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Abstract

The progress of automatic scene analysis techniques for homes and the development of am-
bient assisted living systems is vital to help different kinds of people, such as the elderly or
visually impaired individuals, who require special care in their daily lives. In this bachelor’s
thesis we are going to develop a study of the most promising used techniques inside the
Video Captioning and scene analysis scope and we will propose a Deep Learning pipeline
aimed at performing Risks Assessment on input videos using the knowledge acquired during
the study. This can be potentially applied to create systems aimed to help aforementioned
people. Moreover, we will propose different evaluation architectures to test each of the stages
involved in the Risks Assessment pipeline in order to observe its effectiveness and limitations.

In this work we will introduce SwinBERT, a powerful and recent Video Captioning model,
complemented with YOLOv7, a model aimed at the Object Recognition task, for the analysis
of home scenes. Moreover, we will use various lexical transformations and linguistic models
to maximize the semantic similarity of descriptions generated and objects detected, aligning
them with the annotations provided by the datasets used. This approach will allow us
to achieve more accurate matches from a human perspective. In the experiments we will
outstand the usage of the large-scale dataset Charades, which was created with the goal of
producing a vast dataset designed for the visual analysis, while preserving the naturalness
and spontaneity of household and daily activities.





Resumen

El avance de las técnicas de análisis automático de escenas para hogares y el desarrollo de
sistemas de asistencia en residencias es vital para ayudar a diferentes tipos de personas,
como ancianos o individuos con discapacidades visuales, que requieren cuidados especiales
en su vida diaria. En este proyecto vamos a desarrollar un estudio de las técnicas más
prometedoras utilizadas dentro del ámbito de la descripción de vídeos y del análisis de escenas
para finalmente proponer una arquitectura, basada en Deep Learning, destinada a realizar una
evaluación de riesgos sobre un vídeo de entrada utilizando el conocimiento adquirido durante
el estudio. Esto puede ser potencialmente aplicado para crear sistemas orientados a ayudar
a las personas anteriormente mencionadas. Además, propondremos diferentes arquitecturas
destinadas a la evaluación de cada una de las etapas involucradas en la arquitectura de
evaluación de riesgos con el fin de observar su efectividad y limitaciones.

En este trabajo introduciremos SwinBERT, un potente y reciente modelo de descripción de
videos, complementado con YOLOv7, un modelo orientado a la tarea de reconocimiento de
objetos, para el análisis de escenas domésticas. Además, utilizaremos varias transformaciones
léxicas y modelos lingüísticos para maximizar la similitud semántica de las descripciones
generadas y objetos detectados, alineándolos con las anotaciones proporcionadas por los con-
juntos de datos utilizados. Este enfoque nos permitirá lograr coincidencias más precisas desde
una perspectiva humana. En los experimentos destacaremos el uso del conjunto de datos a
gran escala Charades, que se creó con el objetivo de producir un amplio conjunto de datos
diseñado para el análisis visual, preservando al mismo tiempo la naturalidad y espontaneidad
de las actividades domésticas y cotidianas.
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1. Introduction

In this chapter, we will introduce the various motivations and goals that have led to the
development of this bachelor’s thesis. Additionally, we will present a timeline outlining the
different development phases of this work. In Section 1.1 we provide a synopsis of the entire
document. Following that, in Section 1.2 we discuss the different motivations that have
driven the development of this thesis. Subsequently, in Section 1.3, we outline a list of goals
proposed to be achieved during this work. Moving on, Section 1.4 provides an organized
overview of the various development phases and tasks performed. Finally, in Section 1.5, we
mention and explain the remaining chapters that comprise this work.

1.1. Overview

This thesis proposes a framework for assessing risks in indoor scene videos using Video Cap-
tioning and Object Recognition models. Additionally, it presents various deep learning-based
architectures for analyzing indoor scene videos, with applications in fields such as robotics,
surveillance systems, and Ambient Assisted Living (AAL) for individuals with special needs,
including the elderly and visually impaired.

The proposed architectures are built upon previous research conducted on state-of-the-art
Video Captioning and evaluation techniques. To achieve this, we will review the current most
outstanding Video Captioning models and explore different evaluation methods applicable
to their results. Our primary focus will be on studying different frameworks for home Video
Captioning, utilizing SwinBERT, a recent and promising Video Captioning model. We will
enhance the descriptions generated by SwinBERT using various linguistic processing tech-
niques to maximize the semantic information present in the outputs. Furthermore, we will
complement the SwinBERT descriptions by incorporating an Object Recognition model such
as YOLOv7, which will improve the detection rate of objects. Additionally, we will review
datasets with various types of features.

1.2. Motivation

Nowadays, many people suffer from diseases and impairments that prevent them from leading
independent and ordinary lives. One example of this is dementia, a condition that affects
a significant portion of our society, causing a progressive decline in cognitive functions and
hindering individuals from performing daily tasks as the disease progresses.

Visual analysis systems have seen rapid advancements in performance, and it has been
proven that robust and powerful systems can be built using Computer Vision techniques. It
is widely believed that these technologies can be leveraged to create assistive systems that
improve the quality of life for dependent individuals. The intensive development of such

1
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studies is expected to make a significant difference in their lives in the coming years, and this
is one of the main motivations behind this thesis.

Another motivation for undertaking this thesis was the collaboration with the Languages
and Computer Systems Department (Departamento de Lenguajes y Sistemas Informáticos
(DLSI) in Spanish) and the support from the Computation and IT Department (Departa-
mento de Tecnología Informática y Computación (DTIC) in Spanish), particularly the assis-
tance provided by the 3D Perception Lab group. This group specializes in GPU computing,
3D computation, and Computer Vision, and they are involved in the development of the na-
tional project Monitoring and Detection of human behaviors for personalized assistance and
early disease detection, A2HUMPA in Spanish (MoDeAss), led by researchers José García
Rodríguez and Miguel Angel Cazorla-Quevedo. The MoDeAss project focuses on the analy-
sis of human behaviors for monitoring, personalized assistance, and early disease detection,
primarily aimed at helping dependent individuals in their homes. This thesis is also driven
by the desire to contribute to this project.

On a personal level, throughout my Bachelor’s Degree, I have always been curious about
how artificial intelligence operates behind the scenes and how these systems can make de-
cisions autonomously, similar to humans. This curiosity led me to conduct independent
research in this field and I was amazed by the incredible work that has been accomplished
over the years. Inspired by these achievements, I wanted to delve deeper and pursue a career
in artificial intelligence. Therefore, this thesis represents the first step in my personal journey
within the field of artificial intelligence.

1.3. Proposal and goals
In this thesis, our primary objective is to develop a visual analysis framework for processing
home environment videos that generates a list of potential risks based on the recognized
objects in the scene. To accomplish this, we will refer to a well-studied Deep Learning (DL)
task known as Video Captioning, which focuses on generating natural language descriptions
from input videos. Additionally, we will conduct a comprehensive review of state-of-the-
art models, techniques, and datasets employed in the field of Video Captioning. Using this
knowledge, we will perform experiments on various visual analysis architectures to demon-
strate the effectiveness and limitations of the reviewed resources in Computer Vision analysis
for home scenes. This represents our second goal. Since our thesis involves generating de-
scriptions from videos, it entails not only Computer Vision tasks but also Natural Language
Processing (NLP) tasks. Hence, our third goal is to provide insights into how linguistic
processing techniques and lexical transformations applied to the generated descriptions can
impact evaluation results. To fulfill this objective, we will leverage popular NLP-oriented
libraries available today.

1.4. Timeline
In this section, we will introduce the different stages involved in the development of this
thesis. We will provide a chronological timeline in which the core tasks performed during this
work are mentioned and ordered temporally. The development of the thesis comprised four
main stages: the learning stage, the research stage, the implementation stage, and finally,
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the experimentation stage. The composition of this thesis commenced in September 2022
and concluded in May 2023, encompassing a total of 9 months of development. In Figure 1.1
a Gantt diagram which illustrates all different tasks developed during the different stages of
the thesis is presented.

Figure 1.1: Gantt diagram of tasks developed during the entire thesis.

1.4.1. Learning Stage
The first stage was characterized by completing machine learning courses and tutorials to
acquire the fundamentals and basics of machine and deep learning. During this stage, we not
only completed theoretical courses but also conducted practical tutorials and created initial
experimental scripts to facilitate the learning curve of frameworks and libraries related to
machine learning. This stage took place between September and October.

Figure 1.2: Tasks and associated temporal development periods in the learning stage.

1.4.2. Research Stage
In the second stage, we delved into Video Captioning and Computer Vision analysis, reading
surveys and specialized papers to explore the state-of-the-art in these specialties. During this
stage, supervisors also recommended interesting papers that were considered for inclusion in
the state-of-the-art chapter of the thesis. As a final step of this stage, a summary of the
most relevant findings was created, and the state-of-the-art chapter of this thesis was started,
using the summary of materials, methods, and investigated models as a reference. This stage
took place between November and December.
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Figure 1.3: Tasks and associated temporal development periods in the research stage.

1.4.3. Implementation Stage

In the third stage, we made decisions regarding the materials, such as models and datasets,
to be used for implementing the different pipelines needed. After making these decisions,
we focused our efforts on setting up the environment to ensure the correct execution of the
selected materials. Finally, we constructed the proposed architectures and implemented the
pipelines to test and evaluate them using the selected technologies and frameworks. This
stage took place between January and February.

Figure 1.4: Tasks and associated temporal development periods in the implementation stage.

1.4.4. Experimentation Stage

In the final stage of development, we utilized the pipelines developed during the implemen-
tation stage to evaluate the proposed architectures and draw conclusions from the results.
This stage involved two main tasks: performance evaluation of the selected models using the
chosen datasets and evaluation of the Risks Assessment pipeline. These tasks were performed
iteratively, involving three phases: testing, analysis, and modifications. During the testing
phase, we obtained results from the proposed architectures. In the analysis phase, we ex-
amined the obtained results, and in the modifications phase, we reflected on the results to
identify areas for improvement and propose changes that could enhance the results. This it-
erative approach allowed us to test the architectures from different perspectives and establish
future work to be carried out. This stage took place between March and May.
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Figure 1.5: Tasks and associated temporal development periods in the experimentation stage.

1.5. Outline
This thesis consists of six core chapters. The rest of the document is organised as follows:
In Chapter 2, we review the current techniques, models, and datasets in Video Captioning
that are necessary for the development of the rest of the thesis. Afterward, in Chapter 3, we
present the infrastructure and technologies used for the experimentation. In Chapter 4, we
introduce the different components that will be used as references. Then, in Chapter 5, we
present the proposed architectures, including the evaluation results. Finally, in Chapter 6,
we summarize all the contributions and present future work, concluding the thesis.





2. State of the art

In this second chapter, we will present the state-of-the-art in Video Captioning and provide
an introduction to dementia and AAL scopes. The purpose of this section is to present the
most significant works and discoveries in these areas, aiming to familiarize the reader with the
experimental context that will be explored in subsequent sections. This chapter is organized
as follows: Section 2.1 provides an overview of the fundamental concepts of neural networks,
offering the reader an intuition of their principles. Subsequently, in Section 2.2, we delve
into the origins of the Video Captioning task. Following that, Section 2.3 explores the depth
of the Video Captioning scope. Moreover, Section 2.4 presents an examination of dementia
disease. Lastly, in Section 2.5, we highlight interesting datasets pertaining to dementia and
AAL.

2.1. Neural Networks
One of the most remarkable assets of our society is the human brain, serving as the central
core responsible for coordinating our actions, enabling us to experience sensations, and, most
importantly, granting us the ability to think. Comprised of numerous specialized units known
as neurons, the human brain facilitates the transmission of information through electrical
signals. These neurons are instrumental in processing the vast amount of information we
receive and form the foundational concept behind the creation of Artificial Neural Networks.

Artificial Neural Networks (Krogh, 2008) are a type of machine learning algorithm inspired
by the structure and function of the human brain. With remarkable achievements across
various domains, Artificial Neural Networks have become indispensable tools for a wide range
of applications, including image recognition (Deorukhkar & Ket, 2022), natural language
processing (Khurana et al., 2023), finance (Burrell & Folarin, 1997), and healthcare (Sordo,
2002). In Figure 2.1 is shown a basic Artificial Neural Network structure. During this
work, we will use Artificial Neural Networks as the reference machine learning algorithm. In
following sections, we will describe the most relevant structures for this project.

2.1.1. Convolutional Neural Networks

The CNN architecture is a specialized type of neural network designed specifically for Com-
puter Vision tasks, including image and video recognition. CNNs consist of several key
components, with the core being the convolutional layers. These layers are designed to apply
a filter iteratively across the entire image, performing a dot product operation at each step.
The resulting output, obtained from the various dot products, is referred to as a feature
map or convolved feature. Subsequently, these feature maps are combined to extract more
intricate features, enabling the network to recognize distinct patterns and elements within
the input. A simplified illustration of a CNN structure is presented in Figure 2.2.
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Figure 2.1: Basic Artificial Neural Network structure. Retrieved from Kumar et al. (2020).

While a wide range of CNN architectures exists, in practice, only a few variations have
demonstrated superior performance. The following are the most noteworthy types of CNNs:

• ResNet: Residual Networks (ResNet) (He et al., 2015) introduced the concept of
residual connections to address the degradation of network performance in deep neural
networks with numerous layers. By mitigating the issue of vanishing gradients, ResNet
enabled the successful training of networks with hundreds of layers.

• AlexNet: The AlexNet structure (Krizhevsky et al., 2017) was among the pioneering
networks to adopt a deep architecture, leading to improved accuracy in visual classifi-
cation tasks. It was the first network to utilize rectified linear unit (ReLU) activations,
which accelerated the training process. Additionally, AlexNet employed dropout regu-
larization and data augmentation techniques to mitigate overfitting.

• VGGNet: VGGNet (He et al., 2015) is a CNN architecture that prioritizes network
accuracy as it deepens. It builds upon the foundations of AlexNet while employing a
more streamlined and efficient structure with smaller convolution filters.

• Inception: Inception Net (Szegedy et al., 2014) was developed to extract features at
different scales through the use of multi-scale convolution networks. It achieves this
through an architecture composed of repeating components called Inception modules.

• Xception: The Xception Net (Chollet, 2016) enhances deep CNNs by employing
Depthwise Separable Convolutions instead of Inception modules. Depthwise separa-
ble convolutions consist of two steps: depthwise convolutions and pointwise convolu-
tions. This approach proves to be significantly more efficient than classical convolutions
typically used in CNNs.

2.1.2. Recurrent Neural Networks
With the advent of CNN for image and video recognition tasks, there arose a need for vari-
ations of Neural Networks specifically designed to process sequential data. To address this,
RNN were developed. RNNs are specifically designed for handling sequential data such as
time series, speech signals, or text. They possess internal memory and feedback connections,
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Figure 2.2: Basic intuition of CNN structure. Retrieved from Timilsina et al. (2019).

enabling them to store and utilize information from previous steps. The defining character-
istic of RNNs is the presence of repeating modules, with each module processing one step of
the input sequence. The output of each module serves as input to the subsequent module,
while the hidden state of the module is updated to capture information from previous steps.
This allows RNNs to accumulate information throughout the entire sequence remembering
information of previous steps in subsequent ones. A basic illustration of the structure of an
RNN is depicted in Figure 2.3.

