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LETTERS

To the Editor:

In a recent publication, VanderWeele 
et al.1 considered the task of finding a 

treatment subgroup that maximizes the 
mean potential outcome. They showed 
that the task can sometimes be consider-
ably simplified by deriving optimal treat-
ment assignment rules of a simple form: 
assign treatment in a greedy fashion to 
all individuals with the next largest ben-
efit (i.e., the difference in potential out-
come means given covariates) or the 
next highest benefit–cost ratio (with cost 
being a positive function of baseline 
covariates) until the resource or cost con-
straint, respectively, is exceeded. As they 
state in their eAppendix; http://links.
lww.com/EDE/B655, the optimality of 
the rules relies critically on the assump-
tion that there are no ties between indi-
viduals. Although tied treatment effects 
or benefit–cost ratios may occur with 
many covariates, they are perhaps more 
realistic when few and only discrete 
baseline variables are considered to de-
fine treatment rules.
Consider for example the setting of the 
Table and suppose that the total cost 
may not exceed 130. According to the 
rule of VanderWeele et al.,1 individuals 
in the first stratum should be assigned 
treatment. Because the presented rules 
assign treatment to either all or no indi-
viduals in any given stratum, no more 

individuals can be selected without 
violating the cost constraint. This rule 
yields a mean potential outcome of 2.3. 
However, because of ties, a better rule 
that likewise selects either all or no indi-
viduals of a stratum, does exist: assign 
treatment to strata 2 and 3 (with a mean 
potential outcome of 2.5). Thus, in the 
presence of ties, the optimal rule need 
not be greedy (see also the literature 
on the classic knapsack problem; e.g., 
Korte and Vygen2). We note that a better 
rule may be obtained by augmenting our 
data with a sequence of independent, 
possibly unfair, coin tosses. As shown 
in the eAppendix; http://links.lww.com/
EDE/B655 (but see also Luedtke and 
van der Laan3), maximizing the mean 
potential outcome across rules of this 
kind is achieved in the cost-constrained 
setting by treating those with a benefit–
cost ratio strictly greater than some pos-
itive constant and a random selection 
of those with a benefit–cost ratio that 
equals that constant. For our example, 
this means treating all members of 
stratum 1 as well as those members of 
strata 2 and 3 whose independent coin 
toss, with probability 3/13 of showing 
heads, results in heads (mean potential 
outcome: 3.5).

It seems unlikely that these treat-
ment rules would be implemented via 
biased coin tosses in real-world set-
tings. If resources are made available in 
a single batch, one could calculate the 

amount of resources that would need 
to be allocated to the “always-treat” 
portion of the population, reserve this 
portion of resources for always-treat 
individuals, and then allocate the re-
mainder to the “sometimes-treat” por-
tion of the population on a first-come, 
first-serve basis until that portion of re-
sources runs out. Bias could however be 
introduced by doing this, for example, 
when sometimes-treat individuals who 
visit the clinic more frequently are 
systematically less (or more) likely to 
benefit from treatment. However, there 
may be ways to account for this (e.g., 
by including frequency of visits as a 
covariate).

Finally, we add that with multiple 
treatment levels and cost constraints, 
mean potential outcomes need not be 
optimized by the greedy approach of 
assigning to subjects the treatment level 
with the highest benefit–cost ratio above 
or at treatment level-specific thresholds 
(to satisfy cost constraints), even if the 
observed data are augmented with a 
sequence of independent coin tosses 
(eAppendix; http://links.lww.com/EDE/
B655). Regardless of the form the rule 
should take, however, we encourage 
researchers to follow VanderWeele et 
al.1 in taking a more formal approach to 
“precision medicine” with clearly speci-
fied objectives, so that the optimal rule 
form may be derived and estimation 
strategies be evaluated.
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Re. Selecting Optimal 
Subgroups for 

Treatment Using Many 
Covariates

TABLE. Characteristics of Hypothetical Population of Size 100 with Baseline 
Covariates Forming Five Strata

Stratum

 1 2 3 4 5

Number of individuals 25 20 10 15 30

Conditional mean potential outcome

 Under no treatment −5 4 0 −5 −5

 Under treatment 15 20 20 5 −15

Cost of treatment per individual 4 4 5 10 10

Benefit–cost ratio 5 4 4 1 −1

If those and only those in stratum 1 are treated, the total cost is 25×4= 100 and the mean potential outcome is. If 
those and only those patients in strata 2 and 3 are treated, the total cost is, and the mean potential outcome is. If patients 
in stratum 1 are treated with probability 1, patients in strata 2 and 3 with probability 3/13, and the rest with probability 0, 
the expected total cost is and the mean potential outcome is.
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To the Editor:

We thank Penning de Vries et al1 for 
the illustration of optimal subgroup 

selection for treatment in the case of ties. 
In our article,2 we had addressed this set-
ting of ties by referring the reader to the 
formal treatment given in Luedke and 
van der Laan3–5 in our eAppendix; (http://
links.lww.com/EDE/B466). The discus-
sion in our main article was intended to 
focus on the simpler cases to keep the ex-
position as accessible as possible, but it is 
indeed good to have these matters more 
explicitly discussed in the epidemiologic 
literature.
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To the Editor:
Leukocyte telomere length is a 

widely studied, but inconsistent, marker 
of disease risk. As telomere length varies 

by blood cell subtype,1 measurements 
represent a weighted average across con-
stituent blood cells. Proportions of leuko-
cyte subtypes can differ greatly between 
individuals and these differences may in-
troduce extraneous inter-individual var-
iation in telomere length estimates. The 
degree of variation attributed to differ-
ences in leukocyte subtype composition is 
largely unknown, in part because cell sort-
ing methods require fresh blood samples 
rarely available in epidemiologic studies.

Studies of blood DNA methylation 
face similar challenges. Like telomeres, 
blood DNA methylation differs by leu-
kocyte subtype, and there are well-docu-
mented examples where failure to adjust 
for leukocyte proportions demonstrably 
leads to biased effect estimates.2 A method 
widely employed in epidemiologic studies 
to disentangle leukocyte subtype propor-
tions using patterns of DNA methylation3 
may be useful in research on leukocyte 
telomere length. Here, we use methylation 
and telomere length measurements from 
the same blood DNA samples to examine 
the effect of leukocyte subtype composi-
tion on telomere length measurements.

We used existing data on relative 
leukocyte telomere length (rLTL)4 and 
genome-wide DNA methylation5 meas-
ured in the same blood samples from a 
subsample of 445 non-Hispanic white 
women enrolled in the Sister Study 
(median age, 57; interquartile range, 
36–64). rLTL was assessed using mul-
tiplex quantitative polymerase chain 
reaction and standardized as z-scores.4 
The study was approved by the institu-
tional review boards of the National In-
stitute of Environmental Health Sciences 
and the Copernicus Group. We assessed 
leukocyte composition by applying a 
validated deconvolution approach to 
HumanMethylation450 BeadChip data 
to estimate proportions of six distinct 
subtypes (CD8+ and CD4+ T-cells, 
B-cells, natural killers, monocytes, 
and granulocytes).3 We first assessed 
Pearson correlations between rLTL and 
each estimated leukocyte proportion. 
As age is strongly, inversely associated 
with telomere length,6 we used the age-
telomere length relationship to study the 
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