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Abstract Malignant melanoma accounts for the highest

number of deaths from skin cancer, and the prognosis of

patients with stage IV disease has historically been poor.

Novel insights into both mutations driving tumorigenesis

and immune escape mechanisms of these tumors have led

to effective treatment options that have revolutionized the

treatment of this disease. Targeting the MAPK kinase

pathway (with BRAF and MEK inhibitors), as well as

targeting checkpoints, such as cytotoxic T-lymphocyte

associated protein 4 (CTLA-4) or programmed death 1

(PD-1), have improved overall survival in patients with

late-stage melanoma, and biomarker research for person-

alized therapy is ongoing for each of these treatment

modalities. In this review, we will discuss current first-line

treatment options, discuss biomarkers supporting treatment

decisions, and give an outlook on (combination) therapies

we expect to become relevant in the near future.

Key Points

Since the introduction of immunotherapies and

targeted therapies, the historically poor survival of

patients with advanced melanoma has dramatically

improved.

New treatment combinations are rapidly emerging

and much research is focused on biomarkers to select

the best treatment options for individual patients.

1 Introduction

1.1 Epidemiology

In the year 2016, as many as 76,380 novel cases of mela-

noma were diagnosed in the US (making melanoma the

fifth and seventh most common malignancy in males and

females, respectively), with a total of 10,130 estimated

deaths from this disease. Although melanoma accounts for

a relatively low number of cases compared with other types

of skin cancer, it accounts for the highest number of skin

cancer deaths by far [1]. All signs point towards an

increasing incidence of this disease [1, 2], including in

young adults [3]. Considering the high number of mela-

nomas that are attributable to the seemingly pre-

ventable exposure to ultraviolet (UV) radiation [4] and the

high number of loss of years per death to melanoma [5],

maximum efforts for public education should be made to

either prevent this disease or diagnose it in its early stages.
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1.2 Models of Progression

Unfortunately, many patients are diagnosed at a late stage

or still experience disease progression despite appropriate

locoregional treatment. Melanocytic lesions evolve through

several well-defined precursor lesions before these progress

to invasive, and eventually metastatic, melanoma [6] (also

reviewed by Shain and Bastian [7]). Early (and most likely

initiating) mutations occur in genes that regulate prolifer-

ation, such as those that belong to the mitogen-activated

protein kinase (MAPK) pathway (including BRAF and

NRAS). Mostly known for being the most frequently

mutated gene in invasive melanoma [8], mutations in

BRAF are believed to play a central role in the formation of

early and benign melanocytic growths. Additional muta-

tions in genes that regulate genomic integrity (TP53),

chromatin remodeling (ARID1A), telomere length (TERT),

and the PI3K pathway (PTEN) are examples of mutations

that are required before invasive and metastatic melanoma

can occur [7]. Large-scale analyses have revealed a high

number of passenger mutations [8], consistent, on average,

with the high mutational rate of this disease, while at the

same time uncovering the broad spectrum of consistent

gain- and loss-of-function mutations that contribute to

disease progression [8].

1.3 Risk Factors

Melanomas occur on both sun-exposed skin and sites that

are less commonly exposed to UV radiation (such as the

subungual regions, hand palms and soles of the feet). The

spectrum of mutations in both types of tumors is quite

distinct [9], which suggests differential tumorigenic

mechanisms between both types of melanomas. Conse-

quently, severe sunburn, as well as chronic and intermittent

exposure to the sun, are associated with the development of

melanoma [10]. Although sun exposure is the most com-

mon source of UV exposure, artificial sources of UV have

also been linked to the development of melanoma [11].

Mutations in the MAPK pathway do not seem to be

directly caused by UV, considering the lack of the char-

acteristic C[T and G[T transitions in these genes [8].

Regardless, BRAF-mutated melanomas have been linked to

sun exposure [12], possibly through alternative mecha-

nisms of UV-mediated mutagenesis (such as oxidative

stress). An estimated 46% of driver mutations seem to be

directly linked to UV exposure, considering the presence of

these distinctive mutational patterns [8]. TP53 mutations

are most commonly associated with UV-induced genetic

damage in melanoma [8].

Genetic factors are also commonly accepted risk factors

for melanoma. Xeroderma pigmentosum is a hereditary

disease that is characterized by a greatly increased

susceptibility to UV-mediated DNA damage secondary to

deficiencies in nucleotide excision repair (NER). Similarly,

familial atypical mole melanoma (FAMM) syndrome,

which is associated with CDKN2A mutations, vastly

increases the risk of melanoma. In addition to these well-

described genetic syndromes, a family history of melanoma

increases the risk of this disease [13].

1.4 Mutational Load and Immunogenicity

Melanoma cells are characterized by their high number of

UV-induced, non-synonymous point mutations that have a

propensity for generating neoantigens that the immune

system may recognize, and then discriminate melanoma

cells from melanocytes [14]. Relatively high mutational

rates are found in melanoma compared with other cancer

types [8, 14, 15]. The higher the number of mutations, the

higher the chance of generation of neoantigens, which in

turn could result in the induction of both a CD4? and

CD8? T-cell response [16]. Unfortunately, it is evident

from clinical practice that this immune surveillance is

insufficient to prevent the formation and progression of

melanomas, which might not only be due, in part, to

ineffective presentation of epitopes and reduced expression

of potent antigens [16] but also to the expression of

immunomodulatory molecules by tumor cells. For

instance, the programmed-death ligand 1 (PD-L1) is an

important inhibitory signal for cytotoxic T-cell activity

[17]. Expression of this ligand for the programmed death 1

(PD-1) receptor is commonly seen on melanoma cancer

cells and is associated with the presence of tumor-infil-

trating lymphocytes pointing towards adaptive resistance to

an endogenous anti-tumor immune response as a mecha-

nism of immune escape [18]. The effect of PD-L1

expression on overall survival (OS) is widely studied but

results are controversial [18–20]. These and other mecha-

nisms (broadly captured under the term ‘cancer immu-

noediting’ [21]) hinder adequate recognition and cytotoxic

activity of the immune system and lead to poor tumor

control and patient prognosis.

