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a b s t r a c t 

Performing simulations with a realistic biophysical auditory nerve fiber model can be very time- 

consuming, due to the complex nature of the calculations involved. Here, a surrogate (approximate) 

model of such an auditory nerve fiber model was developed using machine learning methods, to perform 

simulations more efficiently. Several machine learning models were compared, of which a Convolutional 

Neural Network showed the best performance. In fact, the Convolutional Neural Network was able to 

emulate the behavior of the auditory nerve fiber model with extremely high similarity ( R 2 > 0 . 99 ), tested 

under a wide range of experimental conditions, whilst reducing the simulation time by five orders of 

magnitude. In addition, a method for randomly generating charge-balanced waveforms using hyperplane 

projection is introduced. In the second part of this paper, the Convolutional Neural Network surrogate 

model was used by an Evolutionary Algorithm to optimize the shape of the stimulus waveform in terms 

of energy efficiency. The resulting waveforms resemble a positive Gaussian-like peak, preceded by an 

elongated negative phase. When comparing the energy of the waveforms generated by the Evolutionary 

Algorithm with the commonly used square wave, energy decreases of 8%–45% were observed for differ- 

ent pulse durations. These results were validated with the original auditory nerve fiber model, which 

demonstrates that the proposed surrogate model can be used as its accurate and efficient replacement. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cochlear Implants (CI) are neuroprostheses that use direct elec- 

rical stimulation of the auditory nerve to restore a sense of sound 

nd speech understanding to people with profound sensorineural 

earing loss. A condition, which is estimated to affect roughly 5% 

f the global population ( Olusanya et al., 2014 ). These devices con- 

ist of an external part containing a battery, a microphone, and a 

ound processor, which transforms sounds into coded signals that 

re sent via a wireless transmitter to an implanted component. The 

mplanted electronics include a receiver and a stimulator that con- 

erts the coded signals to a pattern of electrical pulses that stim- 

late the auditory nerve via a multi-channel electrode array in the 

ochlea (inner ear). 

The external part of the device has to be worn on the side of 

he head, behind the ear, and the social stigma ( Rapport et al., 
∗ Corresponding author. 

E-mail address: nobeljpde1@liacs.leidenuniv.nl (J. de Nobel) . 
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022 ) that is associated with wearing a hearing aid can be a po- 

ential barrier for use. In fact, the size and visibility of hearing 

ids have been identified as one of the main factors limiting adop- 

ion ( David and Werner, 2015 ). For the CI, a large part of the exter-

al unit is taken up by the battery, and thus decreasing the im- 

lant’s power consumption would lead to smaller batteries and, 

onsequently, smaller devices. 

In this work, we focus on neural stimulation of the auditory 

erve, which has been reported to account for up to 90% of the 

otal power consumed by the device ( Yip et al., 2017 ). Specif- 

cally, the shape of the waveforms used to stimulate the audi- 

ory nerve fiber (ANF) is analyzed, whilst optimizing energy effi- 

iency. In practice, the CI is often configured to use square biphasic 

aveforms, even though many studies show the potential bene- 

t of using alternate shapes. For example, the introduction of an 

nter-phase gap ( Carlyon et al., 2005 ) or the use of asymmetric 

ulses ( Macherey et al., 2006 ) has been shown to lower the ac- 

ivation threshold. Moreover, it has been shown that the human 

uditory system is more sensitive to the anodic phase of bipha- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Three-dimensional cut-through of a cochlea with a laterally implanted elec- 

trode array, as used by the volume conduction model. Nerve fibers are shown in 

yellow, and the electrode contacts can be identified in grey/black. Figure taken 

from Kalkman et al. (2022) . 
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ic stimuli ( Macherey et al., 2008; Undurraga et al., 2010 ). In some

tudies ( Jezernik and Morari, 2005; Sahin and Tie, 2007 ), the re- 

uced threshold energy of using exponentially decaying/increasing 

aveforms have been reported. Wongsarnpigoon et al. (2010) in- 

estigates square, exponential, and linear ramp waveforms for 

onophasic stimulation, but finds that none of these waveforms 

re simultaneously energy, power and charge optimal. In a later 

tudy, Wongsarnpigoon and Grill (2010) used an Evolutionary Al- 

orithm 

1 to optimize the shape of the stimulus waveform for en- 

rgy and propose a truncated Gaussian pulse followed by a rectan- 

ular charge balancing phase. This methodology was used specifi- 

ally for an ANF in Yip et al. (2017) , where it was shown that an

xponentially decaying cathodic phase followed by a rectangular 

nodic phase provides the lowest energy at threshold level. 

In order to investigate the effect of electrical stimulation on 

he auditory nerve fibers in the cochlea, simulation with com- 

uter models can be used ( Frijns et al., 20 0 0; 1995; Hanekom

nd Hanekom, 2016 ). This can be an attractive alternative for per- 

orming experiments with CI, as in vivo experiments require hu- 

an subjects, and a considerable effort to conduct. Early work in 

omputational modeling with multi-compartment models yielded 

he activating function ( Rattay, 1986; Warman et al., 1992 ), which 

s proportional to the second-order spatial derivative of the ex- 

racellular potential along the axon and can be used to approxi- 

ate the influence of electrical stimulation on neural excitation. 

ontemporary models ( Kalkman et al., 2022; Rattay et al., 2001; 

mit et al., 2010 ) combine 3D modeling techniques with non-linear 

ulti-node ANF models, and conceptually split up the simulation 

ask into two processes: I) the calculation of the electrical field 

otentials in the geometry of the cochlea, and II) the simulation 

f the response of a nerve fiber to an externally applied poten- 

ial field ( Briaire and Frijns, 20 0 0b ). The increased complexity of

hese later models comes at a substantial computational cost, as 

hey require the solution to a large set of differential equations to 

ccurately simulate fiber behavior. 

Surrogate modeling ( Grefenstette and Fitzpatrick, 1985; Jin, 

011 ) is a technique used in engineering and optimization that 

ses an approximate model of a process for which the outcome is 

ot easily measured or computed. This has the potential to mas- 

ively speed up calculation time, as the evaluation of a surro- 

ate is often orders of magnitude faster than the original process. 

n this work, a surrogate modeling approach is used to create a 

tatistical approximate for the second of the two simulation pro- 

esses of the model presented in Kalkman et al. (2022) , the ANF 

odel ( Briaire and Frijns, 2005 ). With the surrogate, it becomes 

ossible to do a much larger number of simulations than was pre- 

iously possible with the original model, which allows researchers 

o perform experiments on a much larger scale. 

This paper features two contributions. Firstly, five different ma- 

hine learning models are compared in detail when tasked with 

onstructing a surrogate for the active nerve fiber model used 

n Kalkman et al. (2022) . This results in a Convolutional Neu- 

al Network (CNN) to be favored, which predicts the neural re- 

ponse with very high accuracy. Secondly, we draw inspiration 

rom Wongsarnpigoon and Grill (2010) and Yip et al. (2017) and 

se the surrogate to optimize the stimulus waveform for energy 

ith an Evolutionary Algorithm (EA). The surrogate effectively en- 

bles this type of analysis, as the large number of evaluations re- 

uired to do the optimization would have been infeasible to do 

ith the original model. A new method for generating charge- 

alanced waveforms is proposed, using hyperplane projection. This 

llows for the generation of arbitrary charge-balanced waveforms, 

hilst in previous works, the shapes that could be generated were 
1 Described as a Genetic Algorithm (GA) by the authors. 

b

ψ
n

2 
imited. This experiment suggests a potential alternative to the 

quare biphasic pulses used in practice and indicates substantial 

nergy savings. 

