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Abstract
Background A preoperative estimation of survival is
critical for deciding on the operative management of met-
astatic bone disease of the extremities. Several tools have
been developed for this purpose, but there is room for
improvement. Machine learning is an increasingly popular
and flexible method of prediction model building based
on a data set. It raises some skepticism, however, because
of the complex structure of these models.
Questions/purposes The purposes of this study were (1) to
developmachine learning algorithms for 90-day and 1-year
survival in patients who received surgical treatment for a

bone metastasis of the extremity, and (2) to use these
algorithms to identify those clinical factors (demographic,
treatment related, or surgical) that are most closely asso-
ciated with survival after surgery in these patients.
Methods All 1090 patients who underwent surgical
treatment for a long-bone metastasis at two institutions
between 1999 and 2017 were included in this retrospective
study. The median age of the patients in the cohort was 63
years (interquartile range [IQR] 54 to 72 years), 56% of
patients (610 of 1090) were female, and the median BMI
was 27 kg/m2 (IQR 23 to 30 kg/m2). The most affected
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location was the femur (70%), followed by the humerus
(22%). The most common primary tumors were breast
(24%) and lung (23%). Intramedullary nailing was the
most commonly performed type of surgery (58%), fol-
lowed by endoprosthetic reconstruction (22%), and plate
screw fixation (14%). Missing data were imputed using
the missForest methods. Features were selected by ran-
dom forest algorithms, and five different models were
developed on the training set (80% of the data): stochastic
gradient boosting, random forest, support vector machine,
neural network, and penalized logistic regression. These
models were chosen as a result of their classification ca-
pability in binary datasets. Model performance was
assessed on both the training set and the validation set
(20% of the data) by discrimination, calibration, and
overall performance.
Results We found no differences among the five models
for discrimination, with an area under the curve ranging
from 0.86 to 0.87. All models were well calibrated, with
intercepts ranging from -0.03 to 0.08 and slopes ranging
from 1.03 to 1.12. Brier scores ranged from 0.13 to 0.14.
The stochastic gradient boosting model was chosen to be
deployed as freely available web-based application and
explanations on both a global and an individual level
were provided. For 90-day survival, the three most im-
portant factors associated with poorer survivorship were
lower albumin level, higher neutrophil-to-lymphocyte
ratio, and rapid growth primary tumor. For 1-year sur-
vival, the three most important factors associated with
poorer survivorship were lower albumin level, rapid
growth primary tumor, and lower hemoglobin level.
Conclusions Although the final models must be externally
validated, the algorithms showed good performance on in-
ternal validation. The final models have been incorporated
into a freely accessible web application that can be found
at https://sorg-apps.shinyapps.io/extremitymetssurvival/.
Pending external validation, clinicians may use this tool to
predict survival for their individual patients to help in shared
treatment decision making.
Level of Evidence Level III, therapeutic study.

Introduction

The incidence of cancer grows annually; approximately
14 million patients were diagnosed with the disease in
2012 [11], and approximately 18 million were di-
agnosed in 2018 [10]. Simultaneously, the survival rates
of patients with cancer have increased because of im-
proved treatment options, including those for metastatic
cancer. Three cancers with the highest incidence,
namely prostate, lung, and breast cancer, have a high
propensity to metastasize to bone [6, 25]. It is therefore
expected that both the incidence and prevalence of

metastatic bone disease will increase. Bone metastases
can lead to pathologic fractures and can dramatically
decrease a patient’s quality of life, causing pain and im-
mobility [7]. Because metastatic cancer is generally deemed
incurable, treatment is intended to treat the symptoms and
maintain quality of life. Treatment options for these patients
include systemic therapy, radiotherapy, and surgery. De-
termination of operative management is influenced by esti-
mated survival [35]. In patients with bone metastases of the
extremities, two survival thresholds are generally considered
important: 90 days and 1 year [12]. Patients who are not
expected to live beyond 90 days usuallywill not benefit from
surgery, while patients who live beyond 1 year will benefit
from more-invasive and enduring reconstruction proce-
dures [35].

Several prognostic models have been developed in
the past decades to help physicians in their estimations
for patients with bone metastases of the extremities [1,
12, 18, 19, 22, 36]. These models range from simple
scoring systems to more complex machine learning
algorithms. Although these models perform well, it is
necessary to keep modifying and optimizing them,
particularly because new prognostic factors are contin-
uously being investigated and more-advanced machine
learning techniques now can be used for both prediction
and explanation. Machine learning is a subset of com-
puter science and statistics. It is capable of handling
large amounts of data and recognizing complex combi-
nations of predictors for a certain outcome by using
modern computational and mathematic algorithms [9,
23]. So far, a limited number of studies have used ma-
chine learning to develop prognostic models for patients
with a bone metastasis of the extremities [12, 18], and
only a few machine learning algorithms have been ex-
plored for that purpose. We recently explored different
machine learning algorithms for the survival prediction
of patients suffering from chondrosarcoma [4, 31],
using a similar methodology for model development and
performance assessment as the current study. One of the
main disadvantages of machine learning algorithms is
the so-called “black box problem”; we are able to ob-
serve the data we enter into the computer as well as the
output the algorithms give us, but what happens in be-
tween sometimes is unclear. In this study, we aimed to
address these drawbacks while preserving the predictive
performance of the resulting algorithms.

