This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

Analysis of kernel redundancy for soft error
mitigation on embedded GPUs

A. Serrano-Cases, S. Alcaide, M.A. Romero, Y. Morilla and S. Cuenca-Asensi

Abstract—The use of state-of-the-art commercial processors
such as graphical processing units (GPUs) is becoming increas-
ingly common in the New Space industry in order to ensure high
performance and power efficiency. However, commercial GPUs
are not designed to operate in a harsh environment and therefore
different protection techniques need to be applied to mitigate
the effects of radiation, including those produced by single
events. This paper assesses the effectiveness of redundant kernel
execution on tightly constrained embedded GPUs under proton
irradiation, with results suggesting a significant improvement in
the SDC cross-section without penalizing the stability of the whole
system. In addition, the posterior error analysis shows that the
CPU is the source of the majority of the events, which are mainly
dominated by functional interrupts

Index Terms—GPU, proton irradiation, redundant kernels, soft
€rrors.

I. INTRODUCTION

The New Space industry is demanding a new genera-
tion of small satellites able to cope with highly demanding
applications [1]. Advanced onboard sensors generate huge
amounts of data beyond the bandwidth of downlink tech-
nologies, including multispectral and hyperspectral images.
To alleviate the problem, commercial off-the-shelf devices
(COTS) are proposed to improve both the real-time sensors
and the processing capabilities of the spacecraft [2]. Graph-
ical processing units (GPUs) were identified as among the
most promising candidates because of their performance and
effectiveness when working with complex neural networks and
image processing algorithms. However, as is the case with
other COTS architectures, they are not specifically designed to
work in the space environment, meaning that these systems are
prone to errors induced by natural radiation and in particular
by soft errors.

Considerable effort has been expended in recent years to
characterize and study the radiation tolerance of GPU engines
[3], [4], and to improve their reliability by means of software
and hardware techniques [5], [6]. Embedded GPUs on multi-
core System on Chips (SoC), have several advantages related
to power efficiency and cost over their desktop counterparts
which make them ideal for reduced budget missions. However,

This work has been supported by the Spanish Ministry of Science and
Innovation as part of the PID2019-106455GB~C22 project.

A. Serrano-Cases and S. Alcaide are with Barcelona Supercomput-
ing Center, 08034 Barcelona, Spain (email: alejandro.serrano@bsc.es, sal-
caide @bsc.es).

Y. Morilla and M.A. Romero are with the National Accelerator Center
(CNA), JA, Universidad de Seville, 41092 Seville, Spain (email: ymo-
rilla@us.es, mrmaestre @us.es).

S. Cuenca-Asensi is with the Computer Technology Department, University
of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
(email:sergio@detic.ua.es).

their processing capabilities and resources limit the applicabil-
ity of traditional redundancy techniques. Furthermore, they are
tightly coupled to the host system, making it more difficult to
analyze and identify the sources of vulnerability in radiation
experiments [7], [8]. Therefore, in the case of GPU-accelerated
SoCs, further research is needed to improve our understanding
of soft error propagation through the hardware and software
stack.

This work focuses on the enhancement of the fault tolerance
to soft errors of the embedded GPUs. Our goal is twofold.
Firstly, to assess the effectiveness of the redundant kernel
technique when applied to a GPU with limited resources and
secondly, to contribute to the understanding of the different
categories of errors produced by radiation in order to apply
mitigation strategies conveniently. The main aspects of this
work can be summarized as follows. The mitigation technique
under study is partitioned between the GPU and the CPU and
its effect on the overall reliability of the SoC system was
investigated. Previous research has mainly used desktop GPUs
to analyze their sensitivity to radiation in isolation [9], [10]
while recent studies on GPU-accelerated SoCs independently
examined the GPU and CPU components (e.g., using TMR
solely on the CPUs to eliminate their contribution to radiation-
induced faults) [11]. Our research helps to establish the im-
portance of each part to improve the mitigation technique con-
veniently. Tightly-constrained embedded GPUs usually lack a
specific mechanism (e.g., ECC, RAS, etc.) that can detect and
identify the source of the errors. In our approach, we propose
the use of common operating system capabilities to analyze
the source of the radiation-induced events.

For our experiments, we selected the Nvidia Jetson Nano
board [12] for testing due to its low cost and high applicability
to space intelligence, surveillance and sensor data processing
applications. Jetson Nano board features a constrained version
of the original TX1 SoC (TM660M-A2 version) [13].

II. BACKGROUND AND RELATED WORKS
A. SoC architecture and programming

GPUs integrated into the same chip as the rest of the system
are commonly referred to as embedded GPUs. The main
difference with respect to their desktop counterparts is that
integrated GPUs do not have their own main memory. Instead,
a global memory is shared between the host system (CPU) and
the GPU, reducing the amount of memory the GPU uses while
avoiding memory transfer between different memories.

We used Compute Unified Device Architecture (CUDA) as
the programming model. In CUDA, the GPU tasks are named
kernels and are launched asynchronously from the CPU and

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

defined as “global” functions inside the code. When launched,
kernels feature two mandatory arguments, the number of
threads in a thread block and the number of blocks (or grid),
allowing the number of threads that the kernel will execute to
be specified.

Thread blocks are later scheduled to a single Streaming
Multiprocessor (SM) inside the GPU by the kernel scheduler,
an internal entity inside the GPU that is able to run CUDA
threads. Threads within a thread block are then grouped into
smaller sets named warps, which typically have a maximum
size of 32 threads. SMs execute all threads in a warp concur-
rently. Internally, SMs contain certain resources that will be
shared among the CUDA threads within a warp, such as the
register file, the instruction cache, the data cache or internal
shared memory. Other (mainly functional) resources will be
private for each thread, such as the CUDA cores, load/store
units and special function units.