1.5 Patient Survival

Historically, the survival of patients with advanced mela-

nomas has been very poor, especially patients with meta-

static disease [22]. Disease stage is a strong determinant of

OS at 5 years. Prior to the era of checkpoint inhibitors and

targeted therapy, the 5-year OS was estimated to be

94–100% for stage I disease, 53–92.8% for stage II disease,

decreasing to 78, 59 and 40% in stage IIIa, IIIb, IIIc,

respectively, and 9–28% for stage IV disease [23–25].

These abysmal survival statistics and increased under-

standing of the mutations driving tumorigenesis of this
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disease have led to novel treatment modalities for patients

who previously had almost no viable options for systemic

treatment. Ample attempts at combinations of chemother-

apy regimens, despite improving response rates, have not

translated into survival benefit [26].

In this review, the role of checkpoint inhibitors and

targeted therapy in the treatment of metastatic melanoma is

presented. We discuss the trials that have shaped our

understanding of these treatment modalities and that have

led to the approval of agents for the treatment of patients

with metastatic disease (Table 1). Current evidence for

combination regimens and sequential treatment schemes

will be discussed in order to provide an up-to-date picture

of the treatment selection for these patients. Certain sub-

groups of patients and the use of single- and multi-pa-

rameter biomarkers that can be used for treatment

selection, are discussed separately.

2 Immunotherapy

For decades, interleukin (IL)-2, interferon-a, and a

variety of other cytokines have been extensively studied in

patients with advanced melanoma. Although a small frac-

tion of patients seemed to achieve durable remission on

high-dose IL-2, toxicity was high and all conducted phase

III trials failed to show OS benefit [26, 27].

Ipilimumab, a monoclonal antibody that acts as an

inhibitor of the cytotoxic T-lymphocyte-associated pro-

tein 4 (CTLA-4), was the first T-cell checkpoint inhibitor

that improved median OS in chemotherapy-refractory

patients compared with gp100 vaccination [28]. Ipili-

mumab in combination with dacarbazine improved OS

compared with dacarbazine plus placebo in treatment-

naive patients with advanced melanoma [29], but did not

seem to be superior to ipilimumab monotherapy. Inter-

estingly, a proportion of patients (22%) achieved long-

term survival. This was not seen before and suggests an

ongoing immune response, and perhaps even cure [30].

Standard treatment with ipilimumab consists of four

cycles of 3 mg/kg every 3 weeks. An atypical treatment

response pattern, characterized by an increase in tumor

volume before tumor response or disease stabilization,

was seen in 10–15% of patients. This phenomenon is also

known as pseudo-progression [31]. Response to ipili-

mumab seems to be dose-dependent as no responses were

seen on treatment with 0.3 mg/kg and OS was better in

patients treated with ipilimumab 10 mg/kg compared with

3 mg/kg. This increased survival benefit comes at the cost

of substantially more toxicity [32]. After the approval of

ipilimumab in 2011, research on immunotherapy has

exploded, with a special focus on novel checkpoint inhi-

bitors. Targeting the PD-1/PD-L1 axis was one of the

main areas of interest. Like CTLA-4, PD-1 is an immune

checkpoint molecule involved in maintaining peripheral

tolerance and prevention of auto-immunity. Whereas

CTLA-4 plays a major role in initial T-cell activation and

broadening of the T-cell repertoire [33, 34], PD-1 sig-

naling is thought to mainly alter the T-cell effector phase

[35, 36]. Pembrolizumab and nivolumab (both mono-

clonal antibodies against PD-1), further improved

response rates up to 40% and prolonged OS for advanced

melanoma patients [37, 38]. The randomized phase III

CheckMate 066 study showed that, compared with stan-

dard chemotherapy, nivolumab was favorable as first-line

treatment in BRAF wild-type patients in terms of overall

response rate (ORR; 40 vs. 13.9%), progression-free

survival (PFS; 5.1 vs. 2.1 months), and OS (not reached

vs. 11 months) [39, 40].

Table 1 Approved agents for the treatment of stage IV melanoma

Immunotherapy Target Year of approval by FDA

Ipilimumab Anti-CTLA-4 2011

Nivolumab Anti-PD-1 2014

Pembrolizumab Anti-PD-1 2014

Ipilimumab? nivolumab Anti-CTLA-4? anti-PD-1 2015 (BRAF WT), 2016 (regardless of BRAF status)

Targeted therapy Target Year of approval by FDA

Vemurafenib BRAFi 2011 (BRAFV600E)

Dabrafenib BRAFi 2013 (BRAFV600E)

Vemurafenib? cobimetinib BRAFi?MEKi 2015 (BRAFV600E or BRAFV600K)

Dabrafenib? trametinib BRAFi?MEKi 2014 (BRAFV600E or BRAFV600K)

Trametinib MEKi 2014 (BRAFV600E or BRAFV600K)

BRAFi BRAF inhibitor, BRAF WT BRAF wildtype, CTLA-4 cytotoxic T-lymphocyte-associated protein 4, MEKi MEK inhibitor, PD-1 pro-

grammed death-1
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The KEYNOTE-006 study demonstrated that pem-

brolizumab provided significantly more clinical benefit,

with an improved toxicity profile compared with ipili-

mumab in immunotherapy-naive patients (BRAF wild-type

and V600 mutant); ORR 36–37 vs. 13% [41], PFS 8.3 vs.

3.3 months, and OS 32.3 vs. 15.9 months [42]. Interest-

ingly, the duration of response is identical for patients

responding to either pembrolizumab or ipilimumab [41].