While RNNs have made significant strides in tasks such as language modeling, sentiment
analysis, machine translation, and speech recognition, they do have limitations when it comes
to retaining information in long sequences. The vanishing gradients problem arises, wherein
accessing information from earlier parts of a sequence becomes challenging as the sequence
progresses. To overcome this limitation, various variants of RNNs have been developed. Next,
we will introduce the most notable RNN architectures relevant to our work:

• Long Short-Term Memory (LSTM): The LSTM structure (Hochreiter & Schmid-
huber, 1997) was specifically designed to address the vanishing gradients problem in
RNNs. LSTMs include a memory cell that enables the retention of information over
extended periods compared to traditional RNN structures. However, the computational
complexity of LSTMs can result in longer training times, particularly when processing
large datasets.

• Gate Recurrent Unit (GRU): The GRU structure (Cho et al., 2014) is a simpli-
fied version of the LSTM network. GRUs aim to capture long-term dependencies in
sequential data while reducing the computational complexity associated with LSTM
networks. While GRUs sacrifice some accuracy compared to LSTMs, they offer signif-
icantly reduced training times.

2.1.3. Transformers
The Transformers (Vaswani et al., 2017) architecture stands out as the leading model in
contemporary times, consistently delivering exceptional results across various domains. It
was specifically designed for sequence-to-sequence tasks, where the goal is to generate a text
output based on an input text, such as in machine translation. Transformers are characterized
by their utilization of self-attention mechanisms, which enable the network to selectively focus
on different parts of the input sequence at each step and assign varying degrees of importance
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Figure 2.3: Basic intuition of RNN structure. Retrieved from Villamizar Torres & Lizarazo (2019).

to each part when making predictions. Further details about attention models are explained
in Section 2.3.4.

Additionally, the Transformers architecture processes the entire sequence in parallel, al-
lowing it to effectively utilize the contextual information from the entire input while it signif-
icantly reduces training times compared to other neural network structures such as LSTMs
and GRUs. In Figure 2.4 is shown a basic structure for a Transformers Neural Network.

Figure 2.4: Basic intuition of Transformers structure. Retrieved from Mishev et al. (2020).
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2.2. Captioning
Words and language serve as the fundamental tools for human communication, allowing us
to share ideas with family, friends, partners, and groups of people. It is no surprising that the
convergence of visual recognition and word processing techniques has led to the development
of automatic description systems that are immensely valuable in today’s society. The task
of Captioning has gained significant importance as it contributes to remarkable progress in
various domains, such as assisting visually impaired individuals (Manay et al., 2022) and
automating the detection of alert situations in surveillance systems (Arriaga et al., 2017).

In recent years, we have witnessed a remarkable evolution in NLP in conjunction with
Computer Vision and Object Recognition techniques. These advancements have resulted in
a growing demand for generating descriptions from visual content inputs. These descriptions
are commonly referred to as captions. Captions are concise representations of the content
or events depicted in the provided visual input, thus giving rise to the task of Captioning.
Given the diverse nature of visual content, there exist different types of Captioning tasks. In
the following subsections, we will introduce Image Captioning and Video Captioning, with
the latter being the primary focus of this chapter.

2.2.1. Image Captioning
The task of Image Captioning emerged as one of the earliest approaches based on the concept
of generating captions for images. It involves obtaining concise natural language descriptions
from input images, as illustrated in Figure 2.5. Image Captioning has been extensively studied
within the DL community, highlighting its wide range of applications. Recent interesting
research in the field of Image Captioning has explored the use of models to enhance the clarity
of highly blurred images (F. Chen et al., 2019). Despite being a well-studied task, Image
Captioning still presents some challenges (Deorukhkar & Ket, 2022), which will continue to
be addressed over time. The challenges in Image Captioning can be summarized as follows:

• Boundaries estimation: Identifying visual details of objects becomes challenging
when object boundaries become indistinct or ambiguous.

• Learning intermediate representations: Establishing effective intermediate rep-
resentations between the visual and natural language domains is a critical issue in
image-to-text conversion techniques.

• Ranking of visual elements: Determining the importance of objects and their spe-
cific features in an image is crucial for generating accurate and detailed textual descrip-
tions.

While Image Captioning is not the primary focus of our work, it is important to expose
these challenges. In the next section, we will delve into Video Captioning, which shares a
similar fundamental architecture to Image Captioning.

2.2.2. Video Captioning
The outstanding success of Image Captioning techniques has led to the adoption of similar
approaches in the field of videos, leading to the central concept explored in this chapter:
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Figure 2.5: Examples of image captioning descriptions.

Video Captioning. Video Captioning is defined as a DL task that focuses on generating
natural language descriptions of the visual content within a given input video. In essence,
Video Captioning encompasses the techniques employed to extract textual information from
the features obtained through Computer Vision mechanisms for video analysis. This process
involves two main tasks: first, comprehending and recognizing the visual content of the video,
and second, grammatically describing this content.

While humans can easily understand the contents of a video, the same cannot be said
for computers. Video Captioning presents significantly higher computational complexity
compared to Image Captioning due to additional factors that must be considered. The
following key aspects highlight the challenges and complexities specific to Video Captioning:

• Selective importance of objects and actions: Not all objects or actions in a video
are relevant for generating accurate descriptions. Unlike images, videos contain a wide
variety of objects and actions, but only the relevant ones must be considered.

• Motion and relational understanding: Video Captioning methods must capture
the motion, relationships, causality, and trajectories of objects within the video. In
contrast, images represent static scenes without object motion.

• Variable event lengths and overlaps: Events in videos can have different durations
and may overlap with each other. In images, events are fixed and do not exhibit
temporal variations.

• Consideration of temporal features: Video Captioning requires attention to both
spatial and temporal features. In images, only spatial-based features need to be ex-
tracted.

Video Captioning has undergone various advancements, resulting in different types of tasks
based on the level of detail present in the generated descriptions. The distinctions between



2.3. Video Captioning in depth 13

Figure 2.6: Difference between Single sentence Video Captioning and Dense Video Captioning. Re-
trieved from Islam et al. (2021).

these tasks are illustrated in Figure 2.6. The following types of Video Captioning tasks can
be identified:

• Single sentence Video Captioning: This is the original Video Captioning task,
where the objective is to summarize the entire video using a single sentence. However,
this approach often leads to descriptions that lack detailed information and fine-grained
understanding of the video content.

• Dense Video Captioning: This task emerged to address the need for more detailed
descriptions in Video Captioning (Krishna et al., 2017). In Dense Video Captioning,
multiple sentences are used to provide a richer and more informative description of the
video. It allows for capturing fine-grained details of multiple overlapping events with
varying durations. Dense Video Captioning holds great promise for the future of video
description generation. Several improvements have been made in this area, such as the
work by Deng et al. (2021), which reverses the typical ”detect-then-describe” scheme
and proposes a top-down approach. It first generates paragraphs from a global view
and then grounds each event description to a video segment for detailed refinement.

In the upcoming sections, we will demonstrate how a pure Video Captioning model can
be adapted to produce longer descriptions by training it on data with denser captions. Our
experiments will show that the length of the generated descriptions depends on the pretrained
checkpoint of the model used. However, it is important to note that pure Video Captioning
models cannot achieve the same level of detail as Dense Video Captioning models. Further
research is required to explore whether Dense Video Captioning models based on Transformers
can achieve the same level of precision as pure Video Captioning models.

2.3. Video Captioning in depth
The Video Captioning task encompasses various techniques that utilize Computer Vision
approaches to generate natural language descriptions from input videos. In this section, we
will explore this task in detail. Firstly, we will describe the fundamental structure of a Video
Captioning model in subsection 2.3.1, this will provide an overview of the key components
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and their interactions within the model. Then in subsections 2.3.3, 2.3.2 and 2.3.4 each part
of the main structure will be further discussed.

2.3.1. Fundamental Structure

Since the early days of Video Captioning research (Koller et al., 1991), various approaches
have been developed to efficiently and accurately tackle this task. As we discussed in pre-
vious sections, Video Captioning involves two main tasks: recognizing objects or events in
videos and expressing this information in grammatically correct sentences. Therefore, the
fundamentals of Video Captioning are typically based on two-stage solutions. In the past,
a prominent architecture for Video Captioning involved using the concept of Subject, Verb
and Object (SVO) relationships as the first stage for visual content detection, followed by a
template-based model for text generation (Kojima et al., 2002). However, with the advent of
DL and Artificial Neural Networks, the landscape of Video Captioning changed significantly.
Neural Networks revolutionized the field of Machine Learning, including Video Captioning,
so the traditional SVO and template-based methods became obsolete as Neural Networks
were applied to this task.

The most commonly used two-stage Neural Network approach is based on an Encoder-
Decoder framework. In this framework, the visual content is first input to a 2-D/3-D Convo-
lutional Neural Network (CNN), which serves as the ”encoder” and extracts features from the
visual content. The output of the CNN is then fed into a RNN, which acts as the ”decoder”
and generates the final description sentence in natural language based on the visual features.
Figure 2.7 provides an overview of the most widely used Video Captioning architectures.

Figure 2.7: Resume of outlined Video Captioning structures. Retrieved from Jain et al. (2022).
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Figure 2.8: Example of overlapping bounding boxes removals. Retrieved from https://stanford
.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks.

2.3.2. Encoding stage (CNN)

The first stage of the description generation process in Video Captioning focuses on the
Computer Vision aspect of the task. In this stage, the video content is input to a CNN for
visual analysis of the video frames and extraction of features related to recognized events,
objects, and their relationships. The CNN is responsible for detecting various items and
actions present in the entire video. To achieve this, the video is divided into individual
frames, which serve as inputs to the network. Once the frames are fed into the neural
network, the detection of video contents occurs through the different convolutional layers,
employing various methods. One commonly used method for content detection is Bounding
Box detection, where bounding boxes are created around regions where objects are detected.
Due to the overlapping of different objects in the frames, multiple bounding boxes are often
detected. To address this issue, the first detection of objects is often treated as Proposal
boxes. These proposal boxes then are provided to a filtering mechanism to retain the most
representative boxes, which helps eliminating redundant or less relevant bounding boxes.
This procedure can be seen in one notable Video Captioning work that achieved remarkable
results (Jin et al., 2019). In this, the authors introduced the OCA algorithm, which utilizes
proposal boxes to classify relevant boxes. The concept of proposals can also be applied to
temporal features, allowing for more precise detection and filtering of events (Krishna et al.,
2017). Figure 2.8 provides an example of bounding box filtering, demonstrating the process
of selecting relevant boxes for further processing in Video Captioning.

The encoding stage in Video Captioning typically employs a CNN to extract visual features
from the input video. While this is the most common and basic scheme, more complex
approaches have also been explored, resulting in significant performance improvements. In
some works, the encoder is composed of a RNN (Jin et al., 2019), which enhances the main
CNN by providing temporal context features. Various schemes with different components
have been developed and tested, but the most famous and widely used components today
are the attention units. These units can be found not only in the encoder phase (Zhou et al.,
2018) but also in the decoder phase (Pei et al., 2019). The concept of attention models will
be discussed in more detail in the following sections.

The key components of the encoding stage are the CNN units. It is common to encounter

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
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Figure 2.9: Example of possible Video Captioning framework. Retrieved from Jain et al. (2022).

more advanced variations of CNN units such as ResNet, Inception Net, Xception Net, or
other similar structures like an Regions with Convolutional Neural Network features (R-CNN)
based unit. These advanced CNN architectures enable the extraction of more sophisticated
and high-level visual features from the input video, contributing to improved performance in
Video Captioning tasks.

2.3.3. Decoding stage (RNN)

The decoding stage is the second phase of the description generation process. In this stage,
the visual features extracted from the encoder are passed as input to an RNN decoder, which
aims to generate an accurate natural language description of the provided video. Prior to
the decoding stage, the visual features are typically encoded into a fixed-length vector. This
encoding step reduces the dimensionality of the features while capturing the most relevant
information. The encoded vectors serve as input to the sequence model, which decodes the
visual features into a natural language description. The decoder is commonly composed of
RNN units such as GRU and LSTM, or it can be based on Transformers.

Similar to the encoder stage, the decoding stage often incorporates the attention mechanism
in state-of-the-art works. For instance, in Li et al. (2019), an attention-based mechanism is
used to capture temporal information during decoding.

A possible example of a complete Video Captioning encoder-decoder framework can be
observed in Figure 2.9, where an interaction with an attention unit is also depicted. This
Figure shows the complete flow of information that composes a Video Captioning pipeline.

2.3.4. Attention models

The attention mechanism is based on the principle that focusing on the most important
parts leads to achieving the highest possible results, regardless of the task at hand. In
Video Captioning frameworks, attention models have emerged as the most innovative neural
network structures in recent years. These models aim to highlight the most relevant parts
of the input by assigning weights to each element that constitutes the input. Each weight
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represents the importance of a specific element for a particular prediction. Subsequently, the
model utilizes these weights to compute a weighted sum of the inputs, which serves as the
final representation that is further processed by the network. This dynamic allocation of
attention allows the model to adaptively concentrate on the most significant aspects of the
input, instead of relying on a fixed representation that may not be suitable for all instances.

The concept of attention was initially introduced in Bahdanau et al. (2014), and it served as
the fundamental concept for the development of Transformers, which have become the most
influential neural network structures in present times. Figure 2.10 illustrates an example of
the attention model applied to a video frame, demonstrating its ability to emphasize the
relevant regions of the input.

Figure 2.10: Attention applied to generate a video frame caption. Retrieved from
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent
-neural-networks.

2.3.5. Indoor scene captioning

The indoor scene recognition is a highly studied field inside Machine Learning (ML) scope,
specially inside the contexts of robotics and works aimed to create helpful systems to visually
impaired people. Classical scene classification was based on hand-crafted features and so
centered in the object detection to determine the kind of scenes. Because of the limitation of
studies for using data labelled on 2 dimensions, other authors made progresses introducing
the usage of 3D data in the scene recognition (Huang et al., 2020) which leads to better
results that using 2D data, specially in robotics scope. The introduction of neural networks
in the ML paradigm provoked that this task evolved to use these structures. We can see this
evolution in some recent works (Afif et al., 2020) on which authors rely on the neural network
scaling using rethinked CNN.

Due to the necessity of extracting more useful information about scenes, authors began to
not only be aimed in classifying the scenes but also in obtaining a further description which
represents in natural language what can be seen in the scene. Some authors (Fudholi &
Nayoan, 2022) base its approaches in the customization of known datasets as MSCOCO (T.-
Y. Lin et al., 2015) introducing new ground-truth features for the provided captions. Others
(D. Lin et al., 2015) centered their efforts in creating richer indoor multi-sentence captions
by the usage of a 3D visual parsing system and a text generation algorithm that takes into

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
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Figure 2.11: Average percentage of the different types of dementia.

account coherence between sentences. This task has also gained importance in the realm of
ambient assisted living, where real-time captioning services are being developed to enhance
the safety of the elderly.

