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Abstract—Neural Architecture Search (NAS) aims to optimize
deep neural networks’ architecture for better accuracy or smaller
computational cost and has recently gained more research in-
terests. Despite various successful approaches proposed to solve
the NAS task, the landscape of it, along with its properties, are
rarely investigated. In this paper, we argue for the necessity of
studying the landscape property thereof and propose to use the
so-called Exploratory Landscape Analysis (ELA) techniques for
this goal. Taking a broad set of designs of the deep convolu-
tional network, we conduct extensive experimentation to obtain
their performance. Based on our analysis of the experimental
results, we observed high similarities between well-performing
architecture designs, which is then used to significantly narrow
the search space to improve the efficiency of any NAS algorithm.
Moreover, we extract the ELA features over the NAS landscapes
on three common image classification data sets, MNIST, Fashion,
and CIFAR-10, which shows that the NAS landscape can be
distinguished for those three data sets. Also, when comparing
to the ELA features of the well-known Black-Box Optimization
Benchmarking (BBOB) problem set, we found out that the NAS
landscapes surprisingly form a new problem class on its own,
which can be separated from all 24 BBOB problems. Given this
interesting observation, we, therefore, state the importance of
further investigation on selecting an efficient optimizer for the
NAS landscape as well as the necessity of augmenting the current
benchmark problem set.

Index Terms—Neural Architecture Search; AutoML; Deep
learning; Exploratory Landscape Analysis

I. INTRODUCTION

Deep learning and deep neural networks (DNNs) are be-
coming more and more popular due to the way they can
automatically perform feature extraction from raw data [23].
These deep neural networks have shown great performance in
complex tasks such as image classification and audio analysis.
Especially with the use of Convolutional Neural Networks
(CNN) [14], on which we will focus during this study.

However, for these networks to perform well, good net-
work architectures and network training methods (optimization
methods) are required. These complex and deep architectures
are till recently, mostly developed by hand. Recent advances
in automatic machine learning (AutoML) also enabled the
automatic development of these architectures, called Neural
Architecture Search (NAS) [5], [25], [30].

Using NAS techniques it is possible to build a well per-
forming network in a matter of days without any knowledge of
the problem and neural network architecture design. However,
there are also quite a few draw-backs to the way NAS
techniques are being used. First of all, it requires a lot of
computational time and resources to perform NAS experiments
[26]. Secondly, most of the results from the architecture search
are not used and the algorithms do not learn anything that can
be applied on multiple problem instances.

A commonly applied solution when there is not much data
or a lot of computational power to develop new architectures,
is to use an existing pre-trained architecture and fine tune this
network on the data of a specific problem. This solution is
also called transfer learning, where the knowledge gained by
training on one data set is transferred to a new data set in the
hope that the network can apply the same features to the new
data set. Recently, in [18], Neural Architecture Transfer (NAT),
was proposed where the authors apply transfer learning on
architectures by using a so called supernet. The supernet can
be incrementally modified and is used to select task specific
subnets. While NAT already solves some of the computational
issues regarding the development of neural architectures within
a specific class of problems, it still cannot be used for solving
completely different problem classes efficiently.

One of the main reasons why Deep Neural Networks and
transfer learning is actually working, is that the optimization
problem (fitting the network to the data) is very robust.
There are many network architectures that can solve the same
problem. We even dare to claim that there are an infinite
number of neural network architectures that can solve a
specific image classification problem with a decent accuracy.
This makes it possible to find well working architectures by
hand, or automatically using a small number of evaluations.
It also shows us, that we can learn much more from these
network architectures and probably design much smaller and
more efficient networks.

In this paper we analyse the optimization landscapes of
Neural Architecture Search for three well known image clas-
sification data sets. The aim of this research is to extract rules
of thumb for designing neural architectures and to use the
information to develop more efficient NAS or NAT algorithms.978-1-7281-2547-3/20/$31.00 c©2020 IEEE

1341 2020 IEEE Symposium Series on Computational Intelligence (SSCI)

December 1-4, 2020, Canberra, Australia 

Authorized licensed use limited to: Universiteit Leiden. Downloaded on June 28,2023 at 09:08:42 UTC from IEEE Xplore.  Restrictions apply. 



