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Abstract
Metabolic reprogramming of cancer cells generates a tumour microenvironment (TME) characterised by nutrient restriction, 
hypoxia, acidity and oxidative stress. While these conditions are unfavourable for infiltrating effector T cells, accumulating 
evidence suggests that regulatory T cells (Tregs) continue to exert their immune-suppressive functions within the TME. The 
advantages of Tregs within the TME stem from their metabolic profile. Tregs rely on oxidative phosphorylation for their 
functions, which can be fuelled by a variety of substrates. Even though Tregs are an attractive target to augment anti-tumour 
immune responses, it remains a challenge to specifically target intra-tumoral Tregs. We provide a comprehensive review of 
distinct mechanistic links and pathways involved in regulation of Treg metabolism under the prevailing conditions within the 
tumour. We also describe how these Tregs differ from the ones in the periphery, and from conventional T cells in the tumour. 
Targeting pathways responsible for adaptation of Tregs in the tumour microenvironment improves anti-tumour immunity in 
preclinical models. This may provide alternative therapies aiming at reducing immune suppression in the tumour.
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Abbreviations
AHR  Aryl hydrocarbon receptor
BCAA   Branched-chain amino acids
ETC  Electron transport chain
FAO  Fatty acid oxidation
FAS  Fatty acid synthesis
HIF  Hypoxia-inducible factor
IDO  Indoleamine 2, 3-dioxygenase
iTreg  Induced Tregs
mTOR  Mammalian target of rapamycin
nTregs  Natural Tregs

OXPHOS  Oxidative phosphorylation
RHOA  Ras homolog family member A
ROS  Reactive oxygen species
TCA   Tri-carboxylic acid
Tconv  Conventional T cells
TGF-β  Transforming growth factor beta
TI-Tregs  Tumour-infiltrating Tregs
TME  Tumour microenvironment
Treg  Regulatory T cells
WT  Wild-type

Introduction

Tumour cells frequently exhibit increased metabolism com-
pared to normal cells to fulfil their metabolic demands to 
sustain proliferation [1]. They perform aerobic glycolysis, 
also known as the “Warburg effect”, wherein glucose-
derived pyruvate is shunted to lactate instead of being 
metabolized in the mitochondria despite the presence of 
oxygen [2]. In addition, increased mitochondrial respira-
tion in tumour cells is essential for the biosynthesis of mac-
romolecules and for tumorigenesis [3]. On the other hand, 
tumour hypoxia, mainly caused by defective vasculature in 
fast-growing tumours, forces cancer cells to rely on aerobic 
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glycolysis, consequently increasing lactic acid production [4, 
5]. While lactic acid is a major contributing factor to tumour 
acidity, also carbonic acid formed during oxidative phospho-
rylation can acidify the tumor microenvironment (TME) [6, 
7]. Tumour cells produce elevated level of reactive oxygen 
species (ROS), which in turn can lead to increased basal 
metabolic activity and mitochondrial dysfunction [8–11].

Substrates for the tri-carboxylic acid (TCA) cycle can 
vary from glucose-derived pyruvate, oxidation of fatty acids, 
glutamine-derived α-ketoglutarate (via glutaminolysis), 
or through the conversion of branched-chain amino acids 
(BCAA) [11]. Increased uptake of amino acids by tumours 
is also essential for nucleic acid synthesis, to maintain 
redox balance and to mediate epigenetic regulation [12]. 
The tumour microenvironment is thus devoid of nutrients 
while being enriched in metabolic intermediates such as lac-
tic acid, glutamate, kynurenine and ROS [7, 13–16]. Nutri-
ent restriction, hypoxia, acidity and oxidative stress are all 
described to impair the function of tumour-infiltrating effec-
tor T cells [17, 18].

Regulatory T cells (Tregs), characterised by the expres-
sion of the transcription factor forkhead box P3 (Foxp3), 
are a heterogeneous population of immunosuppressive cells, 
which are critical for establishing peripheral tolerance [19, 
20]. They originate either from the thymus after positive 
selection (termed tTregs or nTregs) or can be induced in 
the periphery (pTregs) from naïve  CD4+ T cells after T cell 
receptor stimulation in the presence of transforming growth 
factor beta (TGF-β) and interleukin-2 (IL-2) [21–23]. Both 
subsets are present in the tumour and independently con-
tribute to immune suppression [24–26]. The presence of 
immune-suppressive cytokines in the tumour can also lead to 
conversion of conventional  CD4+ T cells to Tregs [27, 28]. 
In the review, we will refer in general to tumour-infiltrating 
Tregs (TI-Tregs), comprising both subsets.

