
Per-instance configuration of the modularized CMA-ES by means of
classifier chains and exploratory landscape analysis
Prager, R.P.; Traumann, H.; Wang, H.; Bäck, T.H.W.; Kerschke, P.

Citation
Prager, R. P., Traumann, H., Wang, H., Bäck, T. H. W., & Kerschke, P. (2020). Per-instance
configuration of the modularized CMA-ES by means of classifier chains and exploratory
landscape analysis. 2020 Ieee Symposium Series On Computational Intelligence (Ssci),
996-1003. doi:10.1109/SSCI47803.2020.9308510

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3631973

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3631973

Per-Instance Configuration of the Modularized
CMA-ES by Means of Classifier Chains and

Exploratory Landscape Analysis

1st Raphael Patrick Prager
Statistics and Optimization

University of Münster

Münster, Germany

raphael.prager@wi.uni-muenster.de

2nd Heike Trautmann
Statistics and Optimization

University of Münster

Münster, Germany

trautmann@wi.uni-muenster.de

3rd Hao Wang
LIP6

Sorbonne Université

Paris, France

hao.wang@lip6.fr

4th Thomas H. W. Bäck
Leiden Institute of Advanced Computer Science

University of Leiden

Leiden, The Netherlands

t.h.w.baeck@liacs.leidenuniv.nl

5th Pascal Kerschke
Statistics and Optimization

University of Münster

Münster, Germany

kerschke@uni-muenster.de

Abstract—In this paper, we rely on previous work proposing
a modularized version of CMA-ES, which captures several
alterations to the conventional CMA-ES developed in recent
years. Each alteration provides significant advantages under cer-
tain problem properties, e.g., multi-modality, high conditioning.
These distinct advancements are implemented as modules which
result in 4 608 unique versions of CMA-ES. Previous findings
illustrate the competitive advantage of enabling and disabling
the aforementioned modules for different optimization problems.
Yet, this modular CMA-ES is lacking a method to automatically
determine when the activation of specific modules is auspicious
and when it is not. We propose a well-performing instance-
specific algorithm configuration model which selects an (almost)
optimal configuration of modules for a given problem instance.
In addition, the structure of this configuration model is able to
capture inter-dependencies between modules, e.g., two (or more)
modules might only be advantageous in unison for some problem
types, making the orchestration of modules a crucial task. This
is accomplished by chaining multiple random forest classifiers
together into a so-called Classifier Chain based on a set of
numerical features extracted by means of Exploratory Landscape
Analysis (ELA) to describe the given problem instances.

Index Terms—Single-Objective Continuous Optimization, Al-
gorithm Configuration, Exploratory Landscape Analysis, Modu-
larized CMA-ES, Classifier Chains

I. INTRODUCTION

The field of optimization is focused by various research

areas, such as operations research, evolutionary computation

as well as computer science and mathematics in general.

A variety of different strategies to tackle such optimization

problems have emerged in the last decades. These approaches

range from methods specifically designed for a single problem

instance, to local search methods, and so-called general-

purpose algorithms such as evolutionary algorithms. Recently,

efforts are undertaken to move from single algorithms to more

complex algorithmic ‘tool boxes’. The goal of such endeavours

is to provide a framework from which a multitude of different

algorithms can be realized.

The intrinsic nature of all these algorithms and modularized

frameworks is that they usually expose a variety of different

hyperparameters which one can tamper with. Setting those

to appropriate values for specific problem instances directly

impacts the performance of the algorithm in question and

therefore a desirable outcome. This undertaking is typically

known as algorithm configuration (AC) [1], [2].

Closely related to algorithm configuration is the field of

algorithm selection (AS). While past works propose algorithms

which are dedicated to achieve good results on specific prob-

lem domains in general, recent trends rely on using a set of

performance-complementary algorithms A. Depending on a

problem instance i at hand (out of a set I of instances of a

problem P), a selection strategy S(i) is responsible to choose

the most suitable algorithm A ∈ A for any problem instance

i. Exemplary strategies are parallel algorithm portfolios, al-

gorithm schedules, or an automated selection procedure aided

by machine learning (ML) models [3]. In general, all these

formerly mentioned strategies strive to select an algorithm

for every instance anew. This approach is also known as per-

instance algorithm selection.

In contrast, the subject of AC is to find for a single

algorithm A an optimal configuration c = (c1, c2, ..., cn)
of the hyperparameters algorithm A exhibits. Depending on

the context, this can either be performed for a whole set of

problem instances P (per-set AC) or for a single instance

i (per-instance AC). However, realistically algorithms exhibit

a multitude of hyperparameters of different types which can978-1-7281-2547-3/20/$31.00 ©2020 IEEE

996 2020 IEEE Symposium Series on Computational Intelligence (SSCI)

December 1-4, 2020, Canberra, Australia

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

range from binary parameters to discrete or even continuous

parameter values resulting in possibly an infinite amount of

configurations. This factor separates the fields of AS and

AC methodologically, meaning techniques employed in AS

are rarely used in the research stream of AC [4]–[6]. Other

techniques such as racing strategies are more prominent [7].

Yet, the downside of these techniques is that they require

significantly more computational effort and computation time.

In this work, we attempt to bridge the gap between these

two rather similar fields by employing machine learning tech-

niques, usually applied in the AS community, on an AC prob-

lem. We are particularly interested in optimally configuring

modularized algorithm frameworks. In essence, we strive to

address the following research questions:

1) How well can a framework of algorithm components

compete with prominent algorithms when configured

appropriately?

2) Which challenges in this context arise for machine

learning models in AC and what means are at our

disposal to solve them?

