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climatic fluctuations. To investigate the extent to which
species with similar adaptations share common evolution-
ary histories, we generated a dataset comprised the
mitochondrial genomes of 139 ancient and 6 modern
narrow-headed voles from several sites across Europe and
northwestern Asia covering approximately the last 100
thousand years (kyr). We inferred Bayesian time-aware
phylogenies using 11 radiocarbon-dated samples to cali-
brate the molecular clock. Divergence of the main
mtDNA lineages across the three species occurred during
marine isotope stages (MIS) 7 and MIS 5, suggesting a
common response of species adapted to open habitat
during interglacials. We identified several time-structured
mtDNA lineages in European narrow-headed vole,
suggesting lineage turnover. The timing of some of these
turnovers was synchronous across the three species, allow-
ing us to identify the main drivers of the Late Pleistocene
dynamics of steppe- and cold-adapted species.
0:20222238
1. Introduction
There is growing evidence that the Late Pleistocene climatic and
environmental oscillations have been a major factor shaping
the evolutionary histories of many mammalian species [1–3].
Climateandenvironmental change in theNorthernHemisphere
have led to dramatic demographic and genetic changes, either
causing the extinction of whole genetic lineages and species or
engendering a significant change in their ranges over a short
period of time and large areas [4–6]. Most of the genetic studies
have focused onmegafauna species, such as mammoths, bears,
horses and others [2,4,7]. However, less is known about the Late
Pleistocene evolutionary histories of small mammals. The
notable exceptions are theancientDNAinvestigationsof the col-
lared lemming (Dicrostonyx torquatus) [8–11] and the common
vole (Microtus arvalis) [12,13]. These studies revealed that both
species experienced several mtDNA lineage replacements
across most of the European continent during marine isotope
stage (MIS) 3 and MIS 2 [8,9,13].

The narrow-headed vole (genus Stenocranius Kashchenko,
1901) is distinguished from all other voles by a high and
narrow brain capsule. Stenocranius was originally proposed
as a subgenus of Microtus Schrank, 1798 but in recent years
phylogenetic reconstructions supported the sister relationship
of Stenocranius and Lasiopodomys Lataste, 1887 [14] and
Stenocranius has been accepted as a subgenus of the latter.
However, the fossil record suggests an early split (ca 1.2 Ma)
of Stenocranius from the Allophaiomys stock [15] and recent
mitogenomic analyses showed divergence of Stenocranius
and Lasiopodomys similar to the divergence between many
genera within Arvicolini [16]. We, therefore, follow Kryštufek
& Shenbrot [17] and recognize a genus status for Stenocranius.
Narrow-headed vole are presently only found in Asia, in the
belt of arctic tundra and forest-tundra in the north and the
steppes and forest-steppes at the centre of the continent.
These animals inhabit open areas, such as tundra, steppes
and meadows [17]. Their current distribution in Asia is con-
sidered the result of habitat fragmentation during the
Holocene [18]. The range of Stenocranius was much larger
when treeless steppe-tundra was the dominant biome during
the Pleistocene and included most of Northern Eurasia. The
westernmost part of their former range reached the British
Isles [19] and southern France [20]. Recent genetic investi-
gations have shown that the Pleistocene narrow-headed voles
were a complex of three cryptic species, including Stenocranius
anglicus (Hinton, 1910) in Europe [21] and Stenocranius gregalis
(Pallas, 1779) and Stenocranius raddei (Poljakov, 1881) in Asia
[22]. The divergence of these three lineages was estimated to
have occurred between 250 and 200 kyr ago by adopting the
substitution rate of mtDNA cytochrome b from other vole
species [21]. These substitution rates were estimated using
recent calibration points, either directly radiocarbon-dated
specimens [23] or biogeographic events [24]. Despite this,
the estimated divergence time of the European and Asiatic
populations has challenged thewidely accepted biogeographic
hypothesis, assuming that all narrow-headed-voles retreated
from Europe during the interglacial periods and suggested
that they survived the Eemian interglacial (MIS 5e, ca 128–-
115 ka) in European refugia [21].

The narrow-headed vole, and other rodents adapted to
open habitats and/or cold climates, such as the collared lem-
ming and common vole, frequently made up to 90% of the
Late Pleistocene small mammal assemblages across Western
and Central Europe [20,25–27] and constitute a key element
of steppe-tundra environments. Investigations into their evol-
utionary and phylogeographic history would enhance our
understanding of species’ responses to climate change and
demonstrate to what extent species with similar environ-
mental requirements share the same evolutionary pathways.

