1–14, 2015.

[25] Aziz Makandar and Anita Patrot. Malware analysis and classification us-

ing artificial neural network. In 2015 International conference on trends

in automation, communications and computing technology (I-TACT-15),

pages 1–6. IEEE, 2015.

[26] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. Amal: high-fidelity,

behavior-based automated malware analysis and classification. comput-

ers & security, 52:251–266, 2015.

[27] Reinaldo Jose Mangialardo and Julio Cesar Duarte. Integrating static

and dynamic malware analysis using machine learning. IEEE Latin

America Transactions, 13(9):3080–3087, 2015.

[28] Matt Pietrek. An in-depth look into the win32 portable executable file

format, part 2. MSDN Magazine, March, 2002.

[29] M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar Fa-

rooq. Pe-miner: Mining structural information to detect malicious ex-

ecutables in realtime. In International workshop on recent advances in

intrusion detection, pages 121–141. Springer, 2009.

[30] Ero Carrera. Python pe parsing module, May 2022.

[31] Ajit Kumar. A framework for malware detection with static features

using machine learning algorithms. PhD thesis, Department of Computer

Science, Pondicherry University, 2017.

[32] Hyungjoon Koo (Kevin). Kevin’s attic for security research. https:

//dandylife.net/blog/archives/388, 2015. Accessed: 2019-06-06.

[33] André Ricardo Abed Grégio, Paulo Ĺıcio de Geus, Christopher Kruegel,

and Giovanni Vigna. Tracking memory writes for malware classification

and code reuse identification. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, pages 134–

143. Springer, 2012.

145

[34] Jakub Paľsa, Norbert Ádám, Ján Hurtuk, Eva Chovancová, Branislav

Madoš, Martin Chovanec, and Stanislav Kocan. Mlmd—a malware-

detecting antivirus tool based on the xgboost machine learning algo-

rithm. Applied Sciences, 12(13):6672, 2022.

[35] Joshua Saxe and Konstantin Berlin. expose: A character-level convolu-

tional neural network with embeddings for detecting malicious urls, file

paths and registry keys. arXiv preprint arXiv:1702.08568, 2017.

[36] Azadeh Jalilian, Zahra Narimani, and Ebrahim Ansari. Static signature-

based malware detection using opcode and binary information. In The

7th International Conference on Contemporary Issues in Data Science,

pages 24–35. Springer, 2019.

[37] Bojan Kolosnjaji, Apostolis Zarras, Tamas Lengyel, George Webster,

and Claudia Eckert. Adaptive semantics-aware malware classification.

In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 419–439. Springer, 2016.

[38] Mamoru Mimura. Evaluation of printable character-based malicious pe

file-detection method. Internet of Things, 19:100521, 2022.

[39] Gianni Amato. Statically analyze pe and microsoft office files. https:

//libraries.io/pypi/peframe-ds, 2021. Accessed: 2021-02-01.

[40] László Molnár Markus F.X.J. Oberhumer and John F. Reiser. Upx the

ultimate packer for executables. https://upx.github.io/.

[41] Python Software Foundation. zlib — compression compatible with gzip.

https://docs.python.org/3/library/zlib.html.

[42] Mono Project. Dis/assembling cil code. https://www.mono-project.

com/docs/tools+libraries/tools/monodis/.

[43] Michael Kerrisk. objdump — linux manual page. https://man7.org/

linux/man-pages/man1/objdump.1.html.

[44] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christo-

pher Kruegel, and Giovanni Vigna. Neurlux: dynamic malware analysis

without feature engineering. In Proceedings of the 35th Annual Computer

Security Applications Conference, pages 444–455, 2019.

[45] Yu Wang, Jack W Stokes, and Mady Marinescu. Neural malware control

with deep reinforcement learning. In MILCOM 2019-2019 IEEE Military

Communications Conference (MILCOM), pages 1–8. IEEE, 2019.

146

[46] Yu Wang, Jack Stokes, and Mady Marinescu. Actor critic deep reinforce-

ment learning for neural malware control. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages 1005–1012, 2020.

[47] CrowdStrike. Falcon sandbox, May 2019.