Therefore, the primary purpose of this study was to
developmachine learning algorithms for 90-day and 1-year
survival in patients who received surgical treatment for a
bone metastasis of the extremity. Our secondary aimwas to
use these algorithms to identify those clinical factors (de-
mographic, treatment related, or surgical) that are most
closely associated with survival after surgery in these
patients.
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Patients and Methods

Study Design and Population

This study was performed according to the Transparent
Reporting of a Multivariable Prediction Model for In-
dividual Prognosis or Diagnosis [8] and the Strengthening
the Reporting of Observational Studies in Epidemiology
[33] guidelines.

All 1090 patients 18 years and older who underwent
surgical treatment for a long-bone metastasis at the Mas-
sachusetts General Hospital and the Brigham and Wom-
en’s Hospital between 1999 and 2017 were included in this
retrospective study. Surgical treatment consisted of intra-
medullary nailing, endoprosthetic reconstruction, plate
screw fixation or dynamic hip screw. Patients were ex-
cluded if the first surgical treatment of the long-bone me-
tastasis was not performed at one of these institutions. If a
patient received multiple surgical procedures for a long-
bone metastasis, only the first procedure was included. In
general, the decision to operate or not was based on the
health of the patient and the patient’s wishes. Patients who
were expected to have a long survival were treated with
more durable and invasive procedures than patients who
were not expected to have a long survival.

Explanatory Variables and Outcome

We reviewed operative notes, medical records, radiology
reports, and pathology reports to record the following
variables: age; sex; BMI (kg/m2); any Charlson comor-
bidity in addition to metastatic cancer; primary tumor type
[19]; the Eastern Cooperative Oncology Group score; tu-
mor location; the presence of a pathologic fracture, other
bone metastases, spine metastases, visceral metastases,
brain metastases; and previous systemic therapy and local
radiation. Preoperative laboratory factors were the hemo-
globin level (g/dL), white blood cell count (x 103/ uL),
platelet count (x 103/uL), absolute lymphocyte count (x
103/uL), absolute neutrophil count (x 103/uL), neutrophil-
to-lymphocyte ratio, platelet-to-lymphocyte count, albu-
min level (g/dL), and alkaline phosphatase (IU/L), calcium
(mg/dL), creatinine (mg/dL), and sodium (mg/dL) levels.

The primary outcome of interest was overall survival,
and this was verified from the medical records or the Social
Security Death Index [17].

Missing Data

Missing data were imputed using the missForest methods
[27]. This was performed for variables with less than 30% of
missing data: BMI: 237 (22%); hemoglobin level: 146 (13%);

white blood cell count: 146 (13%); platelet count: 146 (13%);
absolute lymphocyte count: 326 (30%); absolute neutrophil
count: 322 (30%); albumin level: 320 (30%); alkaline phos-
phatase level: 316 (29%); calcium level: 200 (18%); creati-
nine level: 66 (15%); and sodium level: 199 (18%). Variables
with more than 30% of missing data were dropped.

Baseline Characteristics

The median patient age in the cohort was 63.0 years
(interquartile range [IQR] 54.0 to 72.0 years), and 56% of
patients (610 of 1090) were female (Table 1). The median
BMI was 26.6 kg/m2 (IQR 23.2 to 30.3 kg/m2). As for the
primary tumor category, 43% of the patients (460 of 1090)
were in the slow-growth group, 34% (367 of 1090) were
in the rapid-growth group, and 24% (263 of 1090) were in
the moderate-growth group (see Table 1, Supplemental
Digital Content 1, http://links.lww.com/CORR/A244).
The primary tumor categories were classified as per
Katagiri et al. [19] (see Table 2, Supplemental Digital
Content 2, http://links.lww.com/CORR/A245). In all,
55% of patients (595 of 1090) had pathologic fractures.
Eastern Cooperative Oncology Group scores were
available for 39% of patients (422 of 1090), of whom
85% (360 of 422) had an Eastern Cooperative Oncology
Group score of 0 to 2. The lower extremity was affected in
77% of the patients. Fifty-eight percent of patients (637 of
1090) were treated with intramedullary nailing, followed
by endoprosthetic reconstruction in 22% of patients (241
of 1090), and plate-screw fixation in 14% (155 of 1090).
Overall, 78% of patients (845 of 1090) had other bone
metastases, and 57% (626 of 1090) had spinal metastases.
Visceral metastases were present in 45% of patients (487
of 1090) and brain metastases occurred in 16% (175 of
1090). Thirty-eight patients were lost to follow-up within
90 days, sixty-nine were lost to follow-up within 1 year.
Twenty-nine percent of the 1052 patients (305) died
within 90 days, and 62% (1031) died within 1 year.