2.4. Dementia

Dementia is a widespread disease that although it is commonly discussed, is crucial to recog-
nize its importance and increasing prevalence. Dementia refers to a syndrome characterized
by the progressive decline of cognitive functions such as memory, visuospatial abilities, ex-
ecutive functions, and thinking (World Health Organization, 2021). The impact of dementia
is substantial, with an estimated 78 million people projected to have dementia by 2030 and
139 million by 2050 (Alzheimer’s disease international, 2011). Additionally, dementia ranks
as the seventh leading cause of death and is a significant contributor to disability and depen-
dency among older individuals worldwide (World Health Organization, 2021). While there
are various types of dementia, Alzheimer’s disease is the most prevalent form, accounting for
approximately 60-70% of all dementia cases globally. Figure 2.11 provides a summary graph
illustrating the distribution of dementia types.

Early detection of dementia is crucial to mitigate its severe impacts on affected individu-
als. However, identifying dementia at an early stage is challenging, as noticeable symptoms
typically manifest only when neuronal damage has already spread extensively and become
irreversible. Consequently, current research efforts are dedicated to developing methods ca-
pable of detecting dementia in its early stages. When a patient is identified during this
phase, it is often referred to as Mild Cognitive Impairment (MCI), which is considered a
transitional stage between normal aging and early dementia. It is important to note that not
all individuals with MCI progress to dementia, but they are at an increased risk compared
to those without MCI. Early diagnosis plays a pivotal role in slowing down the progression
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Figure 2.12: Map of VR test for dementia patients. Retrieved from Puthusseryppady et al. (2022).

to dementia.
Various approaches are being explored for the detection of dementia. Neuroimaging, par-

ticularly through techniques like Magnetic Resonance Imaging (MRI), is commonly employed
because represents the most reliable approach but is not always recommended due to its inva-
siveness, behavioral analysis often utilizing sensors to monitor gaits, emotion analysis using
eye tracking or facial gesture monitoring, and cognition tests such as the Mini Mental State
Examination (MMSE) are among the prevalent methods. However, these techniques are con-
tinuously evolving to develop more effective and less invasive detection methods. Technologies
like Virtual Reality (VR) or Virtual Environments (VE) are being harnessed to create immer-
sive contexts where patients can perform cognitive and behavioral tasks, providing researchers
with valuable insights into their mental and cognitive states (Fernández Montenegro et al.,
2020). In Figure 2.12 is shown a map from a VR test on which patients must navigate to
a chosen landmark or location in their neighbourhood that they commonly visit using their
usual route.

2.5. Dementia and AAL datasets
With the interest growth in dementia and AAL research fields, corporations and research
laboratories have started creating datasets with the objective of developing intelligent systems
that can analyze this information to make predictions about the mental health of patients or
provide assistance to dependent individuals in their daily lives. Examples of such corporations
include the University of Michigan Health and Retirement Study (HRS) and the National
Health and Aging Trends Study (NHATS). These studies conduct annual in-person and in-
depth interviews with individuals aged 65 and above, generating a rich and multidisciplinary
dataset that researchers can utilize to address important questions about the challenges and
opportunities associated with aging.

Despite the significance of these research fields, there is a scarcity of available datasets that
are specifically tailored to the objectives we seek to achieve. However, we will outline some
of the most interesting datasets comprising various types of data, which can be employed in
the development of systems focused on advancing dementia recognition and AAL research.
While our study does not primarily focus on dementia, we will mention relevant datasets
related to this topic, as it represents one of the primary motivations for the development of
this thesis.
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2.5.1. DementiaBank
DementiaBank1 is a database of multimedia interactions for the study of communication in
dementia. It is composed by different datasets which contains speech and language data,
specifically transcriptions of speech from people with dementia as well as healthy control
participants, in some different languages: English, Spanish, Mandarin and Taiwanese. The
transcriptions contained in the datasets include information about the speaker’s language
ability, including measures of word production, sentence comprehension, and grammatical
abilities. These datasets also includes demographic information about the participants, such
as their age, education level, and gender.

Inside the datasets included in DementiaBank can be seen the results for a variety of
different tests. Next will be mentioned the most relevant tests that comprises the different
DementiaBank datasets:

• The Boston Naming Test: Test where the word recall ability of the patient is
measured. Data of this test can be found on the WLS dataset (Herd et al., 2014),
which contains audio data and its associated transcriptions.

• The Picture Description Task: Test where the patient does a description of a
picture, providing a measure of their language ability and cognitive function. Data for
this test can be found on the Kempler dataset (Kempler et al., 1987), which contains
only audio data. In Figure 2.13 is shown one of the most usual pictures presented to
dementia patients to be described.

• The Sentence Comprehension Task: This test involves giving responses to ques-
tions about sentences, providing a measure of their language comprehension abilities.
Data for this test can be found on the Pitt corpus (Becker et al., 1994), which contains
audio data and its associated transcriptions.

2.5.2. Dem@Care
Dem@Care (Karakostas et al., 2016) is a bench of dementia-aimed datasets which contain
different formats of data, from video and audio recordings to physiological data provided by
unobtrusive sensors. Moreover, they also include other kinds of data like information from
sleep, motion and plug sensors. The gathering of the data took place in the Greek Alzheimer’s
Association for Dementia and Related Disorders in Thessaloniki, Greece and in participants’
homes.

One of the main activities of Dem@Care focuses on the analysis of daily activities of
the people with dementia in their domestic environment via the extraction and processing
of features describing their actions and the context in which they occur. These features
were extracted from various raw contextual and wearable sensors and their interpretation
in terms of activities and events. Moreover, this project provides a set of complementary
features that consists on visual perception for the detection and recognition of situations of
interest, audio-based affective analysis for characterizing the person’s behavioural, mental
and emotional state, and instrumental activities monitoring for characterizing the person’s

1https://dementia.talkbank.org/
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Figure 2.13: This picture is called the Cookie Theft, it is a common test image used in picture
description tasks.

actions and the organization of detected events into a life-log. The objective of the project
is to provide an intelligent knowledge structure suitable for making decisions depending on
the analysed behaviour of the person in particular. In this way support systems for persons
suffering dementia can be constructed, helping them in completing tasks of their daily life. In
Figure 2.14 one of the test environments used during the recording of the dataset is shown.

2.5.3. Charades
Charades (Sigurdsson et al., 2016) is a large-scale dataset comprising of 9,848 videos of daily
home activities, with each video having an average duration of 30 seconds. The dataset
was created using crowdsourcing, with the entire process of video creation, script writing,
recording, and annotation being developed in a distributed manner. Charades was created
by 267 people from three different countries through Amazon Mechanical Turk service.

The authors of Charade aimed to create a dataset of videos that are as casual and realistic
as possible. For this reason, they used crowdsourcing for the entire construction process to
maintain the bias of each person involved in the creation process towards the activities, thus
preserving the essence and nature of the daily tasks of each person.

A total of three stages were involved to create the dataset:

• Scripts generation: First some workers created the scripts for the recording of the
subsequent videos. Each script has to follow some guidelines stablished by the authors.
This guidelines are available on the official dataset publication.

• Video generation: Then the previous scripts are given to workers and they were
requested to record a video interpreting the given scripts with a duration of 30 seconds.

• Annotation: Finally different workers were given some videos and they were requested
to describe what they saw on the videos. After that, other workers were asked to create
a list of object and actions that are present on each of the videos. With the actions
also were attached a label with the starting and ending point of each of them.
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Figure 2.14: Example of test environment for participants of Dem@Care project.

All of this process resulted in a dataset comprising 27,847 video descriptions, 66,500 tem-
porally localized intervals for 157 action classes, 41,104 labels for 46 object classes, and 15
types of indoor scenes. In figure 2.15 can be seen a sample frame of the dataset.

Figure 2.15: Charades dataset sample frame.

2.5.4. ETRI-Activity3D

Research on elder care robots has emerged as a highly investigated topic worldwide. Despite
the numerous corporations and laboratories exploring this field, there is currently no publicly
available dataset that provides suitable data for robots to understand and recognize the daily
activities of human users. To address this gap, the ETRI-Activity3D dataset (Jang et al.,
2020) was created as the first RGB-D large-scale dataset specifically focused on the daily
activities of the elderly for human care robots.

The dataset was collected using Kinect V2 sensors positioned at heights of 70 cm and 120
cm, which align with the typical height of human-care robots. It consists of three synchronized
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data modalities: RGB videos, depth maps, and skeleton sequences. The RGB videos have a
resolution of 1920 x 1080, while the depth maps are stored at a resolution of 512 x 424 frame
by frame. To gather the data, 100 different actors were recruited, comprising two distinct
groups: an elderly group of 50 individuals ranging from 64 to 88 years old (with an average
age of 77), and a group of young individuals in their 20s (with an average age of 23).

Within this dataset, researchers can find a collection of 55 different daily life actions. These
actions were selected based on an investigation of the daily behaviors from morning to night
of 53 elderly individuals with an average age of 70. The set of 55 actions was defined based on
the most frequently observed activities. Overall, the dataset encompasses a total of 112,620
samples, including RGB videos, depth maps, and skeleton sequences. In Figure 2.16 some
RGB and associated skeleton sequences video samples of the dataset are shown.

Figure 2.16: ETRI dataset sample frames.

2.5.5. VirtualHome

As stated before, datasets with features and annotations suitable for our purposes are scarce.
When dealing with this problem researchers tend to resort for using as part of the trainset
synthetic data. This is where VirtualHome (Puig et al., 2018) comes into play. VirtualHome is
a simulator which allow us to create a large-scale video dataset in a household 3D environment.

In VirtualHome, the simulator is controlled by programs, which consist of instructions
specifying the desired actions, objects to interact with, and actors performing the actions.
The output of these programs is a simulation where the specified action is carried out by
the actor. Additionally, the simulator provides dense ground-truth information such as se-
mantic segmentation and depth, among others. Dataset creation from VirtualHome involves
recording the output simulations. The authors of the simulator have also developed models
that enable the creation of these programs from natural language and video demonstrations
within the simulator. The simulator utilizes the Unity 3D game engine as its backbone for
generating the simulations. It includes six furnished homes and four rigged humanoid models
from the Unity Assets Store web. Each home contains an average of 357 object instances,
classified into 30 different object types. To ensure visual diversity, the authors collected at
least three different models per object class.

Using the VirtualHome simulator, the authors proposed two datasets. The ActivityPro-
grams dataset covers 75 atomic actions and 308 objects derived from 2,821 different pro-
grams. The VirtualHome Activity Dataset, on the other hand, consists of 5,193 different
programs focused solely on the 12 most frequent household activities. The simulations for
both datasets were generated by randomizing factors such as home selection, agent selection,
camera placement, object placement, initial agent location, action speed, and choice of ob-
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jects for interactions. Examples of frames and descriptions from both datasets can be seen
in Figure 2.17.

Figure 2.17: Simulation frames and descriptions from the ActivityPrograms and VirtualHome Ac-
tivity datasets.



3. Methodology

In this third chapter, we will review all the resources and methods used throughout the entire
experimentation process. These resources encompass hardware, software, and data materials
collected for our purpose. The section is structured as follows: Section 3.1 provides a summary
of the hardware utilized. Section 3.2 presents a synopsis of the software employed. In Section
3.3, we discuss various machine learning libraries of interest. Finally in Section 3.4 we will
specifically highlight the machine learning libraries ultimately chosen for implementation.

3.1. Hardware
Solid hardware support is crucial for the development and testing of a modern deep learning
system architecture. In order to expedite the experimentation process, our main workstation
support was provided by the 3DPerceptionLab at the University of Alicante, referred to as
Asimov.

In Table 3.1 is shown all specifications regarding the hardware support that provides Asi-
mov. It must be outstanded that although it has its own hard disk support, it proved
insufficient to store all the required datasets. Consequently, Asimov is connected to a Net-
work Attached Storage (NAS) with a total capacity of 25.3TB. Remote access to Asimov
is established through Secure Shell (SSH) using an ISL network. ISL is a networking pro-
tocol utilized to create network tunnels from personal computers to the university network,
granting us access. Authentication on the server is provided by the RSA public key protocol.

3.2. Software
In addition to reliable hardware support, a robust software platform is essential to facilitate
the required experimentations while minimizing any potential incompatibilities and conflicts
among the technologies used in various tests. To address this, we will introduce the utilization
of Docker in this section. Docker enables us to create distinct test and development environ-
ments tailored to our evolving needs. This approach ensures flexibility and helps mitigate
compatibility issues that may arise.

Docker1 is an open-source platform designed to simplify the deployment of application en-
vironments for developers. It promotes the use of containers to build, package, and deploy
applications, effectively addressing environment-related issues during runtime. Docker signif-
icantly reduces software dependency problems by providing isolated containers that maintain
their own software and dependency versions, independent of the native operating system. A
Docker container is created from an image. An image is a lightweight and portable package
that contains all the necessary software and dependencies to run an application. Images are

1https://www.docker.com/
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Asimov
Motherboard Asus X99-A

Intel X99 Chipset
4x PCIe 3.0/2.0 x 16(x16, x16/ x 16, x16/ x 16/ x 8)

CPU Intel(R) Core(TM) i7-5820K CPU @3030GHz
3.3 GHz (3.6 GHz Turbo Boost)
6 cores (12 threads)
140 W TDP

GPU (0) NVIDIA Titan X
3584 CUDA cores
12 GB of GDDR5 Video Memory
PCIe 3.0
250 W TDP

GPU (1) NVIDIA GeForce GTX Titan X
3072 CUDA cores
12 GB of GDDR5 Video Memory
PCIe 3.0
250 W TDP

RAM 4 x 8 GB Kingston Hyper X DDR4 2666 MHz CL13
Storage (Data) (RAID 0) 2x Seagate Barracuda 7200rpm 3TB SATA III HDD
Storage (OS) Samsung 850 EVO 500GB SATA III SSD

Table 3.1: Specification details of Asimov.

generated from Dockerfiles, which consist of a set of instructions specifying the characteristics
and features required to create the image. Figure 3.1 illustrates an example of creating a new
container from one of the Docker images employed in our experimentation. The command
demonstrates our intent to utilize one GPU and create the container based on the image
named javiro01/swinbert-evaluation. Furthermore, the –rm flag signifies that the container
should be removed once the session is terminated. The -it flag indicates that an interactive
bash terminal should be opened within the container.

1 docker run --gpus '"device=0"' --rm -it \
2 --volume="$(pwd):/workspace/:rw" \
3 --workdir="/workspace" \
4 javiro01/swinbert-evaluation bash

Figure 3.1: Sample command to run a container through the docker CLI.

3.3. Machine learning frameworks
Currently, there is a wide range of machine learning frameworks available, each serving specific
needs and purposes. In this section, we will provide an overview of the most renowned
frameworks within our scope. Subsequently, we will focus on explaining the frameworks that
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were utilized in our work.