[48] Aaron Walters. Volatility framework, Dec 2016.

[49] Sonali Yadav. Cyber forensics: Its importance, cyber forensics tech-

niques, and tools. In Critical Concepts, Standards, and Techniques in

Cyber Forensics, pages 1–15. IGI Global, 2020.

[50] VMware. Vmware workstation player. https://www.vmware.com/

products/workstation-player.html.

[51] Brian Baskin. Noriben malware analysis sandbox.

[52] Scott M Lundberg and Su-In Lee. A unified approach to interpreting

model predictions. Advances in neural information processing systems,

30, 2017.

[53] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[54] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-

tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine

learning in python. the Journal of machine Learning research, 12:2825–

2830, 2011.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. Advances in neural information processing systems, 30,

2017.

[56] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng

Jin, Luca Invernizzi, et al. Keras Tuner, 2019.

[57] Jason Huang. Rmsprop, 2020.

[58] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[59] L Breiman. Random forests. Machine Learning, 45:5–32, 10 2001.

147

[60] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boost-

ing system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16, pages

785–794, New York, NY, USA, 2016. ACM.

[61] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical biophysics,

5(4):115–133, 1943.

[62] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning

phrase representations using rnn encoder-decoder for statistical machine

translation. arXiv preprint arXiv:1406.1078, 2014.

[63] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le,

and Ruslan Salakhutdinov. Transformer-xl: Attentive language models

beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

[64] Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama,

Xiaodong Liu, Tristan Naumann, Jianfeng Gao, and Hoifung Poon.

Domain-specific language model pretraining for biomedical natural lan-

guage processing. ACM Transactions on Computing for Healthcare

(HEALTH), 3(1):1–23, 2021.

[65] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language un-

derstanding. arXiv preprint arXiv:1810.04805, 2018.

[66] Mohammad Taher Pilehvar and Jose Camacho-Collados. Embeddings in

natural language processing: Theory and advances in vector representa-

tions of meaning. Synthesis Lectures on Human Language Technologies,

13(4):1–175, 2020.

[67] ZXS107020. Multi-class classification using xgboost, 2018.

[68] Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo.

Data mining methods for detection of new malicious executables. In

Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001,

pages 38–49. IEEE, 2000.

[69] Rajesh Kumar and S Geetha. Malware classification using xgboost-

gradient boosted decision tree. Adv. Sci. Technol. Eng. Syst, 5:536–549,

2020.

148

[70] Hyrum S Anderson and Phil Roth. Ember: an open dataset for

training static pe malware machine learning models. arXiv preprint

arXiv:1804.04637, 2018.

[71] Li Chen, Ravi Sahita, Jugal Parikh, and Marc Marino. Stamina: scalable

deep learning approach for malware classification. Intel Labs Whitepaper,

2020.

[72] Abdurrahman Pektaş and Tankut Acarman. Malware classification

based on api calls and behaviour analysis. IET Information Security,

12(2):107–117, 2018.

[73] Jun Chen, Shize Guo, Xin Ma, Haiying Li, Jinhong Guo, Ming Chen,

and Zhisong Pan. Slam: A malware detection method based on slid-

ing local attention mechanism. Security and Communication Networks,

2020, 2020.

[74] Alibaba. Alitianchi contest, 2021. https://tianchi.

aliyun.com/competition/introduction.htm?spm=

5176.11409106.5678.1.4354684c I0fYC1? raceId=231668s.

[75] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov

et al.’s negative-sampling word-embedding method. arXiv preprint

arXiv:1402.3722, 2014.

[76] Shiqi Luo, Zhiyuan Liu, Bo Ni, Huanhuan Wang, Hua Sun, and Yong

Yuan. Android malware analysis and detection based on attention-cnn-

lstm. Journal of Computers, 14(1):31–44, 2019.

[77] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R

Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pre-

training for language understanding. Advances in neural information

processing systems, 32, 2019.

[78] VX Heaven. Vx heaven virus collection 2010-05-18. 2010-05-18.

[79] Ben Athiwaratkun and Jack W Stokes. Malware classification with lstm

and gru language models and a character-level cnn. In 2017 IEEE inter-

national conference on acoustics, speech and signal processing (ICASSP),

pages 2482–2486. IEEE, 2017.