Model Development

Variables were selected for the algorithms by 10-fold
cross-validation of random forest algorithms [5, 21].
Random forest algorithms repeatedly select random fea-
tures to build models [5]. Tenfold cross-validation entails
that the data is split into 10 groups; each model is trained
in nine groups and tested in the tenth [21]. This process is
repeated until every group has been used for testing. The
combination of random forest algorithms and 10-fold
cross-validation enables us to find the optimal subset of
features while keeping the variance of model performance
low and avoiding overfitting.
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The algorithms chosen for this study, stochastic gradient
boosting, random forest, support vector machine, neural
network, and penalized logistic regression, were based on a
previous study’s method [34]. They are commonly used
algorithms and are suitable for binary classification. All
five algorithms have their separate way of classifying the
data. Both stochastic gradient boosting and random forest
algorithms are tree-based, in which outputs of individual
decision trees are combined. For stochastic gradient

boosting models, these individual trees are developed se-
quentially. Each tree “learns” from the previous tree, and
redistributes theweight of the accurately andwrongly classified
data. By giving less weight to the accurately classified data and
more weight to the wrongly classified data, each tree will im-
prove after reclassifying the data until further improvement is
not possible. All trees combined will then give the final pre-
diction. In random forest models each tree is independently
developedwith random feature subsets.All these different trees
will then “vote” to form the final prediction model. The fun-
damental concept behind this is the wisdom of the crowds: all
the uncorrelated models combined will outperform a single
model. Support vector machines are kernel-based algorithms
looking to define a hyperplane that best divides the dataset into
two classes [16]. Simply said, a hyperplane can be imagined
as a line that separates and classifies a set of data. The further
the data points are from the hyperplane, the more certain it is
they are correctly classified. Support vector machines classify
data into higher dimensions, by which the line becomes
three-dimensional and is no longer a line but a plane. Neural
networks are modeled after the human brain and consist of
input and output layers that are connectedwith a certain weight
via one or multiple hidden layers. They are capable of recog-
nizing patterns from the data and learn from it. Penalized lo-
gistic regressionmodels impose a “penalty” to a logisticmodels
for having too many variables. There are two ways to do that:
With ridge regression all the predictors are kept but the coef-
ficients of minor predictors are lowered close to zero. Lasso
regression eliminates the minor predictors by setting their
coefficients to 0. The elastic-net penalized logistic regression
combines ridge regression and lasso regression to find a re-
duced set of variables for an optimal performing model.

The data were divided into a training set (80%) and a
validation set (20%). The training set was used to develop
the models, while the validation set was used to internally
validate the models.

Assessment of Model Performance

After the model was developed, its performance was
assessed on both the training set by means of 10-fold cross-
validation and the validation set. Performance metrics in-
cluded discrimination (area under the curve), calibration
(intercept and slope), and Brier score. The area under the
curve ranged from 0.50 to 1.0, with 0.50 indicating pure
chance and 1.0 indicating the highest discriminating score.
Graphically, discrimination is visualized with receiver
operating characteristic curve plots. Calibration indicates
agreement between the predicted outcome and the actual
outcome, and perfect calibration has an intercept of 0 and a
slope of 1 [28, 29]. The Brier score refers to overall per-
formance, with 0 as a perfect Brier score. However, the
prevalence of the outcome must be considered; therefore,

Table 1. Baseline characteristics of the study population

Variable Number (n = 1090)

Age (years)a 63 (54-72)

Female sex 56% (610)

BMI (kg/m2)a 27 (23-30)

Other Charlson comorbidity 54% (584)

Primary tumor type

Slow growth 42% (460)

Moderate growth 24% (263)

Rapid growth 34% (367)

Pathologic fracture 55% (594)

ECOG

0-2 85% (360)

3-4 15% (62)

Tumor location

Upper extremity 23% (255)

Lower extremity 77% (835)

Other bone metastases 78% (845)

Spine metastases 57% (626)

Visceral metastases 45% (487)

Brain metastases 16% (175)

Previous systemic therapy 62% (676)

Local radiation 18% (194)

Hemoglobin level (g/dL)a 11 (10-13)

White blood cell count (103/uL)a 7 (5-10)

Platelet count (103/uL) a 251 (184-332)

Absolute lymphocyte count (103/uL)a 1 (1-2)

Absolute neutrophil count (103/uL)a 5 (4-8)

Neutrophil-to-lymphocyte ratioa 5 (3-9

Platelet-to-lymphocyte ratio a 234 (158-374)

Albumin level (g/dL)a 4 (3-4)

Alkaline phosphatase level (IU/L)a 101 (74-146)

Calcium (mg/dL)a 9 (9-10)

Creatinine (mg/dL)a 0.8 (0.7-1.1)

Sodium (mg/dL)a 138 (136-140)

90-day mortality 29% (305)

1-year mortality 62% (639)

aData are presented as median (range).
ECOG = Eastern Cooperative Oncology Group performance
status score.
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the Brier score of the null model was also calculated by
assigning a probability equal to the prevalence of the out-
come to each patient [3, 29].

Decision curves were then plotted for the 90-day and 1-
year prediction models. A decision curve analysis is a way
of evaluating the net benefit of a model across a range of
different threshold probabilities [32]. The user of the model
can decide which threshold is important and determine if
the model is valuable at that threshold and see what the
predicted net benefit would be.

Model Explanations

The final prediction models were explained by visualizing
the included features of the models with their weighted
importance [15]. These plots give a global estimation of the
models. Partial-dependence plots were created to reflect the
association between continuous variables and the outcome
[2]. Additionally, for individual patients, an explanation of
the contribution of the different features to the outcomewas
given and shown with illustrative examples.