Here, we generated more than 100 mitogenomes from Late
Pleistocene skeletal remains and reconstructed time-calibrated
phylogenies to explore the putative effects of climatic and
environmental changes on the dynamics of narrow-headed
vole populations.
2. Material and methods
(a) Samples
Specimens identified as Stenocranius sp. based on the mor-
phology of the occlusal surface of the first lower molar were
obtained from several sites across Europe and Asia. Before the
genetic analyses the occlusal surface of the m1 tooth was photo-
graphed at the Institute of Systematic and Evolution of Animals,
Polish Academy of Science.
(b) DNA extraction, library preparation, enrichment and
sequencing

Genetic analyseswere performed in the Laboratoryof Paleogenetics
and Conservation Genetics, Centre of New Technologies, Univer-
sity of Warsaw. To minimize the probability of contamination,
all pre-polymerase chain reaction (PCR) library preparation steps
were carried out in a dedicated ancient DNA laboratory separated
from the post-PCR area. This laboratory has positive air pressure,
and is UV irradiated after each use; researchers wore full
protective suits.

Vole teeth were flushed twice with ultra-pure water in a ster-
ile tube and crushed with a pipette tip. The DNA was extracted
using a silica bead-based protocol optimized for retrieving ultra-
short DNA molecules [28,29]. A negative control was processed
with each batch of 15 samples to monitor possible contamination.
One-third of each DNA extract was converted into double-
indexed and either double- or single-stranded DNA sequencing
libraries following the protocols proposed by [30] or [31], respect-
ively. In each case, the double indexing scheme was introduced



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20222238

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 J

ul
y 

20
23

 

during 19 cycles of indexing PCR, using either AmpliTaq Gold or
AccuPrime Pfx DNA Polymerase.

The libraries were enriched for vole mtDNA using a custom
DNA bait produced from a range of vole species and following
a protocol proposed by [32]. Up to five libraries were pooled in
a single enrichment reaction which was carried out twice at
65°C for 22–24 h. After each round, the library pools were ampli-
fied in triplicate for 10–15 cycles using Herculase II Fusion
Polymerase. The enriched library pools were combined, quantified
using Qubit 4 and sequenced on an Illumina NextSeq550 platform
(MID output, 2 × 75 bp kit). Additional details are provided in the
electronic supplementary material, text S1.1–1.4 and table S1.

(c) Processing the sequencing data
Sequencing readswere demultiplexed using bcl2fastq. Overlapping
reads were collapsed and adaptor and quality trimmed using
AdapterRemoval v. 2 [33]. The reads were mapped to the S. gregalis
mtDNA genome (MN199170.1) using the bwa mem algorithm with
the default settings. As themapping efficiency was low due to high
sequence divergence between extant Asiatic and ancient European
specimens, we constructed two additionalmtDNA references using
themost complete sequences of European S. anglicus. In some cases,
we performed competitive mapping using concatenated vole and
human mtDNA genomes as a reference to remove human DNA
contamination [34]. Duplicates and low mapping quality (mapq <
30) reads were removed using samtools. Variants and consensus
sequences were called using the bcftools mpileup and ivar call com-
mands. Positions with coverage lower than 3 were masked, and
bases supported by less than 75% of the reads were coded with
the appropriate IUPAC symbol. MapDamage v. 2.08 [35] was
used to assess the damage patterns and length distribution of the
DNA molecules. Additional details are provided in electronic
supplementary material, text S1.5.

(d) Radiocarbon dating
We attempted to radiocarbon date 12 specimens ranging in weight
from 21.5 to 102 mg. Collagen was extracted and quality was
assessed in the Department of Human Evolution at the Max
Planck Institute for Evolutionary Anthropology (Leipzig,
Germany) following the protocol for less than 100 mg bone
samples described in [36]. Sampleswere combusted and converted
to graphite using the AGE system [37] and dated using the MICA-
DAS system [38] Radiocarbon dateswere calibrated inOxCal v. 4.4
[39] using the IntCal20 [40] calibration curve. See electronic
supplementary material, text S1.6 for further details.