[80] Justin Seitz. Gray Hat Python: Python programming for hackers and

reverse engineers. no starch press, 2009.

149

[81] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue,

and Zheng Zhang. Star-transformer. arXiv preprint arXiv:1902.09113,

2019.

[82] Hex-Rays. A powerful disassembler and a versatile debugger. https:

//www.hex-rays.com/ida-pro/.

[83] Raymond Canzanese, Moshe Kam, and Spiros Mancoridis. Toward an

automatic, online behavioral malware classification system. In 2013

IEEE 7th International Conference on Self-Adaptive and Self-Organizing

Systems, pages 111–120. IEEE, 2013.

[84] Sumaya Saadat and V Joseph Raymond. Malware classification using

cnn-xgboost model. In Artificial Intelligence Techniques for Advanced

Computing Applications, pages 191–202. Springer, 2021.

[85] Kaggle. Malimg dataset, 2019.

[86] Zhihua Cui, Fei Xue, Xingjuan Cai, Yang Cao, Gai-ge Wang, and Jinjun

Chen. Detection of malicious code variants based on deep learning. IEEE

Transactions on Industrial Informatics, 14(7):3187–3196, 2018.

[87] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature

inspired cooperative strategies for optimization (NICSO 2010), pages 65–

74. Springer, 2010.

[88] Lakshmanan Nataraj, Sreejith Karthikeyan, Gregoire Jacob, and Ban-

galore S Manjunath. Malware images: visualization and automatic clas-

sification. In Proceedings of the 8th international symposium on visual-

ization for cyber security, pages 1–7, 2011.

[89] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eck-

ert. Deep learning for classification of malware system call sequences.

In Australasian joint conference on artificial intelligence, pages 137–149.

Springer, 2016.

[90] Corvus Forensics. Virusshare, Jun 2020.

[91] Kyle Maxwell. Maltrieve: A tool to retrieve malware

directly from the source for security researchers., 2015.

https://github.com/krmaxwell/maltrieve.

[92] Mingdong Tang and Quan Qian. Dynamic api call sequence visualisa-

tion for malware classification. IET Information Security, 13(4):367–377,

2019.

150

[93] Ben Athiwaratkun and Jack W Stokes. Malware classification with lstm

and gru language models and a character-level cnn. In 2017 IEEE inter-

national conference on acoustics, speech and signal processing (ICASSP),

pages 2482–2486. IEEE, 2017.

[94] Hanqi Zhang, Xi Xiao, Francesco Mercaldo, Shiguang Ni, Fabio Mar-

tinelli, and Arun Kumar Sangaiah. Classification of ransomware families

with machine learning based on n-gram of opcodes. Future Generation

Computer Systems, 90:211–221, 2019.

[95] Wen Zhang, Taketoshi Yoshida, and Xijin Tang. A comparative study

of tf* idf, lsi and multi-words for text classification. Expert systems with

applications, 38(3):2758–2765, 2011.

[96] Sanchit Gupta, Harshit Sharma, and Sarvjeet Kaur. Malware charac-

terization using windows api call sequences. In International Conference

on Security, Privacy, and Applied Cryptography Engineering, pages 271–

280. Springer, 2016.

[97] Anishka Singh, Rohit Arora, and Himanshu Pareek. Malware analysis

using multiple api sequence mining control flow graph. arXiv preprint

arXiv:1707.02691, 2017.

[98] others Kevin M (sylikc), Sven Marnach. Python wrapper for exiftool,

Mar 2022.

[99] George D Webster, Bojan Kolosnjaji, Christian von Pentz, Julian Kirsch,

Zachary D Hanif, Apostolis Zarras, and Claudia Eckert. Finding the

needle: A study of the pe32 rich header and respective malware triage.

In International conference on detection of intrusions and malware, and

vulnerability assessment, pages 119–138. Springer, 2017.

[100] Capstone. Capstone the ultimate disassembler. https://www.

capstone-engine.org/lang_python.html.

[101] Adam Kramer. Acquiring a memory dump from fleeting malware, Nov

2017.