Internet Application

The stochastic gradient boosting model was chosen
as the final model for both 90-day and 1-year survival
prediction. These models were deployed as a freely
accessible internet application and can be found at
https://sorg-apps.shinyapps.io/extremitymetssurvival/.
Anaconda Distribution (Continuum Analytics, Austin,
TX, USA) with RStudio (Version 1.0.153, Boston, MA,
USA), Python Version 3.6 (Python Software Foundation,

Wilmington, DE, USA), and StataCorp 2013 (Stata
Statistical Software: Release 13; StataCorp LP, College
Station, TX,USA)were used for analyzing data, creating the
model, and developing the internet application.

Results

Development and Performance of the Machine
Learning Algorithms

The factors associated with 90-day survival were albumin
level, neutrophil-to-lymphocyte ratio, primary tumor group,
alkaline phosphatase level, hemoglobin level, calcium level,
absolute neutrophil count, white blood cell count, age, and
platelet count. The variables selected for 1-year survival
were albumin level, primary tumor type, hemoglobin level,
neutrophil-to-lymphocyte ratio, alkaline phosphatase level,
absolute lymphocyte count, presence of visceral metastases,
sodium level, platelet-to-lymphocyte ratio, and age.

The fivemodels showed no difference in discrimination,
with an area under the curve of 0.86 for the random forest
(95% CI 0.85 to 0.88), support vector machine (95% CI
0.84 to 0.87), and penalized logistic regression models
(95% CI 0.85 to 0.87) and an area under the curve of 0.87
for stochastic gradient boosting (95% CI 0.86 to 0.88) and
the neural network models (95%CI 0.84 to 0.87) (Table 2).
No difference was found in calibration between themodels,
with intercepts ranging from -0.03 to 0.08 and slopes
ranging from 1.03 to 1.12. Brier scores were 0.13 for the
stochastic gradient boosting and random forest models and
0.14 for the support vector machine, neural network, and
penalized logistic regression models. The null-model Brier
score was 0.21. In the validation set, the discriminating

Table 2. Discrimination and calibration of algorithms on repeated cross-validation of the training set, n = 873, mean (95% CI)

Metric
Stochastic gradient

boosting Random forest
Support vector

machine Neural network
Penalized logistic

regression

90-day
mortality

AUC 0.87 (0.86 to 0.88) 0.86 (0.85 to 0.88) 0.86 (0.84 to 0.87 0.87 (0.84 to 0.87) 0.86 (0.85 to 0.87)

Intercept 0.01 (-0.06 to 0.08) 0.01 (-0.06 to 0.07) 0.08 (-0.03 to 0.20) -0.03 (-0.10 to 0.04) 0.04 (-0.05 to 0.13)

Slope 1.04 (0.96 to 1.12) 1.12 (1.01 to 1.23) 1.13 (1.00 to 1.27) 1.03 (0.94 to 1.11) 1.08 (0.97 to 1.20)

Briera 0.13 (0.12 to 0.14) 0.13 (0.13 to 0.14) 0.14 (0.13 to 0.14) 0.14 (0.13 to 0.15) 0.14 (0.13 to 0.14)

1-year
mortality

AUC 0.85 (0.83 to 0.86) 0.85 (0.83 to 0.86) 0.85 (0.83 to 0.86) 0.85 (0.84 to 0.86) 0.85 (0.83 to 0.86)

Intercept -0.04 (-0.12 to 0.03) -0.12 (-0.19 to 0.04) -0.03 (-0.10 to 0.05) 0.05 (-0.02 to 0.13) 0.02 (-0.05 to 0.09)

Slope 1.12 (1.02 to 1.21) 1.41 (1.29 to 1.53) 1.16 (1.03 to 1.28) 0.87 (0.81 to 0.94) 0.94 (0.84 to 1.05)

Brierb 0.16 (0.15 to 0.16)cccc 0.16 (0.15 to 0.16) 0.15 (0.15 to 0.16) 0.15 (0.15 to 0.16) 0.15 (0.15 to 0.16)

a90-day mortality null-model Brier score = 0.21.
b1-year mortality null-model Brier score = 0.24; AUC = area under the receiver operating characteristic curve.
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performance ranged from an area under the curve of 0.85
for support vector machine and neural network to an area
under the curve of 0.87 for stochastic gradient boosting
(Table 3). Calibration intercepts ranged from 0.01 to 0.13
and calibration slopes ranged from 1.02 to 1.09. Brier
scores for all fivemodels were 0.13 comparedwith the null-
model Brier score of 0.21.

