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Abstract
Background Postoperative gastrointestinal leak and venous thromboembolism (VTE) are devastating complications of bariat-
ric surgery. The performance of currently available predictive models for these complications remains wanting, while machine 
learning has shown promise to improve on traditional modeling approaches. The purpose of this study was to compare the 
ability of two machine learning strategies, artificial neural networks (ANNs), and gradient boosting machines (XGBs) to 
conventional models using logistic regression (LR) in predicting leak and VTE after bariatric surgery.
Methods ANN, XGB, and LR prediction models for leak and VTE among adults undergoing initial elective weight loss 
surgery were trained and validated using preoperative data from 2015 to 2017 from Metabolic and Bariatric Surgery Accredi-
tation and Quality Improvement Program database. Data were randomly split into training, validation, and testing popula-
tions. Model performance was measured by the area under the receiver operating characteristic curve (AUC) on the testing 
data for each model.
Results The study cohort contained 436,807 patients. The incidences of leak and VTE were 0.70% and 0.46%. ANN (AUC 
0.75, 95% CI 0.73–0.78) was the best-performing model for predicting leak, followed by XGB (AUC 0.70, 95% CI 0.68–0.72) 
and then LR (AUC 0.63, 95% CI 0.61–0.65, p < 0.001 for all comparisons). In detecting VTE, ANN, and XGB, LR achieved 
similar AUCs of 0.65 (95% CI 0.63–0.68), 0.67 (95% CI 0.64–0.70), and 0.64 (95% CI 0.61–0.66), respectively; the perfor-
mance difference between XGB and LR was statistically significant (p = 0.001).
Conclusions ANN and XGB outperformed traditional LR in predicting leak. These results suggest that ML has the potential 
to improve risk stratification for bariatric surgery, especially as techniques to extract more granular data from medical records 
improve. Further studies investigating the merits of machine learning to improve patient selection and risk management in 
bariatric surgery are warranted.

Keywords Bariatric surgery · Postoperative complications · Anastomotic leak · Venous thromboembolism · Machine 
learning · Deep learning

Obesity and associated metabolic diseases constitute a 
major public health threat for which bariatric surgery is a 
highly effective intervention [1]. Laparoscopic weight loss 
surgery (WLS) is safe relative to other elective general 
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surgical procedures [2], but complications can be morbid 
and expensive [3]. Safety concerns among both patients [4] 
and providers [5] help explain why WLS is under utilized 
relative to clinical needs [6]. Stratification of risk for post-
operative complications can guide patient selection, inform 
referral practices and patient counseling, and identify high-
risk patients for monitoring and intervention.

Gastrointestinal leak occurs in less than one percent of 
WLS cases [7] but is associated with other complications, 
readmission, reoperation, death [8], and increased cost [9]. 
Obese patients are at high risk for deep vein thrombosis 
[10, 11] and American Society for Metabolic and Bariatric 
Surgery guidelines recommend routine thromboprophy-
laxis [12]. Nevertheless, venous thromboembolism (VTE) 
remains a leading cause of morbidity and mortality in this 
population [13, 14] and optimizing thromboprophylaxis 
strategies remains an area of considerable interest [13, 15, 
16]. Prior risk models for leak and VTE achieve mod-
est results [14, 17]. For example, BariClot is a VTE risk 
assessment tool based on logistic regression (LR) that was 
developed and validated using the Metabolic and Bariatric 
Surgery Accreditation and Quality Improvement Program 
(MBSAQIP) registry. Though it achieved an area under 
the receiver operating characteristic curve (AUC) of just 
0.60, it outperformed two previously published models 
[14, 18, 19].

Machine learning (ML), a branch of artificial intelligence, 
is the study of computer algorithms that extract information 
from data without explicit instructions from humans. ML 
does not refer to a specific mathematical approach, but to a 
broad array of statistical models. These are generally related 
in their flexibility and capacity to distinguish subtle, nonlin-
ear patterns in data that are often not accessible to traditional 
approaches like LR [20]. ML models have recently outper-
formed LR in preoperative risk stratification using National 
Surgical Quality Improvement Program data [21, 22].