(e) Data analysis
The mtDNA sequences of the ancient and modern narrow-headed
vole were aligned usingMAFFT v. 7.407 [41]. The best-fitting parti-
tioning scheme was found using PartitionFinder v. 2 [42].
Phylogenetic analyses were performed in BEAST v. 1.10.4 [43].
We used the Bayesian evaluation of temporal signal (BETS) [44]
and the date-randomisation test [45] on the dataset consisting of
all dated and modern sequences (n = 17) to determine whether
there was enough temporal resolution to calibrate the molecular
clock. Next, we performed a leave-one-out analysis on the directly
dated specimens to check the accuracy of the molecular age esti-
mate. In this analysis, we estimated the age of each directly dated
specimen using all of the other dated specimens to calibrate themol-
ecular clock. Then, we estimated the age of each undated specimen
separately using directly dated specimens to calibrate themolecular
clock. In eachof the 128 separate BEASTanalyses,we set the gamma
prior (shape = 2; scale = 50 000) on the age of the undated specimen
and increased the operator weight of the age estimate to 5. Finally,
we ran a joint analysis using all of the sequences and setting the log-
normal priors on the ages of undated specimens. The priorswere set
to match the posteriors of the age estimates from the individual
analyses. See electronic supplementary material, text S1.7–1.8 and
tables S2–S6 for more details.

To include the full previously recognized mtDNA diversity
of Asiatic narrow-headed voles, we also reconstructed the phylo-
geny using an 882 bp fragment of mtDNA cytochrome b. This
dataset was comprised 311 sequences (139 from ancient and
172 from extant specimens). See electronic supplementary
material, text S1.9 and tables S7–S9, S11, for more details.
3. Results
We recovered near complete (greater than 70% sites with a
minimum coverage of 3 reads) mtDNA genomes from 139
specimens from 35 sites across Europe and western Asia.
Together with the sequences of extant voles available from
repositories, our dataset consisted of 145 mitogenomic
sequences (electronic supplementary material, tables S8 and
S9; figure 1). All ancient specimens yielded short inserts and
an elevated level of deamination at the ends of the DNA mol-
ecules typical of ancient DNA (electronic supplementary
material, table S8). Of the 12 specimens large enough for radio-
carbon dating, 11 yielded collagen of sufficient quantity and
quality for AMS dating (electronic supplementary material,
table S10). The mtDNA sequences of these 11 specimens and
the six extant specimens constituted a directly dated dataset
used to estimate the ages of the remaining specimens. BETS
analysis and the date-randomization test indicated that, the
‘dated’ dataset had a sufficient temporal signal to calibrate
the molecular clock (electronic supplementary material, text
S1.7, figure S1 and table S3). In the leave-one-out analysis,
the 95% highest posterior density (HPD) intervals of the ages
estimated for 10 of 11 specimens overlapped with their radio-
carbon age. In most cases, the estimates were accurate, with
the difference between the medians of the estimated ages and
the radiocarbon ages ranged between 0.4% and 35% (median
difference, 4.6%) of the latter (electronic supplementary
material, figure S2). As a result, the age of the undated speci-
mens estimated using the molecular approach was usually
highly consistent with the stratigraphic position of the speci-
mens and with the age estimates obtained for other species
from the same sites and layers. The exception was some of
the European specimens from the Early Holocene layers
whose ages were slightly but systematically overestimated
compared to their stratigraphic position (electronic supplemen-
tary material, table S8). However, the youngest estimated ages
(ca 14 ka; electronic supplementary material, table S1), corre-
sponded well with the beginning of the Bølling–Allerød
interstadial (14.7–12.9 ka), suggesting earlier extinction of the
narrow-headed vole from central Europe. We also note that
in the final joint phylogenetic analysis of the 145 mitogenomes
the MCMC chains for age estimates of six specimens did not
converge (effective sample size [ESS] < 200) in both replicates.
However, the age parameters were reliable (ESS > 200) in indi-
vidual analyses of all of these samples, and yielded values very
similar to those obtained in the final joint analysis (electronic
supplementary material, text S1.8 and table S6); thus, we
consider these estimates to be reliable.

(a) Diversification of the narrow-headed vole mtDNA
lineages

The Bayesian phylogeny based on mitochondrial genomes
recovered three divergent lineages corresponding to cryptic
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species identified previously, including S. anglicus in Western
and Central Europe, and S. gregalis and S. raddei in Asia
[21,22,46]. The three lineages diverged at similar times
during the MIS 7 interstadial (243–191 ka). The divergence
of the S. anglicus and S. gregalis/S. raddei lineages was esti-
mated to be 233 ka (95% HPD: 253–213 ka) and that of the
S. gregalis and S. raddei lineages was 216 ka (95% HPD:
236–193 ka; figure 1).