Tregs can suppress immune responses via secretion of 
granzymes and perforins, immune-suppressive cytokines 
(IL-10, TGF-β, IL-35), or by expressing co-inhibitory mol-
ecules such as CTLA-4, PD-1, LAG-3, TIM-3 and TIGIT 
[29–31]. In addition, they can degrade extracellular adeno-
sine triphosphate (ATP) or adenosine diphosphate (ADP) 
to immune-suppressive adenosine by combined activities 
of the ecto-enzymes CD39 and CD73 [30]. High  Foxp3+ 
Treg infiltration is associated with tumour progression and 
poor recurrence-free and overall survival across melanomas, 
cervical, renal and breast cancers [32]. Transient systemic 
Treg depletion in metastasized melanoma patients, achieved 
by administering IL-2 conjugated to diphtheria toxin frag-
ments A and B, causes significant regression of the tumours 
[33]. This supports previous mouse studies in which tran-
sient Treg depletion correlated with increased effector T cell 
activation, delayed tumour growth and enhanced survival in 
a range of solid tumours [34–36]. In addition, Treg depletion 

by the use of the anti-CD25 antibody Daclizumab resulted 
in increased immune response in combination with den-
dritic cell vaccination in breast cancer patients [37]. This 
was, however, not observed in another trial with melanoma 
patients [38]. The limited success of such Treg depleting 
strategies could be attributed to their lack of specificity to 
TI-Tregs [36]. Of note, long-term systemic depletion of 
Tregs results in fatal autoimmunity in adult mice, which also 
raises concerns regarding autoimmune side effects in human 
trials with long-term systemic Treg depletion [39].

Selective inhibition of Tregs in the tumour is therefore 
critical for developing safe and effective therapies to over-
come immune suppression. Increasing evidence points out 
to the metabolic differences between peripheral and TI-Tregs 
and between TI-Tregs and effector T cells. Therefore, we 
aim to outline the current knowledge about metabolic pro-
files of Tregs in the TME and highlight several pathways of 
metabolic adaptation engaged by TI-Tregs that support their 
survival and suppressive activity.

Metabolic profile of Tregs: balance 
between glycolysis and mitochondrial 
respiration

The metabolic differences between conventional T cells 
(Tconv) and Tregs in normal physiology and during inflam-
mation are being increasingly highlighted over the past years 
[40–46]. When Tconv cells are activated, they shift their 
metabolism from oxidative phosphorylation (OXPHOS) 
to aerobic glycolysis, to support cell growth and prolifera-
tion, much like tumour cells [47, 48]. Mammalian target 
of rapamycin (mTOR), consisting of complexes I and II, 
modulates glycolysis in T cells [49]. Upregulation of glyco-
lysis is also observed during activation of Tregs. Stimulat-
ing mouse tTregs with TLR1 and TLR2 agonist  Pam3CSK4 
induces mTORC1 signalling, increases glycolysis and results 
in highly proliferative Tregs [42]. However, such glycolytic 
Tregs lost their suppressive capabilities in vitro [42]. Like-
wise, increase in glycolysis in Tregs induced by overexpres-
sion of glucose transporter (GLUT)-1 also caused a loss of 
suppressive function in vitro and in vivo in an inflamma-
tory bowel disease model [42]. The migratory capacity of 
Tregs to the secondary lymphoid organs is dependent on 
mTORC2-mediated upregulation of glycolytic enzymes sug-
gesting that Tregs utilize glycolysis for migration [50]. It 
was, however, not determined if the glycolytic Tregs were 
able to suppress Tconv cells in this model [50].