The regular offloading process of tasks to the GPU contains
the following steps: (1) GPU memory allocation, (2) Input
Data transfer, (3) kernel launching, (4) Result transfer back to
the CPU and (5) GPU memory deallocation. All these steps
are performed by calling functions of the CUDA driver (e.g.,
CudaMemCopy) that are executed by a single process, the
CUDA runtime process, thus serializing them. Steps (2) and
(4) are optional, for example: some kernels may do not need
input data or they may be avoided if global memory is shared
between the host system and the GPU.

B. Redundancy on GPUs

GPU software redundancy can be achieved at different gran-
ularities. Intra-thread duplication performs each instruction
twice and checks the result of the original instruction and
the shadow, a technique that has been successfully studied
in GPU-based programs in [14], [15]. The most interesting
aspect of this strategy is that it is totally transparent to
the programmer, as it does not require any change in the
programming model or the code, with the compiler directly
applying all modifications. The fault detection latency is also
the shortest of the different strategies. The downside is that
intra-thread duplication requires explicit checking instructions,
increasing register file usage and doubling the number of
arithmetic operations, which are serialized as the checking
instruction requires the results of both source instructions.
Since there is no control over the functional units employed
by each redundant instruction, this strategy is susceptible
to permanent faults affecting the functional units since the
redundant computations will use the same functional units.

Inter-thread duplication employs half a warp (16 threads)
as shadow threads. This approach would seem to be of interest
in the case of GPUs, as they may use inter-thread GPU
synchronization primitives such as shuffle instructions and
shared memory to communicate between threads [16], [17],
avoiding the much slower general GPU memory used in the
intra-thread approach. However, this technique doubles the
number of threads employed and may not work on programs
that use more than half the warp threads. Moreover, it is
not programmer-transparent, as programs that use intra-warp

communications instructions or the shared memory may be
incompatible with this technique or require non-trivial mod-
ifications. In contrast to the intra-thread approach, different
functional units may be employed by the redundant threads,
which improves the reliability against permanent faults appear-
ing in the functional units. Still, this technique is susceptible
to permanent faults affecting shared resources (e.g., L1 cache,
register file). This approach can also be susceptible to Com-
mon Cause Failure (CCF), failures due to a specific type of
faults, the Common Cause Faults (e.g., voltage droop) that can
affect similarly multiple units.

Under some conditions, kernel duplication may allow a
diverse redundant execution (redundant execution with stag-
gering) [18]. The necessary conditions are that (1) the original
kernel needs to use no more than half the GPU’s resources to
enable concurrent execution, which helps to reduce execution
time (otherwise, kernels are serialized) and ensures that kernels
use different Streaming Multiprocessor to perform their exe-
cutions and (2) the GPU must have a minimum of two SMs. If
the conditions are met, redundant kernels start with an initial
staggering (due to small serialization created by the CPU
driver) but without the means to control it or monitor it. Stag-
gering is beneficial as it may protect the redundant executions
against CCF (e.g., voltage droop), similar to the Dual-Core
Lockstep (DCLS) execution. However, this approach requires
duplicating the GPU resources from the original kernel. Since
the result is performed at the end of the GPU execution, the
fault-detection latency is also the highest of all the techniques
discussed. In the present work, both conditions were relaxed
to accommodate the resources of a low-cost embedded GPU.

Nevertheless, the modifications to the original code are
simple. Generally, it involves duplicating the calls to the
original functions with the replicated data and a CUDA Stream
created for each redundant kernel in order to enable (if
possible) concurrent execution. Kernels that do not use an
explicit CUDA stream use the default CUDA stream which
serializes their execution, as discovered by Amert et. al. [19]
in certain Nvidia GPUs.

C. Related Works

Numerous works have been published that analyze the
effect of common software-based techniques applied to ad-
vanced GPU architectures, mainly Fermi, Kepler or Pascal. For
example, Duplication With Comparison (DWC) [26], intra-
thread replication [27], backward-recovery mechanisms [28],
[29] and control-flow checkers [28]. However, the majority
of these used fault injection methodology to conduct the
experiments and only a few have been tested under radiation.
In this regard, authors in [30] have shown that hardening
techniques have to deal with multiple radiation-induced errors
to efficiently protect the applications running on modern
GPUs. They proposed an optimized algorithm-based technique
(ABFT) to reduce the overheads on matrix multiplication.
The technique was tested under a neutron beam on a high-
end desktop GPU [31] showing a better performance and
effectiveness than Error Correction Codes (ECC). In addition,
the impact of the parallelism on the applications reliability

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

TABLE I: Comparison Table of Related Works

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

Device, arch., node = Work Platform Particle/Energy Technique Benchmarks Reported results

Tegra TK1 Wang2017 [7] Jetson TK1 p+/1201WeV — particle, FFT TID, SEU, SEL

Kepler (1SM) Badia2022a [8] Jetson TK1 pt/156MeV Imp. strategies MxM/block/CUBLAS SDC, Crash/Hang

28nm CMOS Badia2022b [20] Jetson TK1 pt /15MeV L/U Decomp. MxM SDC, Crash/Hang

Tegra TX1 Wyrwas2016 [21] Jetson TX1 p*/QOOMeV — particle, fluidsGL SEU, SEFI, SEL