In the remainder of this paper, we propose an approach,

capable of configuring a modularized version of the most

prominent meta-heuristic for single-objective continuous op-

timization, i.e., the Covariance Matrix Adaption Evolution

Strategy (CMA-ES) [8]. Merits of this modular framework

especially lie in its flexibility and timeliness. While it is

based on the original CMA-ES (introduced by [9]), it also

encompasses advances made in recent years each with its own

hyperparameters. Thereby, it increases the configuration space

of the conventional CMA-ES substantially. Pivotal for such

an automated configuration procedure is knowledge about the

problem instance prior to the actual application of the modular

CMA-ES. As such, we incorporate Exploratory Landscape

Analysis (ELA) – which has proven itself successfully in

that regard numerous times – in our approach [10], [11].

These problem instance features serve as an input for the

machine learning model. To be more precise, a so-called

Classifier Chain (CC) is used because it is inherently well

equipped to deal with obstacles of AC scenarios. In the end,

the CC is able to predict a high-performing configuration of

the modular CMA-ES for a given problem instance by means

of ELA which is competitive with alternative state-of-the art

optimizers.

The structure of this paper is as follows. First, we cover the

basic components of our work. In other words, we introduce

the modularized CMA-ES framework, Exploratory Landscape

Analysis, and Classifier Chains in Section II. Thereafter, we

discuss the experimental setup to generate necessary data

which is used to train our model. Section IV provides an

in-depth analysis of the different facets of our experiment

including a discussion of the potential performance gains of

the modularized CMA-ES version. This is followed by an

evaluation of our model’s performance. The last portion of

Section IV compares our approach to common state-of-the

art solvers in terms of performance. Finally, we summarize

TABLE I
OVERVIEW OF CMA-ES MODULES AND THEIR OPTIONS [8].

Module name 0 1 2

1 Active Update [12] off on -

2 Elitism (μ, λ) (μ + λ) -

3 Mirrored Sampling [13] off on -

4 Orthogonal Sampling [14] off on -

5 Sequential Selection [15] off on -

6 Threshold Convergence [16] off on -

7 Two-Point Step-Size Adaptation [17] off on -

8 Pairwise Selection [14] off on -

9 Recombination Weights log(μ + 1
2) −

log(i)∑
j wj

1
μ

-

10 Quasi-Gaussian Sampling [18] off Sobol Halton

11 Increasing Population [19], [20] off IPOP BIPOP

our findings w.r.t. our research questions, point out current

limitations, and hint on future avenues to explore in Section V.

II. BACKGROUND

A. Modular CMA-ES Framework

Many different variants of the prominent solver CMA-

ES have been proposed over the past two decades. Some

advancements strive to accelerate the evolutionary search on

simple problems such as the work of [15]. Others introduce

an alternative approach to the step-size adaption of CMA-

ES [17] to varying population sizes [19]. Each of these

alterations offers some advantages for problems with specific

characteristics. In other words, in some situations it is aus-

picious to use one specific variant over any other. Inspired

by these circumstances, [8] devised an approach to utilize the

merits offered by several of these variations. In their work,

they considered eleven alterations, so-called modules, to the

conventional CMA-ES. These are consolidated into a single

implementation – the modular CMA-ES framework – which

can be configured to resemble a multitude of different CMA-

ES variants proposed in recent years. Nine of these modules

offer binary options, either ‘active’ or ‘inactive’, whereas the

last two offer trinary options. This results in 29 · 32 = 4608
distinct configurations. A brief overview of these different

modules as well as their respective source and their options is

given in Table I.

While some modules, e.g., (B)IPOP and Elitism, have a

positive effect on a large variety of problems, other modules,

such as Threshold Convergence, exhibit the opposite behavior

and impede the performance on many problem instances.

However, while such negative impact on the performance of

a chosen configuration can be observed, [21] point out that

this is not a definite indication that the respective module

is inferior in principle. In fact, their findings illustrate how

the activation of two or more modules in unison can become

auspicious for the optimization process whereas the activation

of only one of these modules becomes a hindrance. These

findings illustrate that different modules do not only have

different effects depending on the given problem instance but

also strongly interact with each other. Hence, the decision to

activate a certain module should not only be based on the

problem instance at hand, it also should be considered which

other modules will be activated or respectively remain inactive.

997

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

B. Exploratory Landscape Analysis

The fields of AC and AS both heavily rely on some sort of

information about the underlying problem instance to make

an informed decision on which configuration or algorithm

to choose. Depending on the problem domain, different ap-

proaches exist [3]. In the domain of single-objective continu-

ous black-box optimization, arguably the most prominent one

is Exploratory Landscape Analysis (ELA) [22]. Essentially, it

allows to compute numerical features, which in turn act as

numerical surrogates of the different problem characteristics.

Exemplary characteristics are the degree of multimodality,

global structure, and variable scaling. The numerical features

proposed by [22] are organized in six feature sets: curva-

ture, convexity, levelset, local search, meta models, and y-

distribution where the majority of features can be computed

from a so called initial design.

In essence, this initial design is a small sample of the

problem instance, either randomly sampled or by employing

more sophisticated strategies, e.g., Latin Hypercube Sampling.

The vast majority of ELA features requires not more than

50D samples to provide a reliable estimation, where D is

the problem dimensionality [23]. A few features, e.g., the

local search feature set, however, require additional function

evaluations on top of the initial design.

Further advancements in this area extended and augmented

the initial ELA features proposed by [22], i.e. the cell-

mapping features [24], information content features [25], as

well as the nearest better clustering features [26]. The most

comprehensive collection of ELA features can be found in the

R-package flacco [27], [28].