filters_0
filters_0

filters_1

filters_1

filters_2

filters_2

Conv2D Conv2D Conv2D
Conv2D

Conv2D
Conv2D

MaxPool

MaxPool
MaxPool

Dense Dense

Dense with Softmax

dense_0
dense_1

k_0

k_0

k_1

k_2

k_2

k_3 k_4

k_4
k_5

Stack 1

Fig. 1: The base architecture investigated in this paper: its feedforward structure starts with three stacks of layers, each of
which comprises two convolutional layers and one max-pooling layer, and it ends with two layers of dense units and a softmax
unit as the output. Note that, in each stack, the hyper-parameters such as the number of filters, strides, and the kernel size are
independent from other stacks, and those two Conv2D layers always have the same number of filters.

II. BACKGROUNDS AND PROBLEM STATEMENT

In the literature, various approaches have been proposed to
handle the NAS problem, e.g., random search [17], Bayesian
optimization [8], evolutionary methods [28], and reinforce-
ment learning [33]. Please see [6] for a comprehensive review
of this topic. Despite the fruitful results in NAS, the landscape
of NAS, along with its properties, are rarely investigated to
the best of our knowledge. In this paper, we argue for the
necessity of studying the landscape property of NAS, which
potentially allows us to understand how hard such a search
task practically is and where the difficulty lies in (e.g., the
existence of discontinuity, saddle points, and non-convexity,
etc.), and would pave the way towards the automated selection
of optimizers for the NAS task.

A. Explorative Landscape Analysis

For a real-valued target function, f : X −→ R, Explorative
Landscape Analysis (ELA) [3], [20], [21] aims to characterize
certain features of this function, using some sample points
in X and the corresponding function values on f . For the so-
called continuous optimization problem (i.e., X ⊆ R

d), a large
set of landscape features has already been devised to capture
the information on dispersion, convexity, level sets, curvature,
and ruggedness, which is extensively used in the automated
algorithm selection [11], to understand the search space [27],
and for multi-objective optimization problems [10]. In this
paper, we delve into the feature of performance indicators
(e.g., testing accuracy) as the function of network architec-
tures, by evaluating a huge number of randomly-generated
network architectures and extracting the ELA features based
on the performance of such architectures.

B. Research Questions

The problem that we are addressing in this paper is the
time and cost inefficient approach of automatically designing
and evolving well performing neural architectures. To improve
upon the state-of-the-art approaches, such as NAT, and Meta-
Neural Architecture Search [31], we have to gain additional
knowledge of the underlying optimization landscape. “What
are the characteristics of the objective space?”. Characteristics
such as the number of local optima, how are those optima
located and how easily is it to get trapped in such optima,
as well as smoothness, ruggedness etc. “Are the objective
space landscape characteristics shared between instances?”.
If some of the characteristics are shared between several
problem instances, or even all NAS problems, this can be
used to narrow down the search space or develop more generic
approaches.

Knowing the answers to these questions allows us to ex-
plore different optimization strategies and apply better fitted
algorithms for architecture search and transfer. Additional
information about this landscape for a specific set of problems,
such as image classification, allows us to establish “rules of
thumb” for a good starting neural architecture.

In this paper we focus mainly on three well-known image
classification tasks, MNIST digits, Fashion and CIFAR-10. In
the next section the empirical setup to analyse these NAS
problem instances is explained in detail.

III. EXPERIMENTAL SETUP

a) Design Space of Architectures: In this study, we nar-
rowed down the design space to a feedforward convolutional
network with stacks of convolutional layers, which is depicted
in Fig. 1. Essentially, it entails three stacks of convolutional
layers, followed by two layers of densely connected RELU
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units and a SOFTMAX unit for the output. Each stack consists
of two layers of convolutional filters (those two layers always
have the same number of filters), one max-pooling layer,
and one dropout layer to prevent over-fitting. We define the
design space of architectures by varying the following hyper-
parameters,

1) for each convolutional layer, the number of filters, the
size and stride of each filter kernel, the L2 kernel
regularization coefficient, and the dropout rate,

2) for each densely connected layer, the number of units
and the dropout rate, and

3) the learning rate and the L2 regularization coefficient.
Each network is trained using the categorical crossentropy as
loss function and using Stochastic Gradient Descent (SGD)
with momentum as optimizer. The learning rate of SGD is
one of the hyper-parameters as well.