The S. anglicus lineage further diversified about 98 ka (95%
HPD: 104–92 ka) during MIS 5c (∼GS-23; ca 104–88 ka). Our
mitogenomic tree does not reflect the complete diversity of
Asiatic S. gregalis, but the tree based on the mtDNA cyto-
chrome b and including all extant lineages of this species had
a similar tMRCA of 95 ka (95%HPD: 112–80 ka; electronic sup-
plementary material, text S1.9, tables S11 and S12, figure S3).
The three specimens from layers 14 and 12.3 of the Denisova
cave with ages estimated using the molecular approach to be
between 116 and 107 ka fell outside the mtDNA diversity of
all of the last glacial period (ca 113–11.7 ka) S. gregalis speci-
mens. The estimated age of the specimen from layer 12.3 was
in very good agreement with the dating of this layer (146–
121 ka), while the estimated ages of the two specimens from
layer 14 were slightly younger than the estimated time of
deposition of this layer (202–163 ka) [47].

(b) Temporal population structure and dynamics of the
Asiatic narrow-headed vole

The geographical scope of our S. gregalis mitogenomic dataset
was limited and included four sites in the Northern and
Middle Urals and one in Altai. However, the phylogeny
based on mtDNA cytochrome b, which included 172 modern
specimens, was consistent with previous studies and consisted
of threemain lineages (A–C).LineageAwas further subdivided
into six subclades (A1–A6) (electronic supplementarymaterial,
figure S3). The diversification of these sublineages was esti-
mated to occur between 51 and 28 ka. A single specimen from
layer 11.3 in Denisova cave was placed in a sister position to
the A lineage. Its age was estimated to be about 52 (95% HPD:
58–46) ka only slightly younger than the estimated deposition
period of this layer (100–61 ka). Among the ancient specimens,
those older than ca 23 ka belonged to lineage A3, which is cur-
rently limited to Altai. Lineage A3 was replaced by A2 ca 23 ka
in the Northern andMiddle Urals and the latter persisted there
until the Middle Holocene. Currently, A2 occurs mostly to the
north, on the Yamal Peninsula (electronic supplementary
material, figure S4). This finding supports previous reports
suggesting that the range of Asiatic narrow-headed voles
became fragmented during the Holocene [18].

(c) Temporal population structure and dynamics of the
European narrow-headed vole

We observed six S. anglicusmtDNA lineages in Europe, which
we labelled EA–EF (figure 1). The EF lineage was distributed
across most of Europe since at least 60 ka and until ca 44–
42 ka (figures 1 and 3). Then, its range decreased and even-
tually, it was limited to the territory of what is now
southwestern France where it persisted until at least 17 ka.
Lineage EE had a limited geographical range, as it was only
found at three sites from what is modern-day Poland (Obła-
zowa 2, Perspektywiczna layer 7c and Borsuka layer VI)
among specimens with ages estimated to be between 44.4
and 38.5 ka. Lineage ED was attributed to only two specimens
from two sites in what is modern-day Poland and Ukraine
(Novgorod Severskyi and a rock overhang at Cisowa Rock).
In both cases, the estimated ages were significantly older
than suggested by the site’s stratigraphy. Lineage EC was
found in western and central Europe (Trou Al’Wesse,
Geißenklösterle and Bišilu) in specimens with ages estimated
to be between 35.4 and 34.2 ka. Lineages EB and EA diverged
about 40 ka. The oldest specimens from these two lineages had
similar ages and came from western (Trou Al’Wesse, Belgium,
ca 34 ka) and central Europe (Bišilu, Czechia, ca 35 ka), respect-
ively. Lineage EB appeared in central Europe 28 ka when its
range started to overlap with the EA lineage, which remained
restricted to central Europe.
4. Discussion
(a) Impact of the interglacial periods on cold-adapted

small mammals
Our results based on ancient mitogenomic data indicate that
the divergence of the three main narrow-headed vole lineages
occurred during the MIS 7 interstadial (243–191 ka). These
divergence estimates aremuch younger than those of S. gregalis
and S. raddei based on the fossil calibration [16,46]. This is likely
to be due to time dependence of molecular rate estimates [48].
There is compelling evidence that the estimates of evolutionary
rates are negatively correlatedwith the age of calibration points
and the use of fossil calibration may lead to overestimation of
recent divergence times [49].

