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In recent years, several new Artificial Intelligence methods have been developed to make models 
more explainable and interpretable. The techniques essentially deal with the implementation of 
transparency and traceability of black box machine learning methods. Black box refers to the 
inability to explain why the model turns the input into the output, which may be problematic 
in some fields. To overcome this problem, our approach provides a comprehensive combination 
of predictive and explainability techniques. Firstly, we compared statistical regression, classic 
machine learning and deep learning models, reaching the conclusion that models based on deep 
learning exhibit greater accuracy. Of the great variety of deep learning models, the best predictive 
model in spatio-temporal traffic datasets was found to be the Adaptive Graph Convolutional 
Recurrent Network. Regarding the explainability technique, GraphMask shows a notably higher 
fidelity metric than other methods. The integration of both techniques was tested by means 
of experimental results, concluding that our approach improves deep learning model accuracy, 
making such models more transparent and interpretable. It allows us to discard up to 95% of the 
nodes used, facilitating an analysis of its behavior and thus improving the understanding of the 
model.

1. Introduction

The problem of road traffic, both inside and outside cities, has a great impact on people’s lives, affecting both population and 
freight transport. Currently, it is particularly relevant to the development of smart cities, which allow traffic data to be obtained 
through road sensors, public transport monitoring or data obtained through mobile applications. All this digital data represents 
an opportunity for traffic prediction models, which can make use of a greater amount of information, with this hence being an 
opportunity to obtain more complex and precise models, while allowing for better validation of their predictions.

At a technical level, it is a problem that combines both spatial and temporal components, which is why some models only work 
with the temporal elements and others attempt to combine both the spatial and temporal components of the problem. This aspect is 
key when choosing the model used to seek to predict traffic, since models that only use temporary information lose much of the data 
available to improve their predictions.

The importance of the traffic problem has led to it being extensively studied, and different methods have been used to attempt 
to solve it over the years. The problem of traffic predictions has essentially been addressed via two approaches: using Statistical 
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Models or Machine-Learning-based frameworks. Traditional models often use statistical methods, with the Auto-Regressive Integrated 
Moving Average (ARIMA) being a reference framework for short-term traffic flow prediction [1]. Since ARIMA, improvements have 
been proposed, such as models with a Kalman filter [2], or models with seasonal processes or using ARIMA subsets. However, due 
to the stochastic nature of traffic flow, these statistical models do not typically yield accurate results [3].

Furthermore, non-statistical models, based on neural networks, have also been widely used for traffic flow prediction. In [4], 
the authors proposed a surface back propagation neural network (BPNN) that, despite obtaining relatively good results, did not 
work for large volumes of data. To solve the treatment of large amounts of information, deep learning emerged. Based on multiple 
layers, this allows a large number of characteristics to be progressively extracted from the input data. Thus, a large number of 
deep learning architectures, such as Recurrent Neural Networks (RNN) [5], Deep Belief Network (DBN) [6], Convolutional Neural 
Network (CNN) [7] or Restricted Boltzmann Machines (RBM) [8], have been used to study and analyze the proposed traffic problem. 
More specifically, in the field of Machine and Deep Learning traffic prediction, we find Linear Support Vector Regression (SVR) 
[9], a general end-to-end approach to sequence learning (FC-LSTM) [10], Graph Convolutional Network (GCN) [11] and Graph 
Convolutional Recurrent Neural Network (DCRNN) [12], among others. These last three models show the diversity of deep learning 
architectures, with FC-LSTM being a Recurrent Neural Network and DCRNN being based on the combination of Graph Convolutional 
Network and Recurrent Neuronal Network [13,14].

Thus, one of the motivations of the present work is to explore the best models for traffic forecasting. For this purpose, we 
compare prediction methods, taking into account the metrics of absolute error, mean square error and mean absolute percentage 
error, verifying that the models from the field of deep learning present better results than the others. Of the models with the best 
results, the one combining Graph Convolutional Network (GCN) and Recurrent Neural Network (RNN) architectures was chosen, 
since it enables the use of both spatial and temporal information in the problem and a more accurate prediction is obtained.

Furthermore, in some problems, the lack of understanding of the final solution is not a critical element (e.g. facial recognition), 
while, in other cases, the explainability factor may be crucial, for instance, in the decision to grant a loan to a bank client.

The use of predictive techniques based on machine learning (ML) has increased in many areas of our lives. However, due to their 
complexity, the predictions made are often difficult to validate and, above all, to explain. Even if ML frameworks are available for 
exploration, their complexity makes it difficult to explain how they work. This difficulty is known as the “black box” problem applied 
to ML and seeks to answer the question of “What else can the model tell me?” [15].

Within the field of deep learning, techniques based on Graph Neural Networks (GNNs) have been shown to be highly effective 
for many applications, such as computer vision [16], audiorecognition [17], video recognition [18], selecting similar neighbors 
[19] or community discovery [20] among others. However, when a graph neural network made a prediction, a question of explain-
ability arose: “What fraction of the input graph has the greatest influence on the model’s decision?” Finding an answer requires 
understanding the model’s inner workings in general and emphasizing the insights on the decision for the instance at hand.

The non-linear, multi-layered structure of deep learning models, means they are often criticized for being neither transparent nor 
interpretable, and there is thus a need to build trust and fairness in these types of techniques. In this sense, explainable artificial intel-
ligence [21] is a technique that has made significant progress in several areas. This field has two main issues, namely, interpretability 
and explainability. Interpretability refers to the design of models that can be understood by the very design of their architecture, 
resulting in white boxes, while explainability is based on the ability to explain different features of a black box model. The use of the 
term typically refers, especially in the field of deep learning, to functions or models with a behavior that is too complex for people 
to understand.