Maxwell (2SM) Santos2019 [10] Jetson TX1 n/atmos. - YOLO, CNN, GEMM SDC, Crash/Hang

20nm CMOS Fratin2018 [22] Jetson TX1 n/atmos. — LavaMD, Hotspot, GEMM SDC, Crash/Hang

g/fgm TIX(}SM) Slater2020 [13] Jetson nano gamma,/Cobalt 60 - MxM TID, SEFI
axwe

20nm CMOS This work Jetson nano p*/lSMeV DWC MxM SDC, Crash/Hang

Tegra TX2 Wyrwas2019 [23] Jetson TX2 p+ /200MeV — particle, fluidsGL SEU, SEFI, SEL

Pascal (2SM)

16nm FinFET

3}9?3(2‘/2?;5 Hiemstra2020 [11] Jetson AGX pt/105MeV TMR (cpu) FFT TID, SEFL, SEL
olta

12nm FinFET Rodriguez2022 [24] Jetson NX/Ind. pt/200MeV RAS system MXM SEU, SEFI, SEL

g;;l/l;l:l;agﬂn Guertin2019 [25] Intrinsyc Open-Q 835 Ar/40MeV — Video, graphics SEU, SEFI

14/10nm FinFET I[ltl’iHSyC OpCH-Q 845 AT‘/40]\/[6V — FFT SEU, SEFI

was extensively studied under radiation in [9]. The work
showed that the distribution of threads on the blocks and their
complexity (degree of parallelism) directly affect the effort of
warp schedulers and the memory access latency, ultimately
determining radiation sensitivity.

Other popular mitigation approaches, such as DWC and
TMR, were compared under neutron irradiation in [9] and
[31]. The DWC technique was thoroughly examined in [32],
using the HotSpot benchmark. Three different implementation
strategies were analyzed: (i) spatial duplication of the blocks
(similar to kernel duplication), (ii) spatial duplication with
blocks interleaving and (iii) time (intra-thread) duplication.
The comparison resulted in two noteworthy findings. Firstly,
DWC approximately doubled the number of errors. Secondly,
the kernel duplication strategy exhibited the best performance
in terms of error rate (nearly zero), although it did lead to an
increase in functional interrupt events compared to the plain
version. Our study complements these findings by evaluating
the effectiveness of kernel duplication on resource-constrained
devices that require serialization of the kernels. Furthermore,
unlike the conventional approach, our experiments encompass
the entire system in which the GPU is integrated.

Radiation tests were conducted on different embedded GPU
devices as well, with the Nvidia SoCs being most preva-
lent compared to other devices (e.g., Snapdragon family).
Table I provides a representative number of those works
and summarizes the relevant features of the experimental
setups employed: SoCs, platform, beam and benchmark. The
techniques tested and the categories used to report the results
are outlined in the last two columns. Most of these studies
focused on evaluating the inherent susceptibility of the SoCs
to radiation in terms of TID and SEE rates [7], [21], [23], [13],
[25], [11]. No further analysis about the consequences of the
SEE, i.e. how many of them turn into silent data corruption
or system crashes, were performed during these tests. Matrix
multiplication, Fast Fourier Transform and graphic simulations
were the common benchmarks used as the baseline.

The results showed that CMOS-based mature node pro-
cesses were approximately ten times more susceptible to
SEE than modern FinFET nodes [23]. However, no latchup
events (SEL) were reported in any of the studies conducted,
regardless of the technology used. Functional interrupt events
(SEFI) are shown to be a common problem in such devices and
in most studies they dominate over the bit upsets (SEU) [21],
[23]. Nevertheless, there is no clear relation between them
since other studies, such as those in [22] and [10], reported
a different behavior on Tegra X1 SoC. They used complex
benchmarks such as optimized matrix multiplication (GEMM),
LavaMD and HotSpot, which exhibited SDC rates that doubles
the number of SEFI under atmospheric neutrons.

Only a few of the works focused on the assessment of spe-
cific mitigation techniques. Authors in [8] studied the impact
of different implementation strategies on the reliability of the
matrix multiplication benchmark running on TK1 SoC. Based
on GPU resource utilization, they explain the differences on
reliability obtained and detect the different trade-offs between
performance and error rate. A similar approach is followed in
[20] to assess the L/U decomposition strategy. Our work offers
insights on baseline MxM implementation by incorporating a
software-based protection technique (DWC).

The advanced Volta architecture was tested in [11], although
the TMR technique was only applied to the CPU side of the
SoC. Finally, it is worth mentioning the study in [24] which
assessed the new ARM Reliability Availability and Service-
ability system (RAS) which is only included in the high-end
Xavier family. RAS comprises built-in hardware and software
diagnostic components that are specifically designed for error
detection. This system enables the direct identification of the
specific hardware resource where the radiation event occurred
(caches, GPU, CPU). Our approach provides a solution for
low-cost SoCs without a RAS system by utilizing the standard
capabilities of operating systems to study the origin of SEFI
events.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

SoM Jetson nano
TEGRA X1 chip

GPU
SM
[Warp Schedulers]
L 1 L 1 L 1 []

I Register file I
128 CUDA cores 3
]
i
B f =
)
I 64KB Shared Memory/L1 cache I 2

[256KB L2 cache |

<]:[>

Fig. 1: Nvidia Jetson Nano architecture overview.