C. Classifier Chains

In the vast majority of published works, the building block

of automated algorithm selectors is constituted of a supervised

learning algorithm [3], [29]. Since both, AC and AS, share

many similarities, we utilize approaches which have proven

their worth in the field in AS for our purpose. Typically, AS

can be treated as classification as well as regression task and

the same can be applied in the context of AC. When it is

considered a classification task, the input variables are the

ELA features of the problem instances and the prediction is

an algorithm A out of the set of algorithms A.

A different avenue is taken in case of regression-based AS.

Here, an option is to build a ML model for every algorithm in

the set A. The input variables remain the same as in a classi-

fication task. However, here the prediction is the performance

(based either on time or number of function evaluations).

Given a problem instance i, all features are extracted and

passed to n models, where n = |A|. The algorithm which

exhibits the ‘best’ predicted performance is selected [3].

Within this work, we explore a different promising avenue.

We still remain in the area of a classification scenario. Yet

since we have 4 608 possible output classes, a conventional

multi-class ML model underperforms due to the large number

of possible classes. A more favorable approach is to predict

whether a module should be active or inactive under certain

...

...

Classifier 1 Classifier 2 Classifier N

Prediction

Module 1

Prediction

Module 2

Prediction

Module N

ELA Features

Fig. 1. Schematic representation of a Classifier Chain.

ELA features. This transforms the multi-class classification

with over a thousand classes to a multi-label classification

with the options of modules as possible classes, e.g., ‘ac-

tive’ or ‘inactive’. Technically, this problem is still a multi-

class problem since the modules ‘Increasing Population’ and

‘Quasi-Gaussian Sampling’ offer three possibles values.

In multi-label classification, each problem instance can be

associated with more than one label in contrast to multi-class

classification where the labels are mutually exclusive [30].

In this context, one label refers to the option value of one

module (of a CMA-ES configuration). To be able to predict

a configuration for given ELA features, a chain of ‘base’

classifiers – a so-called Classifier Chain (CC) – is used. Deci-

sion trees, random forests, and radial SVMs are considered as

possible base classifiers. Such a CC transforms the multi-label

problem with N labels into N binary (or trinary) classification

problems. Hence, each module is classified by a different

binary/trinary base classifier. Yet, instead of being independent

from each other, each classifier takes the output of all previous

classifiers (as well as the ELA features) into consideration,

thus forming a chain of classifiers. Consequently, correlations

between modules can be taken into account [30]. An intrinsic

limitation to CCs poses the order of base classifiers. While

some interdependencies between modules can be modelled,

it is not possible to model all interactions. Meaning, the first

base classifier will solely make its prediction based on the ELA

features. The subsequent base classifier on the other hand takes

the prediction of the first base classifier into account. Given

this, the internal order of base classifier can become a major

contributor to the CC’s performance.

Despite this limitation, a CC in general serves the purpose of

modelling the interaction between modules which is of utmost

importance. This is evident in the findings of [21] as well as

in the later parts of this paper. While a CC cannot capture all

interaction between modules, it allows us at least to model the

most influential dependencies between them. The workings of

such a CC in this application scenario are depicted in Fig. 1.

The input for all base classifiers in this CC are the ELA

features of a given problem instance i. The first base classifier

predicts whether the module it is responsible for should be

turned on or not. Its prediction (as well as the ELA features)

are then used as an input for the second classifier which in

998

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

turn predicts the option for the module this second classifier

is responsible for. Note that the last base classifier takes all

previous predictions into account, while the first operates only

on the ELA features.

III. EXPERIMENTAL SETUP

In order to implement the aforementioned algorithm config-

urator, two distinct experiments (serving different needs) are

conducted. The first experiment is tasked with creating the

necessary training data for the algorithm configurator, i.e., the

modular CMA-ES framework, with all 4 608 candidate con-

figurations, is applied to a large, representative set of problem

instances. Adherent to the standard of the evolutionary opti-

mization community, the Black-Box Optimization Benchmark

(BBOB) is used to provide a performance assessment of the

different configurations [31]. All 24 noise-less functions F =
{1, 2, .., 24} in dimensions D = {2, 3, 5, 10} are considered.

For each function f the first five instances I = {1, 2, ..., 5}
are used which leads to 480 problems instances in total. Note

that we define a problem instance as the triplet i := (F,D, I).
Due to the stochastic nature of evolutionary algorithms, each

candidate configuration is applied five times to gain a more

stable estimation of a candidate configuration’s performance.

As performance indicator we use the Expected Running Time

(ERT) which is well established in the community [32], [33]:

ERT =
1

s

∑

j

FEj , (1)

where j denotes the different repetitions of a configuration c on

a problem instance i, FE is the number of function evaluations

required to reach the target value Ftarget (cf. Table II), and s is

the number of successful runs in terms of reaching Ftarget. In

cases, where Ftarget is not reached in any of the j repetitions,

i.e., s = 0, we impute the performance using the PAR10 score

[34]. This results in a performance dataset comprising the ERT

for each configuration c related to each problem instance i.
Further chosen parameters of this experiment are detailed in

Table II.

Pivotal for our approach are descriptive features which

characterize a problem instance prior to optimization. As

elaborated in Section II-B, ELA provides the necessary means.

In this work, we rely on a small subset of all ELA features.

This restriction simply results from the fact that some features,

like the cell mapping features, are practically infeasible in

10D, or incur additional cost, e.g., local search features.

Hence, we use only the following features: 3 y-distribution,

18 levelset, 9 meta, 16 dispersion, 4 information content, and

5 nearest better clustering features as well as the problem

dimensionality. For each of the 480 problem instances, the

ELA features are sampled 10 times using a sample size of

50D obtained with Latin Hypercube Sampling. We use the

R-package flacco to compute all features of interest [27].