Both anti-PD-1 antibodies also proved to be effective in

ipilimumab-refractory patients. In this patient population, a

response rate of 32% was seen for nivolumab and 21–25%

for pembrolizumab compared with 4–11% for chemother-

apy (Table 2) [43, 44]. The response to anti-PD-1 anti-

bodies seems to be less dose-dependent as there was no

difference in clinical outcome between patients treated

with pembrolizumab 2 or 10 mg/kg every 3 weeks [43],

and there was also no difference in outcome between two-

weekly and three-weekly administration [45]. Interestingly,

responses to anti-PD-1 seem to be ongoing, even after

cessation of therapy. Of all patients in the KEYNOTE-006

study who completed 2 years of pembrolizumab treatment

(n = 104), only 9% had progressive disease after a median

follow-up of 9.7 months after completion of pem-

brolizumab [42]. Remarkably, the optimal duration of

treatment with anti-PD-1 has not yet been determined. In

all but one clinical trial, it was advised to continue treat-

ment until disease progression, unacceptable toxicity, or

patient refusal. In the KEYNOTE-006 trial only, the

maximum duration of treatment was arbitrarily set at a

maximum of 2 years or until disease progression, intoler-

able toxicity, or complete response (CR). We and others

retrospectively analyzed patients who discontinued pem-

brolizumab in the absence of disease progression and

treatment-limiting toxicity. We found that only 2/81

patients (3%) relapsed after a median of 11.0 months post-

treatment follow-up. In this cohort, the median time of anti-

PD-1 treatment was 14.5 months, and thereby much shorter

than the abovementioned clinical trials. We also found that

at the time of disease progression, re-induction of PD-1

blockade resulted in tumor control in approximately half of

the patients [46].

After the success of the individual checkpoint inhibitors,

further research explored the efficacy and toxicity of

combining anti-CTLA-4 and anti-PD-1 antibodies. The

combination of ipilimumab and nivolumab has indeed

improved the response rate even further, up to 58–61%

(Table 2) [47, 48], and also demonstrated a superior PFS of

11.5 months compared with 6.9 months for nivolumab

(numerically, as the study was not powered for this com-

parison), and significantly versus the 2.9 months for ipili-

mumab monotherapy [48]. Significant OS benefit was also

seen for the combination regimen compared with single-

agent ipilimumab [49]. However, the ominously higher

ORR for the combination compared with nivolumab

monotherapy appears not to translate into a similar differ-

ence in OS. A follow-up report from the CheckMate 067

study showed a 3-year survival of 52% for nivolumab

versus 58% for the combination (hazard ratio [HR] 0.85,

95% confidence interval [CI] 0.68–1.07) [50]. Of note, this

study was not powered to compare the combination versus

nivolumab only.

2.1 Toxicity

With the introduction of immunotherapy, a new range of

side effects emerged that are predominantly immune-re-

lated. These toxicities are remarkably different from the

side effects that are known for traditional chemotherapies

Table 2 Objective response rate, PFS and OS on therapies approved for advanced melanoma

Therapy/study ORR (%) PFS OS

Median (mo) 1y (%) 2y (%) 3y (%) Median (mo) 1y (%) 2y (%) 3y (%)

Checkpoint inhibitors

Ipilimumab [28, 41, 45, 48, 50, 57] 11–19 2.8–3.3 18–19 12–15 10 11.5–19.9 46–58 24–43 34

Pembrolizumab [41, 42, 45] 36–37 8.3 38–39 28–34 NR 32.3 68–74 55 NR

Nivolumab [39, 40, 48, 50, 57] 40–44 5.4–6.9 42–44 37–39 32 37.6 73 58–59 52

Ipilimumab? nivolumab [48–50, 57] 57–58 11.5 49–53 43–51 39 Not reached 73 64 58

Targeted therapy

Vemurafenib [82–84, 87] 50–51 7.2–7.3 NR 16 10 17.8–18 64 39 31

Dabrafenib [85, 86] 53 8.8 NR 16 12 18.7 68 42 32

Encorafenib [88] 51 9.6 NR NR NR Not reached NR NR NR

Vemurafenib? cobimetinib [83, 87, 97] 70 12.3 52 29 NR 22.3 75 49 37

Dabrafenib? trametinib [82, 84–86] 64–69 11–12 NR 30 22–24 25.1–26.1 73–74 51–52 44–45

Encorafenib? binimetinib [88] 63 14.9 NR NR NR Not reached

NR not reported, ORR overall response rate, OS overall survival, PFS progression-free survival
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and require special attention from treating physicians.

Although these adverse events (AEs) may be life-threat-

ening, treatment with high-dose corticosteroids (or addi-

tional immunosuppressive agents) is effective in most

cases. Ipilimumab monotherapy induced grade 3 and 4 AEs

in approximately 30% of patients, with colitis and

hypophysitis occurring most frequently [28, 29]. Anti-PD-1

monotherapy seems to be better tolerable as only 10–16%

of patients developed grade 3 or 4 toxicities [40, 45, 48];

however, up to 59% of patients treated with the combina-

tion of ipilimumab and nivolumab developed one or more

grade 3 or 4 AEs [50]. This led to discontinuation of

treatment in approximately one-third of patients. Impor-

tantly, patients who stopped due to toxicity did equally

well in terms of ORR and PFS compared with patients who

continued treatment, and responses seem to be durable

[51].

This significant toxicity might hinder the broad appli-

cation of this regimen. Sequential treatment with CTLA-4

and PD-1 inhibitors might be equally effective and even

less toxic. The CheckMate 064 study is the only random-

ized phase II trial testing sequential administration of

CTLA-4 and PD-1 inhibitors, comparing six courses of

nivolumab followed by four courses of ipilimumab versus

the reverse sequence. Grade 3 and 4 toxicities occurred in

50% of patients in the ipilimumab ? nivolumab arm and

63% of patients in the nivolumab ? ipilimumab arm,

which is comparable to the concurrent combination

scheme [52]. However, it is difficult to interpret these

results due to the study design of different overlapping

amounts of antibodies in both arms.