Clinical Factors Associated with Survival

The most important factors associated with a greater risk of
90-daymortalitywere lower albumin level, higher neutrophil-
to-lymphocyte ratio, and rapid growth primary tumor (Fig.
1A-D). Scaled from 0 to 100, the relative importance of al-
bumin level was 100, of neutrophil-to-lymphocyte ratio
around 75 and of primary tumor category around 40. For all
predicted probabilities, the model showed greater standard-
ized net benefit relative to changes in management decision
based on all patients or no patients (Fig. 2). Partial dependence
plots for the continuous variables of albumin level,
neutrophil-to-lymphocyte ratio, calcium level, and hemoglo-
bin level show the relationships between the input variables
and the algorithm outputs for the different models (Fig. 3).
The variable input is shown on the x-axis while the algorithm
output is shown on the y-axis. The ability of the stochastic
gradient boosting model to display non-linear relationships
between the variables and the predicted probability compared
with the neural network and penalized logistic regression
models was noticeable. In those two models, higher albumin
and hemoglobin levelswere linearly associatedwith a higher
predicted probability, while a higher neutrophil-to-
lymphocyte ratio and calcium level were linearly associated
with lower predicted probabilities. The stochastic gradient
boosting model showed that levels under or above certain
thresholds did not affect the predicted probability. For

instance, for the albumin level, between 3 g/dL and 4 g/dL, an
increase in the predicted probability was seen, while above
and below that level, there was a plateau. Similar relation-
ships were observed for the hemoglobin level.

The most important factors associated with a greater risk
of 1-year mortality for the stochastic gradient boostingmodel
were lower albumin level, rapid growth primary tumor, and
lower hemoglobin level (Fig. 1). The relative importance of
albumin level was 100, for primary tumor category it was
around 80 and for hemoglobin level it was around 70. For all
predicted probabilities, the model showed greater standard-
ized net benefit relative to change in management decision
based on all patients or no patients (Fig. 2A-D).

Anexample of the 90-daymortality prediction showswhich
factors lead to a 90-day mortality probability of 49% (Fig. 4).

Discussion

In the past decades, different prognostic models ranging
from classic scoring models to machine learning algo-
rithms have been developed to predict mortality at different
time points in patients who undergo surgical treatment of a
bone metastasis of the extremity [1, 12, 18, 19, 22, 36].
Frequently updating and improving these models is im-
portant because new prognostic markers such as the
neutrophil-to-lymphocyte ratio are continuously being
identified [30]. More importantly, machine learning tech-
niques are also improving, with recent advances in the
ability to explain the transformation function that is applied
to the inputs of the model to generate the outputs. This
transparency allows for an increased understanding of the
models while continuing to build models that can capture
complex relationships between predictors. In this study we
developed machine learning algorithms to estimate survival
in patients with a metastasis of the extremity. The models

Table 3. Discrimination and calibration of algorithms in the holdout set (n = 217)

Metric
Stochastic gradient

boosting Random forest
Support vector

machine Neural network
Penalized logistic

regression

90-day mortality

AUC 0.87 0.86 0.85 0.85 0.86

Intercept 0.06 0.02 0.13 0.01 0.06

Slope 1.03 1.08 1.09 1.02 1.03

Briera 0.13 0.13 0.13 0.13 0.13

1-year mortality

AUC 0.81 0.81 0.80 0.80 0.79

Intercept 0.09 -0.01 0.05 0.09 0.08

Slope 0.85 1.10 0.81 0.69 0.73

Brierb 0.18 0.17 0.18 0.18 0.18

a90-day mortality null-model Brier score = 0.21.
b1-year mortality null-model Brier score = 0.24; AUC = area under the receiver operating characteristic curve.
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showed good performance and can be accessed through:
https://sorg-apps.shinyapps.io/extremitymetssurvival/.
Global and individual explanations are provided there.

Limitations

This study has several limitations. First, the developed models
have not been externally validated. External validation is a
crucial step in using the models in daily practice and this is an
avenue for future research. However, we did validate our
models internallywith a validation set containing data thatwas
not used for the model development. Second, this is a

retrospective study and only patients who were surgically
treated were included. Prospective validation is needed to as-
sess the validity of the models. We were unable to include the
Eastern Cooperative Oncology Group or Karnofsky scores
because most patients did not have these scores recorded
preoperatively. These performance scores have been used in
many previous models [19, 20, 22, 24, 26, 36, 37]. Future
studies should aim to include these factors and determine if
they improve algorithm performance. Fourth, the patients in
this study were from one geographic area in the United States.
The algorithms may therefore apply mainly to patients in ur-
ban areas in the United States and perhaps Western Europe,
where decisions to surgically treat these patients are

Fig. 1 A-D This image shows receiver operating characteristic curves for stochastic gradient boosting for (A) 90-day and (B) 1-year
survival and overall feature importance for (C) 90-day and (D) 1-year survival. It represents the capability of the model of dis-
tinguishing between classes; AUC = area under the curve.
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approached in a similar fashion and with similar healthcare
support systems. It remains to be determined if the models
have similar performance in different populations.

Development and Performance of the Machine
Learning Algorithms

In this study, we developed prediction models for 90-day
and 1-year survival in patients, using five different machine

learning techniques. For 90-day survival, the following
factors were included as predictors associated with a greater
risk of death: lower albumin level, higher neutrophil-to-
lymphocyte ratio, higher alkaline phosphatase level, lower
hemoglobin level, higher calcium level, higher absolute
neutrophil count, higher white blood cell count, higher age,
and lower platelet count. For 1-year survival, those factors
were lower albumin level, lower hemoglobin level, higher
neutrophil-to-lymphocyte ratio, higher alkaline phosphatase
level, lower absolute lymphocyte count, lower sodium level,