3.3.1. TensorFlow
TensorFlow (Abadi et al., 2016) is a widely used open-source machine learning library de-
veloped by Google. It supports the creation and training of deep learning models and is
implemented in Python and C++. TensorFlow offers several key features, including integra-
tion with the Keras2 API, distributed computing support for training and deploying models
across multiple devices, efficient handling of large multidimensional tensors, and the ability to
execute same code on both GPU and CPU. Furthermore, TensorFlow provides TensorFlow
Serve, its own framework for deploying models in production environments. It also offers
APIs for development in various programming languages, including Python, C++, Haskell,
Java, Go, and Rust.

3.3.2. PyTorch
PyTorch (Paszke et al., 2019) is a machine learning framework based on the classical Torch
library, which is widely used for scientific computing. Developed by Meta AI, PyTorch is
extensively utilized in the fields of natural language processing and computer vision. It is
implemented in Python, C++, and CUDA, providing support for both Python and C++
programming languages.

PyTorch offers several key advantages. Firstly, it leverages GPU acceleration and data
parallelism for efficient tensor computations. It also facilitates the creation of deep neural
networks through automatic differentiation. Additionally, PyTorch provides TorchScript3, a
tool for saving and optimizing models, and enables dynamic graph computations, allowing
developers to modify the behavior of neural networks on the go. One of the standout features
of PyTorch is its pythonic approach, which makes it highly user-friendly. Moreover, the
framework is complemented by TorchServe4, a production-ready framework for deploying
models easily.

3.3.3. HuggingFace Transformers
HuggingFace (Wolf et al., 2020) is a collection of open-source resources designed for the
development and maintenance of various types of machine learning systems, spanning from
computer vision to text or audio processing. Within this collection, we will focus on Hugging-
Face Transformers. Transformers is a library that offers an API for developing new machine
learning models or utilizing pretrained models available in their repository. One of the most
notable and powerful features of this API is the inclusion of pipelines. These interfaces allow
for streamlined inference for specific machine learning tasks, requiring only a few lines of code
and providing a high-level and intuitive coding experience.

HuggingFace Transformers has become a valuable resource for the open-source machine
learning community by providing easy-to-follow references for data processing, model train-
ing, and making inferences. This library is built on the foundations of PyTorch and Tensor-

2https://keras.io/
3https://pytorch.org/docs/stable/jit.html
4https://pytorch.org/serve/
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Flow, and during development, you have the flexibility to choose which backbone implemen-
tation you prefer to use.

3.3.4. OpenCV
OpenCV (Culjak et al., 2012) is an open-source machine learning library focused on computer
vision and image processing. Developed by Intel, it is primarily implemented in C and C++.
This framework boasts several key features that have established OpenCV as a prominent
computer vision library within the field of machine learning. OpenCV offers an extensive
range of functions for various purposes, including face recognition, feature detection, and
camera calibration, among others. Its comprehensive set of functions makes it a reference
library for computer vision tasks. Additionally, OpenCV is highly efficient and fast, benefit-
ing from being developed in the lightweight programming language of C++. Furthermore,
OpenCV supports extensibility, allowing developers to integrate their own algorithms into
the library. This flexibility has fostered a large community of users who contribute tutorials
and documentation, further enhancing the available resources for learning and development.
The ease of use and versatility of OpenCV are exemplified by its compatibility with multiple
programming languages such as C++, Python, and Java. Overall, OpenCV’s rich function-
ality, performance, extensibility, and wide language support have positioned it as a popular
choice for computer vision and image processing tasks in the machine learning community.

3.3.5. SpaCy
SpaCy5 is an open-source library specifically designed to address common challenges encoun-
tered in NLP tasks across more than 60 languages. This versatile library offers a wide array
of pretrained models tailored to various text processing tasks, including tokenization, part-of-
speech tagging, dependency parsing, and named entity recognition. One noteworthy feature
of SpaCy is its efficient memory management, making it ideal for processing large volumes of
information without encountering performance issues. The framework has been meticulously
engineered with Python and Cython, enabling effective scaling of memory management. Ad-
ditionally, SpaCy provides a user-friendly API for seamless integration with Python-based
workflows.

SpaCy stands out as an invaluable tool in the NLP domain, offering comprehensive solutions
for multilingual text processing. With its extensive range of pretrained models and robust
memory management capabilities, it has become a preferred library for tackling complex NLP
tasks efficiently.

3.3.6. Gensim
Gensim (Řehůřek & Sojka, 2010) is an open-source Python library specifically designed for
representing documents and plain text as semantic vectors using unsupervised machine learn-
ing algorithms. It offers a wide range of NLP algorithms that enable the retrieval of embed-
dings from text. Notable algorithms within Gensim include Word2Vec, FastText, Latent
Semantic Indexing, and Latent Dirichlet Allocation, among others. The library also provides
a training API for fine-tuning large-scale NLP models.

5https://spacy.io/
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Gensim includes pretrained models that can be utilized for various NLP tasks, particularly
those related to semantic understanding. These models can be pretrained in different specific
domains such as legal or health. Furthermore, Gensim has been developed in C to leverage
its execution speed and employs parallel routines to optimize processing times. Moreover,
the library adopts a data-streamed approach in its algorithms, mitigating issues of running
out of RAM when processing extensive corpora.

3.4. Selected technologies
In the above subsections a summary of a collection of the most used machine learning libraries
and frameworks has been developed. Now we will mention the ones which were finally used
and why.

When a researcher begin with a machine learning project implementation the first ques-
tion that must be resolved is which is the main backbone framework that it is going to be
used, the majority of them ends up in Pytorch or in TensorFlow. While TensorFlow offers
better visualization and debug tools to train models, Pytorch stands out more in the area
of data parallelism providing an API on which the distributed processing is automatically
implemented. Pytorch has an API on which due to its pythonic approach its usage is so
simple, by the other side TensorFlow is more focused in researchers with a more advance
knowledge in deep learning techniques which wants more control over all the processes. For
our purposes we have chosen Pytorch as our main backbone not only due to its simplicity
and its shorter learning curve, but also because it is incorporating from time to time new
functionalities which are reducing the difference between this and its main competitor Ten-
sorFlow. As we can see in figure 3.2 Pytorch is gaining popularity in this last years inside
the research community. It must be outstanded that other frameworks as Keras or Theanos
are also used in the deep learning community depending on the needs of the project, but in
this study we only included the more relevant ones.

Once we have selected the primary backbone framework, we can choose additional libraries
based on our specific needs. Since our focus is primarily on computer vision and NLP tasks,
we will utilize the OpenCV library for computer vision problems and SpaCy for NLP-related
tasks. During experimentation, we will observe that OpenCV is integrated into the backbone
implementation of certain models, whereas SpaCy will be employed for preprocessing scripts,
facilitating lexical modifications in texts and enabling result comparisons.

In addition to SpaCy, we also employed the Gensim library for obtaining semantic similari-
ties of words within the text processing domain. Furthermore, for certain tests, we utilized the
HuggingFace Transformers’ pipelines, using the PyTorch implementation backbone. These
pipelines have proven to be the most efficient and fast approach for conducting inference
tests, particularly for NLP tasks.
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Figure 3.2: Popularity comparison of TensorFlow and Pytorch inside the research community.



4. Proposed architecture

After selecting the technologies, software, and hardware as the platform for our experimenta-
tion, our next step is to create the necessary components to achieve our goals. This chapter
will primarily focus on presenting the components used in various tests conducted throughout
the experimentation process. In Section 4.1, we will introduce the datasets employed during
the experimentation. Then, in Section 4.2, we will discuss the different components that will
form the proposed pipelines, which will be explored further in the next chapter. Finally, in
Section 4.3, we will provide explanations of the diverse evaluation methods utilized to test
the effectiveness of the proposed pipelines.

4.1. Datasets
In this section, we will provide a list of the datasets used as input for the various experimental
tests conducted. Additionally, we will delve into the data and labeling provided by these
datasets, analyzing their suitability for our specific purposes.

4.1.1. Requirements
For the experimentation we plan to conduct, we require different datasets that possess specific
characteristics. Firstly, to evaluate the proposed architectures, we need datasets comprising
video scenes captured in diverse home environments. It is important that these datasets
contain annotations with detailed descriptions illustrating the events depicted in the videos.
These annotations should facilitate the evaluation of the Video Captioning pipeline. Addition-
ally, the annotations should provide information about the most relevant objects appearing
in the videos to enable testing of the Object Recognition pipeline. Secondly, we require a
dataset that presents a collection of risks associated with objects commonly found in houses.
This dataset will be used for conducting risk assessments.

As we have previously mentioned in earlier chapters, datasets that meet our specific re-
quirements are quite limited. Therefore, we have adopted a flexible approach in selecting
datasets. We have not only chosen datasets that fully meet all the requirements but also
selected datasets that we believe have the potential to yield satisfactory results doing some
modifications to the original proposed pipelines.

4.1.2. Selection
The first dataset we required was for the computation of the description and Object Recog-
nition pipelines. To fulfill this requirement, we selected the Charades and ETRI-Activity3D
datasets as references for our experimentation.

The Charades dataset, which was explained in Section 2.5.3, consists of 9,848 videos show-
casing daily home activities performed by 267 individuals from three different countries. This
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ensures visual diversity and richness. The dataset’s annotations provide valuable informa-
tion about the scenes, objects, and actions occurring in the videos. Additionally, it offers
multiple descriptions generated by different annotators for almost all the videos, with each
video having at least one annotated description. This dataset will be the primary dataset
used during our experimentation as it meets all the requirements outlined in the previous
subsection. We also selected the ETRI-Activity3D dataset, which was explained in Section
2.5.4, as a secondary dataset. This dataset contains videos of home environments featuring
three different scenes, where 55 distinct actions are performed by a group of 100 actors span-
ning two different age ranges. The dataset’s labeling includes information about the actions,
actors, scenes, and the number of cameras used to record the videos. However, in our ex-
perimentation, we will only utilize the action annotations. We chose this dataset due to its
visual content alignment with our requirements, even though the provided annotations were
not directly useful for our purposes. In Table 4.1 is shown a summary of the data provided
by the previously mentioned and explained Charades and ETRI-Activity3D datasets.

Features Charades ETRI-Activity3D

Number of videos 9,848 112,620

Dataset purpose Action recognition Action recognition

Application General context home Ac-
tion recognition

Home Action recognition for
elder care robots

Data modalities RGB videos RGB videos, depth map
frames, body index frames,
3D skeletal data

Subjects 267 (all age ranges) 100 (50 in 64-88 and 50 in
their 20s )

Annotated descriptions Yes (one or more) No

Annotated objects Yes No

Annotated actions Yes Yes

Table 4.1: Summary table of data provided by Charades and ETRI-Activity3D datasets.

Our second requirement was related to risk assessment, where we needed a dataset that
could establish a relationship between detected objects and potential risks. Unfortunately,
we were unable to find suitable existing datasets for this purpose. Consequently, we decided
to create our own corpus by referencing related datasets. The creation of the corpus involved
three core tasks: collecting a set of common objects found in homes, collecting a set of risks
associated with a home environment, and establishing the relationship between the objects
and risks. The next subsection will provide a detailed explanation of the taxonomy and
reference datasets used in the creation of the corpus.
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4.1.3. Risks-objects corpus
Each corpus is structured according to a taxonomy. In our proposed corpus, the primary
item is the object. Each object is composed of three different fields: the object’s name, a
list of specific risks associated with the object, and a list of properties defining common risks
applicable to more than one object in the corpus. Each property consists of a name and a
list of risks, while each risk is defined by an identifying name, an English description, and
the corresponding translation into Spanish.

The corpus is stored in JSON file format and contains a list of 56 distinct objects. In Table
4.2 are shown a summary of the 56 different object comprising the entire corpus. We define
an ”object” as any item commonly found in homes, ranging from objects like chairs to food
items like apples or pets like dogs.

Objects

Ball Bicycle Bench Bird

Cat Dog Backpack Umbrella

Handbag Tie Suitcase Frisbee

Baseball bat Racket Skateboard Bottle

Wine glass Cup Fork Knife

Spoon Bowl Banana Apple

Sandwich Orange Broccoli Carrot

Hotdog Pizza Donut Cake

Chair Couch Plant Bed

Table Toilet TV Laptop

Mouse Remote Keyboard Cellphone

Microwave Oven Toaster Sink

Refrigerator Book Clock Vase

Scissors Teddy bear Hairdryer Toothbrush

Table 4.2: Complete set of 56 objects that compose our Risks-objects corpus used during experimen-
tation.

Previously, we outlined three tasks to construct the corpus: collecting a set of objects, a
set of risks, and associating the objects with the corresponding risks. For collecting objects,
we used the COCO20171 (T.-Y. Lin et al., 2015) dataset as a reference for technical reasons.
As we will discuss in the following section, we will utilize a YOLO model pretrained on
COCO2017 as the core for Object Recognition, thus restricting the detection to objects

1Reference to the dataset version of 2014 was cited as 2017 version has no associated official publication.
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1 {
2 "name": "cup",
3 "properties": [fragile, liquid_container]
4 "specific_risks": []
5 }

Figure 4.1: Example of object included in the Risks-objects corpus. The cup object will acquire
the risk breakable associated with the property fragile and the ones associated with the
property liquid_container. Objects can have no specific risks.

1 {
2 "name": "fragile",
3 "risks": [
4 {
5 "name": "dangerous_pieces",
6 "en": "If it is made of a fragile material and collides with something, it can ←↩

↪→ shatter into dangerous pieces that can cause injuries.",
7 "es": "Si está hecho de un material frágil y choca contra algo, puede romperse ←↩

↪→ en pedazos peligrosos que pueden causar lesiones."
8 }
9 ]

10 }

Figure 4.2: Example of property included in the Risks-objects corpus.

within this dataset. To collect risks, we created new risks based on the objects provided
by the COCO2017 dataset. We analyzed each object in the dataset and identified potential
risks associated with them. Finally, to associate risks with objects, we utilized specific risks
and properties. Specific risks are exclusive to the object being defined, while properties
represent object features that define possible risks based on essential characteristics such as
manufacturing materials or the ability to store fluids. When a property is associated with
an object, the object inherits the risks defined by that property. The concept of a property
used here was extracted from the objects-actions corpus of the VirtualHome simulator, where
properties defined potential actions that could be performed on an object at a specific moment
in the simulation. Figures 4.2 and 4.1 show examples of a property and an object from the
proposed corpus. The complete corpus of properties and objects is shown in Appendix B.

4.2. Modules
In this section, we will describe the main components responsible for conducting the exper-
imentation. These modules encompass various aspects, from DL models to data processing
components that transform data prior to evaluation.