Another approach to reduce toxicity is to focus on dose

adjustments. The KEYNOTE 029 study tested low-dose

ipilimumab 1 mg/kg combined with standard-dose pem-

brolizumab 2 mg/kg. This combination seems to be less

toxic, with a grade 3–4 toxicity rate of 45%, while pre-

serving efficacy (ORR 61%) [53]. A retrospective analysis

of patients treated with two courses of ipilimumab 3 mg/kg

directly followed by anti-PD-1 (nivolumab 3 mg/kg or

pembrolizumab 2 mg/kg), ‘The NKI Scheme’, revealed a

response rate of 55% and a grade 3 or 4 toxicity rate of

38% [54], indicating that this sequenced but overlapping

scheme of CTLA-4 and PD-1 blockade might reduce tox-

icity further, while preserving efficacy. These data should

be interpreted with caution as they are generated from a

retrospective analysis and a single-arm study, and the

patient populations are not identical to the CheckMate 067

study. The CheckMate 511 study (NCT02714218) is the

only ongoing randomized trial comparing ipilimumab

3 mg/kg plus nivolumab 1 mg/kg versus ipilimumab 1 mg/

kg plus nivolumab 3 mg/kg. We need to wait for the PFS

and OS results to conclude which combination is the most

favorable option in terms of efficacy and toxicity and might

function as a backbone for future (triple) combinations.

2.2 Biomarkers for Clinical Benefit

After the introduction of checkpoint inhibitors, significant

efforts have been made to identify markers that are pre-

dictive for treatment response and survival. Establishing

these biomarkers is especially important if more aggressive

treatment combinations arise, where the proportion of

patients who develop severe toxicities is almost as high as

the proportion who achieve an objective response.

Biomarkers predictive for response may optimize patient

selection for (combination) immunotherapy and may

therefore aid in avoiding unnecessary toxicity and health-

care costs.

Despite immense research efforts for PD-L1 as a marker

for response to checkpoint inhibition, it cannot be used as a

single biomarker to select melanoma patients for treatment

with (combination) immunotherapy. Higher PD-L1

expression is associated with increased clinical activity of

pembrolizumab [55], nivolumab, and the combination of

ipilimumab and nivolumab [56]. Nevertheless, single PD-

L1 expression is not specific enough to identify patients

who do not benefit from PD-1 inhibition, as a considerable

proportion of patients with PD-L1-negative tumors do

respond. As mentioned above, the CheckMate 067 study

was not powered to compare the nivolumab arm with the

combination of nivolumab and ipilimumab. Although

objective response rates are in favor of the combination

over nivolumab alone, regardless of PD-L1 expression (at

every cut-off: 1, 5, and 10%) [56], there seems to be no

difference in PFS and OS for the subset of patients with

high tumoral PD-L1 expression [57]. In contrast, for

patients with low PD-L1 expression, there was a trend

towards better OS for the group treated with the combi-

nation (HR 0.74, 95% CI 0.52–1.06) [57]. The use of PD-

L1 as a biomarker is not straightforward as the results of

immunohistochemistry (IHC) can be influenced by the

choice of IHC antibody [58], as well as other variables

(ischemic time, type of fixation, age of the tumor sample,

intrapatient and intratumor heterogeneity, and scoring

systems) [59, 60].

Other factors in the tumor microenvironment also seem

to be important in establishing an anti-tumor immune

response. Analyses of pretreatment tumor biopsies

obtained from melanoma patients treated with anti-PD-1

antibodies showed that responding patients had signifi-

cantly more CD8 infiltration, as well as PD-1 and PD-L1

expression at the invasive tumor margin [61]. Based on

these and other translational research data, a comprehen-

sive, mechanism-driven combination of independent but

Current Treatment Options in Advanced Melanoma 307



interacting biomarkers (including PD-L1 expression

mutational load and CD8 infiltration) was proposed [62].

Although these tumor characteristics seem to be

important, a plethora of retrospective analyses of ran-

domized trials and real-life patient cohorts has revealed

several baseline patient characteristics that are prognostic

or predictive for response and survival. Lactate dehydro-

genase (LDH, which is also an established prognostic

marker for survival of melanoma patients [24]), was the

first marker identified as being predictive for response to

ipilimumab [63], and also proved to be predictive for

response to anti-PD-1 antibodies and the combination

regimen [64, 65]. However, there is still a fraction of

patients with elevated LDH who do respond to

immunotherapy. More importantly, duration of response

seems to be independent of LDH level [65, 66]. For

patients treated with pembrolizumab, aside from low LDH,

the absence of visceral metastasis other than lung or soft

tissue and high relative lymphocyte eosinophil count were

independent prognostic factors for clinical outcome [67].

Another retrospective analyses of patients treated with

pembrolizumab demonstrated that high absolute lympho-

cyte count, good performance status, low LDH, and also

low C-reactive protein (CRP; as a marker for cancer-as-

sociated inflammation) were associated with favorable

clinical outcome [68].

These observations underscore our idea of the era of

single biomarkers for immunotherapy being outdated.

Therefore, from a more holistic approach, we have pro-

posed a framework that includes a combination of tumor-

specific and patient-specific markers to personalize treat-

ment choice [69]. The cancer immunogram describes seven

parameters that are important in the interaction of both the

tumor and the immune system: mutational load, T-cell

infiltration, expression of immune checkpoints, CRP/IL-6,

lymphocyte count, and expression of major histocompati-

bility class I. Multiple parameter combinations such as

these may be superior to single biomarker approaches

(such as PD-L1 expression) and tumor-focused signatures

(such as inflamed versus non-inflamed tumors).

3 Targeted Therapy

Approximately 50% of melanoma patients harbor an acti-

vating BRAFV600 mutation [70, 71], which results in con-

tinuous activation of the MAPK pathway. The discovery of

the BRAF mutations in 2002 has received considerable

scientific attention. Nowadays, patients harboring this

mutation can be successfully treated with small molecules

that suppress the MAPK pathway, including selective

BRAF inhibitors (BRAFi) and MEK inhibitors (MEKi).

Vemurafenib, a selective inhibitor of V600 mutant BRAF,

was the first agent to demonstrate improved clinical out-

comes compared with chemotherapy, with an ORR of 48

vs. 5%, PFS of 5.3 vs. 1.6 months, and OS of 13.3 vs.