Artificial neural networks (ANNs) and gradient boost-
ing machines (XGBs) are powerful classes of ML models 
that perform well in medical risk prediction using tabular 
data [23, 24]. A simple ANN is a stack of layered functions 
with each layer containing a matrix of weights. Data pass 
through the stack with the output of one layer used as the 
input to the next, ultimately transforming the data into model 
outputs. Training involves repeatedly adjusting the weights 
to gradually match model to target outputs [25]. XGB is a 
ML algorithm in which a series of decision models are itera-
tively constructed, tested, and adjusted to correct outputs, 
ultimately resulting in a decision tree algorithm optimized 
for a regression or classification task [26].

The aim of this study was to develop and validate preop-
erative ANN and XGB risk models for gastrointestinal leak 
and VTE among WLS patients and compare their perfor-
mance against traditional models.

Methods

Data source and study population

All available MBSAQIP data from 2015 to 2017 were 
used. This national registry contains patient-level vari-
ables characterizing preoperative risk factors and 30-day 
postoperative outcomes. In 2017, 832 accredited bariat-
ric centers contributed over 200,000 cases to the registry 
[27]. The study population included patients aged 18–79 
with no prior foregut or bariatric surgery who under-
went elective laparoscopic gastric bypass (CPT 43644 or 
43645) or laparoscopic sleeve gastrectomy (CPT 43775). 
We excluded patients with no information on height and 
weight or Body Mass Index (BMI) given the fundamental 
importance of this information to the study interventions. 
This study was approved by the Boston Medical Center 
Institutional Review Board under a pre-existing protocol 
for research on MBSAQIP data.

Outcomes

Outcomes of interest were gastrointestinal leak and VTE. 
Each was defined as a composite endpoint of 30-day 
outcomes variables in MBSAQIP. Leak was defined as 
postoperative organ space infection, presence of a surgi-
cal drain for more than 30 days, or leak as the suspected 
reason for any readmission, reintervention, or reoperation 
[7]. VTE was defined as anticoagulation therapy for imag-
ing-confirmed deep vein thrombosis (DVT) or pulmonary 
embolism (PE) or readmission, reintervention, reopera-
tion, or death with DVT or PE as the suspected cause [14].

Predictive models

For each outcome of interest, we randomly split the data 
into training, validation, and testing populations compris-
ing 50%, 25%, and 25% of the study cohort respectively. 
To account for imbalanced data, we oversampled positive 
cases to a ratio of 0.5 in the training set using the imbal-
anced learn Python library [28, 29]. Positive and negative 
cases were split separately to ensure equitable distribution 
of positive cases in the training, validation, and testing 
sets.

Predictive models used all clinical variables that 
could be reasonably ascertained the day prior to surgery 
(Table 1). To permit valid comparisons of model perfor-
mance, all models used all available input variables to gen-
erate predictions. Some features were calculated or con-
solidated from MBSAQIP variables (Table 1). Continuous 
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Table 1  Input variables and outcomes among 436,807 patients under-
going elective laparoscopic gastric bypass or sleeve gastrectomy

Input variable

Sex, n (%)
 Female 346,559 (79.3)
 Male 90,248 (20.7)

Race, n (%)
 American Indian or Alaska Native 1745 (0.4)
 Asian 2138 (0.5)
 Black or African American 77,050 (17.6)
 Native Hawaiian or Other Pacific Islander 1222 (0.3)
 Unknown/not reported 35,193 (8.1)
 White 319,459 (73.1)

Hispanic ethnicity, n (%)
 No 340,748 (78.0)
 Unknown 41,535 (9.5)
 Yes 54,524 (12.5)