While glycolysis seems to be imperative for the prolifera-
tion and migration of Tregs, their functionality is depend-
ent on alternative metabolic routes involving mitochondrial 
metabolism. For instance, impaired OXPHOS by Treg-spe-
cific deletion of mitochondrial complex III in adult mice 
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results in loss of Treg suppressive functions, while there 
is no effect on the expression of FoxP3 or the number of 
 FoxP3+ Tregs [51]. Mice lacking the metabolic sensor Lkb1 
in Tregs develops lethal autoimmunity due to disrupted 
mitochondrial metabolism, further highlighting the essenti-
ality of OXPHOS for Treg functionality [52, 53]. Moreover, 
Tregs take up exogenous fatty acids rather than relying on de 
novo fatty acid synthesis for their survival and functionality 
[44]. Inhibiting lipid uptake by knockdown of fatty acid-
binding protein (FABP) 5, or acute treatment with the FABP 
inhibitor BMS309403, impaired OXPHOS, lipid metabo-
lism finally disrupting mitochondrial structure specifically 

in Tregs (Fig. 1) [54]. Interestingly, such Tregs suppressed 
effector responses through increased IL-10 production [54]. 
It is not clear from the former studies if impaired OXPHOS 
in Tregs also caused alterations in mitochondrial structure 
or led to release of mitochondrial DNA. Moreover, it is con-
ceivable that a specific metabolic pathway in Tregs dictates 
their mode of suppression.

The ability of Tregs to switch between different meta-
bolic routes has been attributed to the expression of FoxP3. 
Upon activating murine naïve  CD4+ T cells in vitro in the 
presence of TGF-β, induced  FoxP3+ Tregs had increased 
mitochondrial respiration compared to their  FoxP3− counter 

Fig. 1  Tumour-infiltrating (TI) Tregs adapt to the metabolic stresses 
often experienced in the tumour microenvironment (TME). TI-Tregs 
increase their glucose uptake via glucose transporters (GLUT) con-
verting it to pyruvate via glycolysis. The conversion of pyruvate to 
lactate seldom occurs in TI-Tregs. Pyruvate is instead converted 
to acetyl-CoA and metabolized in the mitochondria to fuel the tri-
carboxylic acid (TCA) cycle. The intermediates of TCA cycle can 
also be utilized for fatty acid synthesis (FAS) by TI-Tregs.  Alter-
natively, TI-Tregs can take up free fatty acids (FA) from the TME 
via fatty acid transporters (e.g. CD36). This process is aided by the 
presence of fatty acid-binding proteins (FABP). FA is then converted 
to fatty acyl CoA to further be oxidized in the mitochondria, termed 
fatty acid oxidation (FAO). In addition, the TCA cycle can also be 
fuelled by the derivatives of amino acid metabolism. For example, 

glutamate produced from glutamine is converted to α-ketoglutarate 
which enters the TCA cycle. Furthermore, TI-Tregs have increased 
expression of metabotropic glutamate receptor 1 (mGluR1), which 
allows the uptake of glutamate from the TME. The reducing equiv-
alents NADH and  FADH2 are synthesized during the TCA cycle 
which in turn transfers electrons to the electron transport chain 
(ETC). The direction of electron transfer across the ETC complexes 
is depicted by dashed lines. The membrane potential created by the 
ETC drives phosphorylation of ADP to ATP in the presence of oxy-
gen (OXPHOS). The reactive oxygen species (ROS) produced due to 
increased OXPHOS is scavenged by glutathione thereby protecting 
TI-Tregs from oxidative stress. Inhibitors that are shown to alter TI-
Treg metabolism and their targets are depicted in red
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parts [55]. In addition, exogenous expression of FoxP3 in 
activated  CD4+ T cells causes a shift towards OXPHOS 
[42]. Expression of FoxP3 suppresses Myc signalling, by 
binding to its promoter, which in turn affects glycolysis 
and glutaminolysis [55, 56]. The importance of metabolic 
regulation for Treg functionality was reiterated using in the 
 Foxp3∆EGFPiCre mouse model, wherein Tregs harbour loss 
of FoxP3 while expressing humanized Cre recombinase 
fused with enhanced green fluorescent protein, enabling 
the tracing of  FoxP3− Tregs [57]. Such  FoxP3− Tregs have 
increased glycolysis and OXPHOS. Treg-specific deletion 
of mTORC2 reduces glycolysis and restores the phenotype 
and functionality of  FoxP3− Tregs and reduces inflammation 
in vivo. Interestingly, mTORC2 deficiency does not upregu-
late mitochondrial metabolism suggesting that alternative 
pathways are responsible [57]. In summary, current results 
indicate that Tregs utilize glycolysis for proliferation and 
migration, while their suppressive function is dependent 
on mitochondrial respiration [42, 43, 50, 51]. Tregs might 
switch their metabolic profile in response to inflammatory 
cues, which in turn affects their functionality, thereby allow-
ing immune resolution only after pathogen clearance. While 
these studies have deciphered the metabolic profile of Tregs 
in the context of normal physiology or by using models of 
autoimmune disorders, the unique metabolic feature of Tregs 
could prove advantageous in the metabolically restrictive 
tumour microenvironment as well.