III. RADIATION EXPERIMENTS

The system under test (SUT) was the Nvidia Tegra X1
(TX1) System on Chip [33] which is manufactured in 20nm
planar technology (TNMSC process) and was launched by
Nvidia in 2019. This limited version of the original TXI
(2015) includes a Quad-Core ARM Cortex A57 64-bit proces-
sor (see Fig. 1). Each AS57 core has a 48 KB L1 Instruction
cache and a 32 KB L1 Data Cache, while the 2 MB L2 cache
is unified and shared across all the cores. It also contains
an Nvidia Maxwell GPU with 1 SM containing 128 CUDA
cores and a shared L2 of 256 KB. The SM contains four
warp schedulers, although all SM core functional units are
assigned to a particular scheduler with no shared units. The
CPU and GPU share the same physical external memory, a 2
GB LPDDRA4.

TX1 is mounted on Nvidia Jetson Nano SoM (embedded
system on module) together with the LPDDR4 volatile mem-
ory and a flash-based micro-SD card for non-volatile storage
(see Fig.1).

A. Case study

The generic Matrix Multiplication application was selected
for the case study due to its simplicity and extended use (see
Table I). The GPU baseline version of the Matrix Multiplica-
tion uses one thread to compute a single cell of the resulting
matrix. Therefore, each thread needs to gather an entire row of
the first input matrix and an entire column of the second input
matrix to compute its result value. To evaluate the resilience
of the software Kernel duplication approach we modified the
original code according to the changes shown in the previous
section. In our implementation the technique was partitioned
between the GPU, which executed the redundant kernels, and
the CPU, responsible for result comparison and error detection.

Both versions, original and redundant, were profiled using
the Nvidia profiler. The results for input matrices of 512x512

0,? H 0'.5 5 D,E-' 5

=| Process ‘mmult_sec -5 512 % 32 -...
—| Thread 2725531664

(T —]

=| Streams

Stream 14

[=| Process *mmult - 512 x 32 y 32..,
=] Thread 2763739152
Runtime API
= streams
Stream 14
- Stream 15

Fig. 2: Profiling of the Matrix Multiplication benchmark:
original version (above), redundant version (below).

elements (32-bit floating point) and blocks size of 32x32
threads (i.e.: a total of 256 blocks of 1024 threads executed)
are shown in Figure 2. As can be seen in the profiler images,
as the Nvidia Jetson Nano only has one SM, the kernels
cannot execute in parallel. Having executed each version 500
times, we saw that the kernel execution time for the original
version, not considering data transfer and supplementary tasks,
was 222.55 ms and 442.64 ms for the two kernels in the
redundant version. As expected, the kernel execution time is
almost doubled due to serialization.

In Table II we can see the characterization of the time spent
in different sections of the execution for different configura-
tions, again an average of 500 executions. It can be observed
that most of the time is spent in the kernel, both in the original
version and in the redundant one. Due to the serialization
of the kernels, the percentage of kernel time increases on
the hardened versions. It can be seen that time spent in data
transfer is almost negligible in both the numbers and profiler
images (tiny lines before and after the kernel).

TABLE II: Execution time percentages (Matrix Size 512x512)

Original Redundant
32b 8b 2b 32b 8b 2b
Kernel (%) 90.57 9341 98.78 9141 94.64 99.01
Data Transf.(%) 2.69 1.90 0.36 1.79 1.28 0.23
Others (%) 6.73 4.69 0.86 6.80 4.10 0.76

B. Experimental setup

Several versions of the Matrix multiplication algorithm were
tested in the external beamline of the 18/9 Ion Beam Ap-
plications compact cyclotron located at National Accelerator
Center (Centro Nacional de Aceleradores or CNA) in Seville,
Spain (see Fig. 3). The SUT was irradiated without thinning
in the open air and removing the metallic heatsink to get the
maximum proton energy available in the active area. However,
to prevent any thermal events resulting from overheating, the
GPU’s operating frequency was restricted to the minimum
allowable value (768 MHz).

The beam energy at the SUT surface was 15.4 MeV, with
an estimated spread in the order of 400 keV. The flux had to
be adjusted after several tests to avoid repeatedly hanging the

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

Fig. 3: Experimental setup within the radiation chamber at
CNA. Front view of the Jetson board without the metallic
heatsink and detailed view of the Control Computer.

CPU during the reboot process. The average proton flux was
maintained in the order of 3x 107 proton/cm?/s, and the overall
fluence following all radiation runs was 7.4 x 10*! proton/cm?.
The homogeneous beam spot of 16 mm in diameter covered
the interest area of the system, including all the computing
hardware (i.e.. CPU and GPU cores and their respective
memory caches). During the test, the DDR memory chips and
the micro-SD card hosting the operating system were kept
out of the beam. Moreover, an aluminum mask with a 22
mm diameter hole was positioned in front of the board. The
environmental radiation levels were insignificant under such
conditions.

The experimental setup comprised an external computer
(CC) not under direct beam exposure, which remotely con-
trolled SUT operation by means of a Local Area Network
(LAN). Using an SSH connection the CC computer sent the
commands to control the execution of the benchmarks as well
as receiving their outputs. This way, only minimal instrumen-
tation was applied to the benchmark code. Furthermore, since
no SUT local scripts were needed the operation of the system
remained as close to the real configuration as possible.