Procedure, n (%)
 Gastric bypass 121,528 (27.8)
 Sleeve gastrectomy 315,279 (72.2)

Gastroesophageal reflux disease, n (%)
 No 301,408 (69.0)
 Yes 135,399 (31.0)

Limited ambulation, n (%)
 No 429,440 (98.3)
 Yes 7367 (1.7)

Vein thrombosis requiring therapy, n (%)
 No 429,833 (98.4)
 Yes 6974 (1.6)

History of myocardial infarction, n (%)
 No 431,143 (98.7)
 Yes 5664 (1.3)

Previous PCI or angioplasty, n (%)
 No 427,889 (98.0)
 Yes 8918 (2.0)

Previous cardiac surgery, n (%)
 No 431,964 (98.9)
 Yes 4843 (1.1)

Hypertension requiring medication, n (%)
 No 224,663 (51.4)
 Yes 212,144 (48.6)

Number of anti-Hypertensive medications, n (%)
 0 159,267 (36.5)
 1 94,885 (21.7)
 2 72,381 (16.6)
 3+ 110,274 (25.2)

Hyperlipidemia, n (%)
 No 331,523 (75.9)
 Yes 105,284 (24.1)

Venous stasis, n (%)
 No 432,278 (99.0)
 Yes 4529 (1.0)

Table 1  (continued)

Input variable

Dialysis requirement, n (%)
 No 435,460 (99.7)
 Yes 1347 (0.3)

Renal insufficiency, n (%)
 No 433,915 (99.3)
 Yes 2892 (0.7)

Preoperative therapeutic anticoagulation, n (%)
 No 425,520 (97.4)
 Yes 11,287 (2.6)

Diabetes, n (%)
 Insulin dependent 38,102 (8.7)
 No 320,820 (73.4)
 NonInsulin dependent 77,885 (17.8)

Smoker, n (%)
 No 399,223 (91.4)
 Yes 37,584 (8.6)

Functional status, n (%)
 Independent 432,220 (98.9)
 Partially dependent 2833 (0.6)
 Totally dependent 1754 (0.4)

Chronic obstructive pulmonary disease, n (%)
 No 429,313 (98.3)
 Yes 7494 (1.7)

Oxygen dependent, n (%)
 No 433,635 (99.3)
 Yes 3172 (0.7)

History of pulmonary embolism, n (%)
 No 431,748 (98.8)
 Yes 5059 (1.2)

Sleep apnea, n (%)
 No 269,762 (61.8)
 Yes 167,045 (38.2)

Chronic steroids, n (%)
 No 429,452 (98.3)
 Yes 7355 (1.7)

Presence and timing of placement of IVCF, n (%)a

 Placed in anticipation of surgery 2243 (0.5)
 Pre-existing 978 (0.2)
 No 433,539 (99.3)
 Unknown 47 (0.0)

American Society of Anesthesiology Class, n (%)
 1—No disturb 1476 (0.3)
 2—Mild disturb 97,939 (22.4)
 3—Severe disturb 319,773 (73.2)
 4—Life threat 15,571 (3.6)
 5—Moribund 40 (0.0)
 Unknown 2008 (0.5)

Training level of first assistant, n (%)
 Attending—other 24,369 (5.6)
 Attending—weight loss surgeon 65,444 (15.0)
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variables were zero centered and scaled to unit variance. 
Methods for handling missing and incomplete data are 
described in Table 1. Wherever possible, missing continu-
ous variables were set to the training population mean. 
Missing categorical variables were assigned to a unique, 
unknown category.

ANN and XGB were compared to LR for prediction of 
both VTE and leak. Our ANN, XGB, and LR models were 
compared to BariClot for prediction of VTE. Our models 
computed the probability of an outcome for each patient, 
while BariClot generated a risk score [14]. All predictive 
models were implemented in Python 3.6 [30, 31] using the 
Anaconda Distribution [32] with extensive use of the Pandas 
[33] and NumPy [34] libraries. We followed the Transpar-
ent Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis reporting guidelines [35]. All 
code used for preprocessing data and building predictive 
models is open sourced.