Fig. 2 Calibration plots for stochastic gradient boosting with 95% confidence intervals are shown for (A) 90-day and (B) 1-year
survival and decision curve analysis plots are shown for (C) 90-day and (D) 1-year survival. The calibration plot visualizes how
accurate the predictions are over different probabilities. The diagonal red line represents the optimal calibration; the closer the line
of the model, the more accurate the prediction.
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and higher platelet-to-lymphocyte ratio. We assessed pre-
dictive performance with discrimination, calibration, overall
performance with the Brier score and a decision curve
analysis. Assessing model performance is an important step
in developing prediction models to determine the quality of
the model [28]. Most previous studies [1, 19, 22, 24, 26, 37]

did not report discrimination with c-statistics or areas under
the curve, which makes it difficult to assess the discrimi-
nating capabilities of the models. An easy-to-use prognostic
model was developed by means of a flow chart for 1520
patients with symptomatic bone metastases [36]. The
authors reported a c-statistic of 0.70 but did not use no other

Fig. 3 A-D This figure shows partial dependence plots for 90-day mortality by model for (A) albumin level (g/dL), (B) neutrophil-to-
lymphocyte ratio, (C) calcium level (mg/dL), and (D) hemoglobin level (g/dL). These plots show the relationship between input
variables and the outputs of the different machine learning algorithms over the range of the input variables. For example, the
albumin plot shows that the stochastic gradient boosting model has a constant output with albumin levels below 3 g/dL and levels
above 4 g/dL. Between these levels there is a turning point in which the output rapidly increases. The neural networks model and
the penalized logistic regression model show a more linear association between the input and the output; SGM = stochastic
gradient boosting model, NN = neural networks model, PLR = penalized logistic regression model.
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performance metrics such as calibration. Others developed a
classic scoring algorithm, nomogram, and boosting algorithm
for 927 patients surgically treated for a bone metastasis of the
extremities and achieved areas under the curve on the testing
set of 0.70, 0.75, and 0.75, respectively, at 90 days and 0.68,
0.73, and 0.72, respectively, at 1 year [18]. A c-statistic says
something about the capability of a model to discriminate
between the two outcomes (death or survival). It ranges from
0.5 (no discrimination, equal to a coin toss) to 1.0. The closer
to 1.0, the better the discrimination. They also did not report
using any other performance metrics. A Bayesian belief net-
workmodel was developed by another research group for 189
patients who were treated for a bone metastasis of the ex-
tremities at 90 days and 1 year [12]. On external validation of a
set of 815 patients, areas under the curve of 0.79 and 0.76were
achieved for 90 days and 1 year, respectively [13]. Again, no
other metrics were described to assess performance.

Clinical Factors Associated with Survival

For the stochastic gradient boosting algorithm, which we
used as the web-based application, the stochastic gradient
boosting algorithm, the most important factors associated
with a greater risk of 90-day mortality were lower albumin

level, higher neutrophil-to-lymphocyte ratio, and rapid
growth primary tumor. For 1-year mortality, the most im-
portant factors were lower albumin level, rapid growth
primary tumor, and lower hemoglobin level. While pri-
mary tumor histology is incorporated in all previous
models as important predictor [1, 12, 18, 19, 22, 36], most
of them did not fully assess the laboratory factors identified
as important predictors in the current study. Some studies
have included the hemoglobin level [12, 14, 18, 22, 26],
absolute lymphocyte count [12, 14], and a combination of
C-reactive protein, lactate dehydrogenase, albumin level,
platelet count, calcium level, and bilirubin level [19]. Ide-
ally, prospective studies should seek to confirm the im-
portance of laboratory factors, possibly in a non-surgical
cohort.

Previous studies that sought to evaluate factors associ-
ated with overall survival of patients with metastatic bone
disease in the extremities were extremely important in in-
troducing machine learning and demonstrating the external
validation of machine learning techniques in independent
samples [12, 18]. Our work extends these previous studies
by incorporating new factors recently identified to be as-
sociated with survival in metastatic bone disease in the
extremities and integrating explanations of machine
learning algorithms into accessible interfaces for clinicians.

Fig. 4 An example of the 90-day survival prediction of a selected patient is shown here. This patient is a 54-year-old man with
a rapid-growth primary tumor without visceral or brain metastases. He previously received systemic therapy. His laboratory values
were as follows: hemoglobin level of 11.0 g/dL, platelet count of 375 x 103/uL, absolute lymphocyte count of 1.16 103/uL, absolute
neutrophil count of 10.8 103/uL, creatinine of level of 2 mg/dL, white blood cell count of 8 103/uL, albumin level of 3.5 g/dL, alkaline
phosphatase level of 89 IU/L, sodium level of 135mg/dL, and calcium level of 9mg/dL. Factors that support survival are visualized by
the green bar. These are his alkaline phosphatase level, his age, his platelet count, and his calcium level. Factors that contradict
survival are visualized by the red bars, which represent his neutrophil-to-lymphocyte ratio, his primary tumor histology, and his
hemoglobin level. The prediction model shows a 90-day survival probability of 49%.
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We provide an accessible tool for clinicians to help them in
their daily practice when they deal with surgical decision
making for a patient with a metastasis of the extremity.
The tool can be found here: https://sorg-apps.shinyapps.
io/extremitymetssurvival/. The model explanations both
on a global level and an individual level give clinicians
more insight than predicted probabilities alone. Having
some understanding about which factors are associated
with outcome and how they are linked, both in general and
for a specific patient, may help clinicians trust the models
and help them better inform patients.