Benchmarks were coded in C/C++ and compiled with
Nvcuda V10.2.300. The code includes several calls to the
CUDA runtime API [34] which provides real-time information
about the errors related to the GPU operation. Each radiation
experiment involves only one version of the benchmark which
is continuously executed in batches of N runs. One run
comprised the execution of the kernels in the GPU and the
check of the results in the CPU. At the end of each run, a

message was printed to provide information on the number
of errors obtained. Once all the runs of a batch had finished,
a message was printed with the total number of errors and
the CC launches another batch of N runs. Should the API
CUDA capture an error during the GPU work, a message
is immediately printed and the current run finishes without
completing the batch. A global timeout is defined in the control
script of the CC. If the current run does not complete before
the timeout, the CC remotely produces a power cycle in the
Jetson to reboot the operating system. In addition, the control
computer is continually monitoring and recording the log
messages from the Linux kernel via a serial communication
interface. This valuable information is subsequently processed
to analyze the origin and effect of the events.

We distinguished the following error categories depending
on the behavior of the SUT:

o SDC (Silent Data Corruption): the GPU kernel finishes
successfully but some of the results are wrong.

o Crash: the run finishes abruptly after an error is reported
by the CUDA API during the execution of a benchmark.
A new run can be executed afterward without rebooting
the operating system.

o HANG: the run hangs and the device needs to be remotely
rebooted by the CC.

The latter two categories are usually included in the SEFI
(Single Event Functional Interrupt).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Each version of the benchmark was run repeatedly until a
total fluence greater than 4.3 x 10'° proton/cm? was reached.
The cross-section was computed by accumulating event counts
from multiple runs to attain statistical significance, as depicted
in Figure 4. Only effective execution time was taken into
account, excluding the duration of the system reboot (about
16 seconds), the time to power off and on the board (4
seconds) and the watchdog timeout to identify the HANGs
(20 seconds). Upper and lower error margins were calculated
using the inverted chi square distribution as described in [35],
at a confidence level of 95% considering a fluence uncertainty
of £10%.

The benchmark used 32-bit floating-point data and tested
matrix sizes of either 512x512 or 1024 x1024. The name of
the different versions include an R prefix to indicate redundant
versions. The matrix size is denoted by the first number, while
the second number represents the thread block size, with nB
indicating a nxn thread block size. For better analysis of the
results, they are shown grouped into three categories: the 512
unhardened versions on the left, the 1024 redundant versions
in the center, and the 512 redundant versions on the right.
The unhardened version displays a decrease in the SDC cross-
section with increasing block size, as is clear in the figure.
However, no SDC was detected in any of the experiments
conducted on the redundant versions. On the other hand, the
protection technique identified several errors that followed a
consistent pattern in both groups. According to those results,
a lower number of threads per block leads to a more reliable
execution.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

An explanation can be found in the way the threads use
memories. Matrices are stored in DDR memory, which re-
mains out of the beam. However, the L1 and L2 caches, where
the data is accessed by the threads, are susceptible to radiation.
Comparing the center and right groups, it is apparent that the
bigger the matrices, the more use of the caches and the higher
the probability of error.

It is interesting to note the effect inside each group, where
configurations with a larger block size exhibit higher SDCs
(or detected) rates compared to other configurations. This can
be explained by the fact that the L2 cache is more heavily
utilized in configurations with a higher number of threads per
block. To back this theory up, we ran additional analysis by
checking these configurations without radiation and obtaining
all the metrics available using the Nvidia profiler (nvprof). The
resulting statistics reveal that in configurations with a greater
number of threads per block, the L2 cache was utilized more
frequently with fewer misses. This indicates that more data
was being stored in the cache with a longer lifetime due to
fewer replacements, which definitely makes it more vulnerable

to SDCs.
H spc 10 SEFIIA Detected %
~~ 6 [N
S —
=
& 4 -
E -
S
= L
RS
3 21 2
2
a T —_
0 = _ | _ —_—
T T T T T T T
%qu %33‘3) %9& %qu ;/O‘Z? qujb qjj‘b WC}@
QPN SN VNG VN AN
T Y & OGRS &g

Fig. 4: Cross-section of the originals and the redundant ver-
sions

For clarity purposes, HANGs and Crashes were accumu-
lated and represented as a SEFI cross-section. Remarkably, the
SEFI cross-section is not worsened by the control overhead
imposed by running redundant kernels, with all R versions
showing slightly better figures than the equivalent unhardened
code. It should be noted that the 8 B versions present higher
SEFI values than both the 323 and the 2B configurations for
all the groups.

Two factors may contribute to the results obtained. The
first factor is related to the significance of the CPU as the
primary source of HANG events. Benchmark versions where
the CPU plays a larger role in the computation will therefore
have a higher susceptibility to HANGS, such as unhardened
versions. The following section provides a detailed analysis of

the sources of HANGs and justifies this aspect. The second
factor relates to the extent to which the application utilizes
GPU resources. To determine this, an additional analysis was
conducted using data from the Nvidia profiler. Three metrics
were considered: WarpOccupancy, which was provided by
the profiler, and SM occupancy (SMOcc), which was com-
puted relative to both the maximum number of blocks and
active threads supported by the Maxwell architecture, namely
MaxBlocksPerSM (32) and MaxThreadsPerSM (2048). These
metrics indicate the efficiency of the GPU resources used and
the efforts of the warp schedulers to support them. The 8B
versions exhibit metrics close to 100% in all three areas,
making them more vulnerable to any type of SEFI events
such as Crashes and HANGs. Conversely, the 28 versions
have a low percentage in WarpOccupancy and SMOccWrt-
MaxThreads (12.5% and 6.3%, respectively). The 32 B version
fails in the SMOccWrtMaxBlocks metric with a score of 6.3%.