Our estimates are very similar to the estimated divergence
of the two main lineages of collared lemming, Eurasian
(D. torquatus) and North American (D. groenlandicus/
D. hudsonius), based on ancient mitogenomes (figure 2). The
available palynological records fromMIS 7 suggest the expan-
sion of mixed coniferous-broadleaved forest across Europe,
from southern France [51] to the Eastern European Plain [52]
possibly forcing narrow-headed voles to retreat to refugia in
Europe and Asia, although the location of these areas is
unknown. The sea level during the warm phases of MIS 7
(MIS7a–c, e) was only marginally lower than it is today [53],
resulting in flooding of the Bering Strait and the separation
of the Eurasian and American collared lemming populations.

The estimated age of diversification of the main mtDNA
lineages found in the European and Asiatic narrow-headed
voles from the last glacial period was similar to the estimated
diversification of the main lineages within common voles [12]
and Eurasian collared lemmings [11] that occurred during
MIS 5c (Brørup interstadial; ∼GI 23) (figure 2).

Temperate deciduous vegetation developed across Europe
during Brørup (MIS 5c) [54,55]. The presence of Quercus
followed by Carpinus woodlands was evidenced in France. A
high percentage of Betula pollen was detected in Northern
Germany, followed by Pinus with admixtures of Picea and
Larix. In central Europe, the development of Betula forests fol-
lowed by Betula–Pinus and Pinus–Picea–Larix phases has been
observed in the palynological records. The development of
dense forests over vast areas of Europemayhave led to fragmen-
tation of the populations adapted to open, steppe habitats,
leading to the divergence and formation of new lineages.

Taken together, these observations suggest a common
response of species adapted to open habitats in interglacial
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environments. Similar contraction during the Eemian inter-
glacial period followed by expansion during the last glacial
period was recently identified in a range of steppe insect
and plant species [56].

As mentioned in the Introduction, the long-held notion
that narrow-headed voles withdrew completely from Europe
during the Eemian (and penultimate interglacial periods)
cannot be maintained due to the high divergence of the Euro-
pean narrow-headed voles from Asian populations shown
previously [21]. Narrow-headed voles can theoretically survive
unfavourable interglacial conditions in mountain/upland
areas or in the far north, where open and relatively humid
environments persisted. However, the fossil record does not
provide evidence for the species in Europe at this time, despite
the examination of over 90 sites of Eemian age in Europe [57].
S. cf anglicus was only found in two sites in Hungary and
one in Poland although Eemian dates could not be confirmed.
By contrast, S. anglicus appeared in great numbers at the very
beginning of the last glaciation during MIS 5d–a in various
parts of Europe, such as the Rhone Valley and the Massif
Central in France [58], the Ach Valley in Germany [59] and
the Kraków-Częstochowa Upland of Poland [60]. This may
suggest that the narrow-headed vole survived the Eemian
interglacial in several refugia, and therefore their rapid re-colo-
nization of Europe was possible as soon as the climatic cooling
offered a suitable environment for its expansion. This would
confirm the proposed idea of cryptic refugia for continental
adapted species in more oceanic areas in the past [61].

(b) Narrow-headed vole population dynamics during
the last glacial period

Ourphylogenetic reconstruction suggests a highly dynamic his-
tory of the European narrow-headed vole through the last
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glacial period.We identified sixmtDNAlineages inwesternand
central Europe.Most of themappeared consecutivelywithin the
limits of our resolution, suggesting genetic turnover across the
region. Some of the lineages (e.g. EE) had limited geographical
distributions. This is likely to be an effect of sampling bias and
the short temporal range of these lineages. Nevertheless, the
full geographical scope of the recorded turnovers remains to
be described. Most of the turnover in the mtDNA lineages of
the European narrow-headed vole, the collared lemming and
the common vole occurred at the end of MIS 3 between ca 45
and 30 ka (figure 3). The limited data available for the Asiatic
S. gregalis, with divergence times for the A1–A6 lineages esti-
mated to be between 51 and 28 ka, also suggest a major
reorganization of genetic diversity during this period. This is
broadly consistent with the cluster of megafaunal extinctions
and mtDNA lineage turnovers reported previously at the end
of MIS 3, between 40 and 26 ka [5,63–65], including that of the
Neanderthals [66]. The main cause of the megafauna turnovers
has been argued to be the abrupt warming at the onset of the
Greenland Interstadials (GI), particularly around GI7–GI5.
The role of humans, exacerbating the impact of climate
change, has also been emphasized [5,65], as no turnovers were
detected before modern humans appeared in Europe ca 45 ka.
The direct impact of Palaeolithic humans on the vole and lem-
ming populations across Eurasia has been considered
negligible. The concurrence of mtDNA lineage turnovers in
small and large mammals at the end of MIS 3 suggest that the
climate and environmental conditions may have been the sole
drivers of the observed population dynamics.