We summarize those hyper-parameters and their sampling
ranges in Table I, where large sampling ranges are taken,
allowing for generating architectures that are either very
“deep” or “shallow”. Taking the naming convention given in
this table, we express the design space as:

X = filters_[0-2]× k_[0-5]× · · · × l2,

which is a 23-dimensional space consisting of integers and
real values. Moreover, we include two sets of different ranges
for each parameter: The “Initial Range” is relatively wider,
which is meant for exploring the NAS landscape with a good
coverage and “Reduced Range” is narrowed down intention-
ally to focus on interesting regions of the design space, which
is obtained by analysing the range of parameters of the top-50
architectures in the initial exploration (5% from 1000 in terms
of the classification accuracy, please see below).

Hyper-parameter Naming Initial Range Reduced Range Nr.
#Filters filters_[0-2] (10, 600] (250, 400] 3
Kernel size k_[0-5] (1, 8] (3, 7] 6
Strides s_[0-2] (1, 5] (2, 5] 3
#Dense nodes dense_size_[0-1] (0, 2000] (500, 1500] 2
Dropout rate dropout_[0-6] (1e-5, 9e-1] (1e-1, 4e-1] 7
Learning rate lr (1e-5, 1e-2] (4e-3, 9e-3] 1
L2 coeff. l2 (1e-5, 1e-2] (5e-4, 3e-3] 1

TABLE I: The design spaces of network architectures for
the initial experimentation (“Initial Range”) and the refined
one (“Reduced Range”). Note that, for each layer, its hyper-
parameter is independent from other layers and we denote by
Nr. the number of hyper-parameters of each kind. Also, each
architecture uses softmax for the last activation function and
relu for the convolutional layers.

b) Sample Size and Sampling Strategy: Determining a
proper sample size and the sampling strategy for the Design
of Experiments (DoEs) is still a daunting task in ELA [9],
[24]. We decided to use a relatively large sample size of
1000 (compared to the 23-dimensional design space), which
would yield reliable feature values (i.e., with acceptable dis-
persion), despite the enormous computational cost it incurred.
Moreover, in [24], it is shown that the landscape features are

also susceptible to the sampling strategy and Latin Hypercube
Sampling (LHS) [19] is more statistically robust among the
conventional sampling/design methods. Hence, we have cho-
sen LHS as the sampling strategy in this study. Throughout
this paper, we shall use facc, X ⊆ X , y = facc(X) to denote
the performance indicator, the design, and the performance
value of network architectures, respectively.

c) Training Data Sets and Computation Details: Each
configuration from the design of experiments is evaluated on
three very popular image classification benchmarks, MNIST
[16], FASHION [32] and CIFAR-10 [13]1. We use a 20%
validation set to calculate the accuracy as objective metric.
The networks are trained using the SGD optimizer on batches
of 100 samples using 50 epochs.

d) ELA feature computation: In the context of continu-
ous optimization problems, more than 300 numerical features
have been proposed, which are implemented in the R-package
flacco2 [10]. In this paper, we manually select 20 features out
of 300 for characterizing the landscape of NAS, which settle
in five categories. Given the design X of architectures and its
performance values y, those selected features are defined as
follows:

• The dispersion of all the design points in X and that of
some top-ranked design points. In this study, we take the
top-2% and 5% subset of X (in terms of facc).

– disp.diff_mean_[02|05]: the difference be-
tween the dispersion of X and that of top-2% or 5%
subset.

– disp.ratio_mean_[02|05]: the ratio between
the dispersions described above.

It can be observed that the distances between the top 2
and 5 percent with respect to the distances between the
complete DOE are close to each other (close to 1.0), but
instances in the top 2 percent are slightly closer to each
other.

• The y-distribution features, distr.kurtosis and
distr.skewness compute the kurtosis and skewness
of y, respectively.

• The Information Content of Fitness Sequences
(ICoFiS) features [22] quantify, through a random walk
in X , the smoothness, ruggedness, and neutrality of the
landscape. For instance, when taking a random walk
(x1, x2, . . .) in X , we can evaluate the maximal entropy
(ic.h.max) of consecutive fluctuations of the corre-
sponding y-value, i.e., yi+1 − yi, i = 1, 2, . . . (Note
that such a difference is discretized. Please see [21]
for details). All information content features are named
as ic.* in the following discussions and we omit the
description of those for brevity.