Thereafter, these results are averaged using the median. This

allows us to obtain a more reliable estimation and reduces

stochastic interference.

As mentioned in Section II-C, the order of classifiers within

a CC is a decisive factor when it comes to the model’s per-

formance. Hence, within the second experiment we evaluated

all possible sequences of base classifiers. Since we have base

classifiers for each module, this results in 11! = 39 916 800
different possible arrangements within a CC. We refrain to

endeavour in the realm of parameter tuning at this point

and postpone this until we have identified a small subset of

promising CCs. This is mainly done to reduce the already

immense computational effort required. In addition, instead

of using more computationally intensive model assessment

methods like cross validation, we use all BBOB functions in

all considered dimensions but only the instances 1-4 as training

data. The fifth instance of each function-dimension pairing is

used to evaluate our model in this first experiment. This results

in 384 problem instances in the training set and 96 instances

in the validation set V . As base classifiers, we employ random

forest using the Python package scikit-learn [35].

Furthermore, ERT values in general are highly influenced

by the problem dimensionality, i.e., an instance in a higher

dimension tends to have a substantially larger ERT value

than in a lower dimension. Hence, the selection of a sub-

optimal configuration for higher dimensional instances will

have a larger effect compared to lower dimensional instances.

Consequently, CCs will focus more on learning problems in

higher dimensional space and disregard the ones of lower

dimensionality. To mitigate such unwanted effects, we use a

relative ERT value, in short relERT [11]. To be more precise,

we assess the performance as follows: for each i ∈ V ,

we obtain the configuration ci (the prediction of the CC in

question) and its corresponding ERT value. Thereafter, we

identify the configuration c∗i which exhibits the lowest ERT

value on this instance i and compute the performance metric

relERTci = ERTci/ERTc∗
i
. Thereby, we obtain an indication

of how much worse a selected configuration ci is compared to

the best configuration c∗i on problem instance i. A relERT of

1 specifies a perfect selection. After computing the relERT for

each i ∈ V , we average this set of individual values by using

the arithmetic mean which allows to asses the performance of

a particular CC fairly.

IV. RESULTS AND DISCUSSION

A. Performance Analysis of all Configurations

Typical in the field of algorithm selection is to chose

a baseline algorithm also known as the single best solver

(SBS) [11], [34]. In this case, the SBS refers to the CMA-

ES configuration which exhibits the overall best performance,

i.e., the performance of every configuration is averaged over

all functions, dimensions, and instances using the arithmetic

mean. The configuration in possession of the lowest ERT

is denoted as SBS. On average, the best performing CMA-

ES configuration is c = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2) with a

relERT of 11.09. In other words, the SBS is on average 11

times slower compared to the hypothetical case where always

the best configuration for a given problem instance would

be selected. In regards to the SBS’s configuration, most of

999

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

TABLE II
(1) VALUES OF TERMINATION CRITERIA, (2) CONVENTIONAL CMA-ES EXOGENOUS STRATEGY PARAMETERS, AND (3) CMA-ES MODULE SPECIFIC

PARAMETERS. THE LINES SEPARATING THE TABLE INDICATE TO WHICH OF THE FORMER THREE TOPICS A PARAMETER BELONGS.

Parameter Value Description

B 10 000 · D Number of maximum function evaluations allowed in a single run where D denotes the problem dimension. B is referred to as budget.

�p 10−2 Precision value.
Ftarget Fopt + �p Target value a successful run has to reach. Ftarget exhibits a slightly worse fitness (thus is larger) than Fopt.

λ 4+�3·log(D)� Size of offspring population where D denotes the problem dimension
μ �λ/2� Size of population which are used in the adaptation strategies of CMA-ES.

m U(−4, 4)d Each element of the initial mean vector is sampled uniformly within the interval [−4, 4].
C I The initial covariance matrix C is the identity matrix I of size D × D where D denotes problem dimensionality.
σ 1 Value of the initial mutation step size.

T 0.2 Initial value of module ‘Threshold Convergence’
Decay Factor 0.995 Decay factor of the threshold value T
α′ 0.5 Test width α′ used for module ‘Two-Point Step-Size Adaptation’

���������	
� ���������	
�

���������	
� ���������	
�

���
� ���
� ���
� ���
� ���
� ���
�

���
�

���
�

���
�

���
�

���
�

���
�

�������

�
�

�
��

�
�

����
��������
����!

��
�
��
�"
�
�#
��

�
��$

���
�
��#
��

�
��$

��������
%�

�
�
�

$
�
"

�
&
#

�

��
��

��
�$
��

�"
��
�&

�#
�

��

��
��
�$

Fig. 2. Performance gap of the SBS and VBS.

the modules are inactive with the following exceptions. The

module ‘Mirrored Sampling’ is active, ‘Quasi-Gaussian Sam-

pling’ uses the Sobol sequence to sample mutation vectors,

and ‘Increasing Population’ uses the BIPOP restart scheme.

In contrast to the SBS, the virtual best solver (VBS) is the

best known algorithm for all specific optimization problems

individually. Here, this is limited to all possible configura-

tions, meaning only CMA-ES configurations are considered as

potential VBS. Consequently, the VBS for a specific BBOB

function-dimension-instance pairing is the best performing

configuration which is not necessarily (and here most likely

not) the SBS. Thus, the VBS can be perceived as an intangible

optimization algorithm that always achieves the best possible

performance on any problem instance [34]. We already used

the notion of the VBS in the previous section without explicitly

referring to it as such. There it is used as the denominator to

compute the relERT. The performance contrast of the SBS

compared to the VBS is illustrated in Fig. 2. Points on the

diagonal refer to an identical ERT of the SBS and VBS on a

given problem instance. The larger the distance to this diagonal

becomes horizontally (parallel to the x-axis), the worse the

SBS performs compared to the VBS.