Tregs in the tumour microenvironment

Nutrient depletion

Glucose and free fatty acids

Reliance on OXPHOS for functionality might prove ben-
eficial to Tregs in the nutrient-depleted TME, since they 
can utilize substrates either derived from glycolysis or from 
fatty acid oxidation (FAO) (Fig. 1) [43, 44, 58]. Accord-
ingly, Tregs increase glycolytic as well as oxidative capacity 
within the tumour compared with Tconv cells [59]. TI-Tregs 
from MC-38 tumour-bearing mice have higher intracellu-
lar lipid content compared with TI-Tconv cells and with 
splenic Tregs. However, there was no increased uptake of 
fatty acids by these cells, suggesting that fatty acid synthesis 
(FAS) contributed to the increased lipid pool in TI-Tregs. 
The tri-carboxylic acid (TCA) cycle intermediates for FAS 
mostly originated from glycolysis, since inhibiting this with 
2-deoxy-D-glucose (2DG) caused a reduction in lipid accu-
mulation in TI-Tregs (Fig. 1) [59].

On the contrary, studies utilizing similar tumour models 
conclude that fatty acid uptake contributes to the increased 

lipid pool of TI-Tregs (Fig. 1) [60, 61]. In low glucose con-
ditions, human Tregs utilize fatty acids efficiently for their 
expansion, survival and for suppressive functions in vitro 
[62]. In mice bearing GL-261 glioblastoma tumours, Tregs 
have higher lipid uptake compared with Tconv cells within 
the tumour [60]. Surface expression of the fatty acid trans-
porters CD36 and SLC27A1 is significantly increased in 
Tregs in the brain compared to Tregs in the periphery. Of 
note, increased levels of fatty acid were found within the 
tumour compared with surrounding healthy brain tissue, 
suggesting that TME with high level of fatty acid might 
allow for accumulation of Tregs [60]. This was confirmed 
in a recent study, wherein the proliferation and suppres-
sive function of effector Tregs were increased with higher 
doses of fatty acid palmitate in vitro [62]. Furthermore, 
gastric tumours harbouring Ras homolog family member 
A (RHOA) mutation produce more fatty acid compared 
with wild-type (WT) tumours, which in turn allows expan-
sion and increased suppression by TI-Tregs [62]. Accord-
ingly, CD36 is selectively upregulated in TI-Tregs, and this 
is accompanied by higher fatty acid uptake and a higher 
lipid content compared with peripheral Tregs [61]. In line 
with this, Treg-specific genetic ablation of CD36 severely 
decreased lipid uptake and content in TI-Tregs, which then 
impaired OXPHOS and skewed their metabolic preference 
towards aerobic glycolysis. As a result, CD36-deficient TI-
Tregs displayed reduced suppressive capacity ex vivo, while 
their splenic counterparts displayed comparable suppres-
sive capacity. This suggests that CD36-mediated fatty acid 
uptake is specific to TI-Tregs [61].

While most studies imply that Tregs employ OXPHOS 
for their functionality in the TME, TI-Treg cell lines gener-
ated from primary melanoma or breast cancer tumours were 
highly glycolytic and upregulated glucose transporters [63]. 
The competition for glucose in turn caused senescence of 
effector T cells, which did not occur in high glucose con-
ditions [63]. However, the extent of glucose limitation in 
the TME and the potential effect of this on TI-Tregs were 
not described. The reliance of TI-Tregs on glycolysis for 
their suppressive functions is not shown by additional stud-
ies. Hence, TI-Tregs presumably rely on mitochondrial 
metabolism for their functionality which endows them with 
a broader choice of substrates obtained either from glucose 
or from fatty acids in the TME.