4.2.1. Video captioning module
The Video Captioning module is the cornerstone of our framework, as it generates natural
language descriptions from visual data. In this section, we will provide details about the
Video Captioning model used to obtain these descriptions from input videos.
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For this module, we utilized the SwinBERT Video Captioning model (K. Lin et al., 2022).
Developed by Microsoft Open Source in 2022, the SwinBERT model aims to create an end-to-
end solution for the Video Captioning task. It is an end-to-end model based on Transformers,
introducing notable advancements such as adaptable spatial-temporal feature encoding for
variable-length frames and a trainable sparse attention mask. This attention mask allows the
model to focus on frames with more significant spatial-temporal movements, thereby opti-
mizing task-specific performance. SwinBERT is one of the most prominent Video Captioning
models available today, demonstrating substantial improvements over previous methods on
widely-used Video Captioning datasets. In our experimentation, we will employ this model
with various pretrainings provided in its scientific publication. Figure 4.3 illustrates the in-
ternal architecture of the SwinBERT model. It follows the trend of Video Captioning models
that adopt a two-stage encoder-decoder approach.

The first stage of the Video Captioning module utilizes the Video Swin Transformer (Liu
et al., 2021) as encoder. This model achieves a favorable speed-accuracy trade-off while
maintaining densely sampled video frames. It takes raw video frames as input and produces
video spatial-temporal feature tokens. The VidSwin model is pretrained on the Kinetics
action recognition task.

In the second stage, we employ a as decoder a Transformer to generate natural language
descriptions. The input to this stage includes the feature tokens extracted in the first stage,
as well as word tokens. The output is obtained through a seq2seq generation process, where
word tokens have self-attention masks that restrict their attention only to existing output
tokens. Additionally, there is full attention to the feature tokens from the first stage.

Another important component within the model architecture is the Sparse Attention Mask.
It plays a vital role in the overall structure. This attention mask acts as a regularizer for the
multimodal transformer decoder (second stage), reducing redundancy among the different
video tokens. Due to the dense sampling of frames, the tokens can be redundant, which may
impact performance. The mask focuses on the active video tokens that contain rich spatial-
temporal information. In this model, a sigmoid activation is applied to the mask, ensuring
values are distributed between 0 and 1.

Figure 4.3: SwinBERT internal architecture.
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4.2.2. Pre-processing module
In this module, our focus is on manipulating the lexical aspects of the descriptions prior to
evaluation. We apply lexical transformations to the data that will be evaluated to demon-
strate how lexical information impacts metric evaluation.

In captioning tasks, it is not only important to compare individual words, n-grams, or sub-
sequences of tokens, but also to capture the underlying semantics of the compared sentences.
To maximize the extraction of semantic information, we conducted experiments using various
preprocessing techniques on the sentences before comparison.

We performed different combinations of preprocessing approaches to compare their effects
on the lexical results. The individual operations applied are summarized as follows:

• Lemmatization: It consists of obtaining the root lemma of each of the tokens. This
mainly helps us to avoid the rich lexical diversity, such as verb tenses.

• POS Filtering: Part-of-speech (POS) tagging consists of assigning to each token a
tag that represents its type of word. Once the tokens are tagged, we filter them to
only capture verbs, nouns, proper nouns, and adjectives because these types of words
constitute the semantic meaning of a sentence.

• Punctuation removal: As we detected that punctuation signs have a considerable
impact on the results of some samples, we tested the application of a punctuation
removal step.

Figure 4.4 demonstrates the application of the aforementioned transformations on a sample
sentence. To obtain all the lexical information about each token in the analyzed set of
sentences, we utilized the spaCy library2.

Figure 4.4: Applying individual transformation over a sample sentence.

4.2.3. Object extraction module
Once we have generated descriptions using SwinBERT, the next step is to extract the objects
mentioned in these captions. Although we will use SwinBERT checkpoints pretrained on
large-scale datasets that can recognize a wide range of objects, we will limit the variety of
objects to 56 different classes due to temporal restrictions stablished for developing this thesis.
The Object Recognition module, which is based on a backbone model pretrained on a limited
set of 80 classes, can only detect 56 items which are commonly found in homes. The details
of the Object Recognition module will be explained in the next subsection.

2https://spacy.io/

https://spacy.io/
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To extract objects from the captions, we perform element-wise operations where each token
in the captions is compared with each possible class in our object set. During this comparison,
we need to consider the underlying semantics of the tokens, as different tokens with different
lexicons can refer to the same concept. To address this, we utilize the Gensim library to
obtain vector embeddings representing the words. Instead of directly comparing the token
lexicons, we compare these embeddings. The comparison of embeddings is computed using
cosine similarity, which measures the distance between the embeddings. We used a threshold
of 0,62 to determine if a pair of tokens is a match, this means that the cosine similarity
between the embeddings must be equal to or higher than 0,62 for the SwinBERT token to
be considered a match with the object class being compared.

To determine the specified threshold, we compared the embeddings of our object set with
the embeddings of typical words used to mention objects commonly seen in homes. For
example, we compared ”tv” with ”television” and ”sofa” with ”couch”, this allowed us to
understand the cosine similarity value between words that refer to the same object. Addi-
tionally, we performed the same comparison using embeddings of words that are related but
do not represent the same objects. For instance, we compared ”refrigerator” with ”oven”
(both furniture) and ”apple” with ”banana” (both fruits), this helped us obtain the typical
threshold for words that are related but do not represent the same object. After computing
these comparisons across multiple examples, we observed that the lowest cosine similarity
value for objects referring to the same object was obtained between ”tv” and ”television,”
resulting in a value of 0,6426. On the other hand, the highest cosine similarity value for
words referring to different objects was obtained between ”refrigerator” and ”oven,” yielding
a value of 0,6128. Therefore, we determined that 0,62 is the optimal threshold for distin-
guishing between correct and incorrect matches based on our proposed COCO2017 classes
subset.

To obtain the vector embeddings, we used the pretrained model word2vec-google-news-300,
which is available through the Gensim API. In Figure 4.5 is shown an execution sample of
this module.

4.2.4. Object recognition module

The Object Recognition module serves as an auxiliary component in the object detection
stage of the architecture. It complements SwinBERT helping in the prioritization of objects
importance and enhancing video comprehension. This module consists of a fully-aimed Object
Recognition model that captures more detailed information about the presence of objects
compared to SwinBERT.

As a reference for this module, we have chosen the YOLOv7 model (C.-Y. Wang et al.,
2022). YOLOv7 is the latest official release from the YOLO family of models, designed for
real-time Object Recognition in videos and images. It is currently considered the fastest
and most accurate real-time object detection model for computer vision tasks. YOLOv7’s
architecture is based on previous models from the YOLO family, such as YOLOR (C.-Y. Wang
et al., 2021), and its key features and advancements can be summarized as follows:

• E-ELAN: The Extended Efficient Layer Aggregation Network is the main component
of the model’s backbone. It includes the ”expand, shuffle, merge cardinality” operation,
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Figure 4.5: Execution sample of the object extraction module over Charades input video.

which allows the model to continuously learn without destroying the original gradient
path. This enables the model to learn more diverse features.

• Compound model scaling: This feature maintains the initial design of the network
while allowing scaling of any attribute of the model. Models can scale key attributes
to meet the requirements of different applications. With compound scaling, the models
maintain an optimal structure when scaling attributes.

• Planned re-parameterized convolution: RepConv (Ding et al., 2021) is a CNN
architecture characterized by using a structural re-parameterization technique that en-
ables the model to have a different inference and training body. YOLOv7 includes
RepConv without identity connections.

• Multi-head: YOLO models consist of a backbone, a neck, and a head. In YOLOv7,
the architecture consists of two different heads: the lead head, responsible for obtaining
the final outputs, and the auxiliary head, which assists in training the middle layers.

• New label assignment: YOLOv7 incorporates a new label assignment strategy. The
network considers prediction results along with the ground-truth and assigns soft labels
instead of the traditional approach where label assignment directly refers ground-truth
to assign hard labels based on given rules.

During the experimentation, we will utilize the YOLOv7 model pretrained on the COCO2017
dataset, which enables the YOLOv7 model to recognize up to 80 different object classes. How-
ever, we will focus on a subset of 56 objects that are relevant to home scenes. Due to time
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constraints we have not conducted any training stages or tests using other pretraining check-
points. Future studies will consider expanding the number of classes that can be recognized
by the model. Additionally, we will test YOLOv7 using a confidence threshold of 0,7. This
means that the model will only output detected objects in which it has at least 70% confidence
in its prediction.

For the selection of the aforementioned threshold, we analyzed the confidence values of
object predictions from multiple videos. Our goal was to identify the range of confidence
values at which our YOLOv7 model tends to avoid outputting hallucinations. Through this
analysis, we discovered that a threshold of 0,7 results in correct detections in the majority of
cases. While this threshold is effective in preventing critical hallucinations, it may not com-
pletely eliminate confusion in cases involving objects with similar features, such as ”remote”
and ”cellphone”. However, this is not a major concern since, as we will show in subsequent
sections, this module will be used to construct a Risk Assessment pipeline in which similar
objects will have similar output risks. We also recognize the importance of maintaining flexi-
bility with the Object Recognition threshold to avoid overlooking important risks. In Figure
4.6 is shown an execution sample of YOLOv7 model over a Charades video.

Figure 4.6: Execution sample of the YOLOv7 model over a Charades input video.

4.2.5. Risks matching module

The risks matching module is responsible for assessing risks based on the objects detected
in the video. It represents the final step in the risk assessment pipeline. This module takes
two inputs: the objects recognized by SwinBERT and the objects detected by YOLOv7. It
outputs the potential risks identified in the scene based on the input objects. Additionally,
it provides a risk level associated with each detected risk, which is based on the relevance of
an object within the video.

The module consists of two main core parts. First, the objects are prioritized by relevance.
Then, the objects and risks are matched using the risks-objects corpus described in Section
4.1. To compute the relevance prioritization of objects, we use three different levels. Level
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1 represents the lowest relevance and includes objects detected only by the YOLOv7 model.
Level 2 includes objects detected only by the SwinBERT model. Finally, Level 3 represents
the highest relevance and includes objects detected by both the SwinBERT and YOLOv7
models. The relevance mechanism prioritizes objects detected by SwinBERT because this
model tends to capture the most relevant parts of scenes, while YOLOv7 aims to detect as
many objects as possible. Once the objects are prioritized by relevance, we compute the risks
matching process. This process involves searching for each detected object within the corpus
and extracting the associated risks. During risk extraction, we retrieve not only specific
risks but also risks associated with the properties defined for the analyzed object. Execution
samples of this module will be shown at the end of Section 5.3, where we test the complete
Risks Assessment pipeline over different input videos.

4.3. Evaluation

Evaluation metrics play a crucial role in the complete pipeline, as it is essential to ensure that
the metrics and methods used align with the task being performed. In this section, we will
introduce the set of evaluation methods that will be employed during the experimentation.

4.3.1. BLEU Score

BLEU (Papineni et al., 2002) is one of the most well-known metrics in the NLP community
and is commonly used in tasks such as text translation. It measures the quality of a translation
by comparing translated sentences to reference sentences. BLEU calculates the number of
matching n-grams between the references and translations and produces a score between 0
and 1, with 1 being the highest score.

There are several variants of BLEU based on the value of n for n-grams. The most com-
monly used variants are BLEU-1, BLEU-2, BLEU-3, and BLEU-4, with BLEU-4 being the
most stringent score. An example of different BLEU variants applied to a reference-candidate
sample can be seen in Figure 4.7.

While BLEU is widely used in NLP tasks, it has certain limitations that should be con-
sidered. One significant limitation is that BLEU only compares n-grams and does not take
into account the underlying semantics of the lexical information. An example of this is the
pair of words ”chair” and ”seat.” While these words may be considered distinct from a lexical
perspective, they share the same semantic meaning as they both refer to the same type of
object. Another of its limitations is also related with its lexical focus, as it computes direct
matches, sometimes assigns higher scores to sentences that use similar words (such as prepo-
sitions or articles) regardless of their actual quality. Despite these limitations, we will use
this metric due to its importance in the NLP community. However, we will also compute
other metrics that are more suitable for our task. For evaluating BLEU score, we have chosen
the SacreBLEU implementation from TorchMetrics3. We opted for BLEU-1 score because it
is the least lexically restrictive metric, as it compares unigram matches between sentences.

3https://torchmetrics.readthedocs.io/en/latest/

https://torchmetrics.readthedocs.io/en/latest/
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Figure 4.7: Comparison between variants of BLEU score.

4.3.2. BERT Score

BERT Score (Zhang et al., 2020) is a metric that was developed to address the limitations of
BLEU and to consider the semantic information in text evaluation. It compares the similarity
between two texts using a pretrained Bidirectional Encoder Representations from Transform-
ers (BERT) model (Devlin et al., 2019). BERT is a context-aware language model based on
Transformers that generates word embeddings for various NLP tasks. Word embeddings are
vector representations that capture the meaning of a text.

In BERT Score, the metric utilizes BERT to obtain word embeddings for the tokens in the
compared sentences and then calculates the cosine similarity between the embeddings. The
output of this comparison consists of three values: Precision, Recall, and F1 score. Each of
these values ranges from 0 to 1, with 1 indicating the highest score.

By using context-aware embeddings, BERT Score takes into account both the lexical and
semantic information for evaluating the similarity between texts. This metric has gained
popularity for evaluating text generation systems because it can capture semantic nuances
and is less sensitive to text length variations compared to BLEU. In Figure 4.8, an example
of BERT Score evaluation is shown, where the sentence with the highest semantic similarity
to the reference sentence receives the highest score.

To compute BERT Score, we utilized the official implementation available on their GitHub
repository4 with the setting “roberta-large.L17.no-idf.version=0.3.12(hug.trans=4.28.0.dev0)-
rescaled.fast-tokenizer”. This setting employs the roberta-large model as the BERT backbone
architecture, specifically using the output from layer number 17. It is important to note that
this setting includes rescaling of the output from roberta-large using a predefined baseline
to adapt the score range to 0-1. This rescaling is necessary because BERT Score calculates
cosine similarity, and the default output range of cosine similarity is -1 to 1.

4.3.3. Zero-shot classification

The Zero-shot classification task involves classifying a sentence into a specific class. In this
task, we provide a sentence and a set of labels to the model, and the model’s objective is to
determine how well the labels align with the meaning of the sentence. This task is typically
performed using large pre-trained models, as the effectiveness of the results heavily relies on
the amount of information the model has learned during training.

Although Zero-shot classification is not strictly an evaluation metric, we will utilize it as an
4https://github.com/Tiiiger/bert_score

https://github.com/Tiiiger/bert_score


42 Proposed architecture

Figure 4.8: Example of BERT Score evaluation using F1. The candidate with highest semantic
similarity achieves the highest score.

Figure 4.9: Example of Zero-shot classification determining scores of a sentence given 3 possible
labels.

evaluation method following the procedure outlined below. We will feed a natural language
Video Captioning description to a Zero-shot classification component and test whether it can
predict the annotated class that corresponds to the input video description. We will then
calculate the accuracy of the predictions to assess the performance of this evaluation. To im-
plement this, we will leverage the HuggingFace Transformers library’s pipelines functionality
and utilize the bart-large-mnli5 model as the backbone for label scoring. In Figure 4.9 an
example of the Zero-shot classification Transformers pipeline is shown.