. Methods 

.1. Model of electrical hearing 

This research builds on the work of Kalkman et al. (2022) , 

here an updated version of a computational model of the im- 

lanted human cochlea is presented. This model consists of two 

nderlying models, which will both be described in more detail 

ere. 

.1.1. 3D Volume conduction model 

The volume conduction part of the model uses a boundary 

lement model (BEM) of the cochlea that can model arbitrary 

ochlear geometries, implanted with a multi-channel electrode ar- 

ay ( Briaire and Frijns, 20 0 0a ). An example of such a geometry

an be seen in Fig. 1 . These geometries are characterized by a 3D 

esh of polygons, which represent the boundaries between the 

ifferent tissue types in the cochlea. When current is injected into 

he inner ear by the electrodes, this induces a potential distribu- 

ion. The calculation of this distribution, termed the volume con- 

uction problem, consists of finding the solution to the Poisson 

quation: 

 

2 ψ = − I 

σ
, (1) 

here ψ represents the potential distribution, I the injected cur- 

ent, and σ the conductivity of the medium. Because the cochlea 

oes not consist of a heterogeneous medium (i.e., different tissue 

ypes have different levels of conductivity), every polygon in the 

esh is associated with the levels of conductivity σ correspond- 

ng to the tissues it separates. In the model, fibers are represented 

y several cylindrical segments, for which at each segment the ex- 

racellular potential is calculated. This yields a vector of approxi- 

ately 115 regularly spaced measurements of the electrical poten- 

ial along the fiber. This vector is then normalized over the input 

urrent, which produces a transfer function with its values in k �. 

or simplicity, we refer to this transfer function by the term poten- 

ial distribution in the remainder of the paper. The potential distri- 

ution induced by electrode e for a nerve fiber f is denoted with 

 

f 
e , and can be compactly expressed in R 

5 with a fifth-order poly- 

omial (see Appendix A ). 
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Fig. 2. Schematic overview of the design of a surrogate model for the ANF model. 
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.1.2. Active model of the auditory nerve fiber 

The second part of the computational model architecture con- 

ists of an auditory nerve fiber model ( Dekker et al., 2014; Kalk- 

an et al., 2022 ) with human Schwarz-Reid-Bostock (SRB) ki- 

etics ( Schwarz et al., 1995 ), and calculates the neural response 

licited by a stimulus. It is a non-linear double cable model de- 

eloped to display fundamental mammalian nerve fiber proper- 

ies, such as spike conduction velocity and repetitive firing behav- 

or ( Frijns et al., 20 0 0 ). The model represents a human bipolar High

pontaneous Rate (HSR) fiber, which is the most prevalent type of 

rimary auditory nerve fiber ( Frijns et al., 20 0 0 ) and is modeled in

ccordance with known human data ( Briaire and Frijns, 2005 ). 

The ANF model f takes an arbitrary stimulus waveform φe (t) , 

hich is a discrete univariate time series of current I over a given 

xperimental time window. Based on the potential distribution 

 

f 
e provided by the 3D volume conduction model and a stimulus 

aveform φe (t) , the model calculates the activation threshold 

ˆ I 
f 
e : 

 (x ) = 

ˆ I f e ∈ R , (2) 

here x := (ψ 

f 
e , φe (t)) . ˆ I 

f 
e represents the relative amount of cur- 

ent that must be injected by an electrode e using a waveform 

e (t) for a fiber f to spike. In other words, if the waveform φe (t) 

s scaled by ˆ I 
f 
e , an action potential can be observed. The computa- 

ion of ˆ I 
f 
e requires the solution to a system of differential equations. 

his is solved using a classic backward Euler method, which takes 

 considerable amount of time to compute, and grows linearly with 

he length of φe (t) . 

.2. Surrogate model of the auditory nerve fiber 

The surrogate model is intended as a substitution for the ANF 

odel described in the previous section, in order to reduce its sub- 

tantial computation time. The goal is to construct a statistical ap- 

roximate ̂  f of the nerve fiber model f , through the use of machine 

earning. By presenting the surrogate with a large number of train- 

ng examples generated with the ANF model, the surrogate can be 

rained to function as its replacement. A schematic of this process 

s shown in Fig. 2 . 

.2.1. Regression 

Designing a surrogate for the ANF model can be postulated as 

 regression task, modeling the relationship between the indepen- 

ent model parameters X and the dependent model outcomes y . 

ormally, the data set for training the surrogate model is defined 

s a set of input-target pairs D : −{ (x i ∈ R 

85 , y i ∈ R ) i =1 , ... ,n } , where

ach input x i consists of two entities: the potential distribution 

 

f 
e computed by the volume conduction model and the stimulus 

aveform φe (t) . The target value y i equals the activation threshold 

ˆ 
 

f 
e . 

A regression model is defined as a function 

ˆ f θ (X ) → 

ˆ y parame- 

erized by θ , which outputs a predicted value ˆ y , representing acti- 

ation thresholds ( ̂ I 
f 
e ), for a given data set X of ANF model simula-

ion parameters (ψ 

f 
e , φe (t)) . By providing the model with a set of

raining examples, we search for the regression model parameter 
3 
et θ , which causes it to predict a ˆ y with a minimal error com- 

ared to the true value y . This is evaluated using the coefficient of 

etermination ( R 2 ), which is used to indicate the “goodness of fit”

or a regression model. Defined on [ −∞ , 1] , R 2 denotes the propor-

ion of the dependent variable ( y ) which is correctly inferred from 

he independent variables ( X ): 

 

2 (y , ̂  y ) = 1 −
∑ n 

i =1 (y i − ˆ y i ) 
2 ∑ n 

i =1 (y i − ȳ ) 2 
(3) 

ere, ȳ denotes the average value of y . Note that a constant model 

hich predicts the expected value for y yields an R 2 of 0, and a

erfect model receives a value of 1. R 2 is calculated for the training, 

nd test data sets separately, see also Section 3.2 . 

.2.2. Regression models 

As was mentioned in the introduction, five machine learning 

odels are considered for the surrogate (regression) model: 

1. Polynomial Elastic Net (PEN) is a polynomial regression model, 

that combines the L 1 and L 2 regularization factors of the 

lasso and ridge regression methods. Regularization reduces 

model complexity, effectively performing an in-place feature se- 

lection on the input data by penalizing the regression model for 

having large weights. This produces a sparse model, which can 

be especially useful when many of the input features are corre- 

lated ( Zou and Hastie, 2005 ). 

2. Random Forests (RF) ( Breiman, 2001 ) are a type of ensem- 

ble learning that uses multiple decision trees, combining many 

weak classifiers to form a strong classifier through a process 

called bagging. Bagging involves randomly selecting subsets 

of data to train decision trees on, and predictions are made 

through majority voting over all the trees. 