10 months [72, 73], and was approved by the US FDA in

2011. Treatment with dabrafenib, another selective BRAFi,

yielded similar clinical benefit, with an ORR of 50% and a

PFS of 5.1 months [74]. As reactivation of the MAPK

pathway is one of the most common resistance mechanisms

[75, 76], and BRAFi-induced paradoxical activation of the

MAPK pathway can result in secondary (skin) tumors

[77, 78], preclinical studies tested dual inhibition of BRAF

and MEK. This combination enhanced tumor cell apopto-

sis, delayed resistance and decreased cutaneous hyperpro-

liferative lesions in preclinical models [79, 80]. These

preclinical findings were confirmed in three large, phase

III, randomized clinical trials—the COMBI-v, COMBI-d

and coBRIM studies [81–83]. In the COMBI-v trial, dab-

rafenib and trametinib were demonstrated to be favorable

compared with vemurafenib, with an ORR of 64 vs. 51%, a

median PFS of 11.4 vs. 7.3, and median OS of 26.1 vs.

17.8 months [82, 84]. Similar outcomes were seen in the

COMBI-d trial, with a favorable ORR of 69 vs. 53%,

median PFS of 11 vs. 8.8, and median OS of 25.1 vs. 18.7

for dabrafenib and trametinib compared with dabrafenib

plus placebo (Table 2) [85, 86]. In addition, the combina-

tion of vemurafenib and cobimetinib has shown similar

results, with an ORR of 70%, a median PFS of

12.3 months, and a median OS of 22.3 months (Table 2)

[83, 87]. The rates of treatment-related AEs were similar

for both the combination and monotherapy, although the

frequency of specific AEs was different. In the groups

treated with the combination, the rate of cutaneous squa-

mous cell carcinoma was significantly lower, but the fre-

quency of diarrhea, central serous retinopathy, and

decreased left ventricular ejection fraction was substan-

tially higher [82, 83, 85].

Recently, results from the phase III study of another

combination of the BRAFi encorafenib and the MEKi

binimetinib were presented, indicating a promising PFS of

almost 15 months for the combination compared with

9.6 months for encorafenib and 7.3 months for vemu-

rafenib in patients who were treatment-naive or who were

pretreated with first-line immunotherapy [88].

3.1 Toxicity

In terms of response rate, PFS, and OS, there seems to be

no difference between the combinations of dabrafenib plus

trametinib and vemurafenib plus cobimetinib, both of

which have been approved by the FDA and the European

Medicines Agency. The choice for one of these regimens

can be made in consultation with the patient based on the

different toxicity profiles. Pyrexia, chills, headache,
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diarrhea, nausea, and vomiting are the most common tox-

icities for the combination of dabrafenib and trametinib

[89], while the most common side effects of the combi-

nation vemurafenib and cobimetinib are photosensitivity

reaction, rash, diarrhea, nausea, and elevated liver enzymes

[83]. If a patient is not tolerating one of the drug combi-

nations, a switch to the other regimen is a reasonable

option.

3.2 Biomarkers for Clinical Benefit

Similar to the research on predictive biomarkers for

checkpoint inhibition, research efforts have focused on

finding markers that identify the subset of patients who will

have long-term benefit from targeted therapies. A pooled

analysis of patients treated with dabrafenib and trametinib

revealed that LDH concentration, the number of metasta-

sized organ sites, and Eastern Cooperative Oncology

Group (ECOG) performance status were independent

markers for long-term benefit [90]. Patients with an LDH

less than the upper limit of normal (ULN) and less than

three disease sites have the best clinical outcome [91].

Additionally, genomic analyses have shown that higher

mutational loads are associated with longer OS derived

from BRAFi and MEKi [92], suggesting that the immune

system might also play a role in the long-term benefit of

BRAFi and MEKi. An alternative explanation might be

that the OS difference in this scenario results from the

benefit of subsequent immunotherapy (after progression on

BRAFi and MEKi).

4 First-Line Therapy for Patients
with a BRAFV600 Mutation

4.1 Current Treatment Guidelines

International guidelines currently recommend treating

patients with advanced BRAFV600-mutated melanoma with

either checkpoint inhibitors or the combination of a BRAFi

and an MEKi as first-line therapy [93, 94]. For patients

with symptomatic metastases, the combination of BRAFi

plus MEKi is favorable over immunotherapy as it has a

higher chance of a fast response (Table 3) [94]. Moreover,

patients with symptomatic brain metastases due to brain

edema might need corticosteroids, which are immunosup-

pressive and most likely lower the chance of response to

immunotherapy [95].

For patients with asymptomatic disease, the definitive

superiority of either targeted therapy or checkpoint inhi-

bition as first-line treatment remains unproven. No studies

have directly compared both treatment strategies and the 1-

and 2-year OS rates seem to be comparable (Table 2) [93].

Based on the aforementioned biomarkers (LDH, per-

formance status, number of metastasized organs), the group

of patients who will benefit most from targeted therapy is

the same as the group that is likely to have long-term

benefit from immunotherapy [96]. There is an urgent need

for additional predictive biomarkers that can guide the

choice for first-line therapy for these patients. Although

there are no data that directly compare these treatment

regimens, many melanoma centers have a preference for

immunotherapy as first-line therapy. The PFS curves for

checkpoint inhibitors seem to reach a plateau after 2 or

3 years, while the curves for BRAFi plus MEKi are still

decreasing, reflecting a higher percentage of patients

requiring subsequent therapy. Moreover, the median

duration of response to BRAFi plus MEKi is

13–14 months, while the median duration response of

patients treated with pembrolizumab in the KEYNOTE-

006 study, and nivolumab in the CheckMate 067 study, is

still not reached after a median follow-up of 33.9 months in

the KEYNOTE-006 study and a minimum follow-up of

36 months in the CheckMate 067 study [42, 50, 84, 97].

Lastly, objective responses to immunotherapy seem to be

ongoing after cessation of therapy [42, 46, 98, 99]. The

landmark trial directly comparing these first-line treatments

in BRAFV600-mutated advanced melanoma is currently

recruiting (NCT02224781). In this phase III trial, patients

will be randomized between first-line dabrafenib plus

trametinib versus ipilimumab plus nivolumab, and, after

disease progression, will switch to the other combination

treatment.