ANN models were implemented in Pytorch [36] with 
code adapted from open sources [37–39]. ANN architecture 
consisted of two layers with rectified linear units applied 
after each layer. We selected a relatively simple architecture 
because initial experiments with more complex architectures 
increased computational demand without a notable increase 
in predictive power. Categorical variables were encoded as 
neural embeddings [40]. Batch normalization was applied 
between layers [41]. Early stopping [42] and random drop-
out [43] were employed to avoid over-fitting training data 
[23]. Training was terminated when the ANN achieved peak 
performance on the validation data. XGB was implemented 
in XGBoost using default hyperparameters [26]. LR was 
implemented in statsmodels [44].

Statistical comparison of model performance

Model performance was measured by computing the AUC 
generated by each model on the test set for each outcome. 
The Delong test [45] with threshold of 0.05 was used to 
statistically compare AUCs generated by each predictive 
model. AUC confidence intervals were obtained using the 
Delong procedure. Bootstrapping was used to find confi-
dence intervals for other model performance measures 
including comparison of partial AUCs. The pROC package 
[46] with RStudio [47] and R version 3.5.2 [48] was used for 
all model performance calculations. Plots were made with 
ggplot2 [49].

Descriptive statistics were computed in using the tableone 
Python library [50]. Training, validation, and test popula-
tions were compared using one-way ANOVA and chi-square 
tests for continuous and categorical variables, respectively.

Results

The study cohort contained 436,807 patients of whom 
3068 (0.070%) developed leak and 2012 (0.046%) suffered 
VTE (Supplementary Fig. 1). Characteristics of the cohort 
are shown in Table 1. The training, validation, and testing 
sets for both gastrointestinal leak and VTE had 218,403, 

Table 1  (continued)

Input variable

 Minimally invasive surgery fellow 38,613 (8.8)
 None (no assist or scrub tech/RN only) 63,273 (14.5)
 Physician assistant/nurse practitioner/registered 

nurse
166,222 (38.1)

 Resident (PGY 1–5+) 78,886 (18.1)
Year of operation, n (%)
 2015 131,926 (30.2)
 2016 146,614 (33.6)
 2017 158,267 (36.2)

Height in centimeters, mean (sd) 166.7 (9.2)
Consolidated preoperative BMI, mean (sd)b 45.4 (8.0)
Change in BMI in the year prior to surgery, mean 

(sd)c
− 2.0 (2.3)

Weight in kilograms, mean (sd)d 126.7 (26.8)
Age in years, mean (sd)e 44.7 (12.0)
Preoperative albumin level, mean (sd)f 4.1 (0.4)
Preoperative hematocrit level, mean (sd)g 40.9 (3.8)
Operative duration (minutes)h 85.8 (47.1)
Outcomes
Gastrointestinal leak, n (%)
 No 433,739 (99.3)
 Yes 3068 (0.7)

Venous thromboembolism, n (%)
 No 434,795 (99.5)
 Yes 2012 (0.5)

BMI body mass index, PCI percutaneous coronary intervention, IVCF 
inferior vena cava filter
a The presence and timing of placement of preoperative inferior vena 
cava filters were consolidated into one variable
b In the event that preoperative BMI was available but maximum BMI 
for the preceding year was not, the most recent BMI was assumed to 
be the maximum BMI (n = 27,862); when preoperative BMI was not 
available, it was set equal to the maximum (n = 2268)
c A continuous variable representing the difference between the maxi-
mum BMI and the preoperative BMI was computed. 27,862 missing
d Back calculated from height and consolidated BMI
e The 2015 MBSAQIP PUF reports ages as digits, whereas the 2016 
and 2016 PUFs report ages to the hundredth decimal place. To avoid 
losing information from the latter cohorts, we reassigned each 2015 
patient a randomly selected age from a uniform distribution within 
the appropriate year
f 114,343 missing
g 44,969 missing
h Used only in BariClot calculation
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109,202, and 109,202 patients, respectively. There were no 
clinically meaningful differences in patient characteristics 
between training, validation, and test sets, although there 
were some statistically significant differences (Tables 1 and 
2 in the Supplement).