It is important to realize that the decision to operate or
not is a difficult one and should not solely be based on the
outcome of the prediction models. The patients’ surgeon
should discuss the options with the patient (and family),
explaining the pros and cons of proceeding with
surgery/deciding not to have surgery. Survival time is
only one of the aspects that should be considered and our
prediction models help the surgeon to estimate that. Un-
like most previous models [1, 12, 18, 19, 22, 36], we used
multiple important performance metrics which showed
that our models performed well.

Conclusions

We successfully developed machine learning models to
predict 90-day and 1-year survival in patients with bone
metastases of the extremities. The final models must be
externally validated and future studies must assess the
performance of these algorithms in other populations. The
final models have been incorporated into a freely accessible
web application that can be found at https://sorg-apps.
shinyapps.io/extremitymetssurvival/. The values entered in
the digital application are placeholders that clinicians can
modify based on the individual characteristics of the
patient. After inputting values, clinicians have access to the
predicted probabilities and can further examine the
explanations for these predicted probabilities. Pending
external validation, clinicians may use this tool to aid
preoperative shared decision making for patients with
extremity metastatic bone disease.

Acknowledgments None.

References

1. Bauer HCF, Wedin R. Survival after surgery for spinal and ex-
tremity metastases: Prognostication in 241 patients. Acta Orthop
Scand. 1995;66:143–146.

2. Biecek P. DALEX: explainers for complex predictive models.
2018. Available at: https://arxiv.org/abs/1806.08915. Accessed
October 31, 2018.

3. Bilimoria KY, Liu Y, Paruch JL, Zhou L, Kmiecik TE, Ko CY,
Cohen ME. Development and evaluation of the universal ACS

NSQIP surgical risk calculator: a decision aid and informed
consent tool for patients and surgeons. J AmColl Surg. 2013;217:
833-42.e1–3.

4. Bongers MER, Thio QCBS, Karhade A V, Stor ML, Raskin KA,
Lozano Calderon SA, DeLaney TF, Ferrone ML, Schwab JH.
Does the SORG algorithm predict 5-year aurvival in patients with
xhondrosarcoma? An external validation. Clin Orthop Relat Res.
[Published online ahead of print April 27, 2019]. DOI: 10.
1097/CORR.0000000000000748.

5. Breiman L. Random forests. Mach Learn. 2001;45:5-32.
6. Coleman RE. Metastatic bone disease: clinical features, patho-

physiology and treatment strategies. Cancer Treat Rev. 2001;27:
165-176.

7. Coleman RE. Clinical features ofmetastatic bone disease and risk
of skeletal morbidity. Clin Cancer Res. 2006;12:6243s-6249s.

8. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent
reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD). Ann Intern Med 2015;162:
735.

9. Deo RC. Machine Learning in Medicine. Circulation. 2015;132:
1920-1930.

10. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM,
Piñeros M, Znaor A, Bray F. Estimating the global cancer in-
cidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 2018;144:ijc.31937.

11. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo
M, Parkin DM, Forman D, Bray F. Cancer incidence and mor-
tality worldwide: Sources, methods and major patterns in
GLOBOCAN 2012. Int J Cancer. 2015;136:E359–E386.

12. Forsberg JA, Eberhardt J, Boland PJ, Wedin R, Healey JH. Es-
timating survival in patients with operable skeletal metastases:
An application of a Bayesian belief network. PLoS One. 2011;6:
e19956.

13. Forsberg JA, Wedin R, Bauer HCF, Hansen BH, Laitinen M,
Trovik CS, Keller JØ, Boland PJ, Healey JH. External validation
of the Bayesian Estimated Tools for Survival (BETS) models in
patients with surgically treated skeletal metastases. BMCCancer.
2012;12:493.

14. Forsberg JA, Wedin R, Boland PJ, Healey JH. Can we estimate
short- and intermediate-term survival in patients undergoing
surgery for metastatic bone disease? Clin Orthop Relat Res.
2017;475:1252-1261.

15. Greenwell BM, Boehmke BC, McCarthy AJ. A simple and ef-
fective model-based variable importance measure. 2018. Avail-
able at: https://arxiv.org/abs/1805.04755. Accessed October 31,
2018.

16. Hastie T, Tibshirani R, Friedman J. The elements of statistical
learning–Data mining, inference, and prediction. Available at:
https://web.stanford.edu/;hastie/Papers/ESLII.pdf. Accessed
June 17, 2018.

17. Huntington JT, Butterfield M, Fisher J, Torrent D, BloomstonM.
The Social Security Death Index (SSDI) most accurately reflects
true survival for older oncology patients. Am J Cancer Res. 2013;
3:518-522.

18. Janssen SJ, van der Heijden AS, van DijkeM, Ready JE, Raskin
KA, Ferrone ML, Hornicek FJ, Schwab JH. 2015 Marshall
Urist Young Investigator Award: Prognostication in patients
with long bone metastases: Does a boosting algorithm improve
survival estimates? Clin Orthop Relat Res. 2015;473:
3112-3121.