Amino acids

Amino acid metabolism also plays an important role in 
Treg development, thereby allowing their adaptation 
within the TME. During stimulation of naïve T cells, 
depriving glutamine in the media or addition of the glu-
taminase inhibitor 6-diazo-5-oxo-l-norleucine (DON) 
results in increased FoxP3 expression in vitro in a TGF-β 
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dependent manner [64, 65]. Such Tregs induced under glu-
tamine limitation maintain suppressive function and can 
persist in vivo [64]. In addition,  FoxP3+ Tregs obtained 
from healthy human donors are resilient to glutamine 
restriction in vitro [66]. Moreover, high glutamate con-
centration altered cytokine production by dendritic cells 
which in turn fostered Tregs in an experimental autoim-
mune encephalomyelitis model [67]. Increased glutamate 
can also directly alter Tregs and enhance their prolifera-
tion and suppressive function [68]. Tumour cells have 
increased consumption of glutamine, converting it to glu-
tamate, which can be exported in exchange for cystine, 
rendering the TME low in glutamine and high in gluta-
mate levels, potentially sustaining TI-Tregs [13, 69, 70]. In 
line with this, vascular endothelial growth factor (VEGF) 
blockade increased glutamate production in murine glio-
blastoma tumours, thereby favouring Treg accumulation 
[68]. Depleting Tregs prior to VEGF blockade in this 
model led to tumour growth control and increased sur-
vival [68].

Moreover, tumour cells express indoleamine 2,3-dioxy-
genase (IDO) which mediates the conversion of tryptophan 
to kynurenine [71]. IDO-mediated tryptophan depletion 
and the resulting tryptophan metabolites facilitate induc-
tion of  FoxP3+ Tregs and activate suppressive function 
of Tregs in a dendritic cell-dependent manner [72–75]. 
Kynurenine is also known to activate and signal through 
the aryl hydrocarbon receptor (AHR), which is essential 
for TGF-β dependent Treg induction [76, 77]. Further-
more, overexpression of IDO in mouse B16 melanoma 
tumour resulted in increased expression of AHR on TI-
Treg and also enhanced their suppressive functions [78]. 
Tissue resident Tregs and activated Tregs from peripheral 
blood can deplete arginine due to their high expression 
of arginase and also utilize this pathway to suppress pro-
liferation of effector T cells [79]. Such Tregs with high 
expression of arginase were also seen in tumours from 
melanoma patients, suggesting additional mode of TI-Treg 
mediated suppression [79]. Taken together, these studies 
imply that TI-Tregs can utilize the amino acid profiles 
within the TME for induction, survival and function.

Feeding mice a diet low in isoleucine or a Treg-specific 
deletion of amino acid transporter SLC3A2 resulted in low 
Treg numbers in vivo due to reduced proliferation suggest-
ing that isoleucine is essential to sustain Treg proliferation 
[80]. Isoleucine, valine and leucine, collectively termed as 
the branched-chain amino acids (BCAA), are taken up by 
the tumour to sustain increased metabolic demands [11, 81, 
82]. However, the level of BCAA in the TME and their effect 
on tumour growth is different across tumour types [81, 82]. 
It would thus be interesting to further explore the effect of 
altered BCAA levels in the TME on metabolic rewiring of 
TI-Tregs.

Hypoxia

The hypoxic TME actively recruits Tregs due to enhanced 
intra-tumoral expression of chemokine CCL-28 [83, 
84]. Moreover, hypoxia induces upregulation of TGF-
β1 through hypoxia-inducible factor (HIF)-1α binding 
to its promoter, thereby inducing Foxp3 expression in 
 CD4+ T cells both in vitro and in vivo [85, 86]. Some 
studies also show an increased Treg suppressive function 
in hypoxic conditions [87, 88]. HIF-1α stimulates gly-
colysis by inducing glucose transporters and glycolytic 
enzymes, while inhibiting mitochondrial respiration [5]. 
Genetic deletion of HIF-1α in Tregs increased mitochon-
drial metabolism ex vivo compared with Tregs from WT 
mice, thereby enhancing their suppressive functions [60]. 
Interestingly, enhanced suppression by HIF-1α knockout 
(KO) Tregs was limited to hypoxic conditions, indicating 
that Tregs utilize a HIF-1α driven metabolic switch only 
under hypoxia, such as in the tumour [60]. However, it 
was not evaluated in this model if Tregs can cope with 
increased mitochondrial activity despite possibly low oxy-
gen levels in the tumour for prolonged duration. HIF-1α 
stabilization under hypoxia is essential to reduce oxygen 
consumption thereby assisting cell survival, whereas 
HIF-1α KO cells continue to consume oxygen eventually 
disrupting intracellular oxygen tension [89]. It is therefore 
possible that 1% oxygen can sustain mitochondrial activity 
in HIF-1α KO conditions albeit for a short duration. In line 
with the earlier observations, loss of glycolytic capacity of 
Tregs lacking HIF-1α reduced their migratory capability 
into the TME, contributing to the increased survival of 
mice bearing GL-261 brain tumour [50, 60]. Thus, target-
ing HIF-1α could prevent migration into the tumour, but 
this might improve inhibitory function for Tregs already 
present in the tumour.