3. Gradient Tree Boosting (GB) is another type of ensemble learn- 

ing which uses an ensemble of decision trees, similar to RF. In 

contrast to RF, the decision trees are created additively, where 

each tree is built to improve upon the already existing ones. 

This is achieved via gradient descent of a differentiable loss 

function specified by the user ( Chen and Guestrin, 2016 ). 

4. Multi-Layer Perceptron (MLP) is a fully connected feed- 

forward artificial neural network ( Goodfellow et al., 2016 ). It 

consists of at least three layers of perceptrons or nodes, an 

input layer, several hidden layers, and an output layer. Each 

node in the network maps the weighted inputs to a scaled out- 

put: z(w · x i ) �→ R , which is then passed to the next layer of

the network. The weights w of each node are obtained via the 

backpropagation of error terms in a form of gradient descent. 

In regression, the single-node output layer yields a continuous 

value. 

5. Convolutional Neural Network (CNN) is a deep neural net- 

work, which sets itself apart from regular neural networks by 

the fact that they use a convolution instead of a matrix mul- 

tiplication when processing data ( Goodfellow et al., 2016 ). This 

allows CNN’s to be highly effective at processing data with an 

inherent structure, such as images and audio signals, as they 

are invariant to the shifts to the input. The structure of the net- 

work is similar to an MLP, except that it has at least one con- 

volutional layer as one of its hidden layers. 

The selection of the models was based on the following consid- 

rations: Random Forests was included due to its favorable out-of- 

he-box performance and low requirement for parameter tweak- 

ng, which is a good indicator of the problem complexity. Gra- 

ient Boosting was added as it often demonstrates better perfor- 

ance than Random Forests. Deep Learning models were included 

ecause of their proven effectiveness in various machine learning 

asks, and their non-linear nature fits the non-linear character of 

he ANF model. The NN-based models provide a universal function 



J. de Nobel, A.V. Kononova, J.J. Briaire et al. Hearing Research 432 (2023) 108741 

Table 1 

High-level overview of the data sets used in this work; A , B 

and C . 

A B C 

electrode type LW, PM LW LW 

fiber health H, ST, CD H, ST, CD H 

# cochleae 5 1 1 

# electrodes 16 1 1 

# fibers 3 200 3 200 1 

# pulses 1 1 296 48 000 

# samples 1 466 189 12 441 600 48 000 
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Table 2 

An overview of the stimulus waveforms considered in the experiments for 

data set B , and the methods used to generate their variants. The proportion 

of samples in the data for a given base is also shown. 

Name Example Extension method Proportion 

Biphasic Fig. 3 (a) GI , E , I 0.247 

Asymmetric biphasic Fig. 3 (b) GI , E , I 0.517 

Triangle Fig. 3 (b) GI , E , I 0.097 

Linear ramp Fig. 3 (b) E , I 0.052 

Mirrored Linear ramp Fig. 3 (c) E , I 0.046 

Sinusoid Fig. 3 (c) I 0.009 

Gaussian Fig. 3 (c) I 0.032 
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pproximation and can demonstrate better capabilities in out-of- 

ample predictions compared to the tree-based models that strug- 

le with extrapolation. The CNN-based architecture was included 

ue to its suitability for handling sequential data. The PEN model 

as also added as a simple indicator of the problem’s complex- 

ty. Other popular models such as Support Vector Machines and 

-nearest-neighbors were not included due to the large size of the 

ata set, making them inefficient for this particular problem. 

For PEN, RF, and MLP, the implementations as provided by the 

ython library scikit - learn ( Pedregosa et al., 2011 ) (version 0.24.2) 

ere used. For the gradient boosting algorithm, the implementa- 

ion from the library xgboost ( Chen and Guestrin, 2016 ) (version 

.5.2) was used, and for the CNN, the keras ( Chollet et al., 2015 )

PI for tensorflow ( Abadi et al., 2015 ) (version 2.6.2) was used. 

ll experiments were conducted using Python 3.7.5. 

.3. Simulated data 

Data was collected by performing simulations with the ANF 

odel for various experimental conditions. The research data in- 

ludes potential distributions ψ 

f 
e for five different cochlear ge- 

metries ( Kalkman et al., 2022 ), implanted with both lateral wall 

LW) and perimodiolar (PM) electrode arrays, which are model 

quivalents of a HiFocus1J cochlear implant with 16 electrode 

ontacts. Samples are collected for up to 3 200 nerve fibers 

placed uniformly along three cochlear turns) with three levels 

f neural degeneration: i) healthy fibers (H), ii) “short-terminal”

ST) fibers, and iii) fibers with completely degenerated (CD) den- 

rites ( Kalkman et al., 2015 ). 

Three data sets are considered, for which an overview is given 

n Table 1 . Each data set has different com ponents, which allows 

or an investigation of the parameters of the ANF model from con- 

rasting aspects. Data set A has the highest variability in poten- 

ial distributions ψ 

f 
e , and includes data for several cochlear geome- 

ries and electrodes, but only considers a single stimulus waveform 

e (t) . A much larger number of stimulus waveforms are included 

n data set B for a single geometry and electrode contact. In con- 

rast, data set C only varies the stimulus waveform and keeps all 

ther parameters constant. Note that the number of samples for 

ata set A is not a perfect multiple of the number of experimen- 

al conditions used to generate it. This is because simulations with 

arameters that were not able to yield a finite value for ˆ I 
f 
e were 

xcluded, as the maximum value for ˆ I 
f 
e was limited to 100. Addi- 

ionally, all data was scaled to zero mean and unit variance prior 

o training the surrogate model. 

.3.1. Stimulus 

In practice, a stimulus waveform φe (t) is a univariate real- 

alued time series with a fixed sampling rate, representing the 

ctive current I in ampere ( A ) of an electrode e over a sampling

indow. Here, a time window of 160 μs is considered with a sam- 

ling rate of 2 μs. This allows for the representation of a stimulus 

aveform as a vector in R 

80 , with each component bounded on 

 −0 . 01 , 0 . 01] . 
4

In standard operating conditions, a cochlear implant is of- 

en configured to produce square biphasic pulses ( Macherey and 

azals, 2016; Macherey et al., 2006; Wongsarnpigoon and Grill, 

010; Yip et al., 2017 ), which can be adjusted parametrically in 

erms of the phase-duration, amplitude and polarity. An example 

f a cathodic-first biphasic pulse, with a phase duration of 50 μs, a 

elay of 20 μs and an inter-phase gap of 10 μs is shown in Fig. 3 (a) .

evertheless, the cochlear implant can be configured to transmit 

rbitrary stimulus waveforms, given that they are charge-balanced, 

.e.: 

∞ 

 

t=0 

φe (t) = 0 (4) 

his is to ensure that the implant does not cause tissue damage 

ue to an unbalanced charge, which can introduce gases, corrosion 

roducts, and pH changes as byproducts that can be detrimental to 

he user ( Huang et al., 1999 ). 

In this work, all simulations are conducted using monopolar 

timulation ( Kalkman et al., 2022 ). Data set A (see Table 1 ) con-

ains data for a single cathodic-first biphasic pulse, with a phase 

uration of 18 μs, no inter-phase gap, and no offset, with simula- 

ions for all the cochlear geometries and electrode configurations. 