Interpretability and explainability have contrasting approaches. In the case of interpretability, an attempt is made to develop ma-
chine learning models from architectures that are based on the logic used by people, while, in the case of explainability, the intention 
is to develop methods that make it possible to bring the behavior of black boxes closer to human logic. Currently, explainability is 
one of the most important challenges facing AI on its journey to application in real tasks, with there being different objectives that 
need to be solved [22].

When interpretability is sought, fuzzy systems are an alternative to consider. Fuzzy systems are designed to solve problems by 
using human logic; they are able to represent the inaccuracy of imprecise concepts, which are typical of human language, like, for 
instance, expressing the degree to which granting a loan represents a low, medium or high risk. To do this, such systems make use of 
a series of rules that can be created from expert knowledge or from algorithms such as the Wang-Mendel (WM) algorithm [23]. Fuzzy 
systems belong to the category of white-boxes, but, like other methods in this category, they have the disadvantage that, despite 
having adequate explainability, the accuracy and adaptability of deep learning methods have been shown to be superior [24].

To overcome the limitations of fuzzy systems, different alternatives influenced by deep learning have been proposed. For instance, 
models based on fuzzy systems have been developed that imitate the architecture of deep learning models, where models are built 
with several layers of depth, as is the case of Random Locally Optimized Deep Fuzzy System (RLODFS) [25]. Furthermore, research 
has sought the integration of fuzzy systems with deep learning models [26], either through integrated models, which use fuzzy 
systems as part of the training of the model. For instance, in [27,28] the authors improve the training of the weights of the deep 
learning model. Others have implemented ensemble models, which use fuzzy systems sequentially [29] or in parallel [30] with deep 
learning models, combining both techniques.

The combination of the use of fuzzy systems and deep learning has received special attention in recent years, leading the field 
to evolve, which, together with their explainability properties, makes them an interesting alternative when explainability is sought. 
However, methods that integrate fuzzy systems and deep learning also have their limitations. In models where layers with different 
rules are concatenated, such as RLODFS, the increase in the number of rules, which enhances accuracy, reduces the interpretability 
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of the model. Thus, a proper balance between the number of rules and the interpretability must be struck. In models that integrate 
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deep learning and fuzzy system models, the structure becomes more complex and the computational cost increases. Nonetheless, in 
most models, interpretability does not greatly increase, and interpretability and accuracy cannot be combined, making a trade-off 
between both properties necessary [31].

These limitations have to be considered, along with the fact that although a number of works have focused on traffic prediction 
using fuzzy systems [32], these are focused on accuracy rather than explainability and are more limited than those performed 
with GNNs, which represent the state of the art for traffic prediction. Therefore, fuzzy systems are an alternative when it comes to 
obtaining models with explainability for traffic prediction, although the aim of this work is to provide explainability to the state of 
the art of traffic prediction. In so doing, we seek to make explainability applied to GNNs the line of research that is most aligned with 
the aim of this paper, since the development and scope of GNNs in the field of traffic prediction is greater in the current context.

Different methodologies exist to apply explainability to Supervised Machine Learning methods (SML) [33]. These methodologies 
have different characteristics that refer to different qualities. Some of these are applicable to white boxes, which are models that are 
interpretable, and others refer to methods applicable to black boxes, which require the use of explainability. These methods can be 
classified as pre-hoc or post-hoc, depending on the type of model. In the former, explainability is part of the design of the model 
itself, as is the case with white box models. In post-hoc models, an explainability technique is applied a posteriori, with this being 
the case of black box models. As we use a predictive model that combines the Graph Convolutional Network (GCN) and Recurrent 
Neural Network (RNN) architectures, it is necessary to use a post-hoc technique, since the model behaves as a black box.

In order to achieve transparency and interpretability in deep learning models and build trust and fairness, it is necessary to 
combine predictive deep learning techniques with explainability models. With this motivation in mind, the main aim of our proposal 
is to integrate two Artificial Intelligence (AI) models, one referring to the prediction, which allows the problem of traffic prediction in 
a city to be addressed, and the other referring to an explainability technique in order to better understand its predictive performance. 
To fulfil this objective, it is necessary to analyze the problem, propose a deep learning predictive model, and integrate it with 
a selected explainability technique that fits the general aim established. Furthermore, it is necessary to analyze the experimental 
results to determine whether the aforementioned general aim is achieved.

Our contribution in achieving this goal is thus summarized as follows:

• We conduct a comprehensive comparison of existing statistical regression models, classic machine learning models and deep 
learning models applied to different sets of traffic data.

• A systematic comparison of existing deep learning models is presented to learn the complex spatial and dynamic temporal 
dependencies in traffic datasets.

• We compare existing explanation techniques with the aim of selecting the one that best fits the chosen predictive architecture.
• We perform the necessary changes in the definition of the predictive model and the explainability technique to integrate both.
• We analyze the results of applying the explainability technique to traffic forecasting, showing how confidence in a predictive 

model can be increased due to a greater knowledge of its behavior.

To achieve this objective, the paper is organized as follows. Section 2 presents a comparison with the aim of selecting a pre-
dictive model and an explainability methodology. Section 3 provides a detailed description of the predictive and explainability 
models selected. In Section 4, we describe the steps involved in the explanation of the predictive model. The results of the proposed 
combination of models are discussed in Section 5. Finally, our conclusions are presented in Section 6.

2. Preliminaries

Achieving the aim of this paper, that is, integrating artificial intelligence (AI) predictive models with explainability techniques, 
entails selecting a predictive model and then one of explainability. Thus, within the wide range of existing Artificial Intelligence 
algorithms, we must select one. To do this, we first distinguish between statistical regression models, classic machine learning 
models and deep learning models. The choice of the explainability algorithm raises fewer doubts because it is a relatively new 
branch of AI and the number of existing algorithms is smaller. In addition, within the different existing explainability techniques, 
the one that best fits the selected predictive architecture was chosen.