Figure 1 shows model performance for prediction of leak. 
ANN was the best-performing model with an AUC of 0.75 
(95% CI 0.73–0.78). ANN outperformed XGB (p < 0.001), 
which also performed well, achieving an AUC of 0.70 (95% 
CI 0.68–0.72). Both ANN and XGB significantly outper-
formed LR (p < 0.001 for each comparison), which achieved 
an AUC of 0.63 (95% CI 0.61–0.65).

ANN achieved a partial AUC of 0.05 under the portion of 
the ROC with specificity greater than 90%, outperforming 
both XGB (partial AUC 0.03, p < 0.001) and LR (partial 
AUC 0.01, p < 0.001). With the specificity threshold held 
as close as possible to 0.975, ANN achieved a sensitivity of 
0.493 (95% CI 0.458–0.529), a positive predicative value 

(PPV) of 0.122 (95% CI 0.114–0.131), and outperformed 
XGB and LR at the same threshold (Table 2). Of the 767 
patients in the testing set who went on to suffer postoperative 
leaks, ANN would have identified 378 at the 0.975 specific-
ity threshold, while XGB and LR would have identified 184 
and 103, respectively.

Model performance for prediction of VTE is summarized 
in Fig. 2. ANN, XGB, and LR achieved similar AUCs of 
0.65 (95% CI 0.63–0.68), 0.67 (95% CI 0.64–0.70), and 0.64 
(95% CI 0.61–0.66), respectively. XGB outperformed LR 
(p = 0.001) but there were no other statistically significant 
differences between models. ANN, XGB, and LR outper-
formed BariClot (p < 0.001 for all three comparisons), which 
achieved an AUC of 0.56 (95% CI 0.54–0.59). At the 0.975 
specificity threshold, confusion matrix metrics of the ANN, 
XGB, and LR models were generally comparable to one 
another and superior to BariClot (Table 3).

All models used all input variables in prediction. The 
relative importance of predictive variables in XGB models 
for both outcomes are shown in Figs. 3 and 4. XGB identi-
fied age, height and weight-related measures, hematocrit, 
albumin, and assistant training level as important predic-
tors for both leak and VTE. History of DVT was among 
the most important factors in predicting VTE, but not leak 
(Figs. 3 and 4). Odds ratios for predictive variables used 
by logistic regression models are listed in the Supplement 
Tables 3 and 4.

Discussion

This study demonstrates the potential utility of applying 
ML methods for preoperative risk assessment in bariatric 
surgery. For predicting leak, ANN and XGB outperformed 
LR, which performed very similarly to a previously reported 
LR model [17]. In our study, the potential clinical benefits of 
ML are most apparent when evaluating our leak models at 
high specificity, where ANN and XGB performed particu-
larly well and could prove useful in preoperative screening. 
At 97.5% specificity, ANN predicted several-fold more leaks 
than LR and achieved a PPV over 10%. Among patients with 
a 10% probability of leak, the benefits of weight loss surgery 
are unlikely to outweigh the risks. These results suggest ML 

Fig. 1  Receiver Operating Characteristic Curves for Predicting Gas-
trointestinal Leak. ANN artificial neural network, XGB gradient 
boosting machine, LR logistic regression

Table 2  Performance characteristics of the artificial neural network (ANN), gradient boosting machine (XGB), and logistic regression (LR) 
models for predicting gastrointestinal leak at the 97.5% specificity threshold

Sensitivity, median (95% CI) Specificity, median (95% CI) PPV, median (95% CI)

Model
 ANN 0.493 (0.458–0.529) 0.975 (0.974–0.976 0.122 (0.114–0.131)
 XGB 0.24 (0.209–0.270) 0.975 (0.974–0.976) 0.063 (0.056–0.071)
 LR 0.134 (0.111–0.159) 0.975 (0.974–0.976) 0.037 (0.030–0.043)
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methods can offer clinically meaningful improvements in 
risk stratification, even for uncommon events that are dif-
ficult to predict using any statistical method.