For data set B , data was generated for pulses found commonly 

n the literature (an overview of these can be found in Fig. 3 and

able 2 ). For each of these pulses, variations were generated by 

caling them to a different time duration, in 2 μs intervals, up to a 

ength of 160 μs, using three different methods: 

• Gap-Insertion ( GI ) takes the base pulse and inserts an inter- 

phase gap at all zero-crossings of the pulse. 
• Extension ( E) grows the pulse by copying every element, i.e: 

(x 1 , . . . , x n ) �→ (x 1 , x 1 , . . . , x n , x n ) . 

• Interpolation ( I) computes the linear interpolation of the pulse 

at 2 n points and replaces the original with the interpolation, 

i.e: 

(x 1 , . . . , x n ) �→ (x a 1 , x 
b 
1 , . . . , x 

a 
n , x 

b 
n ) , 

where x a 
i 

and x b 
i 

denote the interpolated points around the 

point x i . 

Starting with a base pulse x of length n , the E and I opera- 

ors recursively increase the duration of the pulse up to the sam- 

ling window (160 μs). Using these three operators, 648 different 

timulus waveforms were generated. Each of these waveforms was 

hen also considered with reversed polarity by multiplying it by - 

, yielding a total of 1 296 pulses/waveforms. Simulations with the 

NF model for these pulses (i.e. data set B ) were only conducted 

or the HC3A geometry, and one electrode (electrode 9, i.e., in the 

iddle of the array) due to the considerable amount of time in 

unning these simulations (several weeks on a 64 machine com- 

ute cluster). 
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Fig. 3. Examples of the predefined waveforms used in this paper. 

Fig. 4. Visualization of the charge-balancing transformation (Eq. (6) ), in three di- 

mensions. The non-violating hyperplane H is shown in blue, the original samples x 

in red, and the transformed samples x ′ in green. The dashed line indicates the ap- 

plied transformation on each sample. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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.3.2. Generating charge-balanced waveforms 

As previously mentioned, the stimulus waveform is represented 

y a real-valued vector in [ −0 . 01 , 0 . 01] 80 . In order to satisfy the

harge-balancing constraint (Eq. (4) ), a randomly generated vector 

 can be projected to the non-violating hyperplane: 

 := { x : 〈 x , 1 〉 = b} , (5)

here b = 0 . The inner product between x and 1 is denoted by

 x , 1 〉 , and 1 represents a vector with all ones of the same size as x .

o ensure that every projected vector x ′ becomes charge-balanced 

nd can be used as a stimulus waveform φe (t) , each sampled vec- 

or x is projected onto H as follows: 

 

′ = x − 〈 x , 1 〉 − b 

|| 1 || 2 1 (6) 

igure 4 provides a visual intuition of this transformation for three- 

imensional samples. From the figure, it can be seen that for every 

oint in the three-dimensional space, an orthogonal transformation 

nto H can be computed, which satisfies Eq. (4) . 

.3.3. Latin hypercube sampling 

Since the distribution of stimulus waveforms used in data sets 

 and B have a relatively low variance, a Latin Hypercube Sampling 

LHS) of φe (t) is used to get a data set with a broader range of
5 
raining examples for the surrogate model. This is labeled data set 

 (see Table 1 ). 

Latin Hypercube sampling is a technique for generating quasi- 

andom samples from a continuous multidimensional distribution, 

hich ensures the drawn samples are distributed evenly in the 

ample space ( Mckay et al., 1979 ). It involves dividing the cumu- 

ative density function (CDF) for each of the dimensions into N

venly spaced partitions, which are used to construct a multidi- 

ensional grid or hypercube. Random samples are then taken in 

uch a way that only one sample is drawn for each axis-aligned 

yperplane. For example, in a two-dimensional grid, this means 

hat for every row and every column, there is only one sam- 

le ( Tang, 1993 ). This produces a set of robustly stratified random 

amples, which, in contrast to traditional random sampling, pro- 

ides the assumption that the samples reflect the true variability 

f the underlying distribution. 

As it is computationally infeasible to simulate a large number 

f LH samples using the ANF model for all geometries and nerve 

bers, this is only done for a single nerve fiber and electrode com- 

ination. In this way, only the stimulus waveform φe (t) is varied, 

hile the potential distribution ψ 

f 
e remains fixed. Since the φe (t) 

nd ψ 

f 
e are independent model parameters, it is expected that ob- 

ervations made from this data set will generalize to all fibers. 

he potential distribution induced by electrode 9 on fiber 1213 is 

sed, which was chosen because this fiber has the lowest average 

hreshold 

ˆ I 
f 
e for electrode 9, which is also included in data set B . 

Data set C contains 8 0 0 0 quasi-random samples for stimulus 

aveforms φe (t) of length 80. In order to include shorter wave- 

orms in the sample, an additional 2 0 0 0 samples are drawn for 

ach length in { 2 , 6 , . . . , 74 , 78 } . Each of these samples is then

added with zeros on the right in order to produce a vector in 

 

80 . This yields a total of 48 0 0 0 vectors in the sample for data

et C . Note that these vectors cannot directly be used as stimulus 

aveforms, since because they are generated in a pseudo-random 

ashion, and do not satisfy constraint (Eq. (4) ). However, by apply- 

ng the transformation given by Eq. (6) , each of the 48 0 0 0 random

amples in data set C is charge-balanced. 

. Model selection 

To establish which of the investigated machine learning models 

s best suited for surrogate construction, two different experiments 

re conducted, discussed in more detail in the following sections. 

he first is a hyperparameter tuning experiment on a small subset 

f the data set A , to find good (hyper) parameter sets for each of

he investigated models. Then, using these parameter sets, model 

erformance is evaluated through a large-scale cross-validation ex- 

eriment on all the data sets ( A , B , C ). All experiments in this sec-

ion are performed on a Linux server running CentOS 7, with 256 

PUs and 500 GB of RAM. 
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Table 3 

Best values of the parameters of machine learning models investi- 

gated, found by the grid search. 

Model Parameter Best value 

Polynomial 

Elastic Net 

degree 3 

α 0.1 

L 1-ratio 0.1 

Multi-Layer 

Perceptron 

activation tanh 

hidden _ layer _ sizes (500, 250, 100) 

Convolutional 

Neural 

Network 

n _ filters 512 

kernel _ size 16 

pool _ size 4 

dropout _ rate 0.2 

n _ nodes _ dense 100 

Gradient Tree 

Boosting 

γ 0.8 

learning _ rate 0.1 

max _ depth 14 

reg α 0.1 

reg λ 12.8 

tweedie _ variance _ power 1.2 

Random 

Forests 

n _ estimators 500 

max _ depth 30 

min _ samples _ split 2 

min _ samples _ leaf 1 
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Table 4 

Results for 10-fold cross-validation for all data sets and machine learning mod- 

els. Average over cross-validation folds for prediction quality metrics R 2 , MAE 

and MAPE are shown, in addition to the average fitting time in seconds. Best 

values attained for each experiment set are shown in boldface. Results of PEN 

on data set B are dropped due to the prohibitively large size of the data set. 