19. Katagiri H, Okada R, Takagi T, Takahashi M, Murata H, Harada
H, Nishimura T, Asakura H, Ogawa H. New prognostic factors
and scoring system for patients with skeletal metastasis. Cancer
Med. 2014; 3:1359-1367.

332 Thio et al. Clinical Orthopaedics and Related Research®

Copyright © 2019 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.

https://sorg-apps.shinyapps.io/extremitymetssurvival/
https://sorg-apps.shinyapps.io/extremitymetssurvival/
https://sorg-apps.shinyapps.io/extremitymetssurvival/
https://sorg-apps.shinyapps.io/extremitymetssurvival/
https://arxiv.org/abs/1806.08915
http://dx.doi.org/10.1097/CORR.0000000000000748
http://dx.doi.org/10.1097/CORR.0000000000000748
https://arxiv.org/abs/1805.04755
https://web.stanford.edu/%7Ehastie/Papers/ESLII.pdf
https://web.stanford.edu/%7Ehastie/Papers/ESLII.pdf


20. Katagiri H, Takahashi M, Wakai K, Sugiura H, Kataoka T,
Nakanishi K. Prognostic factors and a scoring system for patients
with skeletal metastasis. J Bone Joint Surg Br. 2005;87:698-703.

21. Kohavi R. A study of cross-validation and bootstrap for accuracy
estimation and model selection. Proceedings of the 14th In-
ternational Joint Conference on Artificial I. 1995;2:1137-1143.

22. Nathan SS, Healey JH,MellanoD,Hoang B, Lewis I,Morris CD,
Athanasian EA, Boland PJ. Survival in patients operated on for
pathologic fracture: implications for end-of-life orthopedic xare.
J Clin Oncol. 2005;23:6072-6082.

23. Obermeyer Z, Emanuel EJ. Predicting the future - big data, ma-
chine learning, and clinical medicine. N Engl J Med. 2016;375:
1216-1219.

24. Ratasvuori M, Wedin R, Keller J, Nottrott M, Zaikova O, Bergh
P, Kalen A, Nilsson J, Jonsson H, Laitinen M. Insight opinion to
surgically treated metastatic bone disease: Scandinavian Sar-
comaGroup SkeletalMetastasis Registry report of 1195 operated
skeletal metastasis. Surg Oncol. 2013;22:132-138.

25. Roodman GD. Mechanisms of bone metastasis. N Engl J Med.
2004;350:1655-1664.

26. Sorensen MS, Gerds TA, Hindso K, Petersen MM. Prediction of
survival after surgery due to skeletal metastases in the extremi-
ties. Bone Joint J. 2016;98-B:271-277.

27. Stekhoven DJ, Buhlmann P.MissForest–non-parametric missing
value imputation for mixed-type data. Bioinformatics. 2012;28:
112-118.

28. Steyerberg EW, Vergouwe Y. Towards better clinical prediction
models: seven steps for development and an ABCD for valida-
tion. Eur Heart J. 2014;35:1925-1931.

29. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M,
Obuchowski N, Pencina MJ, Kattan MW. Assessing the per-
formance of predictionmodels.Epidemiology. 2010;21:128-138.

30. Thio QCBS, Goudriaan WA, Janssen SJ, Paulino Pereira NR,
Sciubba DM, Rosovksy RP, Schwab JH. Prognostic role of
neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio
in patients with bone metastases. Br J Cancer. 2018;119:
737-743.

31. Thio QCBS, Karhade A V, Ogink PT, Raskin KA, De Amorim
Bernstein K, Lozano Calderon SA, Schwab JH. Can machine-
learning techniques be used for 5-year survival prediction of
patients with chondrosarcoma?Clin Orthop Relat Res. 2018:476:
2040-2048.

32. Vickers AJ, Elkin EB. Decision curve analysis: A novel method
for evaluating prediction models. Med Decis Making. 2006;26:
565-574.

33. VonElm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC,
Vandenbroucke JP, STROBE Initiative. The Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
Statement: Guidelines for reporting observational studies. Int J
Surg. 2014;12:1495-1499.

34. Wainer J. Comparison of 14 different families of classification
algorithms on 115 binary datasets. 2016. Available at: http://
arxiv.org/abs/1606.00930. Accessed July 13, 2018.

35. Wedin R. Surgical treatment for pathologic fracture. Acta Orthop
Scand Suppl. 2001;72:1-29.

36. Willeumier JJ, van der Linden YM, van der Wal CWPG, Jutte
PC, van der Velden JM, Smolle MA, van der Zwaal P, Koper P,
Bakri L, de Pree I, Leithner A, FioccoM, Dijkstra PDS. An easy-
to-use prognostic model for survival estimation for patients with
symptomatic long bone metastases. J Bone Joint Surg Am. 2018;
100:196-204.

37. ZhangW-Y, LiH-F, SuM,LinR-F,ChenX-X,ZhangP, ZouC-L.
A simple scoring system predicting the survival time of patients
with bone metastases after RT. PLoS One. 2016;11:e0159506.

Volume 478, Number 2 Extremity Metastasis Survival Prediction 333

Copyright © 2019 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.

http://arxiv.org/abs/1606.00930
http://arxiv.org/abs/1606.00930