On F6-F14, i.e., BBOB function groups 2 and 3, the

respective points are located in the lower left quadrant of the

figures in all dimensions. SBS and VBS require substantially

less function evaluations to solve these problem instances.

While there is a performance gap between those two, it is

not as significant as for the other BBOB function groups.

The performance of the SBS diverges peculiarly on functions

belonging to the last two BBOB function groups as well as

on the first function group. Selecting the respective VBS and

therefore a different CMA-ES configuration is by far more

auspicious than using the SBS. Based on these findings, we

argue that the development of an algorithm configurator indeed

has merit. By selecting the VBS instead of the SBS the

evolutionary search can be accelerated by orders of magnitude

on some instances.

B. Performance Evaluation of 11! CCs

As shown by [21], the performance of a configuration c is

largely dependent on how well different modules complement

each other. Two questions are of foremost interest. The first

one investigates whether modules interact with each other

at all. In cases where an interaction is present, the second

question is how to efficiently exploit this behaviour. Fig. 3

provides the performance distribution of all 11! distinct se-

quences of CCs. The lower performance bound is given by the

VBS, depicted as a green line. The large range of differently

performing CCs highlights the presence of strong module

interactions. The best-performing CC is able to achieve a

relERT of 8.76 whereas the worst-performing CC is on average

114.31 times slower than the VBS. In fact, the majority of CCs

perform worse than the SBS (colored in blue with an relERT of

11.09). However, 6 156 out of the 39 916 800 provide a better

performance in general, without any hyperparameter tuning

of the base classifiers so far. This large performance range

highlights the strength of interaction between modules and the

effect it can have on the overall competitiveness of a CC.

To enhance this promising subset of CCs further, we select

the three most promising CCs with the following internal order

of modules (cf. first column of Table I):

1) CC1 = (4, 8, 10, 6, 1, 2, 3, 11, 5, 7, 9)
2) CC2 = (9, 2, 8, 5, 1, 4, 6, 7, 3, 10, 11)
3) CC3 = (8, 6, 7, 3, 10, 9, 11, 5, 4, 1, 2)

These particular CCs are subjected to further tuning. This

tuning procedure is undertaken using irace [7]. In par-

ticular, we tune the following hyperparameters of the

random forest base classifiers: p := (n_estimators,

1000

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

VBS

SBS

1.00

11.09

30.00

60.00

90.00

114.31

re
lE

R
T

Fig. 3. Performance range of different CCs before tuning.

max_Features, max_depth, min_samples_split,

min_samples_leaf, bootstrap).

After successfully applying parameter tuning, we use CC1

as our final model because it demonstrates the best per-

formance. The values of the tuned hyperparameters (of the

random forests) are p = (944, sqrt, 20, 2, 2, False), where the

option ‘sqrt’ sets max_Features to the square root of the

number of input features. The resulting value is rounded down.

C. Performance Comparison of the Algorithm Configurator

In this step, we use leave-one-out cross validation to assess

our model. Meaning, we train n CCs on n−1 training samples,

where n = |P |. The left out problem instance in each of these

n CCs is used to predict the performance of that particular

CC [36]. This gives a more reliable estimation of our model’s

performance than the initial evaluation of all 11! CCs which

used a simple hold-out strategy (cf. Section III).

As a baseline, we use two well-known variants of the CMA-

ES, the conventional CMA-ES [9] and the IPOP-CMA-ES

[19], as well as the SBS1. Further, we compare not only to

the baseline algorithms but also to two other prominent and

powerful solvers: the Brent-STEP algorithm with quadratic in-

terpolation [37] and a hybrid CMA-ES version called HCMA

[38]. The ulterior motive here is to gain insights on how well

our approach competes with conventional CMA-ES variants

and other well-established algorithms. Brent-STEP provides

an exemplary deterministic algorithm whereas the HCMA –

which resulted as SBS in a previous comprehensive AS study

[11] – serves as representative of more sophisticated state-of-

the-art algorithms. In particular, the HCMA is constituted of

1Configurations used for the baseline algorithms:

• SBS: c = (0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2)
• conventional CMA: c = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
• IPOP-CMA-ES: c = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

TABLE III
PERFORMANCE COMPARISON USING RELERT, AGGREGATED BY PROBLEM

DIMENSIONALITY (D) AND BBOB FUNCTION GROUP (FUNCTION).

Baseline CC COCO

D Function SBS CMA IPOP no with HCMA BRENT

2

01-05 110.12 401.30 106.11 42.09 48.25 0.55 0.27
06-09 20.65 17.30 3.75 6.56 8.53 2.80 7920.81
10-14 2.96 3.69 5.09 1.77 3.27 1.53 3065.59
15-19 6.81 417.56 5.95 21.16 22.11 5.16 2478.98
20-24 116.69 372.84 106.89 37.88 39.42 76.85 3664.40

all 52.73 251.92 47.30 22.53 24.97 17.98 3238.73

3

01-05 27.93 161.67 19.96 46.90 48.33 6.46 0.09
06-09 5.30 296.04 2.88 15.75 16.97 1.80 4284.56
10-14 2.98 3.54 3.05 1.70 2.99 1.24 3007.97
15-19 6.65 330.75 7.17 10.40 10.91 4.27 1946.15
20-24 48.43 245.90 48.41 35.12 35.83 34.61 2846.85