In summary, it can be said that the redundant kernel
technique effectively reduces the SDC cross-section without
penalizing the system stability (SEFI events). Additionally, the
study highlights that resource usage affects the sensitivity to
SEFIs.

The Mean Work To Failure metric, defined as the mean
number of executions to a failure, reveals the trade-off be-
tween the fault tolerance improvement and the time overhead
introduced by the technique. Table III presents the unhardened
and hardened versions working on 512x512 matrices. As
expected, due to the performance penalty produced by the seri-
alization of the redundant kernels, no significant improvement
is observed in this metric. It should be noted that in the case
of protected versions, only HANGs failures are involved in the
MWTF, which usually are considered less critical than SDC.

TABLE III: Total execution times and MWTF metric

Version ExecTime (s) MWTF
512_32B 0.345 9.3x10°
512_8B 0.455 4.5%10°
512_2B 1.888 2.0x10°
R512_32B 0.533 8.4x10°
R512_8B 0.746 5.2x10°
R512_2B 3.617 1.4x10°

During the experiments, most runs finished without errors
and no significant temperature rises were recorded, which
could be a possible indication of a single-event latchup (SEL)
event. Figure 5 shows the percentage of each type of event per
thousand runs. As can be seen, SEFIs (HANGs plus Crahses)
are preponderant over the rest of the events (SEU and De-
tected) and their relative weight increases as the thread block
size decreases. Furthermore, the rate of events directly related
to the GPU (Crashes) is very low in comparison to those that
provoke the HANGsS, in line with other results reported for
previous Nvidia SoCs [8]. Regarding the redundant versions
they present the same behavior in both 512 and 1024 matrix
sizes (for clarity purposes the R1024 versions were excluded
from the figure since the error percentages grow one order of
magnitude).

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

4 I

[J HANG

[Crash
3 [|:| SDC 1

O Detected

£ 20 :
1 | |
0 | | | Q | |
P L P P PP

V7 N N v N N
& o)) Q33\, an an

Fig. 5: Error rate per thousand runs of each version of the
benchmark

Error analysis

This study proposes utilizing the Linux syslog feature to
gain deeper insights into the internal mechanisms related to
SEFI events and in particular those that produces the system
hang. The syslog is a tool that captures and stores various
messages generated by the OS and its applications. The Jetson
Nano is equipped with a Serial Debug Console, which is set
up to transmit the syslog information during the boot process
as well as the kernel events related to the system’s normal
operation. Both, sys and kernel logs were recorded in the
CC computer during the experiments by means of the serial
console. Afterward, the logs were analyzed offline and their
data was correlated with the timestamp of the observed events
to identify their source (GPU or CPU) and, if possible, the
cause that triggered them.

Figure 6 shows an example of a log file recorded during the
experiments. The initial lines represent messages issued during
the boot sequence which terminates with the login request.
Subsequently, any kernel, driver, or application error will be
reported, along with a timestamp enclosed in square brackets.
The error log has a common structure, as depicted in the figure.
The first line provides a summary of the error that occurred
128.095 seconds after the boot sequence finished. The kind
of exception raised is then obtained from the Exception
Syndrome Register (ESR), where the cause of the exception
is coded in the first two digits. After some lines for decoding
the exception syndrome information, the type of the error
is reported with a timestamp of [128.144]. In this particular
case, it is a kernel error categorized as Oops, indicating a
malfunctioning of the kernel. The Oops word is followed by
the syndrome code denoting the cause of the error. The report
continues with information regarding the status of the CPU
registers, a dump of the stack memory and, if feasible, the
action taken by the kernel to solve the error (not shown in the
figure).

[0000.125] [L4T TegraBoot] (version 00.00.2018.01-14t)

[0000.704] Bootloader downloaded successfully.
[0000.866] Starting CPU & Halting co-processor

Starting kernel ...
[0.000000] Booting Linux on physical CPU 0x0

Ubuntu 18.04.5 LTS jetson-nano ttyS0
jetson-nano login:

[128.095] Unable to handle kernel NULL pointer
dereference at virtual address 0000005f
[128.103] Mem abort info:

[128.106] ESR = 0x96000021

[128.144]Internal error: Oops: 96000021 [#1] PREEMPT SMP

Fig. 6: Example of syslog recorded during the radiation
experiments

Table IV displays all error types observed in the experi-
ments. The majority of them were kernel Oops, which have a
clear source in the CPU operation as the associated exceptions
suggest. Among all the possible exception classes, only two
of them were reported by the kernel log: Data Abort (0x96)
and Instruction Abort (0x86). The possible causes of those
exception were: translation fault when reading/writing data
or reading instructions, permission faults in the access to
an instruction and alignment faults when reading data. Two
error types were notified as internal errors. The first indicated
that the kernel code was attempting to access the user space
memory in an incorrect manner ”Accessing user space mem-
ory outside uaccess.h”. The second was stated as “undefined
instruction”, which typically occurs when the processor tries
to execute a machine code that is corrupted or incomplete.
Both types of errors are directly related to CPU operation.
The same source was assigned for the error type "BUG: Bad
page state in process systemd”, which denotes a problem
with the operating system’s memory management subsystem.
The error type described as “not syncing Watchdog detected
hard LOCKUP” is usually displayed by the Linux kernel
when it detects that the system has become unresponsive
or has locked up for an extended period of time. It can be
caused by an external device like the GPU, so subsequent
messages in the log had to be examined before to assign the
source of the error. Finally there was a type of error directly
related to the GPU operation. This type explicitly mention
the GPU driver as the source of error: “nvgpu:57000000.gpu”
and it was usually followed by a description of the problem
(e.g., gr_gk20a_handle_sm_exception, pmu halt intr not im-
plemented, Timeout detected, etc.).