Metric PEN MLP CNN GB RF 

A R 2 0.599 0.979 0.942 0.940 0.980 

MAE 0.950 0.177 0.312 0.304 0.137 

MAPE 0.277 0.045 0.079 0.075 0.034 

time (s) 783.85 24419.65 4830.11 43.23 202.56 

B R 2 X 0.998 0.987 0.995 0.983 

MAE X 0.196 0.551 0.199 0.353 

MAPE X 0.035 0.116 0.020 0.036 

time (s) X 227128.67 232049.12 905.37 8819.14 

C R 2 0.197 0.997 0.999 0.998 0.998 

MAE 4.870 0.188 0.147 0.272 0.310 

MAPE 2.112 0.064 0.061 0.119 0.142 

time (s) 6518.32 302.36 956.77 37.53 137.46 
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.1. Hyperparameter tuning 

In order to determine the best settings for each of the tested 

achine learning models, hyperparameter tuning by means of a 

rid search is used. A grid search involves an iterative procedure 

hat performs an exhaustive search over all combinations of pa- 

ameter values specified by the user and returns the parameters 

hich yield the highest performance. In order to get a robust es- 

imate of the performance associated with a given parameter set, 

-fold cross-validation is used. This requires a large number of fit- 

ing operations for each of the models and would be very costly if 

valuated on one of the complete data sets, due to their relatively 

arge size. Thus, a down-sampled grid-search data set D g is con- 

tructed from 1% of the samples in data set A , taken uniformly at

andom, which includes 14 661 samples. 33% of this data is held 

ack for testing ( D 

test 
g ) and perform the grid search on the remain-

ng 67% ( D 

train 
g ). Then for each model, the performance of the best 

arameter set found by the grid search is validated by testing on 

 

test 
g , using a model trained on D 

train 
g . 

Table 3 summarizes the list of searched parameters and their 

est values. For more detail on the parameters, we refer the inter- 

sted reader to the scikit - learn , tensorflow and xdgboost doc- 

mentation ( Abadi et al., 2015; Chen and Guestrin, 2016; Chollet 

t al., 2015; Pedregosa et al., 2011 ). 

In Fig. 5 , the results of the grid search experiments are shown. 

he figure shows two kinds of results. Firstly, it shows the distri- 

ution of the 3-fold cross-validation R 2 scores on D 

train 
g graphed as 

ox plots for parameter sets of each considered model. Secondly, 

he R 2 score attained by each model when using the best parame- 

er set on D 

test 
g is shown in the figure as circles. The precise value

 R 2 ) for each dot is shown in the legend. The figure clarifies that

he best parameter sets for all models show similar performance 

n this data set ( D g ), except for the PEN model, which seems to be

ess suited for this particular regression problem. Since PEN is the 

east complex model, this is to be expected. The highest score on 

he test set (0.904) was attained by the MLP model. 

.2. Validation 

In this section, the hyperparameters sets which showed the 

ighest performance (see Table 3 ) in the grid-search experiment 

re evaluated. Each model, with its best hyperparameter setting, 

s evaluated on the full A , B and C data sets (see Table 1 ) in this
6 
xperiment. This shows the true performance of each model on 

ach data set. Moreover, since each of the three data sets is gener- 

ted with different experimental conditions, performance recorded 

n D g might not generalize to the other data sets. In order to 

ssess how the results for each model will generalize to unseen 

ata, cross-validation ( Stone, 1974 ) is used, which is a re-sampling 

ethod that uses different partitions of the data to iteratively train 

nd test a machine learning model. The goal of cross-validation is 

o evaluate the performance of a model on data that was not used 

o train it, providing insight into how it generalizes to an indepen- 

ent data set. 

10-fold cross-validation With 10-fold cross-validation, each data 

et is partitioned into 10 equally sized groups or so-called folds, 

elected uniformly at random. Each group is sequentially held back 

or testing, while the machine learning model is trained on the 

nion of the other groups. Subsequently, R 2 is computed for each 

old by evaluating the model on the withheld test set. In addi- 

ion to R 2 , model performance is evaluated using the Mean Abso- 

ute Error (MAE) and the Mean Absolute Percentage Error (MAPE) 

see Appendix B ). Note that while R 2 is to be maximized, both MAE 

nd MAPE are to be minimized. 

For each of these metrics, averages over the 10 cross-validation 

olds are shown in Table 4 . The average training time is also given.

rom these results one can see that for data set A , the RF model

utperforms all the other models. The R 2 of the RF model is close 

o the R 2 for the MLP model, but it has a lower MAE , which shows

hat its average error is of a lower magnitude. For data set B , the

LP shows the highest performance, and for data set C the CNN 

as the highest value for all recorded metrics. The performance of 

he PEN is rather poor compared to the other models. Addition- 

lly, it was not able to perform a fitting operation on the complete 

ata set B , since the polynomial expansion of the input data causes 

he machine to go out of memory. Note also that the fitting times 

or both neural network models (MLP and CNN) are considerabily 

igher than for the other models but show very good performance 

t the cost of an increased learning effort. Not ably, most mod- 

ls (except for PEN & MLP) display the highest R 2 on data set C ,

hich shows that the variance introduced by the LHS is beneficial 

n training a machine learning model. Overall, it can be observed 

hat the models (except for PEN) show very high R 2 scores on all 

ata sets, which indicates that they can emulate the behavior of 

he ANF model almost perfectly. 

Leave-P-Groups-Out cross-validation The fact that data set B con- 

ains data for 1 296 unique stimulus waveform shapes, allows for 

n additional experiment to test a model’s quality when predicting 

nseen waveforms. In the previous experiment, this was not ex- 

licitly enforced; thus, the machine learning models could poten- 
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Fig. 5. Grid search results. Each boxplot shows the distribution of the mean value of R 2 for every searched parameter set over a 3-fold cross-validation on the training data 

set D train 
g . In addition, the validation score attained on D test 

g for the best-found parameter set for each of the models is shown as a circle, the precise values of these dots are 

given in the legend. Note that the y-axis is clipped at 0. 

Table 5 

Results for the Leave-P-Groups-Out with data set B , and the cross-prediction (predicting 

data set B with a model trained exclusively on data set C ) experiments. Prediction quality 

metrics R 2 , MAE and MAPE are shown, in addition to the fitting time in seconds. Best val- 

ues attained for each experiment set are shown in boldface. Note that the top row shows 

averages over a 10-fold cross-validation, while the bottom row only shows a single experi- 

ment. 

Metric PEN MLP CNN GB RF 

B grouped R 2 X 0.665 0.963 0.920 0.824 

MAE X 0.752 0.805 0.926 1.433 

MAPE X 0.186 0.138 0.093 0.152 

time (s) X 178285.10 205791.83 626.32 7632.34 

C → B f 1213 
R 2 -0.991 0.954 0.974 0.692 0.366 

MAE 1.724 0.176 0.114 0.497 0.656 

MAPE 2.272 0.215 0.147 0.521 0.721 

time (s) 179.01 383.65 3181.94 43.99 148.52 
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ially still learn from similar data from the same waveform shape. 

his can be enforced by splitting the data into groups, where each 

roup contains the complete data set for one stimulus waveform, 

nd then performing a Leave-P-Groups-Out cross-validation exper- 

ment. In a similar fashion as with the previous 10-fold cross- 

alidation experiment, 10 cross-validation folds are created, but 

ow the folds are generated by using random subsets of groups, 

nd not of individual samples. This ensures that every validation 

et contains only data from groups that were not used to train the 

odel. As the grouping is based on waveform shape, this experi- 

ent can be used to answer the question: If a model is generated 

sing a set of known stimulus waveforms, how well can the model be 

xpected to generalize to new waveforms? 