all 18.80 203.89 16.85 22.23 23.26 10.01 2339.31

5

01-05 51.80 38.33 27.47 4.68 5.76 0.57 0.06
06-09 5.14 320.47 2.36 2.69 3.37 1.41 3130.59
10-14 2.23 2.44 2.44 1.61 2.59 0.79 2129.87
15-19 9.35 223.61 10.75 7.59 7.88 3.04 1445.89
20-24 44.44 1161.38 180.26 10.89 11.20 8.73 1078.98

all 23.32 350.44 46.42 5.61 6.28 2.97 1491.52

10

01-05 45.53 12.46 12.47 11.64 12.62 0.05 0.05
06-09 5.26 454.39 1.79 1.77 2.16 1.01 1967.78
10-14 1.99 2.51 2.27 2.24 3.00 0.58 1477.10
15-19 3.88 316.59 15.80 8.56 8.79 2.93 1120.49
20-24 31.62 434.65 175.75 19.60 19.75 23.51 783.99

all 18.17 235.36 43.27 9.05 9.56 5.81 1032.47

all

01-05 58.84 153.44 41.50 26.33 28.74 1.91 0.12
06-09 9.09 272.05 2.69 6.69 7.76 1.75 4325.93
10-14 2.54 3.04 3.21 1.83 2.96 1.04 2420.13
15-19 6.67 322.13 9.92 11.93 12.42 3.85 1747.88
20-24 60.30 553.69 127.83 25.87 26.55 35.93 2093.55

all 28.26 260.40 38.46 14.86 16.02 9.19 2025.51

a local search component and incorporates a surrogate model

making it an ample contender for our approach. Noteworthy is

that both, Brent-STEP and HCMA, cannot be realized within

the modular CMA-ES framework.

Table III summarizes performance of our model in addition

to the aforementioned other solvers. The first two columns

provide information about the considered problem instances,

e.g., the first row gives a performance indication of the

different solvers only on 2-dimensional problems of the first

BBOB group (F1-F5). The performance values are captured

using the relERT. Values < 1 state that a better performance

is accomplished compared what it is possible with the modular

CMA-ES framework under a perfect selection, i.e., VBS’s

performance. The performance of the conventional CMA-ES,

IPOP-CMA-ES, and SBS serve as baseline. The two columns

‘no’ and ‘with’ represent the final CC’s performance without

and with the additional costs of ELA features (which are

50D). The last two columns serve as an external validation

mechanism to evaluate how competitive our devised model

is compared to other well-established solvers. Note that the

performance data of the external algorithms are provided by

the COCO platform2. However, the comparison is not entirely

fair since the results submitted to the COCO platform do not

require any repeated runs on a problem instance whereas our

results are replicated five times. Therefore, the results of the

2https://coco.gforge.inria.fr

1001

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

other solvers might be more prone to stochastic interference.

To facilitate a fair comparison between the SBS and the

CCs, we assess the SBS performance using an approach

similar to the leave-one-out procedure. That is, for each left-

out problem instance out of all problems v ∈ P , we identify

the SBSv ∀i ∈ P\{v}. The ERT and relERT of the SBSv is

then derived by applying it to the problem instance v. This

means, that the SBS can differ for each problem instance v.

Overall, i.e., across all dimensions and functions, the single

best configuration of the modularized CMA-ES version is

superior to the conventional CMA-ES and IPOP-CMA-ES.

This not only might propose a slightly adapted CMA-ES

version but also highlights the potential of the modular CMA-

ES framework to provide novel algorithms in general, which

were not realized before. On the other hand, the VBS shows a

remarkable performance in contrast to the CMA-ES and IPOP-

CMA-ES. In addition to that, the other solvers HCMA and

BRENT are also not capable to outperform the VBS overall.

If that was the case, they would attain an relERT < 1. Rather,

the VBS is superior by a large margin compared to the best

competing solver (HCMA).

The final CC is able to outperform the SBS almost on

every BBOB function group and thereby contributes to the

current state of research by means of the modularized CMA-

ES framework. A notable exception is that the SBS pulls

ahead on functions 15 to 19 (BBOB function group 4).

However, considering the BBOB suite in its entirety the CC

with additional ELA feature costs accelerates the search by

a factor of 28.26/16.02 = 1.76, i.e., roughly 43.31% less

function evaluations are required to solve a problem instance

on average.

When assessing Table III, the performance disparity on the

BBOB function group 1, comprising functions 1 to 5, becomes

particularly visible. Our devised approach struggles to achieve

a competitive performance on these (rather simple) problem

instances. While the CC is capable of beating the SBS through

almost all dimensions on this particular group, it falls behind

the HCMA and BRENT. Two possible reasons may be the

cause of this behaviour. First, these BBOB functions are the

only separable functions and relatively easy to solve by any

standards compared to the remaining BBOB functions. This

leads to an imbalance in training samples for our model and

thereby limits the learning effects for this type of problem

instances. This explains the gap between the VBS and CC

on this function group. However, it is also evident that the

modularized CMA-ES framework is inherently limited, i.e.,

it is lacking a local search component. Algorithms which

incorporate a local search method, such as the HCMA and

BRENT, naturally outperform even the VBS of the modular-

ized CMA-ES on this function group. A different behaviour

can be observed on functions 20 to 24 which can be considered

as the most difficult ones to solve. Here, our configuration

approach is capable of achieving a similar or even a signifi-

cantly better performance than HCMA. This might hint that

some modules of the modularized CMA-ES framework are

especially beneficial on these complex functions.