4.2 Combination Regimens

Perhaps the combination of targeted therapy and

immunotherapy is an interesting new option for first-line

therapy, theoretically coupling the high response rate of

targeted therapy and the long duration of response medi-

ated by immunotherapy. Preclinical data indicate that tar-

geted therapy can induce tumoral T-cell infiltration,

enhance antigen presentation, and reduce immunosup-

pressive cytokines [100, 101]. Preliminary data derived

from the KEYNOTE 022 study (investigating pem-

brolizumab in combination with dabrafenib and trametinib)

showed a high response rate of 67%, paired with a high

percentage of grade 3 and 4 treatment-related AEs (73%)

[102]. In addition, the combination of atezolizumab,

vemurafenib, and cobimetinib demonstrated effectiveness,

with an ORR of 83% [103]. This combination is currently

being tested in the ongoing phase III TRILOGY study

(NCT02908672). Another randomized study is testing the

combination of dabrafenib, trametinib, and PDR001 (anti-

PD-1 antibody) compared with dabrafenib, trametinib and

placebo (NCT02967692). The first data of these triple
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combination studies are very promising, although it was

only tested in a small group of patients and follow-up is

still very short. The high response rates might still only

reflect the response of targeted therapy, and it remains to be

seen if these responses will be durable.

Our group is currently performing a small phase II study

(NCT02625337) testing short-term intermittent BRAF and

MEK inhibition combined with pembrolizumab. The

rationale for this design lies in the fact that an increase in

tumor T-cell infiltration mediated by targeted therapy

seems to be transient and can return to below baseline

levels after several weeks of treatment [104, 105]. There-

fore, boosting the efficacy of checkpoint inhibitors does not

necessarily require long-term treatment with targeted

therapy. In addition, combining only short-term targeted

therapy with immunotherapy might provide a superior

toxicity profile, while at the same time reducing the chance

of developing resistance to targeted therapy.

Another interesting approach, especially for patients

with elevated LDH levels, is induction with short-term

targeted therapy prior to the start of checkpoint inhibition.

Although LDH is a strong prognostic marker for long-term

benefit of targeted therapy, the response rate of targeted

therapy is still relatively high in patients with LDH[2

ULN (51%), albeit substantially lower than in patients with

a normal LDH (70%) [90]. By reducing tumor load and,

subsequently, LDH levels, short-time induction with tar-

geted therapy may increase the likelihood of responding to

immunotherapy. The COWBOY study (NCT02968303)

will test this hypothesis by comparing induction therapy

with vemurafenib plus cobimetinib, followed by ipili-

mumab plus nivolumab, to upfront ipilimumab and nivo-

lumab, in patients with elevated baseline LDH levels.

Another interesting trial investigating the best sequence

strategy, as well as the value of short-term targeted therapy

pretreatment, is the three-arm randomized SECOMBIT

trial (NCT02631447). This trial will compare first-line

ipilimumab plus nivolumab followed by encorafenib plus

binimetinib at the time of disease progression, versus first-

line encorafenib plus binimetinib followed by ipilimumab

plus nivolumab at the time of disease progression, versus

induction therapy for 8 weeks with encorafenib plus

binimetinib followed by a combination of ipilimumab and

nivolumab. The ImmunoCobiVem trial (NTC02902029)

has a similar approach in which patients with BRAFV600-

mutated melanoma will be randomized, after 3 months of

treatment with vemurafenib and cobimetinib, between arm

A (further treatment with this combination therapy until

disease progression) and arm B (switch to atezolizumab). If

patients progress, they can crossover to atezolizumab (arm

A) or cross back to vemurafenib and cobimentib (arm B).

5 Cerebral Metastases

Approximately 20% of patients with melanoma have brain

metastases at the time of diagnosis of stage IV disease

[106]. Furthermore, up to 45% of stage IV patients will

develop brain metastases during the course of their disease

[107]. Historically, patients with brain metastases have a

poor median OS of 4–5 months [107–109]. The large phase

II and III registration trials testing targeted therapy and

immunotherapy excluded patients with brain metastases

from participating in the trials. The BREAK-MB study was

the first study that tested BRAFi (dabrafenib) in patients

with brain metastases, irrespective of prior local treatment.

The intracranial response (ICR) rate in BRAFV600E-mutated

patients was 31 and 39% in pretreated and non-pretreated

patients, respectively. Median PFS of both groups was

17 weeks, and median OS was 31 weeks for pretreated

patients compared with 33 weeks for non-pretreated

patients [110].

Vemurafenib showed an ICR rate of 18% in patients

with either pretreated or non-pretreated brain metastases.

Median PFS and OS were comparable with dabrafenib,

with a median PFS of 3.6–4.0 months and a median OS of

8.9–9.6 months [111], almost double the OS when com-

pared with historic data. Although these studies showed

clinically meaningful OS benefit, median OS remained

lower compared with patients without cerebral metastases.

Table 3 Favorable and

unfavorable features of

immunotherapy and targeted

therapy

Immunotherapy

?Highest chance of durable response

?Response can be ongoing even after therapy has been stopped

- Time to response might be longer

- Substantial fraction of patients do not respond

Targeted therapy

?High objective response rate

? Fast and deep tumor response

? Therapy not hampered by consecutive corticosteroids or other immunosuppressive agents

-Majority of patients will develop resistance

310 E. A. Rozeman et al.



The Combi-MB study revealed that the ICR rate of the

combination dabrafenib and trametinib was 58% in patients

with non-pretreated, asymptomatic brain metastases, 44%

in pretreated, asymptomatic brain metastases, and 59% in

patients with symptomatic metastases [112]. These

response rates are promising and much higher than what

was seen for BRAFi monotherapy. The duration of

response, with a median of 4.5–6.5 months, was unfortu-

nately substantially lower than the median of 12.9 months

that was seen in patients without brain metastasis [85, 112].