The top row of Table 5 shows the results of this experiment. 

rom these results, a substantial decrease in model quality can 

e observed for all models, which is to be expected, due to 

he increased complexity of the experiment. However, with the 

F model, this is more pronounced, which is probably due to 

he fact that RF models are known to fall short in extrapola- 

ion when predicting samples out of the domain of the training 

ata ( Zhang et al., 2017 ). Interestingly, all three other models are 

howing the best value for one of the metrics, with the highest R 2 

0.963) attained by the CNN model. 

Cross-prediction Since data set B contains 1 296 samples for 

ber 1213, and data set C exclusively contains samples for fiber 

213, a model trained on data set C can be used to predict the

amples for fiber 1213 from data set B . Since there now only ex- 

sts a single training ( C ) and validation set ( B f 1213 ), only one ex-

eriment is conducted for each model, with no additional cross- 
7 
alidation. This experiment is directed to the question: Can a model 

rained on exclusively pseudo-random samples be used to predict data 

or waveforms used in clinical practice? 

Results for this experiment are shown in the bottom row of 

able 5 . From this, it can be seen that only the neural network 

NN) based models are offering satisfactory performance in this 

xperiment, with the CNN clearly outperforming the MLP model. 

oreover, both models actually are showing better performance in 

his experiment than in the Leave-P-Groups-Out experiment. This 

ives rise to the notion that for training a neural network model 

i.e. MLP or CNN) that generalizes to unseen data, the LHS-based 

ata set C is better than data set B . Furthermore, the fact that the

ther models are not able to do well in this experiment, might 

ean that they are overfitting to the training data in the previ- 

us experiments, which was much more homogeneous with the 

est data than in this experiment. 

Overall, the validation experiments presented in the previous 

aragraphs show that when only predicting samples from a single 

ata set source, all models except for the PEN model show satis- 

actory performance. The GB model is the quickest to train but can 

e of lower quality than some of the other models tested. When 

esting for generalizability and evaluating how the models perform 

n data from other data set sources the CNN model was the most 

romising. Therefore, for the experiments in the remainder of the pa- 

er, the CNN model will be used. 

Running time In Fig. 6 the running (prediction) time of the sur- 

ogate model is shown in comparison to the running time of the 

riginal ANF model. For the surrogate, the CNN model is shown, 

ince this model showed the best performance in the previous ex- 
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Fig. 6. log 10 scaled running time in seconds of both the ANF model f and the CNN Surrogate ̂  f vs. the duration of the pulse (a) and the number of evaluated samples (b) . 

Samples of running time are generated using bootstrapping, and the average values are shown. The bands represent the standard deviation. 
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Fig. 7. Schematic overview of the waveform optimization process with an Evolu- 

tionary Algorithm. The EA generates a new candidate solution φe (t) ′ . Energy and 

the threshold for φe (t) ′ (calculated by the surrogate ANF model ̂  f ), are then com- 

bined into F(φe (t) ′ ) , which is fed back into the EA. 
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eriments. From this figure, it can be observed that the surrogate 

odel realizes a speedup of 5 orders of magnitude w.r.t the run- 

ing time of the ANF model. In addition, it can be seen that while

he running time increases linearly with the duration of the pulse 

or f it remains constant for ˆ f . 

. Waveform optimization 

The experiments in this section are based on the methodology 

resented in Wongsarnpigoon and Grill (2010) , where a Genetic Al- 

orithm (GA) is used to find energy-optimal stimulus waveforms. 

s an analytical solution for an energy-optimal stimulus waveform 

s not easily derived due to the complex non-linear nature of the 

erve fiber model, heuristic optimization with a real-valued GA can 

e used. 

A Genetic Algorithm ( Holland, 1975 ) is a nature-inspired meta- 

euristic, which seeks to evolve a population of candidate so- 

utions to an optimization problem through an iterative proce- 

ure. By combining the properties of good solutions with small 

andom changes, the GA can move towards better solutions over 

ime. It ranks solutions based on an objective or fitness function 

(s ) �→ R , which computes the quality of a candidate solution s

elative to optimization problem the GA is solving. Historically, the 

A is a method for solving discrete optimization problems, and 

he modifications made in Wongsarnpigoon and Grill (2010) for 

olving a continuous optimization problem, cause it to be closer 

o an Evolution Strategy ( Beyer and Schwefel, 2002 ) (ES) than 

 GA. Therefore, in the remainder of the paper, the GA used 

y Wongsarnpigoon and Grill (2010) will be referred to by the 

verarching term Evolutionary Algorithm (EA) for correctness. 

To save computational time, a surrogate model, previously in- 

roduced in this paper, is used to calculate the nerve fiber re- 

ponse instead of the computationally expensive ANF model. The 

sed surrogate is a CNN model, retrained using all available data 

rom C ∪ B f 1213 . With this experiment, we aim to demonstrate the 

pplicability of the surrogate model as a stand-in replacement of 

he ANF model and ask the question: Can the shape of the stimu- 

us waveform used by the original ANF model be accurately optimized 

hile performing the expensive simulations with the surrogate model? 

.1. Experimental setup 

In this work, candidate solutions are stimulus waveforms ( s = 

e (t) ), which are vectors in R 

d , where each component represents 

he amplitude of the waveform at a given time step ( dt = 2 μs).
8 
he fitness of a candidate solution (i.e., how good a candidate solu- 

ion is) is based on the signal energy of the pulse E(φe (t)) , defined

y the sum of the squared magnitude of the waveform signal: 

(φe (t)) = dt 

∞ ∑ 

t=0 

| φe (t) | 2 , (7) 

here dt is the size of the time step. Fitness is defined as E(φe (t)) 

lus a penalty term P : 

(φe (t)) = E(φe (t)) + P. (8) 

or each wave φe (t) , the threshold value ˆ I 
f 
e is calculated with the 

urrogate model ˆ f . If φe (t) is stimulating below threshold (i.e. ˆ I 
f 
e > 

 ) the penalty term P is assigned to 1e5, which is several orders of

agnitude greater than E(φe (t)) , and 0 otherwise: 

 = 

{
1 e 5 , ˆ I f e > 1 

0 , otherwise . 

 schematic overview of this process is shown in Fig. 7 . 

Experiments are conducted for the pulse durations: 

 20 , 40 , . . . , 140 , 160 } μs, which are encoded in the EA by real-

alued vectors of dimensionality: { 10 , 20 , . . . , 70 , 80 } . In order

o satisfy the constraint in Eq.( 4 ), the following strategies are 

nvestigated: 

1. Projection: Candidate solutions are projected onto a non- 

violating hyper-plane though Eq. (6) . This constricts the search 

space of the optimization algorithm to d − 1 but allows for non- 

biphasic pulses to be generated. 