To select the best predictive model, the comparison was conducted on different sets of traffic data. In addition, to make the 
comparison, use was made of the most widely employed precision metrics, namely, the mean absolute error (MAE), the root mean 
square error (RMSE) and the mean absolute percentage error (MAPE).

In this section, we therefore present the different datasets used and the metrics used to compare the models. We also discuss 
statistical regression, classic machine learning and deep learning algorithms, as well as a more refined comparison of the most 
advanced deep learning models used. Finally, we select the explainability model that best suits the chosen predictive algorithm.

2.1. Datasets

Different traffic datasets are used to compare models. Specifically, the datasets selected are PeMSD3, PeMSD4, PeMSD7 and 
PeMSD8. These are the most widely used datasets for the traffic prediction problem, all of which are taken from the Performance 
Measurement System (PeMS) [34] of the California Department of Transportation.

All these data are obtained from a set of sensors and consist of a single variable, which indicates the volume of traffic in each of 
3

the sensors in periods of 5 minutes. The different datasets vary in the number of sensors and in the span of time covered.
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Table 1

Comparison between the metrics obtained by the regression statistical models, machine 
learning and deep learning models in four different traffic datasets.

Dataset Metrics ARIMA VAR SVR LSTM-FC DCRNN

PeMSD3 MAE 35.41 23.65 21.97 21.33 18.18

RMSE 47.59 38.26 35.29 35.11 30.31

MAPE 33.78% 24.51% 21.51% 23.33% 18.91%

PeMSD4 MAE 33.73 23.75 28.70 27.14 24.70

RMSE 48.80 36.66 44.56 41.59 38.12

MAPE 24.18% 18.09% 19.20% 18.20% 17.12%

PeMSD7 MAE 38.17 75.63 32.49 29.98 25.30

RMSE 59.27 115.24 50.22 45.84 38.58

MAPE 19.46% 32.22% 14.26% 13.20% 11.66%

PeMSD8 MAE 31.09 23.46 23.25 22.20 17.86

RMSE 44.32 36.33 36.16 34.06 27.83

MAPE 22.73% 15.42% 14.64% 14.20% 11.45%

• PeMSD3 consists of 358 sensors and spans from September 9, 2018 to November 30, 2018.
• PeMSD4 consists of 307 sensors and spans from January 1, 2018 to February 28, 2018.
• PeMSD7 consists of 883 sensors and spans from May 1, 2017 to August 31, 2018.
• PeMSD8 consists of 170 sensors and spans from July 1, 2018 to August 31, 2018.

In addition, the PeMS-Bay dataset was used since it includes the geolocation of the nodes (sensors), which facilitates the correct 
visualization, on a map, of the results obtained by applying the explainability technique on the chosen predictive model. This data set 
(PeMS-Bay) contains the average speed of vehicles measured in 325 sensors in periods of 5 minutes. This information was obtained 
from the data of the Performance Measurement System (PeMS) [34] in the period from January 1, 2017 to May 31, 2017.

2.2. Precision metrics

To perform the comparison, the following metrics were used: the mean absolute error (MAE), root mean square error (RMSE) 
and mean absolute percentage error (MAPE). These are the metrics most widely used to compare the results obtained when making 
predictions. The definitions of these metrics are:

MAE = 1
𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖|,

RMSE =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2,

MAPE = 100%
𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖|
𝑦𝑖

,

(1)

where 𝑁 is the amount of data and 𝑦𝑖 represents specific data.

2.3. Comparison of statistical regression, machine learning and deep learning models

The problem of traffic density has been extensively studied, leveraging methods from many different fields of Artificial Intelli-
gence, such as statistical regression models, classic machine learning models and deep learning models, among others.

Statistical regression methods include models of the Auto-Regressive Integrated Moving Average (ARIMA) type with a Kalman filter 
and models of the Vector Auto-regressive (VAR) type, with these being one of the first to be applied to the traffic problem. In the 
field of classic machine learning, many of the studies conducted are based on Linear Support Vector Regression (SVR) [9]. Within deep 
learning models, a wide variety of methods is used, with the Long Short-Term Memory-Fully Connected (LSTM-FC) [10] and Deep 
Convolutional Recurrent Neural Network (DCRNN) [12] algorithms being the most noteworthy. These two types of models show the 
diversity of the deep learning architectures used to perform the comparison, since LSTM-FC is a recurrent neural network (RNN) that 
only makes use of temporary data, while DCRNN combines the use of RNNs and Graph Convolutional Networks (GCN) [11], using 
both temporal and spatial data.

Table 1 clearly shows that the DCRNN model obtains the best results in the three metrics and in the four datasets used. This 
evidences that the use of deep learning with both spatial and temporal data yields better results than statistical regression models, 
4

classic machine learning models or deep learning models that only use temporal information, such as LSTM-FC.
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Table 2

Performance comparison between the metrics obtained by the deep learning models in PeMSD3, PeMSD4, PeMSD7 and PeMDS8.

Dataset Metrics DCRNN GraphWaveNet STGCN ASTGCN(r) STSGCN STFGNN STGODE AGCRN

PeMSD3 MAE 18.18 19.85 17.49 17.69 17.48 16.77 16.50 15.86

RMSE 30.31 32.94 30.12 29.66 29.21 28.34 27.84 27.98
MAPE 18.91% 19.31% 17.15% 19.40% 16.78% 16.30% 16.69% 15.04%

PeMSD4 MAE 24.70 25.45 22.70 22.93 21.19 19.83 20.84 19.45

RMSE 38.12 39.70 35.55 35.22 33.65 31.88 32.82 31.82

MAPE 17.12% 17.29% 14.59% 16.56% 13.02% 13.02% 13.77% 12.82%

PeMSD7 MAE 25.30 26.85 25.38 28.05 24.26 22.07 22.99 21.20

RMSE 38.58 42.78 38.78 42.57 39.03 35.80 37.54 35.14

MAPE 11.66% 12.12% 11.08% 13.92% 9.21% 9.21% 10.14% 8.99%

PeMSD8 MAE 17.86 19.13 18.02 18.61 17.13 16.64 16.81 15.75

RMSE 27.83 31.05 27.83 28.16 26.80 26.22 25.97 24.94

MAPE 11.45% 12.68% 11.40% 13.08% 10.60% 10.60% 10.62% 10.17%

2.4. Comparison of deep learning models

The results obtained in Table 1 clearly suggest that the models based on deep learning present the best results in traffic-related 
data. Thus, the next step is to carry out another performance comparison between different modern deep learning models that make 
use of both temporal and spatial data from the PeMSD3, PeMSD4, PeMSD7 and PeMSD8 datasets.