In the context of VTE, ANN and XGB perform similarly 
to LR, with XGB achieving a small but statistically signifi-
cant advantage. All three of our models outperformed Bari-
Clot even though BariClot employs intra-operative informa-
tion in prediction, likely because BariClot was trained on 
less data than our models. Recent contributions to the litera-
ture on VTE risk after weight loss surgery use a wider range 
of variables and incorporate patient data from perioperative, 
intra-operative, and postoperative time points [13, 14, 16]. 
Our VTE risk models are less predictive than our leak mod-
els. This may be because widespread thromboprophylaxis 
among patients in MBSAQIP dampens the statistical signals 
available to VTE models.

These results contribute to an emerging literature describ-
ing ML for medical risk assessment. ML techniques have 
recently been applied to tabular data to predict a variety of 

outcomes including delirium [24] and pediatric emergency 
department triage [23] with good results. However, ML does 
not always outperform traditional LR. For example, ML out-
performed LR in just one of two recent, rigorous efforts to 
predict heart failure readmissions, likely due to differences 
between the data sets used by each team [51–53]. Our results 
fit the general pattern that no single predictive modeling 
technique consistently prevails.

Several limitations apply. First, outcomes of interest that 
occur beyond 30 days or for which patients do not present 
to the index institution may be missed [54]. However, the 
effect of increasing the incidence of outcomes in a test popu-
lation on model performance is unclear, and may actually 
boost performance. Second, feature selection is limited to 
the specific variables and level of detail available in MBSA-
QIP. It is not clear that models developed using narrowly 
scoped, highly structured data will perform well outside of 
this context [20, 55]. Nevertheless, our results indicate that 
ML techniques may provide significant performance gains 
against LR. ANNs are especially powerful in learning from 
unstructured and multimodal data. Thus, we suspect access 
to a wider set of features would have improved the predictive 
performance of all of our models and of ANNs in particular. 
Additionally, pretrained ANNs can be adapted to new data in 
a process called transfer learning. In this fashion, the insights 
gained through training in large administrative datasets can 
be harnessed to build high-performing models in specific 
clinical contexts with relatively small numbers of observa-
tions that can be collected on the scale of single institutions 
[56]. Third, we do not have sufficient data to externally vali-
date our models. ANN and XGB were somewhat overfitted 
to the training data, but all three of our models performed 
similarly in the validation and testing data, confirming 
internal validity (Supplementary Table 5). Fourth, several 
variables, including the precise age of all patients in the 
2015 cohort, were missing in a nontrivial number of cases. 
However, we split the data to equally distribute the missing 
data among the training, validation, and testing cohorts, and 
model performance should therefore account for bias intro-
duced in imputation.

Our ML models are also limited in terms of usability. 
They employ more variables than clinicians can reason-
ably input at the point of care. Their utility will depend on 
assistive software that marries innovation in clinical data 

Fig. 2  Receiver operating characteristic curves for predicting venous 
thromboembolism. ANN artificial neural network, XGB gradient 
boosting machine, LR logistic regression

Table 3  Performance 
characteristics of the artificial 
neural network (ANN), gradient 
boosting machine (XGB), 
logistic regression (LR), and 
BariClot models for predicting 
venous thromboembolism at the 
97.5% specificity threshold

Sensitivity, median (95% CI) Specificity, median (95% CI) PPV, median (95% CI)