In a phase II study of pembrolizumab in 18 patients with

untreated brain metastases, 22% achieved an objective ICR

and another two patients had stable disease (SD) [113]. The

first results of the CheckMate 038 study demonstrated an

ORR of 40% for the combination of ipilimumab plus

nivolumab compared with 30% for nivolumab monother-

apy in patients with previously untreated brain metastases.

In a trial of the ABC (Anti-PD-1 Brain Collaboration)

group, patients with asymptomatic brain metastasis (who

had not been treated with radiotherapy) were randomized

between the combination ipilimumab and nivolumab, and

nivolumab monotherapy. The ICR rate was 42% for the

combination and 20% for nivolumab monotherapy [114]. A

third trial, CheckMate 204, also examined the efficacy of

the combination of ipilimumab and nivolumab as first-line

treatment in patients with asymptomatic brain metastasis.

The ICR rate was 54% and, more interestingly, the median

duration of response was not reached after a median fol-

low-up of 9 months [115]. One must be aware that only

patients with asymptomatic brain metastases (who did not

require high-dose corticosteroids) were included in these

studies.

Additionally, in the trial of the ABC group, patients with

either symptomatic, locally pretreated, or leptomeningeal

brain metastases were treated with nivolumab. In this

cohort, the intracranial response rate was very low, being

only 6%. A retrospective analysis of patients with brain

metastases treated with pembrolizumab revealed that

patients who use corticosteroids and/or had symptomatic

brain metastases have a significantly lower median PFS

and OS [95]. Moreover, a phase II study of ipilimumab

demonstrated a disease control rate of 18% at week 12 in

patients with asymptomatic brain metastases compared

with only 5% for patients who had stable brain metastases

but required corticosteroids [116].

These data indicate that targeted therapy and

immunotherapy are both effective treatment options for

patients with brain metastases. In patients with asymp-

tomatic brain metastases, the combination of ipilimumab

plus nivolumab seems to achieve the same response rates

as in the periphery, while in patients who need corticos-

teroids, targeted therapy might be preferable.

6 Non-Cutaneous Melanoma

6.1 Mucosal and Acral Melanoma

The lessons learned from the treatment of cutaneous mel-

anoma do not automatically translate to (metastatic) non-

cutaneous melanoma. Since these diseases are commonly

diagnosed at a later stage and are associated with a rela-

tively poor prognosis [117], the optimal treatment of non-

cutaneous melanoma is of utmost importance.

Based on distinct differences in pathogenesis and

prognosis of these diseases, mucosal and acral melanomas

cannot be considered interchangeable with cutaneous dis-

ease. While these types of melanomas have a relatively low

mutational rate [117, 118], structural mutations occur more

frequently [118]. On the other hand, BRAF mutations occur

at a much lower rate than in cutaneous melanomas [119],

and evidence of the clinical benefit of BRAF inhibition is

lacking for these tumors.

Randomized trials investigating the efficacy of check-

point inhibitors have rarely included patients with non-

cutaneous melanoma; however, several retrospective

studies have investigated the efficacy of these agents.

Response to ipilimumab in mostly pretreated patients with

predominantly metastatic mucosal disease has been shown

to be between 7 and 12%, with a 1-year survival and

median survival of approximately 36% and 6.4 months,

respectively [120, 121]. Response rates to PD-1 inhibitors

of 23 and 32% were seen in patients with mucosal and acral

melanoma, respectively [121]; these were also mostly

pretreated patients who showed a median survival of 12.4

months (mucosal melanoma) and 31.7 months (acral mel-

anoma) [121]. Although these data are hindered by the

retrospective study design and the inclusion of a hetero-

geneous and relatively small patient population, they do

support the use of PD-1 inhibitors as first-line therapy for

these patients.

6.2 Uveal Melanoma

Uveal melanomas have been shown to be even more bio-

logically distinct from cutaneous melanoma, with their

frequent reliance on GNAQ or GNA11 mutations [122].

The prognosis of uveal melanomas is poor [123] and both

conventional and experimental treatments have shown very

little effect on the OS of patients with metastatic uveal

melanoma [124]. However, since the eye is relatively

devoid of immune infiltration, these tumors might be

highly immunogenic as they were less subjected to immune

editing during tumor progression. However, uveal mela-

nomas have much fewer somatic mutations than sun-ex-

posed cutaneous melanomas [125], and may therefore have
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less expression of neoantigens and may be less well-rec-

ognized by T cells [16].

As is the case with mucosal and acral melanomas, the

evidence for checkpoint inhibition stems mostly from ret-

rospective cases series. In two studies that investigated the

efficacy of ipilimumab in patients with metastatic uveal

melanoma, the response rate was estimated to be approx-

imately 5% [126, 127]. Additionally, one study identified a

subset of patients (23%) who had durable SD in response to

ipilimumab [126].

Treatment with PD-1 and PD-L1 inhibitors has shown

disappointing results in uveal melanoma. One retrospective

study of 58 patients with metastatic disease treated with

one of these treatment modalities found an objective

response rate of 3% [128], but the origin of uveal mela-

noma was not confirmed in the responders by GNAQ/

GNA11 mutation analysis. In our analysis of genetically

confirmed uveal melanomas, none of the patients had a

response to pembrolizumab [129]. Recently, a subgroup

analysis of 34 patients with uveal melanoma who pro-

gressed on ipilimumab and who were treated with nivolu-

mab in the CheckMate 172 study revealed a response rate

of 6% (2/34 patients) [130].

Thus, treatment of these patients outside of clinical trials

is not recommended. Promising signals have been observed

in an interim analyses of a phase II study testing adoptive

T-cell therapy in patients with uveal melanoma, where a

promising response rate of 35% was seen [131]. Somewhat

less encouraging results were seen for the bispecific bio-

logic IMCgp100. This antibody induces objective respon-

ses in only 2 (11%) patients and SD in another 12 (63%)

patients, although responses do not seem to be durable as

the disease control rate (DCR) of 53% ([16 weeks CR,

partial response [PR], SD) dropped to 32% ([24 weeks

CR, PR, SD) [132].