Acidity

Increased extracellular lactic acid due to high aerobic 
glycolysis by tumour cells is a major source for acidifica-
tion of the TME [14]. The conversion of glucose-derived 
pyruvate to lactate regenerates  NAD+, which is essential 
to sustain glycolysis. This process also occurs in activated 
Tconv cells. As a result, the presence of extracellular lac-
tic acid or the pH neutral form- sodium lactate causes 
loss of proliferation of Tconv cells since they are unable 
to excrete lactate produced due to loss of gradient [55, 
90]. On the contrary, Tregs prefer to oxidize pyruvate in 
the mitochondria, instead of converting it to lactic acid, 
which is supported by their increased ratio of NAD/NADH 
(Fig. 1) [55]. Consequently, Tregs are able to proliferate 
and suppress Tconv cells in the presence of pH neutral 
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extracellular lactate. In addition, the presence of extracel-
lular lactate increases the frequency of iTregs in a TGF-β 
dependent manner [55]. Furthermore, the increased fre-
quency of iTregs  (CD4+FoxP3+) in the presence of extra-
cellular lactate in low glucose condition is due to a relative 
reduction in proliferation of non iTregs  (CD4+FoxP3−) 
[55]. While these results indicate that the survival and 
functional advantage of  FoxP3+ Tregs in high lactate envi-
ronments mainly stems from their preference to oxidize 
pyruvate in the mitochondria, Tregs could potentially uti-
lize lactate as an alternative fuel source for OXPHOS.

However, it is described that loss of proliferation and 
cytokine production by human effector T cells in the pres-
ence of lactic acid is a consequence of acidification which 
can be reversed by buffering the pH of the medium [90]. 
Furthermore, sodium lactate at physiological pH did not 
inhibit Tconv function [90, 91]. It is thus interesting to deter-
mine if Tregs also have an advantage in low pH conditions. 
This was recently addressed using Tregs induced in the pres-
ence of tumour conditioned medium [61]. Such Tregs had 
a survival advantage in the presence of extracellular lactic 
acid in vitro due to the upregulation of the fatty acid trans-
porter CD36 [61]. Knock out of CD36 in Tregs reversed this 
advantage due to reduced mitochondrial respiration which 
depleted their NAD pool [61]. It is, however, not completely 
deciphered if the ability to survive in the presence of lac-
tic acid is limited to TI-Tregs due to their increased CD36 
expression or if Tregs in general are more resistant to extra-
cellular acidification owing to their reduced glycolytic rates.

Oxidative stress

Tregs have elevated intracellular ROS levels compared with 
effector T cells combined with low level of antioxidant regu-
lator NRF2 and its associated gene transcripts, thus being 
relatively sensitive to oxidative stress in the TME [55, 92]. 
TI-Tregs sorted and expanded from human ovarian tumours 
were highly apoptotic. Culturing mouse Tregs with human 
ovarian cancer ascites also induced apoptosis in Tregs, due 
to their increased ROS production [92]. Surprisingly, apop-
totic Tregs retain their capability to suppress anti-tumour 
immune response in vivo in MC38 and B16-F10 tumour 
models. Suppressive function of such apoptotic Tregs was 
dependent on the ecto-enzymes CD39 and CD73. These 
apoptotic Tregs released high levels of ATP via pannexin-
1-dependent channels, and in turn metabolized it to the 
immune-suppressive adenosine by the combined activity of 
CD39 and CD73 [92].