• The meta-model features take some important properties
(e.g., adjusted R2) of some simple meta-models trained
on (X, y).

1The DOE, source code, and the experimental results are available at https:
//github.com/Basvanstein/LearningFromNAS [29].

2https://github.com/kerschke/flacco.
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– lin_simple.adj_r2: the adjusted R2 of a sim-
ple linear model (w/o interactions between vari-
ables).

– lin_simple.intercept: intercept of the linear
model described above.

– lin_w_interact.adj_r2: the adjusted R2 of
a simple linear model (w/ interactions between vari-
ables).

– quad_simple.adj_r2: the adjusted R2 of a
quadratic model.

• The nearest better clustering features compare, for each
x ∈ X , the distance from x to its nearest neighbor and
that to their nearest better neighbor, that is the nearest
neighbor having a better y-value than x. All nearest better
clustering features are named according to nbc.* in the
following discussions. Please see [12] for the detailed
description of them.

IV. VISUALIZING THE NAS LANDSCAPE

In the first experiment, we generated a huge DOE rep-
resenting 1000 different network architectures, where each
architecture is trained with 50 epochs and the same (relatively
simple) architecture of three stacks with in each stack two
convolutional layers (Figure 1).

In Figures 2a, 2b and 2c, Multi Dimensional Scaling (MDS)
[15] is used to visualise the accuracy optimization landscape of
the three problem instances. It can be observed, that CIFAR-10
is apparently a much harder problem than MNIST, since the
mean accuracy of the landscape is much less. It can also be
observed that the landscape visualisations are very similar in
characteristics. This lead us to believe that the different NAS
problems on image classification tasks can be solved using a
general approach. This is, off course, also in line with transfer
learning and neural architecture transfer. Using this design of
experiments, we analyse the top 50 performing networks for
each problem instance and look at the distribution of each
search space parameter. In Figure 3, the parameters of the
best 50 performing networks are visualised on the MNIST
problem. The median setting is visualized by a line in each
subplot.

To analyse which features are important for the performance
of the neural architectures, the Pearson’s correlation between
each parameter and the CPU-time and accuracy are calculated
and shown in Figure 6. The correlations of the features
between each data set are almost identical. It is clear that
the kernel size of the first layer and the dropout in the first
layers are important features for the accuracy, and that there
is a positive correlation between the number of filters and the
CPU time (which is expected).

Using the distribution from the top 50 network architectures
(top 5%), a new search space is defined as specified in Table I.
The new search space is a fraction of the original search space,
and much more limited, especially for the dropout in the first
layers and the learning rate.

Using this “Reduced Range” search space, a new DOE of
another 1000 samples is generated and evaluated. In Figure

2d, 2e and 2f, the MDS visualisations of the new optimization
landscapes are shown. It can be observed that the new DOE
has superior performance. If we take a look at the accuracy of
all 1000 samples from the MNIST neural architecture search,
only two of the samples did not perform well, all others
are near 100% validation accuracy. We can observe that the
architectures from this “Reduced Range” search space are all
having a very high accuracy among all three problem in-
stances. Neural Architecture Search might not even be required
in this case. The landscape seems to be very rugged but also
robust, showing only small performance changes across a wide
set of different architectures. As mentioned in [26], gaining
a small accuracy increase by performing an expensive NAS
procedure is in most cases not worth the time and effort. By
starting with a well-performing base architecture, this effort
can be significantly reduced or even omitted.

V. RESULTS ON ELA FEATURES

The aforementioned 20 ELA features are computed on the
1000 design points sampled from the “Initial Range” (the
features obtained on the “Reduced Range” are very similar)
(see Table I). Also, to estimate the variability of feature values,
we calculate those features with a bootstrapping procedure
with the bootstrap size of 800 and 30 repetitions, the results
of which are depicted as violin charts in Fig. 7. Prior to
the feature computation, we re-scale the hyper-parameters
to the range [−5, 5] (this is to make the resulting feature
comparable to those extracted on the BBOB problem set.
See below). It is clear that most features entail a different
statistical population on different training data sets, e.g.,
distr.skewness and ic.eps.s. For some features (e.g.,
disp.ratio_mean_05), although their absolute variation
is marginal across different data sets, they contain enough
power to distinguish the NAS landscape over the data sets. We
found only quad_simple.adj_r2 is not very informative
according to this figure.