[102] Joachim Metz. Python bindings module for libscca. https://pypi.org/

project/libscca-python/.

[103] Willi Ballenthin. Pure python parser for recent windows event log files

(.evtx). https://pypi.org/project/python-evtx/.

[104] Ed Gordon. Zip for windows. http://gnuwin32.sourceforge.net/

packages/zip.htm.

151

[105] Thomas Kluyver. Read and write zip files - backport of the zipfile module

from python 3.6. https://pypi.org/project/zipfile36/.

[106] VirusTotal. Virustotal, June 2020.

[107] VirusSign. Virussign, Jun 2020.

[108] FileHorse. Filehorse, Jun 2020.

[109] Scott Lundberg. Shap, Jan 2021.

[110] Didier Stevens. New tool: Xorsearch.py, August 2020.

[111] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E

Gonzalez, and Ion Stoica. Tune: A research platform for distributed

model selection and training. arXiv preprint arXiv:1807.05118, 2018.

[112] François Chollet et al. Keras, 2015.

[113] Claudio Filipi Gonçalves Dos Santos and João Paulo Papa. Avoiding

overfitting: A survey on regularization methods for convolutional neural

networks. ACM Computing Surveys (CSUR), 54(10s):1–25, 2022.

[114] Angelo Oliveira and R Sassi. Behavioral malware detection using deep

graph convolutional neural networks. TechRxiv.[link], 2019.

[115] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An

end-to-end deep learning architecture for graph classification. In Pro-

ceedings of the AAAI conference on artificial intelligence, volume 32,

2018.

[116] Angelo Oliveira. Malware analysis datasets: Api call sequences, 2019.

[117] Abir Rahali and Moulay A Akhloufi. Malbert: Using transformers

for cybersecurity and malicious software detection. arXiv preprint

arXiv:2103.03806, 2021.

[118] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[119] TensorFlow. Module:tf.compat.v1.keras.layers.

[120] Saja Alqurashi and Omar Batarfi. Static and dynamic malware analysis

to extract opcode sequences and api call sequences. 2018.

152

[121] Igor Santos, Felix Brezo, Javier Nieves, Yoseba K Penya, Borja Sanz,

Carlos Laorden, and Pablo G Bringas. Idea: Opcode-sequence-based

malware detection. In Engineering Secure Software and Systems: Second

International Symposium, ESSoS 2010, Pisa, Italy, February 3-4, 2010.

Proceedings 2, pages 35–43. Springer, 2010.

[122] ABUSE. Urlhaus database, Jun 2020. https://urlhaus.abuse.ch/.

[123] Ferhat Ozgur Catak, Javed Ahmed, Kevser Sahinbas, and Zahid Hussain

Khand. Data augmentation based malware detection using convolutional

neural networks. PeerJ Computer Science, 7:e346, 2021.

[124] Sumith Maniath, Aravind Ashok, Prabaharan Poornachandran, VG Su-

jadevi, Prem Sankar AU, and Srinath Jan. Deep learning LSTM based

ransomware detection. In 2017 Recent Developments in Control, Au-

tomation & Power Engineering (RDCAPE), pages 442–446. IEEE, 2017.

[125] Ferhat Ozgur Catak, Ahmet Faruk Yazı, Ogerta Elezaj, and Javed

Ahmed. Deep learning based sequential model for malware analysis using

windows exe api calls. PeerJ Computer Science, 6:e285, 2020.

[126] Daniele Grattarola and Cesare Alippi. Graph neural networks in tensor-

flow and keras with spektral [application notes]. IEEE Computational

Intelligence Magazine, 16(1):99–106, 2021.

[127] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph

neural networks: A review of methods and applications. AI Open, 1:57–

81, 2020.

[128] Yaser Keneshloo, Tian Shi, Naren Ramakrishnan, and Chandan K.

Reddy. Deep reinforcement learning for sequence to sequence models,

2019.

[129] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learn-

ing, 8(3):279–292, 1992.

[130] Alexandre dos Santos Mignon and Ricardo Luis de Azevedo da Rocha.

An adaptive implementation of ε-greedy in reinforcement learning. Pro-

cedia Computer Science, 109:1146–1151, 2017.