On the contrary, it was shown earlier that human nTregs 
show greater resilience towards ROS mediated cell death 
compared with Tconv cells due to increased levels of anti-
oxidant- thioredoxin-1 [93]. Moreover, iTregs have lower 

intracellular ROS compared with activated Tconv cells 
despite their increased mitochondrial metabolism [94]. 
This enhanced capability of scavenging intracellular ROS 
is due to increased levels of the antioxidant glutathione 
(Fig. 1) [94]. Glutathione is synthesized by the enzyme glu-
tamate cysteine ligase (Gclc) utilizing glutamine, glycine 
and cysteine [95]. Genetic deletion of Gclc specifically in 
Tregs caused severe autoimmunity in mice. Gclc deficiency 
in Tregs triggered an intracellular accumulation of serine 
due to feedback regulation of serine by glutathione. This in 
turn resulted in increased mTOR activation and dysregulated 
Treg metabolism causing reduced FoxP3 expression and loss 
of Treg functionality in both mice and human Tregs [94]. 
The requirement of glutathione by Tregs is also notewor-
thy and points out to a potential dependence of Tregs on 
cysteine availability [95]. It is also interesting to evaluate if 
cysteine limitation in the tumour microenvironment might 
in turn engage trans-sulfuration pathway in TI-Tregs [96, 
97]. Furthermore, Treg Gclc deletion led to slower growth 
of tumours in B16-F10 melanoma model. It was not evalu-
ated if Tregs underwent apoptosis or if apoptotic Tregs also 
contributed to immune suppression in this model [94]. It is 
thus imperative to determine how ROS levels vary across 
tumour models and if this in turn leads to differences in Treg 
metabolic profiles determining maintenance and suppressive 
functions.

Targeting intra‑tumoral Treg metabolism

The differences in metabolic profile of TI-Tregs compared 
with peripheral Tregs and Tconv cells provide opportunities 
to tackle the persistent problem of selective TI-Treg target-
ing. Since glycolysis is essential for the migration of Tregs, 
inhibiting glycolysis in Tregs could prevent recruitment into 
the TME [50, 60]. It is, however, possible that glycolysis 
inhibition might result in improved suppressive function of 
Tregs already present in the TME [42]. This could be cir-
cumvented by preceding glycolysis inhibition with transient 
Treg depletion. Additional studies are, however, essential 
to find targets that can modulate glycolysis specifically in 
Tregs, sparing other immune subtypes. Expression of FoxP3 
is known to downregulate mTOR activation in Tregs which 
further reduces glycolysis [42]. Chronic activation of mTOR 
in Tregs could therefore destabilize their metabolism, reduc-
ing their functionality in tumour models.

Since inhibition of OXPHOS reduces suppressive func-
tion of Tregs in vitro and in vivo, this strategy can also be 
used to target suppressive function of intra-tumoral Tregs 
[51, 57]. 5-tetradecyloxy-2-furoic acid (TOFA) is known 
to inhibit acetyl-CoA carboxylase, thereby inhibiting fatty 
acid synthesis (Fig. 1). Abolishing fatty acid accumulation 
in Tregs by treatment with TOFA, significantly inhibits the 
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proliferation of Tregs [59]. However, the effect on tumour 
growth control in vivo was due to a direct toxicity on tumour 
cells rather than immune-mediated events [59]. TI-Tregs are 
enriched in the expression of the fatty acid transporter CD36 
in melanoma models (Fig. 1) [61]. Treatment with a mono-
clonal antibody blocking CD36 reduced accumulation of TI-
Tregs without systemic loss of Treg numbers or functions 
thereby leading to a significant increase in infiltration and 
effector functions of  CD8+ T cells in the tumour. Subse-
quently, reduced tumour growth was observed [61]. CD36 
blockade also reduced TI-Tregs and increased the ratio of 
 CD8+ T cells to Tregs in the RHOA mutant MC38 colon 
cancer model, characterised by high production of free fatty 
acids [62]. VT1021, a peptide that induces thrombospon-
din-1 (Tsp-1), in turn targeting CD36, is currently being 
evaluated in a phase 1/2 clinical trial [98]. Determining 
its effect on TI-Treg functionality could provide additional 
insights into the potential of targeting Treg metabolism.

Treatment with Etomoxir, known to inhibit FAO by inhib-
iting carnitine palmitoyl-transferase 1a, severely affects Treg 
proliferation and suppressive capability by the inhibition of 
lipid metabolism (Fig. 1) [59, 60]. Intracranial administra-
tion of Etomoxir into mice bearing GL-261 brain tumour 
led to an increased ratio of effector T cell/ Tregs resulting 
in an immune-mediated improvement in survival, suggest-
ing that blocking FAO might specifically target Treg func-
tionality [60]. This must be further verified with additional 
specific inhibitors for FAO, since Etomoxir was shown to 
have off-target effects such as reduced electron transport 
chain (ETC) activity and increased induction of oxidative 
stress [99–101]. In addition, dysregulated mitochondrial 
metabolism of effector  CD8+ T cells in the TME results in 
reduced effector functions thereby increasing tumour growth 
[102–104]. It is thus probable that broad inhibitors of fatty 
acid metabolism, while reducing Treg functionality might 
also hamper effector responses.