Based on the bootstrapped feature values, we subsequently
delved into the clustering pattern that might exist when con-
sidering all three data sets together. As illustrated in Fig. 8a,
we observed a crystal clear separation among the NAS land-
scapes on those three data sets, after performing a hierarchical
clustering on all 30 bootstrapped feature vectors (Note that,
only 10 feature vectors are rendered for each data set in order
to make the plot more visually perceivable). In addition, the
Euclidean distance is taken as the proximity metric between
clusters and it is also obvious that the MNIST and CIFAR-10
data sets are more similar, compared to Fashion.

Naturally, we are also curious about whether the NAS land-
scape would resemble that of some conventional benchmark
problem in terms of feature vectors, since if this is the case,
then an optimizer that performs extremely well on such a
benchmark problem will also be competitive on the NAS
task. For this purpose, we choose the well-known Black-
Box Optimization Benchmarking (BBOB) [4] problem set,
which encompasses 24 continuous problems of different kinds
(e.g., (non-)separable, multi-modal, and highly rugged), and
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(a) MNIST + initial range (b) Fashion + initial range (c) CIFAR-10 + initial range

(d) MNIST + reduced range (e) Fashion + reduced range (f) CIFAR-10 + reduced range

Fig. 2: Rendered by Multi Dimensional Scaling (MDS), the 2D landscape of classification accuracy as a function of network
architectures, where the architectures are created using the initial range (top row) and the reduce range (bottom row) and the
accuracy value is indicated by the color scale.

Fig. 3: On MNIST data set, the estimated distribution of hyper-parameters from the top-50 architectures. The distribution
(violin) is obtained from kernel density estimation.

compute the same set of ELA features on all 24 problems
with 1000 design points obtained from the LHS method. To
make the results comparable, we set the dimensionality of
BBOB problems to 23 and apply the LHS method in the hyper-
box [−5, 5]23 (since it is the range on which those problems
are defined). The ELA features for our NAS instances are
compared to 20 instances of all 24 functions from the BBOB
benchmark [4]. In detail, we extracted the ELA features on
the first 20 problem instances (by which the original problem
is randomly rotated and translated) of each BBOB problem,

for improving the robustness of the resulting feature values.
We performed the same hierarchical clustering procedure

again for both the NAS and BBOB landscape features, on the
mean feature values over 30 bootstraps (NAS) and 20 problem
instances (BBOB). The resulting clusters are shown in Fig. 8b,
in which we can see that the NAS landscape on three data
sets falls into a category on its own and the other BBOB
problem clusters are considerably distant to it (supported by
the proximity metric on the y-axis).

When looking at all problem instances without any aggre-
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Fig. 4: On Fashion data set, the estimated distribution of hyper-parameters from the top-50 architectures. The distribution
(violin) is obtained from kernel density estimation.

Fig. 5: On CIFAR-10 data set, the estimated distribution of hyper-parameters from the top-50 architectures. The distribution
(violin) is obtained from kernel density estimation.

M
N

IS
T

Fa
sh

io
n

C
IF

A
R

-1
0

Fig. 6: Pearson’s correlation coefficient between the accuracy
and CPU time calculated on the architecture sampled in the
initial range for data sets MNIST, Fashion, and CIFAR-10,
respectively (top to bottom).

gation, we observed that the 20 closest neighbours to MNIST
have an Euclidean distance of 3.24 ± 0.03 while the average

distance between the neighbours and their own 20 neighbours
is 0.71± 0.17. The similar pattern is also seen for CIFAR-10
(3.24 ± 0.04 versus 0.72 ± 0.18) and Fashion (2.71 ± 0.04
versus 0.72± 0.20). This seconds our previous findings from
the hierarchical clustering that the NAS problems are not
overlapping with any function group of the BBOB functions,
with respect to the ELA features.