Venous thromboembolism
 ANN 0.203 (0.169–0.239) 0.975 (0.974–0.976) 0.036 (0.03–0.042)
 XGB 0.211 (0.175–0.247) 0.975 (0.974–0.976) 0.038 (0.031–0.044)
 LR 0.159 (0.127–0.191) 0.975 (0.974–0.976) 0.029 (0.023–0.034)
 BariClot 0.101 (0.076–0.127) 0.975 (0.974–0.976) 0.018 (0.014–0.023)



188 Surgical Endoscopy (2021) 35:182–191

1 3

management to user interface design [20, 57]. Additionally, 
ML models are opaque and difficult to interpret. XGBs have 
the concept of relative importance, which measures the influ-
ence of each variable on model output [24, 58]. For example, 
our XGB suggests previously unreported predictors of leak 
including preoperative change in BMI, first assistant train-
ing level, race, ethnicity, and steroid use (Fig. 3) [7, 59]. 
However, unlike the LR odds ratio, relative importance does 
not have clear numerical or directional meaning and lacks 
an intuitive semantic connection to model outcomes. ANNs 
have no such analogous concept and are particularly difficult 
to interpret. In some cases, interpretable algorithms like LR 
may be preferable to ANN or XGB even at the expense of 
predictive performance.

Despite these limitations, we offer a number of innova-
tions, particularly with respect to our ANN. It is imple-
mented Pytorch, an industry standard framework. It makes 
use of a number of contemporary techniques to optimize per-
formance and training that are common in industry but only 
beginning to emerge in the medical outcomes literature [23]. 
These include nonlinearities between layers, dropout, batch 
normalization, and automatic early stopping. Additionally, 
our ANN uses neural embeddings for categorical variables. 
Traditionally, categorical variables are represented as one 
hot for use in high-dimensional operations. By training fea-
ture vectors for each possible value of a categorical variable, 
we can represent values more meaningfully and in theory 
make better predictions [60]. This technique originated in 

Fig. 3  Relative importance of each predictive variable in the gradi-
ent boosting machine model for predicting gastrointestinal leak. Rela-
tive performance quantifies the relative contribution of each variable 
to minimizing the error of the gradient boosting model. The measure 
is scaled from zero to one against the most important predictor [24]. 
Relationships between importance and outcomes are nonlinear and 
cannot be interpreted directionally with respect to their influence on 

outcomes, nor can they be used to generate cutoff or threshold values. 
BMI body mass index, DVT deep vein thrombosis, MIS minimally 
invasive surgery, PE pulmonary embolism, HTN hypertension, IVCF 
inferior vena cava filter, PCI percutaneous coronary intervention, 
GERD gastroesophageal reflux disease, ASA American Society of 
Anesthesiology, COPD chronic obstructive pulmonary disease, HLD 
hyperlipidemia, MI myocardial infarction
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natural language processing [61] and has been used in com-
mercial software [62] and data science competitions [40]. 
This may be its first application to surgical outcomes. Others 
can straightforwardly adapt our ANN to analyze any organ-
ized tabular data and modify its structure to experiment with 
deeper and more complicated architectures (https ://githu 
b.com/jdnud el/wls_ai_open).

Artificial intelligence has the potential to transform sur-
gery by transferring responsibility for complex cognitive 
and manual tasks from humans to machines, ultimately 
automating and amplifying the capabilities of surgical 
teams [20]. This study represents incremental progress 
toward that future and generally supports the expectation 
that advances in artificial intelligence and ML will mean-
ingfully improve the performance of predictive models 
in surgery. To our knowledge, this is the first successful 

application of modern ML algorithms to characterize pre-
operative risk among WLS patients. Before these models 
can be deployed at the point of care, they must be vali-
dated in future and external cohorts. They may need to be 
retrained or updated with additional data in order to ensure 
they perform as expected in particular patient populations.
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