All the models used to carry out the second comparison are recent models with different characteristics. The Diffusion Convolu-
tional Recurrent Neural Network (DCRNN) uses a combination of graph recurrent neural networks to capture temporal information, 
and diffusion convolutions to capture spatial information, using an encoder-decoder structure. Graph WaveNet [35] combines the 
use of stacked dilated 1D convolutions to capture temporal information, with the use of graph convolutional network layers to pro-
cess spatial information. Spatio-Temporal Graph Convolutional Networks (STGCN) [36] are composed of different blocks comprising 
by a combination of one-dimensional convolutions followed by gated linear units and graph convolutional networks layers to cap-
ture both temporal and spatial information. Attention Based Spatial-Temporal Graph Convolutional Networks (ASTGCN) [37] capture 
spatio-temporal information using both attention mechanisms and convolutions. Spatial-Temporal Synchronous Graph Convolutional 
Networks (STSGCN) [38] seek to obtain localized complex correlations that exist between temporal and spatial information through 
the use of different modules composed of a group of graph convolutional operations. Spatial-Temporal Fusion Graph Neural Net-
works (STFGNN) [39] learn hidden spatio-temporal dependencies, using a novel operation that is applied, in parallel, to different 
spatial and temporal graphs. To this end, a series of temporal graphs are generated from a data-driven method. Spatial-Temporal 
Graph Ordinary Differential Equation Networks (STGODE) [40] capture dynamic spatio-temporal relationships through the use of 
tensor-based ordinary differential equations, which allow networks to be synchronously deepened to use spatio-temporal features. 
Finally, the Adaptive Graph Convolutional Recurrent Network (AGCRN) [41] model uses two modules to learn unique characteristics 
of each node and a non-predefined matrix that allows correlations to be detected at the spatial and temporal level in the time series.

As can be seen in Table 2, no model presents the best performance in all metrics and datasets. However, the model that generally 
presents a better set of results is AGCRN, obtaining the best metrics in 11 out of 12 cases. Consequently, this was the model chosen 
for the study.

The selected AGCRN model presents an architecture focused on learning specific characteristics of the different nodes of the 
graph, as well as the relationships between them at spatial and temporal level. Thus, since the aim of the article is to integrate 
prediction models with explainability techniques, the choice of the deep learning predictive technique is a key issue. This is because 
the explainability model chosen must take into account the characteristics of the architecture based on graph neural networks.

2.5. Comparison of explainability models

Explainability in graph neural networks (GNNs) is an emerging field, where the number of techniques is still very limited, and 
where the metrics for evaluating and comparing methods are not standardized [21,42]. A number of articles [43] address the problem 
of comparing the performance of explainability methods, but without a standard metric. However, precision and fidelity, in their 
different variants, are the two most widely used metrics.

Taking into account that an explainability technique needs a model on which to be evaluated, a number of predictive models 
of varying efficiency, based on the architecture, are used to evaluate such techniques. Graph Convolutional Networks (GCN) [11], 
Graph Attention Networks (GAT) [44], Graph Sample and Aggregate (GraphSAGE) [45] or Graph Convolutional Network via Initial 
residual and Identity mapping (GCNII) [46] are the most frequently used.

Due to the specificity and complexity of determining the optimal explainability method for a GNN model, we focus on finding 
the method that provides the best performance on a graph convolutional network (GCN) architecture. This is because the chosen 
predictive model (AGCRN) is based on GCN. In addition, datasets with real data are used, since those employed in the experimentation 
5

(PeMS) belong to this category.
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Table 3

Comparison between the mean value of 
fidelity for sparsities in a range of 0.5 to 
0.95 in the GCN architecture.

Cora Pubmed

GNNExplainer 0.3912 0.1475
PGExplainer 0.2164 0.0960
GraphMask 0.5777 0.3080

It is worth noting that the AGCRN predictive model behaves like a black box, which makes it necessary to use a post-hoc 
explainability technique. The existing literature shows that of the various explainability methods that meet the aforementioned 
requirements, two main groups can be distinguished:

• Non GNSs-specific techniques: These are techniques that were not initially designed for GNNs but have been adapted to be 
used in them.

• GNNs-specific techniques: These techniques have been designed from the outset to be specifically used in the GNN architecture, 
and are thus designed and adapted to their needs.

Of the two groups of explainability techniques, we evidently chose to use those that are specific to GNNs, since they are better 
adjusted to the needs of this architecture, and therefore present better performance.

Before selecting the explainability method to use, it is necessary to establish a series of criteria in order to compare effectiveness. 
Of the different existing metrics, it was decided to use sparsity and fidelity since the combination of these two metrics allows us to 
indicate the influence of the changes produced by the explainability method in a predictive model.

Fidelity indicates the fidelity of the prediction made by the model to which the explainability technique is applied, compared to 
the prediction of the original model, and is defined as:

Fidelity = 𝑃 (𝑌 = 𝑐|𝐺) − 𝑃 (𝑌 = 𝑐|𝐺∖𝐺𝑆 )

𝑐 = arg max
𝑐∈𝐶

𝑃 (𝑌 = 𝑐|𝐺), (2)

where:

𝑌 → Model prediction.
𝐺 → Original graph.
𝐺𝑆 → Graph after applying the explainability method.
∖ → Set difference operator.
𝐶 → Set containing all classes.