4.3.4. Object Recognition Recall Score
Within the context of Object Recognition, one commonly used metric for evaluation is Recall.
Recall measures how effectively True Positives (TP) are identified among all predictions,
which is the sum of TP and False Negatives (FN). The formula for calculating Recall can
be seen in Figure 4.10. Recall serves as the foundation for more complex metrics like Mean
Average Precision (mAP), which is a widely known metric in object detection. However, we
will not be using mAP for evaluation since our datasets do not provide ground-truth bounding
box annotations, which are required for computing this metric.

The traditional Recall metric relies on Intersection over Union (IoU) to distinguish between
TP and False Positives (FP). IoU is another Object Recognition metric that indicates the
overlap between ground-truth bounding boxes and predicted bounding boxes. Recall uses an
IoU threshold to determine if a predicted object is a TP (if the prediction confidence is higher
than the threshold) or an FP (if the prediction confidence is lower than the threshold). Since
our datasets lack ground-truth bounding box annotations, we are unable to compute the IoU

5https://huggingface.co/facebook/bart-large-mnli
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Recall =
TP

TP + FN
(4.1)

Figure 4.10: Recall formula.

metric. Therefore, we will make slight modifications to the classical approach of the Recall
metric to adapt its calculation to our specific requirements.

As mentioned in Section 4.2.4, we are constrained to detect a limited number of classes.
Therefore, we will filter the ground-truth annotations by removing any objects that are not
part of the set we can detect. After this filtering process, we will calculate the Recall metric
by considering all the detected objects as True Positives (TP). Objects from the ground-truth
set that were not detected will be considered False Negatives (FN).





5. Experiments and results

Once we have reviewed the different components, modules, and evaluation methods that will
be utilized during the experimentation phase, we will delve into the experimental pipelines
proposed to achieve the goals which motivated this study. For each of the proposed pipelines,
we will provide an explanatory diagram and showcase the results obtained from the tests.
Since this study involves the interaction of various components, it is crucial to test the
models and datasets under different conditions to demonstrate both their effectiveness and
limitations. Consequently, not all the proposed pipelines align with the primary objective of
this study, and evaluation pipelines have also been included. The purpose of each pipeline will
be clearly explained. All the implemented code used to carry out the entire experimentation
developed is available in the GitHub repository of the thesis1.

In Section 5.1, we present the pipelines associated with the evaluation of Video Captioning
architectures. Following that, in Section 5.2, we introduce the pipeline designed for evaluating
the Object Recognition architecture. Finally, in Section 5.3, we present the pipeline dedicated
to Risk Assessment.

5.1. Descriptions evaluation
In this section, we will delve into the experimentation related to description generation. Here,
we will examine the proposed pipelines for evaluating the captions generated by the Video
Captioning module. The main evaluation metrics we will use are BLEU-1 and BERT Score.
These two metrics have been selected because they offer different evaluation perspectives.
BLEU-1 is a commonly used metric in NLP that primarily assesses the lexical similarity
between descriptions. On the other hand, BERT Score is a more recent metric that evaluates
descriptions from a semantic standpoint as well. In addition, we will also introduce the Zero-
shot classification task as an evaluation method. This allows us to leverage datasets that do
not provide annotated descriptions but instead provide annotated classes for actions.

5.1.1. Zero-shot classification-based pipeline
In this first proposal, we will analyze the implementation of the Zero-shot classification task
as an evaluation method. As mentioned earlier, the Zero-shot classification task involves
classifying sentences based on a given list of input labels. This task assigns a score to each
label, indicating the degree to which the label aligns with the underlying semantics of the
provided sentence.

For evaluating generated texts in Video Captioning, annotated descriptions provided by
the dataset are typically used. However, there are certain datasets, particularly those focused
on activity recognition in home environments, where the annotations are not descriptions but

1https://github.com/javirodrigueez/indoor-risks-assessment
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rather classes. In our study, we are specifically interested in datasets that include videos of
individuals performing household and daily tasks, which often have class-based annotations.
One such dataset is ETRI-Activity3D, which we will use for this architecture. We have two
main goals for this experiment: Firstly, we aim to demonstrate the capability of SwinBERT
to generate accurate descriptions in indoor environments. Secondly, we want to test if we
can leverage datasets with class-based annotations for our purposes.

In this section, the proposed architecture will use the first 880 videos from the ETRI-
Activity3D dataset as testset. We have selected this subset of videos because it encompasses
all possible scenes and actions available in the dataset, performed by the same person. This
subset will provide sufficient material for the experimentation we intend to conduct. The
remaining portion of the dataset includes the same scenes and actions but performed by
different subjects. We will employ the Video Captioning model SwinBERT, pretrained on
the MSVD D. Chen & Dolan (2011) dataset, to generate natural language descriptions from
the videos. MSVD is a popular large-scale dataset for Video Captioning task comprised by
more than 2,000 videos annotated with an approximate total sum of 120,000 descriptions
with a maximum length of one line. This dataset was created through Amazon Mechanical
Turk. We selected MSVD for pretraining because it provides shorter descriptions that are
more likely to be similar to the annotated classes, thus facilitating the labeling process. The
test set comprises videos covering all possible actions within the dataset, performed by the
same person, and recorded from different perspectives in a minimum of 2 and a maximum of
4 different rooms, depending on the action. Each video is identified by a series of characters,
with a portion of the identifier representing the action class being performed. We will utilize
this information in the evaluation step.

To compute the evaluation, we will employ a Zero-shot classification pipeline from the
Transformers library, using as backbone the model bart-large-mnli. We will provide the
pipeline with a SwinBERT description and each possible label from the ETRI dataset, where
each label represents an action. Finally, we will compare the predicted classes with the an-
notations in the video identifiers and calculate the Recall of predictions for the test set. We
will only provide Recall score as we are only interested in knowing the percentage of correct
predictions from all of them. Moreover, this will allow us to accelerate the development of
the experiment which is important due to the temporal limitations mentioned in previous
sections. Figure 5.1 depicts the complete pipeline, with the evaluation stage components
highlighted in red.

After conducting the evaluation, we found that this pipeline correctly predicts the label
for at least one scene of the action in approximately 34.55% of the actions. This represents
a correct recognition of 19 actions out of a total of 55. Additionally, we observed that when
the model accurately classifies an action, it tends to classify more videos correctly where that
action is being performed. The Recall percentages obtained for each action can be found in
Appendix I, specifically in Tables A.1 and A.2. These percentages were calculated by dividing
the number of correctly labeled videos for an action by the total number of videos for that
action.

Although the results obtained are not as high as desired, a careful examination reveals
that most of the errors occur during the labeling process rather than in the retrieval of
descriptions. It is important to consider that we are attempting to classify an interpretation
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Figure 5.1: Zero-shot classification of SwinBERT descriptions experiment pipeline.
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Figure 5.2: Sample of wrong labeling given a correct description.

of a video into a fixed class. Thus, it is possible that while the description of the video is not
incorrect from a human interpretation perspective, the assigned class may refer to a different
event occurring in the video. Examples of these issues can be seen in Figures 5.2 and 5.3.
Furthermore, we must take into account that we are performing a zero-shot classification task
on a set of 55 different classes. Due to the large size of the class set compared to a typical
zero-shot classification task, it is easy for the BART model used to confuse classes. These
factors explain the relatively low results obtained in this test.

Further studies on zero-shot classification are required to fully assess the feasibility of using
datasets with class-based annotations. However, these studies will be considered for future
works as we are restricted to one academic year for the composition of this thesis.

5.1.2. Metric-based evaluation pipeline

In this second proposal, we will focus our experimentation on evaluating the architecture using
established metrics commonly used in the field of NLP. Since we will be working with text
evaluation metrics, we will also leverage the textual pre-processing module to demonstrate
how lexical changes can impact the obtained results.

In this section, our objective is to evaluate the natural language descriptions generated by
SwinBERT from the videos of the Charades dataset, utilizing state-of-the-art metrics for re-
sult computation. Unlike the ETRI-Activity3D dataset, Charades provides richer annotation
data, including descriptions that explain the events in the videos. Therefore, we focus on the
Charades dataset as it contains the exact type of annotations required for our evaluation.

We conducted tests on a randomly selected set of 3,000 videos from the Charades dataset.
These videos were processed using three different SwinBERT pretrainings: MSVD, MSR-
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Figure 5.3: Sample of wrong labeling because of unexpected description.

VTT (Xu et al., 2016), and VATEX (X. Wang et al., 2020). For each pretraining, we
performed various experiments by applying different textual preprocessing techniques to
maximize semantic similarity. The individual textual preprocessing techniques tested were:
Raw (no transformation applied), POS (part-of-speech filtering, retaining only nouns, proper
nouns, adjectives, and verbs from the complete descriptions), Lemma (lemmatization of to-
kens), and Punct (removal of punctuation). We employed the different preprocessing tech-
niques and combined them in all possible ways to showcase results from different perspectives.
Additionally, it is worth mentioning that the VideoSwin model used during the encoding
phase of SwinBERT was initialized with pretrained weights from Kinetics-600 (Carreira et
al., 2018).

The evaluation of the results utilized two metrics: BLEU-1 and BERT Score. As mentioned
earlier, BLEU-1 measures the matching of n-grams between the generated description and
the target annotation. On the other hand, BERT Score obtains contextual embeddings for
each token in the descriptions using a BERT model, and then compares these embeddings
to calculate precision, recall, and F1 scores. Unlike BLEU, which solely relies on lexical
comparisons, BERT Score can compare sentences at a semantic level, assigning high similarity
scores to different words that are synonymous. Figure 5.4 illustrates the complete pipeline for
this experiment. Similar to the pipeline described in Subsection 5.1.1, the evaluation stage
components are highlighted in red in this figure.

Table 5.1 presents the results of the experiments conducted on a randomly selected sample
of 3,000 videos from the complete Charades dataset, measured in terms of the BLEU-1
metric. The highest score in each table is highlighted in bold. Furthermore, Figure 5.5
provides an example showcasing the different SwinBERT descriptions obtained using the
various pretrainings on the same video.
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Figure 5.4: BLEU-1 and BERT Score evaluation of SwinBERT descriptions experiment pipeline.
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Figure 5.5: Charades’ frame example with its ground-truth (GT) annotation and three different
captions obtained from SwinBERT (MSVD, MSR-VTT and VATEX).

Pre-processing MSVD MSR-VTT VATEX
Raw 0.0932 0.1207 0.2864
POS 0.0349 0.0339 0.1828
Lemma 0.1110 0.1268 0.3314
Punct 0.1146 0.1307 0.2921
Punct+POS 0.0418 0.0408 0.1635
Punct+Lemma 0.1211 0.1374 0.3070
Lemma+POS 0.0436 0.0423 0.2057
Punct+Lemma+POS 0.0525 0.0511 0.1892

Table 5.1: BLEU-1 score results of testing a sample of 3,000 videos with different textual prepro-
cessing methods.
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Pre-processing MSVD MSR-VTT VATEX
Precision Recall Precision Recall Precision Recall

Raw 0.454 0.198 0.434 0.199 0.454 0.310
POS 0.258 0.104 0.225 0.088 0.326 0.179
Lemma 0.328 0.128 0.313 0.137 0.366 0.266
Punct 0.467 0.166 0.447 0.166 0.424 0.270
Punct+POS 0.244 -0.018 0.214 -0.034 0.217 0.071
Punct+Lemma 0.329 0.085 0.315 0.095 0.322 0.217
Lemma+POS 0.223 0.090 0.176 0.068 0.307 0.171
Punct+Lemma+POS 0.208 -0.029 0.171 -0.045 0.217 0.087

Table 5.2: BERT Score results (precision and recall) of testing a sample of 3,000 videos with different
textual preprocessings.

In Table 5.1, we can observe the differences obtained by using one pretraining or another,
with the best results obtained using the VATEX checkpoint. VATEX had higher BLEU-1
scores because this SwinBERT checkpoint is capable of obtaining more detailed and larger
descriptions compared to MSVD and MSR-VTT. This contributes to more n-gram matches
as the descriptions have a more similar length to the annotated descriptions. Moreover,
we observed that removing tokens from the descriptions decreased the scores, which can be
explained by the nature of BLEU. With fewer n-grams to compare, and SwinBERT not being
able to output exact annotated words, scores are decreased. We also observed the capability
of SwinBERT to understand punctuation in sentences, as we get slightly better scores if we do
not remove the punctuation signs. In conclusion, the best combination in terms of BLEU-1
is the one where we maintained larger descriptions with a unified lexicon.

It can be observed that the results for BLEU-1 are not as high as expected, given the
performance of SwinBERT on other mainstream datasets. This can be explained by two
factors: the goal of the Charades dataset, which is designed for visual analysis, and the
nature of BLEU as a metric that was originally conceived for translation tasks and does not
take into account the semantic similarity of words but only exact matches.

Table 5.2 shows the previously described results in terms of precision and recall obtained
from BERT Score. Here, we can see slightly higher results compared to Table 5.1 due to
BERT’s ability to capture semantic similarity. In this table, we can observe more homoge-
neous values between different pretrainings because sentence length is not as important as it
was for the BLEU calculation.

5.2. Object Recognition evaluation

This section will focus on evaluating the Object Recognition architecture used to extract
objects from videos. As mentioned earlier, due to time constraints, our evaluation will be
limited to 56 specific object classes. Therefore, all stages of the pipeline and experiments will
be designed to test the recognition capability of these mentioned classes.
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5.2.1. Description

In this third proposal, our goal is to evaluate the Object Recognition pipeline using a combi-
nation of two fundamental models: a Video Captioning model and a pure Object Recognition
model. The Video Captioning model will capture the most relevant items and objects from
the video, while the Object Recognition model will detect not only the main items but also
the surrounding objects in the scene. These models will complement each other to enhance
video comprehension and increase the number of recognized objects. The pipeline for this
evaluation consists of three stages: Model execution, object extraction, and evaluation. To
conduct the experimentation, we will use a subset of 1,430 videos from the Charades trainset.
These videos have an annotated set of objects, and at least one of the objects must belong to
our COCO2017 classes subset. For this purpose we will randomly select 3,000 videos from
the Charades trainset and then we will filter the videos from this subset to only include those
with at least one object from our COCO2017 classes subset. Additionally, we will filter the
annotations themselves to only include objects belonging to our COCO2017 classes subset.

In the first stage of the pipeline, we will provide the input video to both the Video Caption-
ing and Object Recognition models to compute their outputs. For the Video Captioning task,
we will use the SwinBERT model discussed earlier, and for the Object Recognition task, we
will use YOLOv7. We will conduct different experiments using the VATEX, MSRVTT, and
MSVD SwinBERT pretrainings, while keeping the YOLOv7 model pretraining constant to
COCO2017. A confidence threshold of 0.7 will be used for YOLOv7 predictions, as explained
in Subsection 4.2.4.

