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Abstract. Surveying the previously unexplored areas of the sky guarantees deliv-
ering information about unexpected sources whose existence or properties cannot be
anticipated. Novelty detection algorithms allow to efficiently search for such objects.
In this work we present the ability of one-class support vector machines (OCSVM)
algorithm in service of novel source extraction within the infrared AllWISE catalog
covering the whole sky.

1. Introduction

Sky Surveys are designed to deliver homogeneous and complete datasets of astronom-
ical sources which are preferably spanning over many cosmic epochs. Later on, the
collected data serves as a very foundation for any subsequent scientific analysis, like
drawing general conclusions about the bulk of observed objects. Additionally, sky sur-
veys offer a way of searching for rare and unusual sources. For example, studying
previously uncharted parts of the parameter spaces (like the color-color diagrams), can
reveal the position of rare outliers. However, it is possible that the new sources can
mimic the appearance of regular objects. Machine Learning algorithms offer a new,
automatic and highly efficient way to exploit a high-dimensional parameter space not
only to identify abundant sources in large data-sets but also to find less common or
even unexpected astronomical objects. This work is focused on detecting anomalies
within the Wide-field Infrared Survey Explorer (WISE, Wright et al. 2010) data set.
The training sample of galaxies, stars and quasars is created by performing a positional
cross-match between WISE and Sloan Digital Sky Survey (SDSS, York et al. 2000) cat-
alogs. In order to search for novel sources we exploit a domain-based novelty detection
modification of the classical Support Vector Machine (SVM) algorithm referred to as
one-class SVM (OCSVM).

2. The Data

The WISE telescope was designed to observe the whole sky in near- and mid-IR wave-
lengths centered at 3.4 (W1), 4.6 (W2), 12 (W3) and 23 (W4) µm. The AllWISE catalog
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(Cutri et al. 2013) contains over 747 million sources – due to its large size we can ex-
ploit the gathered photometric information about the detected objects to evaluate the
performance of artificial intelligence algorithms for anomaly detection tasks. As input,
the supervised machine learning problems require a predefined training set, on which
they learn to recognize ’usual’ data patterns. For that reason it is necessary to manually
classify a subset of the data with known characteristics. To this aim we searched for
AllWISE source counterparts within 1” radius within SDSS DR13 (SDSS Collabora-
tion 2016) and therefore created a subsample of AllWISE sources with a spectroscopic
class confirmation (referred to as AllWISE×SDSS). The created training set is com-
posed of 2.6 million common sources, out of which 74% are galaxies, 13% are quasars
and 13% are stars. Next, we need to define a feature vector for each training object,
which should preferably include most characteristic properties for a source. For that
purpose we use the W1 magnitude measurement, W1 − W2 color and a concentration
parameter w1mag13 calculated as the difference between flux measurements in two cir-
cular apertures in the W1 passband in radii equal to 5.5” and 11.0” centered on a source
(previously used by e.g. Kurcz et al. 2016).

3. Method

Currently, one of the most popular schemes used for source classification is the Support
Vector Machine (SVM, Vapnik 1995). The SVM algorithm is designed to learn how
to recognize two (or more) types of objects based on the training examples provided
by the supervisor. First, the algorithm maps the input parameter space into a higher
dimensional feature space based on kernel functions and then, it searches for the best
separation hyperplane between the examples of the training points from each category
with the biggest margin possible. Then the unknown sources will be classified based
on their relative position to that boundary. One major caveat of the SVM algorithm is
that, in the original form, it cannot deal with the data from the general set with patterns
unseen during the training process, which results in contaminated output samples of
celestial objects. It is possible to modify the SVM algorithm as a tool for detection
of patterns within the data that were not included in the training: here the user has to
specify only one class, which has to be composed of all the known sources. Then, the
algorithm will find contain all the known sources within an enclosed hyper-shape within
the feature space. After the algorithm is trained, all new sources which will fall outside
of that hyper-shape will be considered as anomalies. This modification is referred to
as One-Class SVM (OCSVM) and can be efficiently used as a tool for searching for
unusual or unknown sources within large astronomical datasets. For details we refer
the reader to Solarz et al. (2017) and references therein.

4. Results

After training the OCSVM algorithm on the AllWISE×SDSS training sample, the full
AllWISE data were tested against the created normality model. As a result, ∼40 000
sources showed novel properties. The distinguishable property of these sources is their
extremely red W1 − W2 color (∼ 2), meaning that the sources experience a sharp in-
crease of observed flux with the increase of the observational wavelength. Such be-
havior and large mid-infrared fluxes can be associated with either warm dust emis-



Search of Anomalous Objects 399

Figure 1. Schematic representation of the OCSVM algorithm operation (Solarz
et al. 2017).

Figure 2. Left: The photometric redshift distribution for sources matched with
the Beck et al. (2016) catalog. Right: LT IR vs redshift for OCSVM anomalous
sources.

sion or policyclic aromatic hydrocarbon emission lines (characteristic for star-forming
galaxies). To confirm the nature of the selected anomalies we performed a positional
crossmatch with other publicly available data sets (irrespective of the observational
wavelength). We found ∼ 7000 counterparts in the photometric part of the SDSS sur-
vey, meaning that these sources have optical fluxes measured through the five optical
filters, but no redshift information is available. Nevertheless, about ∼ 2700 of these
sources have their photometric redshift measured by Beck et al. (2016). With photo-
metric redshifts (shown in left panel of Fig. 2) and optical and infrared photometry it
was possible to perform a preliminary spectral energy distribution (SED) fitting to find
rough estimations of the physical parameters of these sources. For that purpose we
used the CIGALE code (Noll et al. 2009), which incorporates galaxy and AGN tem-
plates spanning over the wavelength ranges from ultraviolet to far infrared. Examples
of the fits are presented in Fig. 3. We found that ∼ 1600 sources can be classified as lu-
minous infrared galaxies (LIRGs), as their total infrared luminosity was estimated to be
LT IR > 1011[L⊙]. ∼ 600 sources showed even larger IR luminosities, LT IR > 1012[L⊙],
which places them in the ultraluminous infrared galaxy (ULIRGs) category (shown in
right panel of Fig. 2). LIRGs and ULIRGs are thought to experience violent episodes
of star formation, due to their large dust content. What is more, according to the Fritz
et al. (2006) models, we estimate that the AGN contribution to the IR emission from
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the OCSVM anomalies exceeds 50%. The connection between the star-formation and
AGN activity is not well understood yet. The samples of the sources exhibiting emis-
sion from both components are small, and for that reason the newly found sources in
the WISE survey can help to significantly increase the amount of such objects to study
their properties. However, spectroscopic follow-up observations are necessary to reveal
the true nature of these sources.

Figure 3. SED fitting examples performed with the CIGALE code for an anomaly
classified as LIRG (left) and ULIRG (right) with over 50% AGN contribution to the
infrared luminosity.
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