On the other hand, sparsity measures the number of edges of the graph that are eliminated. A lower number of edges is normally 
considered better when explainability techniques are applied, since a smaller subgraph is considered to have been achieved where 
the information the model needs to make its prediction is found. Sparsity is defined as:

Sparsity = 1 − 𝑚

𝑀
, (3)

where:

𝑚 → Number of edges of the subgraph.
𝑀 → Number of edges of the original graph.

When we perform the different comparisons, sparsity is used as a parameter that serves to define the number of edges to be 
preserved. In this way, the evolution of fidelity is compared by varying the sparsity parameter.

Table 3 shows a comparison of the mean fidelity for sparsities between 0.5 and 0.95 for the explainability methods of GNNEx-
plainer [47], PGExplainer [48] and GraphMask [49]. These three methods are post-hoc and specific for GNNs, while the comparison 
is made on the Cora and Pubmed datasets, both of which are made up of real data [21]. The architecture used to obtain the different 
metrics for the three explainability methods was GCN. In so doing, we sought to obtain a comparison that is as close as possible to 
the operation of the explainability method on the AGCRN model.

Table 3 shows that, for both datasets, the fidelity value for the GraphMask method is notably higher than for the other two 
methods. Consequently, GraphMask was selected as the explainability method to be used, since the average fidelity obtained suggests 
it should provide better results.

3. Definition of the problem

This section defines the problem to be addressed through a detailed explanation of the selected predictive model, as well as the 
6

explainability method.
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3.1. Predictive model

To understand traffic dynamics and make future predictions, it is essential to model complex spatial and temporal correlations 
with time series data. In this sense, many works have focused on the design of complex graph convolutional network (GCN) models, 
which capture shared patterns in the nodes and use predefined graphs. However, recent studies (see [41]) show that, for predictive 
traffic models, the definition of the predefined graph can be avoided and the learning of node-specific patterns is essential. In 
addition, the graphs generated in this way are typically incomplete and not specific to prediction tasks, and may present biases. To 
avoid all these problems, in [41], the authors propose a mechanism of two adaptive modules, which are:

1. Node Adaptive Parameter Learning (NAPL) module: this module learns node-specific patterns by factoring traditional GCN 
network parameters and generating node-specific parameters from weights and biases from a shared pool.

2. Data Adaptive Graph Generation (DAGG) module: it infers inter-dependencies between nodes from the data and generates the 
graph during training.

These two independent modules can be adapted to GCN-based prediction models, both separately and together, and have pa-
rameters that can be easily learned. The combination of NAPL and DAGG with recurrent networks gives rise to a unified predictive 
model called the Adaptive Graph Convolutional Recurrent Network (AGCRN), which is capable of capturing spatial and temporal 
correlations of specific nodes in time series of traffic data. Additionally, the training of the AGCRN model generates a significant 
node representation vector for each time series that contains important information about the dataset, traffic, in our case, that can 
be applied to other tasks. Thus, the goal of the AGCRN model is to predict the future value of a time series.

Next, we explain in detail the two modules that make up the AGCRN predictive method, since understanding these parts is 
essential for integration with the explainability method.

3.1.1. Node Adaptive Parameter Learning (NAPL)

Let 𝐺(𝑉 , 𝐸) be an undirected graph, where 𝑉 represents the set of 𝑁 nodes, 𝐸 is the set of edges and 𝐴 the adjacency matrix of 
the graph 𝐺. As the model is based on a graph convolutional network (GCN) [11] whose graph convolution operation approximates 
a first-order Chebyshev polynomial expansion, it can be generalized to a multidimensional network as follows:

𝑍 = (𝐼𝑁 +𝐷
− 1

2𝐴𝐷
− 1

2 )𝑋Θ+ 𝑏, (4)

with:

𝑍 ∈𝑅𝑛×𝑓 → Output of the GCN.
𝐼𝑛 ∈𝑅𝑛×𝑛 → Identity matrix of size 𝑛 × 𝑛.
𝐷 ∈𝑅𝑛×𝑛 → Degree matrix.
𝐴 ∈𝑅𝑛×𝑛 → Adjacency matrix of 𝐺
𝑋 ∈𝑅𝑛× 𝑐 → Input of the GCN layer.
Θ∈𝑅𝑐×𝑓 → Weights of the GCN Layer.
𝑏 ∈𝑅𝑓 → Bias of the GCN layer.
𝑛 → Number of nodes.
𝑐 → Number of input variables.
𝑓 → Number of output variables.

From an individual node viewpoint, this convolution operation can be seen as a transformation of an input 𝑋𝑖 ∈ 𝑅1× 𝑐 into 
𝑍𝑖 ∈𝑅1×𝑓 with Θ and 𝑏 equal for all nodes.

Note that the matrix 𝐷− 1
2𝐴𝐷

− 1
2 , is the Laplacian matrix ̃ of graph. In addition, the previous equation allows us to know all the 

components of the GCNs that must be taken into account to understand the changes proposed by the NAPL and DAGG modules into 
which the AGCR model is divided.

Assigning a set of specific Θ ∈ 𝑅𝑐×𝑓 parameters to each node generates a set of 𝑛 × 𝑐 × 𝑓 parameters, a number so large that it 
would make the model prone to overfitting. To avoid this, it is proposed that the model learns two smaller matrices, to then generate 
the matrix Θ ∈𝑅𝑛× 𝑐×𝑓 using the multiplication of both, that is,

Θ=𝐸𝐺 ⋅𝑊𝐺, (5)

where 𝐸𝐺 ∈ 𝑅𝑛×𝑑 is the matrix of embeddings of the nodes, 𝑊𝐺 ∈ 𝑅𝑑 × 𝑐×𝑓 is the set of shared weights and 𝑑 is the size of the 
embedding, with 𝑑 being less than 𝑛 and independent of the number of nodes. The use of both matrices makes it possible to reduce 
the number of parameters to be learned by the network.