Studies that evaluate the potential of modulating TI-Treg 
metabolism to enhance the efficacy of checkpoint blockade 
are recently surfacing. Encouragingly, anti-PD-1 monoclo-
nal antibody effectively limited tumour progression and pro-
longed survival in mice lacking CD36 in Tregs, indicating 
that CD36 and PD-1 targeting could synergize to control 
tumour growth [61]. In line with this observation, combina-
tion of CD36 blockade and anti-PD1 antibody significantly 
reduced growth of RHOA mutated MC38 tumours, while 
either antibody alone did not lead to tumour growth control 
[62]. Injecting apoptotic Tregs along with tumour dimin-
ished the beneficial effect of PD-L1 antibody on anti-tumour 
T cell response and control of MC38 tumour, indicating that 
modulating TI-Treg metabolism likely augments response to 
immune therapy [92]. Targeting Tregs by the use of CTLA-4 
blocking antibody in combination with PD-1 blockade 
caused regression of RHOA mutant MC38 tumours that are 

otherwise resistant to either treatment alone [62]. Signalling 
via CTLA-4 is known to reduce glycolysis in Tregs [50]. It 
is therefore interesting to evaluate the potential of CTLA-4 
blockade on modulating TI-Treg metabolism and if this in 
part contributes to the efficacy of the antibody. Preliminary 
results showed that CTLA-4 blockade in low glycolytic 
tumours destabilized Treg functions and led to increased 
survival in mice [105].

Decreased ratios of Teff/Tregs in the tumour are often 
associated with poor prognosis in cancer and impaired out-
come upon checkpoint inhibition [32, 106, 107]. Favourable 
ratios can also be achieved by empowering Tconv to over-
come the metabolic stresses in the TME. To do so, one could 
make use of the lessons learnt from TI-Treg metabolic pro-
files. In contrast to Tregs, Tconv produces lactic acid owing 
to increased aerobic glycolysis, as a result of which they 
lose their functionality in TME with high level of extracel-
lular lactic acid [55, 90]. Treatment with the LDH inhibitor 
GSK 2837808A in vitro rescued the Tconv from L-lactate 
inhibition [55]. In line with this observation, blocking LDH 
(with NCI-737) and IL-21 synergistically rewired the meta-
bolic profile of  CD8+ T cells and led to reduced tumour 
growth and longer survival in B16 melanoma bearing mice 
[108]. Alternatively, promoting mitochondrial biogenesis 
and function in  CD8+ T cells also improved anti-tumour 
activity in vivo [102, 103, 109, 110].

Concluding remarks

Despite the plethora of metabolic challenges such as nutrient 
restriction, hypoxia, acidity and oxidative stress, imposed 
by TME on infiltrating immune cells, Tregs can still sur-
vive and function. In this review, we provided a compre-
hensive understanding of how Tregs deal with these meta-
bolic stresses. While most studies indicate that Tregs rely on 
OXPHOS for their suppressive functions in normal physi-
ology and during disease [42, 43, 51, 60], the substrate for 
this in the tumour could either be derived from glucose or 
from fatty acids [54, 59, 61]. Though it seems plausible that 
the preference for a particular fuel source can be specific to 
a certain microenvironment, there are discrepancies across 
studies that utilize similar tumour models [59, 61]. It is evi-
dent that the metabolic reprogramming of TI-Tregs is not 
dependent on a single pathway, but it is an amalgamation 
of responses of Treg-intrinsic regulators to the environmen-
tal cues. Further characterisation of the regulators of Treg 
metabolic responses to TME is required. The competitive 
advantage of Tregs due to their metabolism, however, could 
also become their Achilles heel, which provides new ave-
nues for specific therapeutic targeting, which already shows 
promising early results [60, 61]. One can envision that such 
approaches may synergize with current effective anti-tumour 
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immune therapies, like T cell therapies or checkpoint inhi-
bition, thereby providing an additional and independent 
approach in cancer immunotherapy [61, 62]
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