F: 15 F: 16 F: 17 F: 18 F: 19
D

: 2
D

: 3
D

: 5
D

: 10

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

CC

SBS

CC

SBS

CC

SBS

CC

SBS

Instance ID

S
ol

ve
r

25

50

75

100

relERT

Fig. 4. Performance (in terms of the relative ERT) of the SBS and CC (with
costs for ELA features), shown for the functions of BBOB function group 4.

Despite the dominance of the CC over the SBS in general, it

is apparent that our model lacks behind the SBS’s performance

on BBOB function group 4 (F15-F19). A more detailed

account of this observation is given in Fig. 4. Even when

scrutinizing the performance on each function in isolation, our

model is inferior to the SBS in most of the cases. Especially

F16 in dimension 2 provides a challenge to our CC consis-

tently. To this point, we lack an insightful explanation for this

circumstance and aim to analyze this in future experiments.

V. CONCLUSION

In this paper, we propose a sophisticated approach which is

capable of automatically configuring a modularized version of

the CMA-ES for a given problem instance in single-objective

continuous optimization based on numerical instance features.

We moreover address important challenges of per-instance

algorithm configuration. By using machine learning in terms

of classifier chains to determine the best configuration of the

modular CMA-ES framework, we introduce a novel solution

to interdependencies between algorithms’ hyperparameters.

This approach consistently outperforms the single best

solver, and its performance is even unmatched by some

prominent state-of-the-art solvers on a small subset of BBOB

functions. Across all functions and dimensionalities, our ap-

proach is able to improve the SBS by roughly 40 percent. This

underlines the potential of such modular algorithm frameworks

in general and provides a very promising perspective onto

possible gains by extending the modular CMA-ES framework

even further, e.g., by incorporating a local search module.

This could even be enhanced by configuring the CMA-ES

hyperparameters of the different modules specifically.

Nevertheless, it is important to mention that this approach

is currently limited to discrete parameters. We plan to extend

this research to parameters of arbitrary type, e.g., the test

width of the module ‘Two-Point Step-Size Adaptation’ which

is a continuous parameter. Furthermore, other research – such

as [10], [11] – suggest that a small subset of ELA features

1002

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

is descriptive enough and additional features may even be

disturbing. Hence, feature selection is also a promising area to

explore. Lastly, the work of [39] illustrates the extraordinary

performance gain when switching between configurations dur-

ing the evolutionary search. We will thus explore the potential

of online algorithm configuration in future studies.

ACKNOWLEDGMENT

The authors acknowledge support by the European Research

Center for Information Systems (ERCIS).

REFERENCES

[1] K. Eggensperger, M. Lindauer, and F. Hutter, “Pitfalls and Best Practices
in Algorithm Configuration,” Journal of Artificial Intelligence Research,
vol. 64, pp. 861 – 893, 2019.

[2] C. Huang, Y. Li, and X. Yao, “A Survey of Automatic Parameter
Tuning Methods for Metaheuristics,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 2, pp. 201–216, 2020.

[3] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Auto-
mated Algorithm Selection: Survey and Perspectives,” Evolutionary
Computation (ECJ), vol. 27, no. 1, pp. 3 – 45, 2019.

[4] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown, “Performance
Prediction and Automated Tuning of Randomized and Parametric Al-
gorithms,” in International Conference on Principles and Practice of
Constraint Programming. Springer, 2006, pp. 213 – 228.

[5] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer, “Feature Based
Algorithm Configuration: A Case Study with Differential Evolution,” in
PPSN XIV. Springer, 2016, pp. 156 – 166.

[6] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer, “Per Instance
Algorithm Configuration of CMA-ES with Limited Budget,” in Proc.
of the Genetic and Evol. Comp. Conf. ACM, 2017, pp. 681 —- 688.

[7] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and
T. Stützle, “The irace Package: Iterated Racing for Automatic Algorithm
Configuration,” Oper. Research Perspectives, vol. 3, pp. 43 – 58, 2016.

[8] S. van Rijn, H. Wang, M. van Leeuwen, and T. Bäck, “Evolving the
Structure of Evolution Strategies,” in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1–8.

[9] N. Hansen, The CMA Evolution Strategy: A Comparing Review.
Springer, 2006, pp. 75 – 102.

[10] B. Bischl, O. Mersmann, H. Trautmann, and M. Preuß, “Algorithm
Selection Based on Exploratory Landscape Analysis and Cost-Sensitive
Learning,” in Proceedings of the 14th Annual Conference on Genetic
and Evolutionary Computation. ACM, 2012, pp. 313 – 320.

[11] P. Kerschke and H. Trautmann, “Automated Algorithm Selection on
Continuous Black-Box Problems by Combining Exploratory Landscape
Analysis and Machine Learning,” Evolutionary Computation (ECJ),
vol. 27, no. 1, pp. 99 – 127, 2019.

[12] G. A. Jastrebski and D. V. Arnold, “Improving Evolution Strategies
through Active Covariance Matrix Adaptation,” in 2006 IEEE Int’l
Conference on Evolutionary Computation, 2006, pp. 2814 – 2821.

[13] A. Auger, D. Brockhoff, and N. Hansen, “Mirrored Sampling in Evo-
lution Strategies with Weighted Recombination,” in Proc. of the 13th
Annual Conf. on Genetic and Evol. Comp. ACM, 2011, pp. 861–868.

[14] H. Wang, M. Emmerich, and T. Bäck, “Mirrored Orthogonal Sampling
with Pairwise Selection in Evolution Strategies,” in Proc. of the 29th
Annual ACM Symp. on Applied Comp. ACM, 2014, pp. 154–156.

[15] D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm,
“Mirrored Sampling and Sequential Selection for Evolution Strategies,”
in PPSN XI. Springer, 2010, pp. 11 – 21.