For the bias generating 𝑏 the same principle is followed, that is

𝑏 =𝐸𝐺 ⋅ 𝑏𝐺, (6)
7

where 𝑏𝐺 is a set shared bias.
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Substituting in (4) the convolutional equation is obtained

𝑍 = (𝐼𝑁 +𝐷
− 1

2𝐴𝐷
− 1

2 )𝑋𝐸𝐺𝑊𝐺 +𝐸𝐺𝑏𝐺. (7)

3.1.2. Data Adaptive Graph Generation (DAGG)

Most of the graph convolutional networks (GCN), applied to predictive models of traffic data, require a predefined adjacency 
matrix 𝐴 for the calculation of the convolution operation. There are two basic approaches to precomputing the graph: 1) using 
a distance function, which defines the graph according to the geographical distance between different nodes; 2) by means of a 
similarity function, which defines the proximity of the node by measuring the similarity of the node’s attributes. However, with these 
approaches, the predefined graph cannot contain complete information about spatial dependency, and is also not directly defined for 
its use in prediction tasks, which can generate considerable biases.

To solve the problem, this module generates graphs that adapt to the data in such a way that the hidden dependencies of the 
data can be inferred, with the model itself calculating an interdependency matrix between the nodes. This interdependence matrix 
will be the Laplacian matrix of the graph ̃, from which the adjacency and degree matrices can be calculated. Thus, the Laplacian 
𝐷

− 1
2𝐴𝐷

− 1
2 is redefined as

̃ =𝐷
− 1

2𝐴𝐷
− 1

2 = softmax(ReLU(𝐸𝐴 ⋅𝐸𝑇
𝐴
)), (8)

where the function ReLU is used to avoid negative values and softmax to normalize the values.
During training, 𝐸𝐴 is automatically updated to learn the hidden dependencies between the different time series and obtain the 

adaptive matrix for the graph convolutions.

3.1.3. Adaptive Graph Convolutional Recurrent Network (AGCRN)

A link is established between the two modules defined to establish a predictive model of traffic time series without biases. Thus, 
substituting (8) in (7) we obtain

𝑍 = (𝐼𝑁 + softmax(ReLU(𝐸𝐴 ⋅𝐸𝑇
𝐴
)))𝑋𝐸𝐺𝑊𝐺 +𝐸𝐺𝑏𝐺 = (𝐼𝑁 + ̃)𝑋𝐸𝐺𝑊𝐺 +𝐸𝐺𝑏𝐺. (9)

This equation represents the version of a graph convolutional network modified with the NAPL and DAGG modules. This allows 
specific patterns to be captured in each node using NAPL, and inferring interdependencies between them with the DAGG module.

Formula (9) makes use of spatial information, but the traffic prediction also has a temporal component. Thus, to add this temporal 
component, another module called Gated Recurrent Units (GRU) [50] is used. To integrate the three modules (GRU, NAPL and 
DAGG), the fully connected layers, which GRU uses, are replaced by the NAPL and DAGG modules.

Finally, the implementation of the GRU module with the addition of bias is

𝐴̃ = (𝐼𝑛 + softmax(ReLU(𝐸𝐸𝑇 ))),

𝑧𝑡 = 𝜎(𝐴̃[𝑋∶,𝑡, ℎ𝑡−1]𝐸𝑊𝑧 +𝐸𝑏𝑧),

𝑟𝑡 = 𝜎(𝐴̃[𝑋∶,𝑡, ℎ𝑡−1]𝐸𝑊𝑟 +𝐸𝑏𝑟),

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ̂𝑡 + (1 − 𝑧𝑡)⊙ ℎ̂𝑡−1,

ℎ̂𝑡 = tanh(𝐴̃[𝑋∶,𝑡, 𝑟 ⊙ ℎ𝑡−1]𝐸𝑊ℎ̂ +𝐸𝑏ℎ̂),

(10)

where 𝐸 is the array of embeddings shared by NAPL and DAGG, 𝑧𝑡 is the update gate, 𝑟𝑡 is the reset gate, ℎ𝑡 is the output in step 𝑡, 𝑥𝑡
is the input at step 𝑡, ℎ̂𝑡 is the candidate activation in step 𝑡, 𝑊 , 𝑈, 𝑏 are parameters to be learned by the model, ⊙ is the Hadamart 
product, 𝜎 is the sigmoid function, and [⋅] is the concatenation operator.

To obtain the final model, which will perform the prediction, several AGCRN layers are chained, followed by a final layer that 
will perform a linear transformation, obtaining as a result, a matrix of dimension 𝑅𝑛×𝜏 , with 𝜏 the size of the window, indicating the 
number of steps to predict.

3.2. GraphMask explainability model

The GraphMask [49] explainability technique provides adequate performance in models based on Graph Convolutional Network 
(GCN) architectures. It is a specific graph neural network explainability technique designed and adapted to the needs of this type of 
network. Furthermore, it is a post-hoc method, that attempts to understand how graph neural networks (GNNs) use the graph edges 
when making a prediction. This is intended to detect the connections that are important for the model, and thus identify superfluous 
edges in order to mask them and avoid their use. In short, this method makes decisions about whether to maintain or remove edges 
of the graph, to ensure that discarded edges have no relevance to the model’s predictions. Given a graph 𝐺, for each layer of the 
convolutional neural network, the method returns a subgraph that reduces the number of edges used and, therefore, delimits the 
relevant connections so that the model can make predictions.