Targeted agents have also been tested in patientswith uveal

melanoma. TheMEK inhibitor selumetinibwas demonstrated

to be clinically potent, with an improvement of objective

response rate and PFS compared with chemotherapy. This

modest efficacy comes at the cost of significant toxicity and

did not result in OS benefit over chemotherapy [124]. Pre-

clinical research has shown that the combination of protein

kinase C (PKC) inhibitors with mammalian target of rapa-

mycin (MTOR) or murine double minute 2 (MDM2) inhibi-

tors may be promising [133, 134]. Phase I trials with

combinations of these targeted agents are ongoing.

7 Future Perspectives

The fact that patients with low LDH, low disease burden,

and good performance status have the highest chance of

long-term benefit from both targeted therapy and

immunotherapy, advocates the start of systemic therapies

in an earlier stage of the disease. It was demonstrated that

adjuvant high-dose ipilimumab 10 mg/kg improved

relapse-free survival (RFS) and OS in stage III melanoma

patients, but at the cost of significant toxicity [135]. It was

recently shown that adjuvant nivolumab resulted in sig-

nificantly longer RFS and a lower grade 3/4 toxicity rate

compared with adjuvant ipilimumab [136]. Promising

results were also seen for adjuvant targeted therapy with

dabrafenib and trametinib in patients with BRAF-mutated

stage III melanoma. At a median follow-up of 2.8 years,

the 3-year RFS rate was 58% in the group treated with the

combination versus 39% in the group treated with placebo

[137].

Numerous neoadjuvant and adjuvant studies with tar-

geted therapy and (combination) immunotherapy are cur-

rently ongoing (NCT02362594, NCT01972347,

NCT02231775, NCT02519322, NCT02977052). In our

neoadjuvant arm of the OpACIN trial, we observed

impressive deep responses in 8 of 10 patients [138]. In the

subsequent phase II international OpACIN-neo trial

(NCT02977052), we are currently testing different com-

bination schemes of neoadjuvant ipilimumab plus nivolu-

mab to improve tolerability, while preserving the high

efficacy.

Although considerable improvements have been

achieved with these new effective treatments, a substantial

proportion of patients is still not having a durable response

to the currently approved treatment combinations. As

described above, the combination of targeted agents with

checkpoint inhibitors seems to be promising for patients

with BRAFV600 mutations as targeted therapy may enhance

the effect of immunotherapy. For patients with BRAF wild-

type melanoma, an MEK inhibitor in combination with

checkpoint inhibition is perhaps an option. Although the

first results showed grade 3–4 AEs in 59% of patients, the

combination seems to be effective, with an ORR of 50%

and a DCR of 80% in BRAF wild-type patients [139]. For

patients harboring an NRAS mutation, single-agent targeted

therapy may also be an option after progression on

checkpoint inhibition. In NRAS-mutant melanoma

patients, the selective MEK inhibitor binimetinib has

shown prolonged PFS (2.8 months) compared with dacar-

bazine (1.5 months) [140]. Remarkably, the median PFS

on treatment with binimetinib seems to be higher in

patients pretreated with immunotherapy (median of 5.5 vs.

2.8 months).

Moreover, a plethora of new combinations of

immunotherapeutic agents are currently being tested. The

combination of epacadostat (an inhibitor of indoleamine-

pyrrole 2, 3-dioxygenase [IDO]) and pembrolizumab

showed promising clinical activity, with an ORR of 56%

and a median PFS of 12.4 months. This combination was
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well tolerated, with a grade 3/4 toxicity rate of only 20%

[141], and is currently being investigated in a phase III trial

(NCT02752074). Phase I/II trials exploring the effect of

new checkpoint inhibitors such as anti-LAG3 and anti-

TIM3, either alone or in combination with anti-PD-1, are

ongoing. The first results of the combination of anti-LAG-3

(relatlimab) and nivolumab showed promising results, with

a response rate of 11.5% in patients who progressed on

prior anti-PD-1 therapy. The response rate was higher

(18%) in patients with an LAG-3 expression ofC 1% on

immune cells in the tumor. This combination regimen has

very good tolerability as only 10% of patients had one or

more treatment-related grade 3 or 4 AEs [142].

Furthermore, the clinical activity of co-stimulatory

antibodies anti-GITR, anti-CD137, and anti-OX-40 is

currently being explored in phase I and II trials, either as

single-agent therapy or in combination with anti-PD-(L)1.

We need to be aware that when testing so many (promis-

ing) combinations, a lot of patients will need to be included

in phase III trials. Translational studies exploring

biomarkers for patients who will benefit most from these

new (triple) combinations are urgently needed. Biomark-

ers, as described in our cancer immunogram [69], might

help to identify populations of melanoma patients in need

of triple therapies, which would allow the design of trials

with a smaller number of patients.

8 Conclusions

Treatment options for patients with advanced melanoma

have improved dramatically over the past decade. Fifteen

years ago, the median survival of patients with metastatic

melanoma was 7–10 months when treated with

chemotherapy [143], and only 5–10% of patients achieved

long-term survival. The introduction of targeted therapy

and immunotherapy has led to a significant improvement in

OS, with 1- and 2-year survival rates of approximately 70

and 50–60%, respectively (Table 2). The chance of a

durable response on either of these therapies seems to be

highest in patients with a low LDH, low disease burden,

and a good performance status. For BRAF-mutated

patients, the choice of either targeted therapy or

immunotherapy as first-line treatment should be based on

shared decision making, taking baseline characteristics

(e.g. presence of brain metastases [symptomatic vs.

asymptomatic], baseline LDH, performance status, and

disease burden), AEs, and comorbidities into account. A

large array of new combinations and sequences are being

tested, which will likely enhance clinical activity, thus

necessitating further biomarker exploration for the optimal

treatment per individual patient. We need to be aware that

more research is needed to improve outcomes for patients

with unfavorable characteristics (such as high LDH levels

or poor performance status) or brain metastases, which are

both underrepresented in the treated population in clinical

trials [106]. Current study survival data might now show an

overestimation of real-world patient survival because

patients with a poor prognosis are excluded from most of

the phase III registration trials and therefore these data

cannot easily be extrapolated to the everyday patient

population.
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