2. Mirroring: Only the (first) positive phase of the stimulus is op- 

timized, and the second phase consists of the mirror opposite 

with respect to zero of the first phase to balance the charge. 
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Fig. 8. The optimal EA waveforms, grouped by pulse duration and constraint handling strategy. Each curve represents the best solution given by the EA for a trial and is 

scaled by ˆ I f e computed by the ANF model. For each subgraph, 10 trials are shown. Figure (a) shows the waveforms generated for the projected constraint handling strategy 

and Figures (b-d) resp. show the waveforms generated by the balanced_pre, balanced_post and mirrored strategies. 
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3. Balancing: Only the positive phase of the stimulus is optimized, 

and a rectangular pulse is used to balance the charge of the first 

phase. For the balancing rectangular wave, both preceding and 

ensuing pulses (referred to later here as “balancing_pre” and 

“balancing_post”) are investigated. 

Note that for both balancing and mirroring, the optimization 

roblem becomes considerably simpler since instead of d points, 

nly d points have to be optimized by the optimization algorithm. 
2 

9 
The EA was implemented to the specifications given 

n Wongsarnpigoon and Grill (2010) , with two-point crossover 

nd where mutation of each candidate solution occurs via scaling 

ith a random factor: s t 
i 
= s t−1 

i 
· N (1 , 0 . 025) . For the projection

onstraint handling strategy, a scaling mutation operator would 

onstrict pulses to the same polarity, which is why for this 

trategy, the mutation occurs not via scaling, but by shifting 

ith a random factor drawn from a normal distribution, i.e: 

 

t 
i 
= s t−1 

i 
+ N (0 , 0 . 025) . A population size of 50 was used, where
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Fig. 9. (a) pulse duration vs. the value of F of the best solutions found by the EA computed using the surrogate, grouped by constraint handling strategy. (b) pulse duration 

vs. energy, scaled with ˆ I f e computed by the ANF model. (c) pulse duration vs. energy values, and the EA-generated waveforms (aggregated over all constraint handling 

strategies) are compared against the energy values of the predefined pulse shapes. Each line with dots shows the mean value over 10 trials, with the shaded area showing 

the standard deviation. 
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or each generation the top 10 candidate solutions were passed 

n to the next generation (elitism). For every combination of the 

forementioned constraint handling strategies and each dimen- 

ionality, the EA was run with 10 independent trials for 10 0 0 0 

enerations. For every trial, the EA thus conducts a total of 400 010 

valuations of the surrogate. 

.2. Results 

Looking at the shape of the pulses generated by the EA (see 

ig. 8 ), some interesting observations can be made. It can be ob- 

erved that, for pulse durations exceeding 40 microseconds, the 

ositive phase of the generated pulses resembles a Gaussian curve, 

ith an elongated balancing phase. This is consistent with the 

urves found in the study by Wongsarnpigoon and Grill (2010) . 

he exception to this is the mirrored strategy, where due to the 

nforced symmetry both phases are resembling Gaussians. The 

horter pulses have peaks that are notably sharper and are expo- 

ential in shape for some cases (e.g. 40 μs balanced_pre). The re- 

ults are quite stable across trials, and most of the trial runs are 

ll converging to similar shapes. This indicates that (local) optima 

re being found by the EA, and the optimization problem can be 

onsistently solved. The least stable results are from the projec- 

ion constraint handling strategy, but often only the peak offset is 

arying. As was mentioned before, the optimization task when us- 

ng the projection constraint handling strategy is particularly more 

omplex, due to the greater number of variables optimized. With 

his in mind, it might be that strategy needs a longer time to con- 

erge, and hence the less stable results. This increased complex- 

ty, however, comes with the added benefit that pulses generated 

y this strategy are not restricted to biphasic pulses. Interestingly 

owever, the shapes this strategy generates, are still of that gen- 

ral shape, with only a few exceptions of tri-phasic pulses (e.g. 

or 120 μs). Moreover, the strategy seems to converge into shapes 

hat are almost mono-phasic, where for longer pulse durations, 

he elongation is only used to balance the negative charge more 

venly over a longer period. By definition, such shapes are also 

eing generated by the balancing strategy, which shows that even 

hough the balancing strategies are restricted to a biphasic shape, 

he shapes they converge to are close to the converged shapes of 

n unrestricted strategy. This means that the increased flexibility 

hat is introduced by the projection strategy is not required for this 

pecific problem, since the shapes that it converges to can also be 
10 
enerated with a simpler strategy that uses balancing. Nonethe- 

ess, when comparing the pulses of the balancing pre and balanc- 

ng post strategies, it can be seen that the projection strategy is 

ctually able to ultimately find shapes that are similar to that of 

he better (lower energy) of these two strategies (e.g. 20 μs). 

.2.1. Validation 

In order to validate the predictions made by the surrogate ˆ f 

uring the optimization process, the threshold value is also com- 

uted with the original ANF model. This is used to compute a 

alidated energy value for each of the waveforms that resulted 

rom the optimization, by scaling each of these waveforms by the 

hreshold computed by the original ANF model f (φe (t)) : 

 

∗(φe (t)) = E(f (φe (t)) φe (t)) (9) 

n the results presented in the sequel, we refer to this validated 

nergy value when discussing energy, and objective function value 
 

 otherwise. 

.2.2. Energy efficiency 

The objective function (left) and energy (right) values for the 

nal solutions provided by the EA for each constraint handling 

trategy are shown in Fig. 9 . When comparing Fig. 9 (a) with the

ig. 9 (b) , a discrepancy between the actual energy value and the 

redicted value by the surrogate can be observed, and on aver- 

ge, the surrogate predicts a 6.61% lower threshold. This seems to 

e especially prevalent in the waveforms generated using the mir- 

ored strategy, for which the surrogate tends to predict a lower 

hreshold than the ANF model. 

Figure 9 shows that, in general, the energy of the solutions 

ecreases with pulse duration. The waveforms generated by bal- 

ncing_pre and projection strategies are yielding the most energy- 

fficient pulses, while the mirroring strategy is less efficient. Bal- 

ncing with a rectangular phase after the optimized phase is also 

esulting in pulses with lower energy than balancing before the 

ptimized phase. Figure 9 (c) shows the union of all the constraint 

andling strategies as a single line in comparison with the energy 

alues for the predefined pulses from Section 2.3.1 . From this, is 

an be observed that for all pulse durations, the optimized wave- 

orms are of lower energy , and the EA provides better solutions 

han the handcrafted pulses (data set B ). This effect becomes even 

ore pronounced with a longer pulse duration. 
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Fig. 10. The figure shows dimension vs. the energy value of the best solutions found by the EA in a series of 10 runs grouped by constraint handling strategy, relative to the 

energy of a square biphasic pulse. (a) shows the comparison with an anodic-first square wave, (b) shows the comparison with a cathodic-first square wave. Energy values 

are computed using the ANF model. 
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Figure 10 shows a comparison between the energy of the 

ulses generated by the EA and the energy of the typically used 

quare wave of that same pulse duration, for both anodic-first and 

athodic-first pulses. For each strategy, the solution with minimal 

nergy over the 10 trials is shown. The figure shows a similar 

rend as can be seen in Fig. 9 , in that the energy efficiency rela-

ive to a square wave tends to increase with pulse duration, even 

hough the trend is not as pronounced. Interestingly, it seems that 

or shorter pulse lengths, anodic square pulses seem more effi- 

ient, while for longer pulses this trend reverses, which seems to 

e contradicting previous works ( Kalkman et al., 2022; Macherey 

t al., 2008; Undurraga et al., 2010 ). For shorter pulse lengths 

 < 20 μs), the anodic-first square wave is already quite energy effi- 

ient, and only the balanced_post strategy can yield a substantially 

ore energy-efficient pulse. Overall, it can be observed that the 

aveforms generated by the EA are of considerably lower energy 

or all pulse durations ( > 20 μs). They on average have 31% lower

nergy than a cathodic-first and 41% lower energy than an anodic- 

rst square wave of that same pulse duration. 