Given an input graph of a GNN, in each layer 𝑘, a representation ℎ(𝑘)𝑢 is calculated for each node 𝑢, which is a function of the 
representations of the nodes of the previous layer. All the nodes are assigned an initial representative ℎ(0)𝑢 such that, for the different 
8

layers 𝑘 > 0, a GNN can be defined through a message function 𝑀 and an aggregation function 𝐴:
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𝑚𝑘
𝑢,𝑣

=𝑀𝑘(ℎ𝑘−1
𝑢

, ℎ𝑘−1
𝑣

, 𝑟𝑢,𝑣), (11)

ℎ𝑘
𝑢
=𝐴𝑘({𝑚𝑘

𝑢,𝑣
∶ 𝑢 ∈ (𝑣)}), (12)

where:

𝑢, 𝑣 → Both nodes of an edge.
𝑟𝑢,𝑣 → Relationship between nodes 𝑢 y 𝑣.
 (𝑣) → The set of neighboring nodes of 𝑣.
𝑘 → Number of the layer.

The messages can be understood as the information that each node transmits to its neighbors, while the aggregation function is 
responsible for combining the messages that arrive at a node from its neighbors. In the case of GCNs, the messages correspond to the 
result of applying the convolutions on each of the nodes.

The goal of GraphMask is to detect the set of edges (𝑢, 𝑣) that can be ignored without affecting the model’s prediction or accuracy 
below a set threshold. When an edge (𝑢, 𝑣) can be ignored, both it and its corresponding messages 𝑚𝑘

𝑢,𝑣
are considered superfluous. 

Ignoring a message means that when calculating the status of a node using equation (12), the edge (𝑢, 𝑣) will not be taken into 
account.

In masking the edges, two key elements must be considered. The first is that GNNs have the problem of being highly sensitive to 
changes in the graph architecture, while the second is that many of the edges may be superfluous except for the normalization task. 
Taking both elements into account, GraphMask ignores the edges, based on a binary option 𝑧𝑘

𝑢,𝑣
∈ {0, 1}, but replacing its message 

with a learned base value (learned baseline) 𝑏𝑘, following the formula:

𝑚̃𝑘
𝑢,𝑣

= 𝑧𝑘
𝑢,𝑣

⋅𝑚𝑘
𝑢,𝑣

+ 𝑏𝑘 ⋅ (1 − 𝑧𝑘
𝑢,𝑣
), (13)

with 𝑧𝑘
𝑢,𝑣

= 𝑔𝜋 (ℎ𝑘𝑢 , ℎ𝑘𝑣, 𝑚𝑘
𝑢,𝑣
), determining 𝑧𝑘

𝑢,𝑣
the significance of an edge for the prediction of the model, indicating whether it should 

be used or ignored.
Function 𝑔𝜋 is the same for all cases, and is defined from a set of parameters, 𝜋, learned during the training of the model –one 

layer neural network– that implements the function.
When training for the calculation of the messages and with the aim of learning the function 𝑔𝜋 –needed to calculate 𝑧𝑘

𝑢,𝑣
– only 

the information available in the original model is used, and thus only the state of the nodes and the messages of the layer 𝑘 are used 
as input. In this way, 𝑔𝜋 only handles information known by the original model, avoiding having information beyond that available 
to the layer 𝑘. This technique is called amortization and is intended to prevent a hindsight bias. Furthermore, 𝑔𝜋 is not trained on a 
case-by-case basis, but is trained on several cases, using examples that were not seen by the original model in its training.

Matrix 𝑀̃ of values 𝑧𝑘
𝑢,𝑣

is called a mask

𝑀̃ =

⎛⎜⎜⎜⎜⎝

𝑧𝑘1,1 𝑧𝑘1,2 ... 𝑧𝑘1,𝑣
𝑧𝑘2,1 𝑧𝑘2,2 ... 𝑧𝑘2,𝑣
... ... ... ...

𝑧𝑘
𝑢,1 𝑧𝑘

𝑢,2 ... 𝑧𝑘
𝑢,𝑣

⎞⎟⎟⎟⎟⎠
. (14)

To obtain this, the original model must first be executed, to calculate the states and messages, obtaining the values of ℎ𝑘
𝑢
, ℎ𝑘

𝑣
and 

𝑚𝑘
𝑢,𝑣

. The mask is then obtained, which indicates the edges and, therefore, the messages that should be ignored. Finally, if the mask is 
applied to the original model, a new prediction can be obtained that ignores the masked messages. In the present work, this is called 
alternative prediction, in order to differentiate it from the prediction of the original model before applying any masks.

Note that the parameters that are trained to apply GraphMask are those of the network that produces 𝑔𝜋 and the set of bias 
vectors 𝑏𝑘. However, the GNN does not change its parameters, but only has to apply the mask obtained.

4. Methodology

This section, describes each of the steps involved in explaining the predictive model presented in the paper, as shown in Fig. 1, 
where data preprocessing, partition generation, model training and metric calculation, among others, can be observed.

4.1. Combining GraphMask and AGCRN

As mentioned in previous sections, the GraphMask explainability model detects superfluous connections in the model in order 
to mask them and prevent their use. However, to implement this explainability model in a predictive model, such as AGRCN, it is 
necessary to modify the initial implementation of the model so that it supports the use of one mask, or several in the case of using a 
batch, without affecting the prediction. This section will explain how to modify the AGRCN predictive algorithm so that it can accept 
masks that eliminate superfluous connections from the graph.

The GraphMask explainability model is based on message masking, defined by the following equations:

𝑚𝑘
𝑢,𝑣

=𝑀𝑘(ℎ𝑘−1
𝑢

, ℎ𝑘−1
𝑣

, 𝑟𝑢,𝑣), ℎ𝑘
𝑢
=𝐴𝑘({𝑚𝑘

𝑢,𝑣
∶ 𝑢 ∈ (𝑣)}), (15)
9

where:
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Fig. 1. Block diagram of the approach. In blue the data, in yellow the operations and in green the models.