Among all BBOB problems, function f12, f11, and f13
are the nearest neighbours to all three of the NAS landscapes.
On one hand, f12 is the Bent Cigar function3, which has
a very narrow ridge that needs to be followed to optimize
the function. On the other hand, f11 and f13 are classified
as “ill-conditioned” functions, suggesting that we would opt
to apply, for the NAS task, optimizers devised particularly
to handle the ill-conditioning scenario. According to the
results of BBOB 20194, this preference entails algorithms
such as GLOBAL (Sampling, clustering, and local search

3See https://coco.gforge.inria.fr/
4GECCO Workshop on Real-Parameter Black-Box Optimization Bench-

marking
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Fig. 7: On MNIST, CIFAR-10, and Fashion data sets, the distribution of the bootstrapped ELA features of the NAS landscape,
which is computed on 1000 architecture DoEs with the bootstrap size of 800 and 30 repetitions.
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(a) Bootstrapped ELA features of NAS landcapes
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Fig. 8: The clustering patterns given by the hierarchical clustering method with a proximity metric that takes the maximal
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clusters. We additionally marked the major clusters using boxes.
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using BFGS or Nelder-Mead) [2], iAMALGAM (Adapted
Maximum-Likelihood Gaussian Model Iterated Density Esti-
mation Algorithm ) [1], and BIPOP-CMA-ES (Bi-population
Covariance Matrix Adaptation Evolution Strategy with random
restarts) [7].

VI. CONCLUSIONS AND OUTLOOK

In this paper, we use the Exploratory Landscape Analysis
(ELA) technique to probe into the landscape properties of
the Neural Architecture Search (NAS) task. We designed a
feedforward convolutional architecture with stacked structure
for our purpose. In this way, the design/search space is
narrowed down drastically for high accuracy solutions. Using
the knowledge, of how the underlying optimization landscape
behaves, better fitted algorithms can be used for NAS and
a better starting point architecture can be developed from
scratch. We have shown that for the three common image
classification problems, MNIST, Fashion, and CIFAR-10, the
NAS landscapes share many properties and the same basis
neural architecture can be used to solve all three problem
instances efficiently on a highly reduced search space without
even requiring Neural Architecture Search. We have reduced
the “Initial Range” of the search space drastically to a fraction
of the search space by comparing the distribution of the
parameters of the best performing networks among all three
NAS tasks. The network architectures resulting from the
“Reduced Range” search space showed supreme performance
for all three image classification problems.
The ELA features can be used to compare NAS problems
with continuous black-box optimization problems in order,
for instance, to select a proper optimizer. We showed that
the ELA features of the NAS landscape are distinguishable
across those three data sets, and are also perfectly separated
from the ELA features of all 24 BBOB problems, indicating
that the NAS task is an entirely new problem category on its
own when considering the dominant benchmark problem sets
in the field of continuous black-box optimization. Hence, it
would be beneficial, for algorithm selection and development,
to study which optimizer of the state-of-the-art would perform
well on the NAS task, and for the benchmark community, to
augment the current problem sets for incorporating the NAS-
like landscape.
In this paper the search space was limited to only real-
valued and integer parameters, while categorical variables like
the activation function were fixed because ELA features can
only be calculated on continuous spaces. However, there are
methods to also calculate features for categorical spaces that
could be interesting to apply in a similar fashion.
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[24] Renau, Q., Doerr, C., Dréo, J., Doerr, B.: Exploratory landscape analysis
is strongly sensitive to the sampling strategy. CoRR abs/2006.11135
(2020), https://arxiv.org/abs/2006.11135

[25] Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J.,
Kavukcuoglu, K., Pascanu, R., Hadsell, R.: Progressive neural networks
(2016)

[26] Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green ai (2019)
[27] Skvorc, U., Eftimov, T., Korosec, P.: Understanding the prob-

lem space in single-objective numerical optimization using ex-
ploratory landscape analysis. Appl. Soft Comput. 90, 106138
(2020). https://doi.org/10.1016/j.asoc.2020.106138, https://doi.org/10.
1016/j.asoc.2020.106138

[28] Stanley, K.O., Miikkulainen, R.: Evolving neural networks through
augmenting topologies. Evolutionary computation 10(2), 99–127 (2002)

[29] van Stein, B.: Basvanstein/learningfromnas: Initial release (Sep 2020).
https://doi.org/10.5281/zenodo.4043005, https://doi.org/10.5281/zenodo.
4043005
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