The logs collected during the radiation tests were processed
following the described guidelines, with the result of the
analysis shown in Table V.

The upper half of the table displays the HANG percentages
assigned to the CPU and GPU as the most probable error
sources. Please, note that Crashes were not included in the
analysis. Although some of them were registered in the log
messages, they were easily traced by the CUDA API and
notified to the CC computer.

Consistent with prior studies, the majority of the HANGs

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

TABLE IV: Error types and associated exceptions

Error Msg Source
Unable to handle kernel paging request (Oops) CPU
Unable to handle kernel write to read-only memory (Oops) CPU
Unable to handle kernel read from unreadable memory (Oops) CPU
Kernel BUG (Oops) CPU
Internal error: undefined instruction CPU
Internal error: Accessing user space memory outside uaccess.h CPU
not syncing Watchdog detected hard LOCKUP CPU/GPU
BUG: Bad page state in process systemd CPU
Unhandled Exception in EL3 CPU/GPU
nvgpu: 57000000.gpu GPU

TABLE V: Summary of log analysis (512x512 versions)

Source 32B 8B 2B R 32B R_8B R 2B Total
CPU 091 0.68 091 0.67 0.93 0.58 0.78
GPU 0.09 0.05 0.09 0.17 0.07 0.33 0.12
Unknown 0.00 026 0.00 0.17 0.00 0.08 0.9

HANG 073 070 038 0.33 0.67 0.53 0.59
Autoreboot 027 025 0.46 0.50 0.33 0.27 0.33
Non-critical ~ 0.00 0.05 0.15 0.17 0.00 0.20 0.09

can be attributed to the CPU, with a smaller percentage to the
GPU. This trend can be seen across all versions, accounting
for a total of 78% for the CPU and 12% for the GPU. Notably,
some events could not be assigned to any source due to the
absence of anomalous behavior recorded by the Linux kernel,
comprising 9% of the total events registered in the log files.

The criticality of the errors reported by the syslog is
depicted in the lower half of the table. A percentage of the
problematic behaviors indicated by the log did not have nega-
tive consequences and the run finished successfully. They were
classified as non-critical. The remaining percentage caused a
HANG, prompting the CC computer to execute a power cycle.
In a considerable number of cases, the Linux kernel responded
by programming an auto-reboot that could have restored the
system without any external intervention. In the light of the
results, it is desirable to complement the protection technique
with additional mechanisms capable of dealing with the SEFI
events in an efficient way.

V. CONCLUSIONS

This paper presents the assessment of a traditional re-
dundancy technique applied to embedded GPU with limited
resources. Results showed a clear improvement of the SDC
cross section without negatively affecting the SEFI error rate.
However, the forced serialization of redundant kernels due
to resource scarcity produced a significant time overhead.
As a result, the mean workload that could be executed by
the redundant versions before the occurrence of a failure
was slightly lower than the original codes. In addition, the
Linux syslog tool was proposed as a low-cost solution to
analyse the impact of the Functional interrupt errors. Using
the information reported by the Linux kernel, it was possible
to identify the source of the majority of the HANG events and
to analyze their severity level.

REFERENCES

[11 G. Furano, G. Meoni, A. Dunne, D. Moloney, V. Ferlet-Cavrois,
A. Tavoularis, J. Byrne, L. Buckley, M. Psarakis, K.-O. Voss, and

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

L. Fanucci, “Towards the use of artificial intelligence on the edge in
space systems: Challenges and opportunities,” IEEE Aerospace and
Electronic Systems Magazine, vol. 35, no. 12, pp. 44-56, Dec. 2020.
R. L. Davidson and C. P. Bridges, “Error resilient gpu accelerated image
processing for space applications,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 9, pp. 1990-2003, Sept. 2018.

E. Wyrwas, K. A. LaBel, M. Campola, and M. O’Bryan, “Guidance
on standardizing gpu test approaches,” in 2018 IEEE Radiation Effects
Data Workshop (REDW), Jul. 2018, pp. 116-119.

F. F. d. Santos, S. K. S. Hari, P. M. Basso, L. Carro, and P. Rech, “De-
mystifying gpu reliability: Comparing and combining beam experiments,
fault simulation, and profiling,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2021, pp. 289-298.
F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663-677, June 2019.

M. Goncalves, F. Fernandes, I. Lamb, P. Rech, and J. R. Azambuja,
“Selective fault tolerance for register files of graphics processing units,”
IEEE Transactions on Nuclear Science, vol. 66, no. 7, pp. 1449-1456,
March 2019.

H. Wang, Q. Chen, L. Chen, D. M. Hiemstra, and V. Kirischian, “Single
event upset characterization of the tegra k1 mobile processor using
proton irradiation,” in 2017 IEEE Radiation Effects Data Workshop
(REDW), Dec. 2017, pp. 127-130.

J. M. Badia, G. Leon, J. A. Belloch, M. Garcia-Valderas, A. Lindoso, and
L. Entrena, “Comparison of parallel implementation strategies in gpu-
accelerated system-on-chip under proton irradiation,” IEEE Transactions
on Nuclear Science, vol. 69, no. 3, pp. 444-452, March 2022.

P. Rech, L. Pilla, P. Navaux, and L. Carro, “Impact of gpus parallelism
management on safety-critical and hpc applications reliability,” in 2014
44th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, June 2014, pp. 455-466.