[16] A. Piad-Morffis, S. Estévez-Velarde, A. Bolufé-Röhler, J. Montgomery,
and S. Chen, “Evolution Strategies with Thresheld Convergence,” in
IEEE Congress on Evolutionary Computation, 2015, pp. 2097 – 2104.

[17] N. Hansen, “CMA-ES with Two-Point Step-Size Adaptation,” CoRR,
vol. abs/0805.0231, 2008.

[18] O. Teytaud and S. Gelly, “DCMA, yet Another Derandomization in
Covariance-Matrix-Adaptation,” in Proc. of the 9th Annual Conf. on
Genetic and Evolutionary Computation. ACM, 2007, pp. 955–963.

[19] A. Auger and N. Hansen, “A Restart CMA Evolution Strategy with
Increasing Population Size,” in 2005 IEEE Congress on Evolutionary
Computation, vol. 2. IEEE, 2005, pp. 1769 – 1776.

[20] N. Hansen, “Benchmarking a BI-population CMA-ES on the BBOB-
2009 Function Testbed,” in Proceedings of the 11th Annual Conference
Companion on Genetic and Evolutionary Computation Conference: Late
Breaking Papers. ACM, 2009, pp. 2389 – 2396.

[21] S. van Rijn, H. Wang, B. van Stein, and T. Bäck, “Algorithm Configura-
tion Data Mining for CMA Evolution Strategies,” in Proc. of the Genetic
and Evolutionary Computation Conference. ACM, 2017, pp. 737–744.

[22] O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and
G. Rudolph, “Exploratory Landscape Analysis,” in Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation.
ACM, 2011, pp. 829 – 836.

[23] P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann, “Low-
Budget Exploratory Landscape Analysis on Multiple Peaks Models,” in
Proceedings of the 18th Annual Conference on Genetic and Evolutionary
Computation. ACM, 2016, pp. 229 – 236.

[24] P. Kerschke, M. Preuss, C. Hernández, O. Schütze, J.-Q. Sun,
C. Grimme, G. Rudolph, B. Bischl, and H. Trautmann, “Cell Mapping
Techniques for Exploratory Landscape Analysis,” in EVOLVE - A
Bridge between Probability, Set Oriented Numerics, and Evolutionary
Computation V. Springer, 2014, pp. 115 – 131.

[25] M. A. Muñoz, M. Kirley, and S. K. Halgamuge, “Exploratory Landscape
Analysis of Continuous Space Optimization Problems Using Information
Content,” IEEE Trans. on Evol. Comp., vol. 19, no. 1, pp. 74–87, 2015.

[26] P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann, “Detect-
ing Funnel Structures by Means of Exploratory Landscape Analy-
sis,” in Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. ACM, 2015, p. 265–272.

[27] P. Kerschke and H. Trautmann, “Comprehensive Feature-Based Land-
scape Analysis of Continuous and Constrained Optimization Problems
Using the R-package flacco,” in Applications in Statistical Computing.
Springer, 2019, pp. 93 – 123.

[28] C. Hanster and P. Kerschke, “flaccogui: Exploratory Landscape Analysis
for Everyone,” in Proc. of the 19th Annual Conference on Genetic and
Evolutionary Computation Companion. ACM, 2017, pp. 1215 – 1222.

[29] L. Kotthoff, Algorithm Selection for Combinatorial Search Problems: A
Survey. Springer International Publishing, 2016, pp. 149–190.

[30] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier Chains
for Multi-Label Classification,” Machine Learning, vol. 85, no. 3, pp.
333 – 359, 2011.

[31] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-Parameter
Black-Box Optimization Benchmarking 2009: Noiseless Functions
Definitions,” INRIA, Research Report RR-6829, 2009. [Online].
Available: https://hal.inria.fr/inria-00362633

[32] A. Auger and N. Hansen, “Performance Evaluation of an Advanced
Local Search Evolutionary Algorithm,” in 2005 IEEE Congress on
Evolutionary Computation, vol. 2. IEEE, 2005, pp. 1777–1784.

[33] T. Bartz-Beielstein, C. Doerr, J. Bossek, S. Chandrasekaran, T. Eftimov,
A. Fischbach, P. Kerschke, M. López-Ibáñez, Manuel, K. M. Malan,
J. H. Moore, B. Naujoks, P. Orzechowski, V. Volz, M. Wagner, and
T. Weise, “Benchmarking in Optimization: Best Practice and Open
Issues,” arXiv preprint arXiv:2007.03488, 2020.

[34] B. Bischl, P. Kerschke, L. Kotthoff, T. M. Lindauer, Y. Malitsky,
A. Fréchette, H. H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren, “ASlib: A Benchmark Library for Algorithm Selection,”
Artificial Intelligence, vol. 237, pp. 41 – 58, 2016.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825 – 2830, 2011.

[36] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009.

[37] P. Pošı́k and P. Baudiš, “Dimension Selection in Axis-Parallel Brent-
STEP Method for Black-Box Optimization of Separable Continuous
Functions,” in Proc. of the 2015 Annual Conference on Genetic and
Evolutionary Computation Companion. ACM, 2015, pp. 1151 —- 1158.

[38] I. Loshchilov, M. Schoenauer, and M. Sèbag, “Bi-population cma-es
agorithms with surrogate models and line searches,” in Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation
Companion. ACM, 2013, pp. 1177 —- 1184.

[39] D. Vermetten, S. van Rijn, T. Bäck, and C. Doerr, “Online Selection
of CMA-ES Variants,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2019, pp. 951 —- 959.

1003

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 19,2023 at 08:10:47 UTC from IEEE Xplore. Restrictions apply.