In the second stage of the pipeline, we will extract objects from both model predictions
and create a unified set of objects. Since SwinBERT outputs natural language descriptions,
we need to process these texts to extract objects. For this purpose, we will use the objects
extractor module described in Subsection 4.2.3. This module makes use of the pretrained
model word2vec-google-news-300 available from the Gensim API to obtain vector embeddings
for each word in the generated description. We will compare these embeddings with the
embeddings of objects belonging to the subset of 56 classes from COCO2017. This comparison
will allow us to identify matches between the description’s words and the COCO2017 classes,
representing these matches the objects present in the description. We will combine the objects
extracted from SwinBERT descriptions with the objects detected by YOLOv7, removing any
duplicates.

Finally, in the third stage of the pipeline, we will evaluate the results using the Recall
score. We will compare the set of output objects from the second stage with the annotated
objects in the Charades dataset. Similar to the second stage, we will use the word2vec-google-
news-300 pretrained model to compute embeddings and perform object matching between
the annotated and detected sets of objects. In this stage, we will use a similarity threshold of
0.62 to consider a pair of embeddings as a match. Selection of this threshold was explained
in Subsection 4.2.3. The complete pipeline for this experimentation is shown in Figure 5.6.

5.2.2. Results

In Table 5.3, the Recall results for the conducted experimentation of the Object Recognition
pipeline on the subset of 1,430 filtered videos from Charades are presented. The highest score
in the table is highlighted in bold. Additionally, Figure 5.7 showcases the objects recognized
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Figure 5.6: Pipeline used for computing the evaluation of the Object Recognition proposed architec-
ture. COCO classes are extracted from the Risks-objects corpus as this corpus is based
on our subset of COCO’s 56 classes.
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Figure 5.7: Objects extracted from YOLO and different SwinBERT pretrainings over an input Cha-
rades video. Observe confusion recognising the screen as a laptop.

by YOLOv7 and the different SwinBERT pretrainings used over a sample image.
In the previously mentioned table, we can observe the differences in results when using

the three different SwinBERT pretrainings discussed throughout the thesis. We can also
see the impact of incorporating the complementary YOLOv7 model within the architecture.
The results under the column ”Not YOLO” represent the Recall score when the final set of
detected objects consists only of the objects extracted from SwinBERT descriptions.

As we can observe, differences between the results obtained from the three SwinBERT
pretrainings, when YOLOv7 model is not used, are consistent with the findings in Subsection
5.1.2, where we evaluated the generated descriptions using BLEU-1 and BERT Score. VA-
TEX pretraining achieves the highest score due to its denser descriptions, which allow for the
extraction of more objects as more tokens are involved in the output. Furthermore, the table
reflects the significantly positive impact of complementing SwinBERT-extracted objects with
the purely Object Recognition model YOLOv7. We can observe how the addition of YOLOv7
detections increases scores up to five times, particularly when using the MSVD SwinBERT
pretraining. Moreover, the last row of the table represents the evaluation when using only
detections obtained from YOLOv7. By examining the results when YOLOv7 is used, we
can conclude that the majority of the relevant detections are computed by this model, while
SwinBERT acts as a secondary model that provides a smaller contribution to the final score.
Consistent with previous experiments, we have demonstrated that the most effective Swin-
BERT pretraining is VATEX, yielding the highest Recall score for Object Recognition when
combined with YOLOv7.



56 Experiments and results

Although various combinations have been tested, the maximum Recall score achieved is
0.5719. This result can be attributed to several factors that imposed limitations on this
experimentation. The first factor is the quality of the videos in the Charades dataset. As
mentioned earlier, Charades was compiled using crowdsourcing, resulting in videos of varying
quality. This poor quality in some of the videos within our subset makes it challenging
to accurately recognize objects in some scenes. The second factor is related to the limited
annotations provided by Charades regarding objects. Although Charades offers annotations
for the most relevant objects in the video, it does not cover the entire set of objects present in
the scenes. Consequently, a significant number of objects detected by the Object Recognition
architecture do not contribute to the computation of the final score because these objects are
not included in the annotation set. In Figures C.2 and C.1 of the Appendix III are shown
demonstrations of these factors that are limiting the scores retrieved in the experimentation.

Pretraining YOLO Not YOLO
MSVD 0.5351 0.1046
MSR-VTT 0.5359 0.0915
VATEX 0.5719 0.2047
- 0.5082 -

Table 5.3: Recall evaluation of the Object Recognition pipeline over 1430 subset of videos from
Charades dataset. Last row represents Recall when only using YOLO detections.

5.3. Risks Assessment
In this final experiment, we will pursue the main objective proposed for this thesis, which is
the development of a pipeline for identifying potential risks associated with the environment
depicted in the input video. This pipeline serves as a practical application for all the research
and experimentation conducted throughout the thesis.

5.3.1. Description
The objective of the proposed pipeline in this subsection is to assess potential risks in input
videos based on the objects present in the depicted environment. This pipeline will analyze the
input video and generate a list of risks associated with the detected objects. Each risk will be
assigned a level of relevance based on the importance of the associated object within the scene.
We will utilize both the ETRI-Activity3D and Charades datasets to obtain execution samples.
We will use Charades as this is the main dataset used during the complete experimentation,
while we will also provide an additional execution sample from ETRI-Activity3D given its
nearest application to create systems involving the dementia motivation introduced at the
beggining of the thesis.

Similar to Section 5.2, where the Object Recognition pipeline was presented, this pipeline
will consist of three stages: Model execution, object extraction, and Risk Assessment. In the
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first stage, we will obtain the outputs from the SwinBERT and YOLOv7 models. YOLOv7
will utilize the COCO2017 pretraining with a confidence threshold of 0.7, and SwinBERT
will employ the VATEX pretraining, as this combination has shown to yield superior re-
sults. In the second stage, the object extraction module, with the Gensim pretrained model
word2vec-google-news-300 as its backbone, will be employed to extract objects belonging to
our COCO2017 classes subset from the SwinBERT descriptions. Finally, in the third stage,
the Risk Assessment will be performed using the Risks Matching module described in Sub-
section 4.2.5. In this module, objects provided by YOLOv7 and SwinBERT descriptions will
be assigned a level of relevance, and risks will be generated based on the complete set of
detected objects. The level of relevance assigned to an object will be associated with the risks
involved. The complete proposed pipeline is depicted in Figure 5.8.

5.3.2. Results
Now, the proposed Risk Assessment pipeline will be tested on one sample from the Charades
and ETRI-Activity3D datasets For each sample, the detected risks will be shown, along with
the relevance level of the risk and the object from which the risk was extracted. Additionally,
a figure will be included in which the detected objects are highlighted. Only one sample from
each dataset is provided because the purpose of this experimentation is to provide an intuitive
understanding of how the Risks Assessment pipeline functions, rather than conducting a
formal evaluation of it. The risks obtained are entirely based on the recognized objects, so
evaluating this pipeline would entail assessing the Object Recognition pipeline, which has
already been evaluated in previous sections.

Figure 5.9 presents the risks detected in a Charades input video, while Figure 5.10 shows
the detections obtained from the previously analyzed video. Figure 5.12 displays the risks
detected in an ETRI-Activity3D input video, and Figure 5.11 illustrates the detections asso-
ciated with this video.

In Section 5.2, we mentioned that the quality of videos was an important factor when draw-
ing conclusions from the results. Since this factor poses challenges in the Object Recognition
task, it consequently affects the Risks Assessment since it is based on Object Recognition.
This, combined with the computer vision’s ongoing challenge of differentiating objects that
share a high number of common features, results in the architecture occasionally confusing
similar objects. This can be observed in Figure 5.9, where the pipeline confuses the screen
with a laptop. It should be noted that despite this confusion, the obtained risks are still
valid, as objects with similar characteristics are expected to yield similar risks.
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Figure 5.8: Pipeline used to compute Risks Assessment.
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Figure 5.9: Risks Assessment over a Charades dataset input video. Although the pipeline momen-
tarily confuses the TV (screen computer) with a laptop all the risks detected are still
valid.
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Figure 5.10: Detections associated to the Figure 5.9. In red the TV/Laptop, in orange the chairs, in
green the cellphone, in cyan blue the remote, in dark blue the cup, in purple the book
and in magenta the couch.

Figure 5.11: Detections associated to the Figure 5.12. In cyan blue the bottle, in green the refriger-
ator
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Figure 5.12: Risks Assessment over an ETRI-Activity3D input video.





6. Conclusions

In this last chapter we will provide a synopsis of all the contributions presented in this thesis
and we will review future works that can be carried out in following studies. In section 6.1 we
will summarize highlighted points of thesis, then in section 6.2 we will revise some topics that
can be further studied in future works and finally in section 6.3 we will present publications
done in consequence to the development of the thesis.

6.1. Conclusions
In this thesis, we conducted a comprehensive review of the state-of-the-art in the Video
Captioning task, which involves generating a textual description from an input video. Based
on this review, we proposed a Risks Assessment pipeline that combines Video Captioning
with Object Recognition. This pipeline has potential applications in various fields, such
as the development of personalized assistants to support individuals with special needs in
their daily lives. Additionally, we introduced three evaluation architectures to assess the
different models within the Risks Assessment pipeline. These architectures utilized diverse
components, including different datasets and metrics during the evaluation stage. Notably,
SwinBERT was consistently used as the Video Captioning model across all architectures due
to its demonstrated performance and effectiveness in general contexts.

In the first evaluation architecture, we combined SwinBERT as the captioning model with
Zero-shot classification for evaluation purposes. Through this experiment, we demonstrated
the challenges in classifying generated descriptions from the ETRI-Activity3D dataset into
a single label due to the large set of different labels provided by the dataset. Consequently,
we concluded that this architecture is not suitable for our intended purposes without further
studies. Evaluation results for this architecture were given in terms of Recall score.

In the second evaluation architecture, we proposed utilizing SwinBERT with different pre-
trainings (MSVD, VATEX, and MSR-VTT) and applied various lexical transformations to
the outputs generated from processing videos from the Charades dataset, which contains
annotated descriptions unlike ETRI-Activity3D. We observed differences among these pre-
trainings, with VATEX showing the best performance due to its ability to produce more
extensive and detailed descriptions. We found that lexical transformations that unified the
sentence structure without removing semantic information (such as lemmatization or lemma-
tization with punctuation removal) achieved the highest scores. Additionally, we highlighted
the challenges posed by the Charades dataset for computer vision description generation and
evaluated a sample of 3,000 videos using BLEU-1 and BERT Score metrics. BERT Score was
deemed more suitable for evaluation as it captures semantic similarity over lexical informa-
tion. We concluded that this architecture is the most suitable among the evaluated ones for
fulfilling the description generation task.

In the third evaluation architecture, we proposed an Object Recognition pipeline composed
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of SwinBERT and complemented by YOLOv7, which enables a higher number of detections
compared to SwinBERT alone, which focuses on the most relevant objects. We utilized a
subset of 1,430 videos from the Charades trainset, filtered based on the existence of at least
one object belonging to our COCO2017 classes subset. In this evaluation, we emphasized
the importance and relevance of YOLOv7 for object extraction and concluded that the best
configuration for this architecture was to use VATEX pretraining for SwinBERT comple-
mented by the YOLOv7 model. VATEX pretraining yielded superior results as it produced
denser descriptions, which facilitated the inclusion of more objects within descriptions. We
also discussed two factors that limited the results: the poor quality of some Charades videos
and the lack of appropriate object annotations. Evaluation results were presented in terms
of Recall score.

Finally, we introduced the proposed Risks Assessment pipeline, which outputs risks along
with their relevance levels and the associated objects based on an input video. For this
pipeline, we utilized an architecture consisting of SwinBERT pretrained on VATEX and
YOLOv7 pretrained on COCO2017. We provided execution samples using input videos from
the Charades and ETRI-Activity3D datasets, and we explained that the typical problem in
computer vision of confusing very similar objects would not significantly impact our assess-
ment, as similar objects tend to involve similar risks.

6.2. Future works
In this section, we will provide an overview of works, studies, and enhancements that will
be considered for future development. These potential works are relevant for increasing the
performance of the different stages involved in the proposed pipelines, ultimately leading to
better results in the Risks Assessment task. The improvements resulting from these works
can potentially enable the utilization of the proposed pipeline in production environments,
such as personalized assistant systems for individuals with special needs.

• Dense Video Captioning: This task aims to obtain more detailed descriptions from
videos compared to Video Captioning. Future studies will focus on exploring this task
and researching models that can generate denser descriptions. This will increase the
possibilities of extracting a higher number of objects from the descriptions.

• Zero-shot classification: In the second proposed evaluation architecture, it was con-
cluded that using Zero-shot classification as an evaluation method was not suitable for
assessing descriptions. Further studies are needed to assess its suitability, including the
exploration of different models for the labeling process. Additionally, the inclusion of
a training stage for the labeling model can be considered.

• Subset of object classes: The Object Recognition task was limited to recognizing up
to 56 different object classes due to the YOLOv7 pretraining on COCO2017. For future
work, a training stage for YOLOv7 on objects commonly found in home environments
should be considered to increase the number of detectable classes.

• Alternative object segmentation methods: “Segment Everything Everywhere All
at Once” (Zou et al., 2023) is a recently published paper that demonstrates a system
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capable of segmenting visual content based on prompts. Future studies could explore
the use of SwinBERT descriptions as reference prompts to guide the segmentation
performed by such a system.

• SwinBERT contextual information: SwinBERT descriptions provide information
about the context, events, and actions occurring in the scene. Future studies can
leverage this information to complement the obtained detections and generate a list of
risks that not only depend on the detected objects but also consider the context of the
scene.

• Object states: The dangerousness of an object can vary depending on its state. Fur-
ther studies on detecting object states are necessary to include this information in the
Risks Assessment, enabling the exclusion of risks associated with states of objects not
present in the input scene.

6.3. Publications
As a consequence of the development of this thesis we were able to compose and release a
publication which covers some part of the experimentation presented in this study. The work
was released in the 18th International Conference on Soft Computing Models in Industrial and
Environmental Applications (SOCO 2023) entitled as “Indoor Scenes Video Captioning”.
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A. Appendix I

Action Score Action Score

eating food with a fork 31.25% pouring water into a cup 0.0%

taking medicine 0.0% drinking water 12.5%

putting food in the fridge/tak-
ing food from the fridge

0.0% trimming vegetables 0.0%

peeling fruit 0.0% using a gas stove 0.0%

cutting vegetable on the cut-
ting board

0.0% brushing teeth 0.0%

washing hands 18.75% washing face 0.0%

wiping face with a towel 0.0% putting on cosmetics 0.0%

putting on lipstick 0.0% brushing hair 50.0%

blow drying hair 0.0% putting on a jacket 0.0%

taking off a jacket 0.0% putting on/taking off shoes 0.0%

putting on/taking off glasses 0.0% washing the dishes 0.0%

vacuumming the floor 0.0% scrubbing the floor with a rag 81.25%

wipping off the dinning table 12.5% rubbing up furniture 25.0%

spreading bedding/folding
bedding

100.0% washing a towel by hands 0.0%

hanging out laundry 0.0% looking around for something 4.17%

using a remote control 0.0% reading a book 0.0%

reading a newspaper 75.0% handwriting 6.25%

Table A.1: Recall percentage obtained from testing Zero-shot classification for each of the ETRI-
Activity3D dataset’s actions (From action 1-34).
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Action Score Action Score

talking on the phone 50.0% playing with a mobile phone 0.0%

using a computer 0.0% smoking 0.0%

clapping 0.0% rubbing face with hands 0.0%

doing freehand exercise 6.25% doing neck roll exercise 0.0%

massaging a shoulder oneself 0.0% taking a bow 0.0%

talking to each other 12.5% handshaking 12.5%

hugging each other 0.0% fighting each other 0.0%

waving a hand 0.0% flapping a hand up and down
(beckoning)

0.0%

pointing with a finger 0.0% opening the door and walking
in

12.5%

fallen on the floor 29.17% sitting up/standing up 33.33%

lying down 45.83% - -

Table A.2: Recall percentage obtained from testing Zero-shot classification for each of the ETRI-
Activity3D dataset’s actions (From action 35-55).