. Conclusion 

In this work, a surrogate to the ANF model 

rom Kalkman et al. (2022) was presented and used to con- 

uct an optimization experiment. The surrogate model was able to 

redict the behavior of the ANF model with very high confidence, 

hilst reducing computation time by five orders of magnitude. 

ive different machine learning models were tested, of which the 

NN model was the most promising and best able to extrapolate 

ts prediction to unseen experimental conditions. The data was 

omprised of a combination of LHS samples and handcrafted 

imulation data, and it was found that the CNN model was able 

o accurately predict the handcrafted simulation data while having 

nly trained on the (pseudo-random) LHS samples. With this 

tudy, we have aimed to show that through the use of a surrogate, 

 complex process such as the ANF model can be accurately 

pproximated, allowing for large-scale experimentation. This is not 

estricted to this specific ANF model, however, and this method- 

logy can be extended to other ANF models and processes. For 

xample, the prediction of the time to an action potential or the 

etection of the node where the action potential starts. 

The second part of the study used the CNN surrogate model 

ith an EA to optimize stimulus waveforms for energy efficiency 

t threshold level, which suggests an alternate waveform to the 

ommonly used square biphasic pulses. The waveform resembles 

 positive Gaussian curve offset by an elongated rectangular neg- 

tive phase, which is in line with earlier research ( Sahin and Tie, 
11 
007; Wongsarnpigoon and Grill, 2010 ). The shape is in disagree- 

ent with the pulses generated in Yip et al. (2017) , where decay- 

ng exponential waveforms were found to be the most efficient, 

ut this might be due to the fact that the ANF model used here in-

ludes a 3D model interface, fewer restrictions on waveform shape 

ere applied here. The shapes differ with varying pulse duration, 

nd it was found that the energy efficiency of the waveforms gen- 

rated by the EA increases with pulse duration. Compared to the 

ommonly used square biphasic pulses, 8%–45% energy decreases 

ere observed for pulse durations of 20–160 μs. Additionally, it 

as found that for shorter pulses, an anodic-first square wave is 

ore energy efficient, while for longer pulses a cathodic-first pulse 

s better. The generated waveforms were also considerably more 

nergy efficient than those from a large set of handcrafted pulses. 

A flexible approach that uses projection for generating charge- 

alanced pulses is proposed, which can consistently produce the 

ost energy-efficient pulses for each of the charge-balancing 

trategies tested. Interestingly, the shapes generated with this un- 

estricted strategy are close to the converged shapes of a restricted 

trategy, which was used in earlier research. This indicates that 

ven while considering the full possible range of waveform shapes, 

he most energy-optimal shape is still a relatively uncomplicated 

iphasic waveform. 

It must be noted that even though the modeling in silico sug- 

ests these potential energy savings, further work with in-patient 

esting is required to validate these results. This would then also 

onsider the effects of capacity and the power dissipated at the 

lectrode-tissue interface on the realized energy savings. Moreover, 

tate-of-the-art analysis shows that the effect of an adaptive power 

upply can have a drastic impact on the energy efficiency of certain 

aveform shapes ( Varkevisser et al., 2022 ), which is not taken into 

ccount here. Future work might focus on a wider range of pulse 

urations or the extension of this approach to other ANF models. 

dditionally, the benefits of using a surrogate modeling approach 

o full speech simulation might also be an interesting line of re- 

earch. 
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ppendix A. Potential distributions 

The potential distribution, represented by ψ 

f 
e , consists of ap- 

roximately 115 real-valued measurements taken along a fiber f . 

hese measurements reflect the potential energy induced by an 

lectrode e and are measured at evenly spaced segments. The fact 

hat not every fiber in the model has the same length, and thus 

ot the same number of segments, causes the number of mea- 

urements to differ from fiber to fiber. An example of the poten- 

ial distributions, induced by electrode 1 on 3 200 fibers modeled 
ig. A.1. Electric potential distributions of 3200 Healthy fibers induced by electrode 1 tak  

epresents the id of fiber, which is ordered from base to apex. 

ig. A.2. Average RMSE vs. the degree of the fitted polynomial with standard deviation di  

12 
en from HC3A cochlear geometry, with PM electrode placement. The hue of a line

splayed as error bars. The knee-point of the RMSE curve is shown in a dashed line.

sing the HC3A ( Kalkman et al., 2015 ) cochlear geometry is shown 

n Fig. A.1 . As electrode numbers are ordered from base to apex, 

eaning this electrode is placed closest to the base of the cochlea, 

t can be seen that fibers located at the base (darker colors) show 

reater response to this electrode than fibers located more deeply 

n the cochlea. 

Additionally, it can be observed from the figure that for each 

ber the potential distribution follows the same curve, only the 

agnitude differs. From this observation, it follows that each of 

hese curves can be approximated by a polynomial of degree k : 

f w 

(x ) = 

k ∑ 

i =0 

w i x 
i , (A.1) 

arameterized by a set of real-valued weights w , obtained using 

.g. least squares regression. By using the weights from this poly- 

omial as the representation of ψ 

f 
e , the number of features for this 

arameter component is effectively reduced and standardized from 

115 to the polynomial degree k . 

In order to determine the appropriate degree d, the Root Mean 

quared Error (RMSE) between the original potential distributions 

nd their corresponding polynomial representations is computed 
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or d ∈ [1 , 20] for data set A , which is shown in Fig. A.2 . Note that

he values shown are averages over all fiber and electrode combi- 

ations in the data. Subsequently, the knee point of the RMSE vs. 

egree curve is computed using the Kneedle ( Satopaa et al., 2011 )

lgorithm. As can be seen in the figure, this results in the value 5, 

hich is used for the degree of polynomial representation of ψ 

f 
e . 

ppendix B. Performance metrics 

Mean Absolute Error ( MAE ) or L 1 -norm, representing the ex- 

ected value of the absolute error. It is defined on [ ∞ , 0] as: 

AE (y, ̂  y ) = 

1 

n 

n ∑ 

i =1 

| y i − ˆ y i | (B.1) 

ean Absolute Percentage Error ( MAPE ) represented the ex- 

ected value of the absolute error of the prediction in proportion 

o the relative magnitude of the output. This makes the metric 

ore sensitive to relative errors. It is defined on [ ∞ , 0] as: 

APE (y, ̂  y ) = 

1 

n 

n ∑ 

i =1 

| y i − ˆ y i | 
max (ε, | y i | ) , (B.2) 

here ε is set to an arbitrary small value. 
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