F. F. d. Santos, P. F. Pimenta, C. Lunardi, L. Draghetti, L. Carro,
D. Kaeli, and P. Rech, “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663-677, June 2019.

D. M. Hiemstra, C. Jin, Z. Li, R. Chen, S. Shi, and L. Chen, “Single
event effect evaluation of the jetson agx xavier module using proton irra-
diation,” in 2020 IEEE Radiation Effects Data Workshop (in conjunction
with 2020 NSREC), Dec. 2020, pp. 1-4.

[Online]. Available: https://developer.nvidia.com/embedded/jetson-nano
W. S. Slater, N. P. Tiwari, T. M. Lovelly, and J. K. Mee, “Total ionizing
dose radiation testing of nvidia jetson nano gpus,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), Sept. 2020, pp.
639-641.

M. Dimitrov, M. Mantor, and H. Zhou, “Understanding software ap-
proaches for gpgpu reliability,” in Proceedings of 2nd Workshop on
General Purpose Processing on Graphics Processing Units. New
York, NY, USA: Association for Computing Machinery, March 2009,
p. 94-104.

A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keck-
ler, “Optimizing software-directed instruction replication for gpu error
detection,” in SCI8: International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov. 2018, pp. 842-854.
J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron,
“Real-world design and evaluation of compiler-managed gpu redundant
multithreading,” in 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), June 2014, pp. 73-84.

M. Gupta, D. Lowell, J. Kalamatianos, S. Raasch, V. Sridharan,
D. Tullsen, and R. Gupta, “Compiler techniques to reduce the syn-
chronization overhead of gpu redundant multithreading,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2017,
pp. 1-6.

S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “Software-
only based diverse redundancy for asil-d automotive applications on
embedded hpc platforms,” in 2020 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
Oct. 2020, pp. 165-168.

T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “Gpu
scheduling on the nvidia tx2: Hidden details revealed,” in 2017 IEEE
Real-Time Systems Symposium (RTSS), Dec. 2017, pp. 104-115.

J. M. Badia, G. Leon, J. A. Belloch, A. Lindoso, M. Garcia-Valderas,
Y. Morilla, and L. Entrena, “Reliability evaluation of lu decomposi-
tion on gpu-accelerated system-on-chip under proton irradiation,” IEEE
Transactions on Nuclear Science, vol. 69, no. 7, pp. 1467-1474, March
2022.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNS.2023.3291418

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 9

[21] E. Wyrwas, “Proton testing of nvidia jetson tx1,” in NASA Goddard
Space Flight Center,Space Flight Center, Greenbelt, MD, USA, Tech.
Rep. 20170009004, Oct. 2016.

[22] V. Fratin, D. Oliveira, C. Lunardi, F. Santos, G. Rodrigues, and P. Rech,
“Code-dependent and architecture-dependent reliability behaviors,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), June 2018, pp. 13-26.

[23] E. Wyrwas, “Proton testing of nvidia jetson tx2,” in NASA Goddard
Space Flight Center,Space Flight Center, Greenbelt, MD, USA, Tech.
Rep. 20190031856, Jul. 2019.

[24] 1. Rodriguez-Ferrandez, M. Tali, L. Kosmidis, M. Rovituso, and
D. Steenari, “Sources of single event effects in the nvidia xavier soc
family under proton irradiation,” pp. 112-118, Sept. 2022.

[25] S. M. Guertin, W. P. Parker, A. C. Daniel, and P. Adell, “Recent see
results for snapdragon processors,” in 2019 IEEE Radiation Effects Data
Workshop, July 2019, pp. 1-5.

[26] H. Jeon and M. Annavaram, “Warped-dmr: Light-weight error detection
for gpgpu,” in 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec. 2012, pp. 37-47.

[27] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keck-
ler, “Optimizing software-directed instruction replication for gpu error
detection,” in SCI8: International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov. 2018, pp. 842-854.

[28] A. Nukada, H. Takizawa, and S. Matsuoka, “Nvcr: A transparent
checkpoint-restart library for nvidia cuda,” in 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, May 2011, pp. 104-113.

[29] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “Crum:
Checkpoint-restart support for cuda’s unified memory,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER), Sept.
2018, pp. 302-313.

[30] P. Rech, C. Aguiar, C. Frost, and L. Carro, “An efficient and experimen-
tally tuned software-based hardening strategy for matrix multiplication
on gpus,” IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp.
2797-2804, April 2013.

[31] D. A. G. Gongalves de Oliveira, L. L. Pilla, T. Santini, and P. Rech,
“Evaluation and mitigation of radiation-induced soft errors in graphics
processing units,” IEEE Transactions on Computers, vol. 65, no. 3, pp.
791-804, March 2016.

[32] D. A. G. Oliveira, P. Rech, H. M. Quinn, T. D. Fairbanks, L. Monroe,
S. E. Michalak, C. Anderson-Cook, P. O. A. Navaux, and L. Carro,
“Modern gpus radiation sensitivity evaluation and mitigation through
duplication with comparison,” IEEE Transactions on Nuclear Science,
vol. 61, no. 6, pp. 3115-3122, Dec. 2014.

[33] Nvidia, NVIDIA Tegra X1 white paper, January, 2015.

[34] NVIDIA, CUDA toolkit documentation: CUDA runtime API, 2022.

[35] ESA/ESCC, “Single event effects test method and guidelines. escc basic
specification no. 25100,” Oct 2014.

Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on July 06,2023 at 06:08:01 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