The resolution of the molecular estimates of the ages
of the specimens is limited, although a comparison of the
temporal distribution of the mtDNA lineages of the three
rodent species suggests that populations of all three rodent
species were affected at similar times about 45–40 ka and
about 32 ka (figure 3). These findings generally coincide
with the timing of the interstadials identified in the European
pollen records; Hengelo–Charbon dated to about 43–41 ka cal
BP [54,67] and Denekamp–Grand Bois dated to about 36–
33 ka cal BP [54,55]. The correlation of these interstadials
with the Greenland ice core records is challenging due to
the relatively wide date error ranges and that Hengelo–Char-
bon is usually associated with Greenland Interstadial 11 (GI-
11; ca 43.3–42.2 ka) or GI-10 (ca 41.5–40.8 ka) and Denekamp–
Grand Bois is associated with GI-8 (38.2–36.6 ka) [54,68]. Both
interstadials were characterized by the emergence of forests,
although especially during the Hengelo–Charbon period
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the landscape remained relatively open albeit the steppe-
tundra biome significantly altered [54,55]. Another factor
that may have contributed to the observed dynamics was a
period of weakend magnetic field before the Laschamps geo-
magnetic inversion. It has been suggested as a cause of major
environmental rearrangements ca 42 ka. A similar paleomag-
netic anomaly, the Mono Lake event, that occurred about
34 ka was hypothesized to cause similar effects [69]. Never-
theless, the main cause of these events, the synchronous
faunal turnovers and local extinctions observed across species
of different sizes and occupying different trophic levels,
support a major ecosystem rearrangement at that time.

Following the theory of a major impact of rapid environ-
mental change on animal populations, few megafaunal
turnovers were recorded around the Last Glacial Maximum
(LGM; ca 23–19 ka), when the climate was harsh but stable
compared to the end of MIS 3 [5]. By contrast, studies on col-
lared lemmings have previously shown two mtDNA lineage
turnovers during the LGM [8,9]. Our data suggest another
turnover in the S. gregalis populations from the Northern and
Middle Urals, estimated to be about 24–23 ka. No such turn-
over was visible in European populations, but we noted that
all specimens younger than 21 ka coalesced around 24 ka,
suggesting a reduction in the population followed by expan-
sion around this time. The causes of these turnovers remain
unclear. However, there are reports, confirmed by direct radio-
carbon dating, of species described by some as temperate such
as brown bears (Ursus arctos) at medium and high latitudes in
Europe during the LGM [2,70]. It has been hypothesized that a
steppe-tundra environment may have been replaced by more
temperate habitat for short periods [2]. Some climate variability
between 27 and 21 ka cal BP, which was not apparent in
the Greenland δ18O records, was detected in the Nussloch
loess sequence, indicating several short phases of milder
climate [68]. The accumulation of radiocarbon dates from
organic material reflecting a warmer period about 23 ka
was also detected in metanalysis of radiocarbon dates from
Polish sites [71]. This may explain the published results of
brown bear and collared lemming as well as those for the
narrow-headed vole reported here.

Interestingly, the highly dynamic history of the narrow-
headed vole populations observed in central and part of
western Europe did not extend to what is now western
France, where lineage EF was continuously present from at
least 61 to 19 ka and plausibly until the extirpation
of narrow-headed voles from Europe at the beginning of Late
Glacial, and/or the Pleistocene–Holocene transition. This
observation suggests that duringMIS 3 andMIS 2 the environ-
mental conditions in this region were more stable and/or
favourable for narrow-headed voles than in other parts
of Europe. Unfortunately, no genetic data of other small mam-
malian species are available from the region to determine
whether the observed population continuity was a common
phenomenon across open habitat and/or cold-adapted species.
A recent reconstruction, based on the small mammal fossil
record, revealed the general stability of the rodent communi-
ties between 50 and 19 ka in the region [20], although
such reconstructions have limited power to detect rapid
population turnover.
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