B. Appendix II

B.1. Objects corpus

1 [
2 {
3 "object": "ball",
4 "properties": ["playable", "cause_stumbling"],
5 "specific_risks": []
6 },
7 {
8 "object": "bicycle",
9 "properties": ["cause_stumbling"],

10 "specific_risks": []
11 },
12 {
13 "object": "bench",
14 "properties": ["cause_stumbling"],
15 "specific_risks": []
16 },
17 {
18 "object": "bird",
19 "properties": ["alive", "break_objects"],
20 "specific_risks": []
21 },
22 {
23 "object": "cat",
24 "properties": ["alive", "break_objects"],
25 "specific_risks": []
26 },
27 {
28 "object": "dog",
29 "properties": ["alive", "break_objects"],
30 "specific_risks": []
31 },
32 {
33 "object": "umbrella",
34 "properties": ["cause_stumbling"],
35 "specific_risks": []
36 },
37 ...

Figure B.1: Fragment of the objects file which comprises the Risks-objects corpus (Object 1-7).
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1 ...
2 {
3 "object": "handbag",
4 "properties": ["cause_stumbling"],
5 "specific_risks": []
6 },
7 {
8 "object": "tie",
9 "properties": [],

10 "specific_risks": [
11 {
12 "name": "asphyxiation",
13 "en": "If it is tied tightly, it can cause asphyxiation",
14 "es": "Si está atado con fuerza, puede causar asfixia"
15 }
16 ]
17 },
18 {
19 "object": "suitcase",
20 "properties": ["cause_stumbling"],
21 "specific_risks": []
22 },
23 {
24 "object": "frisbee",
25 "properties": ["break_objects"],
26 "specific_risks": []
27 },
28 {
29 "object": "bat",
30 "properties": ["cause_stumbling", "break_objects"],
31 "specific_risks": []
32 },
33 {
34 "object": "racket",
35 "properties": ["cause_stumbling", "break_objects"],
36 "specific_risks": []
37 },
38 {
39 "object": "skateboard",
40 "properties": ["cause_stumbling", "break_objects"],
41 "specific_risks": []
42 },
43 {
44 "object": "bottle",
45 "properties": ["liquid_container", "fragile"],
46 "specific_risks": []
47 },
48 ...

Figure B.2: Fragment of the objects file which comprises the Risks-objects corpus (Object 8-15).
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1 ...
2 {
3 "object": "wineglass",
4 "properties": ["liquid_container", "fragile"],
5 "specific_risks": []
6 },
7 {
8 "object": "cup",
9 "properties": ["liquid_container", "fragile"],

10 "specific_risks": []
11 },
12 {
13 "object": "fork",
14 "properties": ["sharp", "choke"],
15 "specific_risks": []
16 },
17 {
18 "object": "knife",
19 "properties": ["sharp"],
20 "specific_risks": []
21 },
22 {
23 "object": "spoon",
24 "properties": ["choke"],
25 "specific_risks": []
26 },
27 {
28 "object": "bowl",
29 "properties": ["fragile"],
30 "specific_risks": []
31 },
32 {
33 "object": "banana",
34 "properties": ["eatable"],
35 "specific_risks": []
36 },
37 {
38 "object": "apple",
39 "properties": ["eatable"],
40 "specific_risks": []
41 },
42 {
43 "object": "sandwich",
44 "properties": ["eatable"],
45 "specific_risks": []
46 },
47 ...

Figure B.3: Fragment of the objects file which comprises the Risks-objects corpus (Object 16-24).
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1 ...
2 {
3 "object": "orange",
4 "properties": ["eatable"],
5 "specific_risks": []
6 },
7 {
8 "object": "broccoli",
9 "properties": ["eatable"],

10 "specific_risks": []
11 },
12 {
13 "object": "carrot",
14 "properties": ["eatable"],
15 "specific_risks": []
16 },
17 {
18 "object": "hotdog",
19 "properties": ["eatable"],
20 "specific_risks": []
21 },
22 {
23 "object": "pizza",
24 "properties": ["eatable"],
25 "specific_risks": []
26 },
27 {
28 "object": "donut",
29 "properties": ["eatable"],
30 "specific_risks": []
31 },
32 {
33 "object": "cake",
34 "properties": ["eatable"],
35 "specific_risks": []
36 },
37 {
38 "object": "chair",
39 "properties": ["cause_stumbling"],
40 "specific_risks": [
41 {
42 "name": "breakable",
43 "en": "If a person sits on it and it is constructed from soft materials, it can ←↩

↪→ break.",
44 "es": "Si una persona se sienta en él y está construido con materiales blandos, ←↩

↪→ puede romperse."
45 }
46 ]
47 },
48 ...

Figure B.4: Fragment of the objects file which comprises the Risks-objects corpus (Object 24-32).
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1 ...
2 {
3 "object": "couch",
4 "properties": ["cause_stumbling"],
5 "specific_risks": []
6 },
7 {
8 "object": "plant",
9 "properties": ["cause_stumbling", "fragile"],

10 "specific_risks": []
11 },
12 {
13 "object": "bed",
14 "properties": ["cause_stumbling"],
15 "specific_risks": []
16 },
17 {
18 "object": "table",
19 "properties": ["cause_stumbling"],
20 "specific_risks": []
21 },
22 {
23 "object": "toilet",
24 "properties": ["cause_stumbling", "flood"],
25 "specific_risks": []
26 },
27 {
28 "object": "tv",
29 "properties": ["electric", "energy_consuming"],
30 "specific_risks": []
31 },
32 {
33 "object": "laptop",
34 "properties": ["electric"],
35 "specific_risks": []
36 },
37 {
38 "object": "mouse",
39 "properties": ["electric"],
40 "specific_risks": []
41 },
42 {
43 "object": "remote",
44 "properties": ["electric"],
45 "specific_risks": []
46 },
47 ...

Figure B.5: Fragment of the objects file which comprises the Risks-objects corpus (Object 33-40).
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1 ...
2 {
3 "object": "keyboard",
4 "properties": ["electric"],
5 "specific_risks": []
6 },
7 {
8 "object": "cellphone",
9 "properties": ["electric"],

10 "specific_risks": []
11 },
12 {
13 "object": "microwave",
14 "properties": ["electric", "hot_interior", "cause_burn_down"],
15 "specific_risks": []
16 },
17 {
18 "object": "oven",
19 "properties": ["electric", "hot_interior", "cause_burn_down"],
20 "specific_risks": []
21 },
22 {
23 "object": "toaster",
24 "properties": ["electric", "hot_interior", "cause_burn_down"],
25 "specific_risks": []
26 },
27 {
28 "object": "sink",
29 "properties": ["water_related"],
30 "specific_risks": []
31 },
32 {
33 "object": "refrigerator",
34 "properties": ["energy"],
35 "specific_risks": [
36 {
37 "name": "spoil_food",
38 "en": "If the refrigerator door remains open for a long time, it can cause the ←↩

↪→ food inside to spoil.",
39 "es": "Si la puerta del refrigerador permanece abierta durante un período ←↩

↪→ prolongado, puede provocar que los alimentos en su interior se ←↩
↪→ deterioren."

40 }
41 ]
42 },
43 {
44 "object": "book",
45 "properties": ["cause_stumbling"],
46 "specific_risks": []
47 },
48 ...

Figure B.6: Fragment of the objects file which comprises the Risks-objects corpus (Object 41-48).
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1 ...
2 {
3 "object": "clock",
4 "properties": ["electric", "fragile"],
5 "specific_risks": [
6 {
7 "name": "take_down",
8 "en": "If it is a wall clock, it can accidentally fall and cause injuries to ←↩

↪→ people in its vicinity.",
9 "es": "Si se trata de un reloj de pared, puede caerse accidentalmente y causar ←↩

↪→ lesiones a las personas que se encuentren cerca."
10 }
11 ]
12 },
13 {
14 "object": "vase",
15 "properties": ["liquid_container", "fragile"],
16 "specific_risks": []
17 },
18 {
19 "object": "scissors",
20 "properties": ["sharp"],
21 "specific_risks": []
22 },
23 {
24 "object": "teddybear",
25 "properties": ["cause_stumbling"],
26 "specific_risks": []
27 },
28 {
29 "object": "hairdryer",
30 "properties": ["electric"],
31 "specific_risks": [
32 {
33 "name": "burn",
34 "en": "If it is used in hot mode and pointed at a person's body for a few ←↩

↪→ seconds, it can cause burns.",
35 "es": "Si se utiliza en modo caliente y se apunta al cuerpo de una persona ←↩

↪→ durante unos segundos, puede provocar quemaduras."
36 }
37 ]
38 },
39 {
40 "object": "toothbrush",
41 "properties": ["choke"],
42 "specific_risks": []
43 }
44 ]

Figure B.7: Fragment of the objects file which comprises the Risks-objects corpus (Object 49-56).



84 Appendix II

B.2. Properties corpus

1 ...
2 {
3 "name": "eatable",
4 "risks": [
5 {
6 "name": "choke",
7 "en": "If it is eaten too fast or improperly, it can cause choking.",
8 "es": "Si se come demasiado rápido o de forma inadecuada, puede provocar asfixia←↩

↪→ ."
9 }

10 ]
11 },
12 {
13 "name": "swallowable",
14 "risks": [
15 {
16 "name": "choke",
17 "en": "If it is used improperly, it can cause choking.",
18 "es": "Si no se utiliza correctamente, puede provocar atragantamientos."
19 }
20 ]
21 },
22 {
23 "name": "liquid_container",
24 "risks": [
25 {
26 "name": "spill_liquid",
27 "en": "If it collides with something, its content can be spilt.",
28 "es": "Si choca con algo, su contenido puede derramarse."
29 }
30 ]
31 },
32 {
33 "name": "sharp",
34 "risks": [
35 {
36 "name": "cause_cuts",
37 "en": "If it used improperly, it can cause injuries.",
38 "es": "Si no se utiliza correctamente, puede provocar lesiones."
39 }
40 ]
41 },
42 ...

Figure B.8: Fragment of the properties file which comprises the Risks-objects corpus (Property 1-4).
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1 [
2 {
3 "name": "cause_stumbling",
4 "risks": [
5 {
6 "name": "collide",
7 "en": "If the object is placed in an unexpected location or if a person becomes ←↩

↪→ confused, it can lead to accidental falls or injuries.",
8 "es": "Si el objeto está colocado en un lugar inesperado o si una persona se ←↩

↪→ confunde, puede provocar caídas accidentales o lesiones."
9 }

10 ]
11 },
12 {
13 "name": "playable",
14 "risks": [
15 {
16 "name": "break_objects",
17 "en": "If it is used for playful purposes without exercising caution, it has the←↩

↪→ potential to collide with other objects, resulting in their breakage.",
18 "es": "Si se utiliza con fines lúdicos sin tener precaución, puede chocar con ←↩

↪→ otros objetos que pueden romperse."
19 }
20 ]
21 },
22 {
23 "name": "alive",
24 "risks": [
25 {
26 "name": "attack",
27 "en": "If it becomes confused or nervous, it can attack causing injuries.",
28 "es": "Si se confunde o se pone nervioso, puede atacar causando lesiones."
29 }
30 ]
31 },
32 ...

Figure B.9: Fragment of the properties file which comprises the Risks-objects corpus (Property 5-7).
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1 ...
2 {
3 "name": "electric",
4 "risks": [
5 {
6 "name": "short-circuit",
7 "en": "If a short-circuit happens, it can cause electric shocks or burns.",
8 "es": "Si se produce un cortocircuito, puede causar descargas eléctricas o ←↩

↪→ quemaduras."
9 }

10 ]
11 },
12 {
13 "name": "energy_consuming",
14 "risks": [
15 {
16 "name": "energy",
17 "en": "If it is powered on for a long time, it can lead to high energy ←↩

↪→ consumption expenses.",
18 "es": "Si está encendido durante mucho tiempo, puede generar gastos elevados de ←↩

↪→ consumo de energía."
19 }
20 ]
21 },
22 {
23 "name": "hot_interior",
24 "risks": [
25 {
26 "name": "high_temperature",
27 "en": "If a person touches the interior of the object when it is powered on, ←↩

↪→ they can get burned.",
28 "es": "Si una persona toca el interior del objeto cuando está encendido, esta ←↩

↪→ puede quemarse."
29 }
30 ]
31 },
32 ...

Figure B.10: Fragment of the properties file which comprises the Risks-objects corpus (Property
8-11).
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1 ...
2 {
3 "name": "fragile",
4 "risks": [
5 {
6 "name": "dangerous_pieces",
7 "en": "If it is made of a fragile material and collides with something, it can ←↩

↪→ shatter into dangerous pieces that can cause injuries.",
8 "es": "Si está hecho de un material frágil y choca contra algo, puede romperse ←↩

↪→ en pedazos peligrosos que pueden causar lesiones."
9 }

10 ]
11 },
12 {
13 "name": "water_related",
14 "risks": [
15 {
16 "name": "flood",
17 "en": "If water accumulates beyond the available capacity, it can cause flooding←↩

↪→ .",
18 "es": "Si el agua se acumula por encima de la capacidad disponible, puede ←↩

↪→ provocar inundaciones."
19 }
20 ]
21 },
22 {
23 "name": "cause_burn_down",
24 "risks": [
25 {
26 "name": "burn_object",
27 "en": "If a flammable object is put on its interior, it can burn down",
28 "es": "Si se coloca un objeto inflamable en su interior, este puede arder"
29 }
30 ]
31 }
32 ]

Figure B.11: Fragment of the properties file which comprises the Risks-objects corpus (Property
12-14).





C. Appendix III

Figure C.1: This figure represents a demonstration of the low amount of object annotations pro-
vided by Charades. Although a rich set of objects is detected, none of these are in the
annotations set so the Recall score for the Object Recognition task in this video is 0,0.
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Figure C.2: This figure represents a demonstration of how poor quality videos affects Objects Recog-
nition results. This frame shows a person drinking a cup of coffe. As the video has poor
quality both SwinBERT and YOLOv7 are not able to recognize any object (only rec-
ognizes the person). The annotations objects set of this video is only composed by the
object ”Cup”.
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