𝑀 → Message function
𝐴 → Aggregation function
𝑢, 𝑣 → Both nodes of an edge.
𝑟𝑢,𝑣 → Relationship between nodes 𝑢 y 𝑣.
 (𝑣) → The set of neighboring nodes of 𝑣.
𝑘 → Number of the layer.

These two equations are described for graph neural networks (GNNs), but in the case of the chosen predictive model, AGCRN, it 
is a convolutional recurrent neural network of adaptive graphs. This makes it necessary to adapt the architecture.

For this adaptation, the way to mask the messages is first determined. Thus, the messages are composed of a function 𝑀 , 
dependent on the states ℎ𝑘−1

𝑢
and ℎ𝑘−1

𝑣
and on the relationship between nodes 𝑟𝑢,𝑣. This gives rise to two ways of masking the 

messages.

1. The first one consists of generating the message and then applying the mask, that is, multiplying by 0 or 1 the base to the value 
of 𝑧𝑘

𝑢,𝑣
, which determines the mask. This option implies that when calculating the messages in (9), the mask must be applied to 

each message.
2. The second possibility is to indicate that the edge 𝑟𝑢,𝑣 does not exist before calculating the message itself. This involves applying 

the mask to the matrix where the values of 𝑟𝑢,𝑣 are defined, with this being the adjacency matrix.

In this work, we use the second option given its theoretical simplicity. As can be seen in (9), this option requires the use of the 
adjacency matrix through the Laplacian matrix of the graph

𝑍 = (𝐼𝑁 + ̃)𝑋𝐸𝐺𝑊𝐺 +𝐸𝐺𝑏𝐺. (16)

A significant difficulty arises here, since the predictive model does not have an adjacency matrix. Rather, this is replaced by 
a matrix calculated in the training process to which it assigns the name of ̃ = softmax(ReLU(𝐸𝐴 ⋅ 𝐸𝑇

𝐴
)). That is, there is no graph 

adjacency matrix on which to apply the mask. By way of a solution, the mask defined by 𝑀̃ will be applied directly to the matrix ̃, 
such that the equation of 𝑍 is redefined as

𝑍 = (𝐼𝑁 + ̃𝑀̃)𝑋𝐸𝐺𝑊𝐺 +𝐸𝐺𝑏𝐺. (17)

Based on Equation (17), two important issues must be highlighted:

1. Firstly, the nodes will always have the information of their state in the previous layer, since, when multiplying by the identity 
matrix 𝐼𝑛, these values are preserved, regardless of the mask 𝑀̃ .

2. Secondly, the matrix ̃ tends to be a matrix without null values, and so it can be considered that, for AGCRN, the graph is totally 
10

connected, since all the nodes are seen to be influenced by the states of the other nodes.
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Table 4

Results of GraphMask training on AGCRN.

PeMSD3 PeMSD4 PeMSD7 PeMSD8 PeMS-Bay

MAE (Baseline) 15.86 19.45 21.20 15.74 1.67
MAE (GraphMask) 16.90 21.37 22.44 16.93 1.80
MAE variation 6.55% 9.87% 5.84% 7.56% 7.78%
Retained messages 31.99% 31.72% 44.21% 39.99% 5.18%

Fig. 2. Progression of the loss function over the training set during training on PeMS-Bay.

Additionally, when the mask is applied, it is necessary to add a bias (see the equation (13)) by substituting zeros for ones and 
ones for zeros. This new matrix is represented by 𝑀̃𝐼 , and, since the size of the bias vector is equal to the length of a message, it is 
necessary to repeat the biases once per message, forming matrix 𝐵𝑘.

By applying these changes to (17), the following equation is obtained

𝑍 = ((𝐼𝑁 + ̃𝑀̃)𝑋𝐸𝐺𝑊𝐺 +𝐸𝐺𝑏𝐺) + (𝑀̃𝐼𝐵
𝑘). (18)

However, when implementing equation (18) to perform the training, the function that calculates mask 𝑔𝜋 , defined in (13), does 
not converge. This means that the integrated model is incapable of obtaining a mask and a set of biases that give a prediction close to 
the original. This drawback is due to matrix ̃, in the AGCRN predictive model, having a regularizing effect, since it is not restricted 
to representing the connection between the nodes. The values of ̃ conform to the relationship between the nodes, and these values 
can use different scales. Therefore, applying the bias, without taking into account the scale of ̃, leads to these not being able to 
adapt to the values expected by the model.

In order to solve the non-convergence of the function 𝑔𝜋 , the ̃ matrix is introduced in the second part of equation (18), through an 
element-by-element Hadamart product ̃⊙ (𝑀̃𝐼𝐵

𝑘). Multiplying by matrix ̃ makes 𝑔𝜋 converge, since the biases are not multiplied 
only by ones or zeros, but are scaled by the values of the masked positions of ̃. By applying this step, the behavior of the model is 
intended, making predictions similar to the original predictive model.

Finally, the equation of 𝑍 is

𝑍 = ((𝐼𝑁 + ̃𝑀̃)𝑋𝐸𝐺𝑊𝐺 +𝐸𝐺𝑏𝐺) + (̃⊙ 𝑀̃𝐼𝐵
𝑘). (19)

It is worth noting that equation (19) is only applied when a non-null mask has been defined, since, if the mask is null, the behavior 
of the model will be the same as the original, working in the same way as without the implementation of GraphMask. It should be 
noted that to calculate both 𝑧𝑡 and 𝑟𝑡 the same mask 𝑀̃ is used, as they also share the same matrix ̃.

In the case of the Gated Recurrent Unit (GRU) layer, which provides the temporal component to AGCRN, its implementation is 
not changed by the GraphMask integration, since upon receiving the value of 𝑍, the messages are already discarded.

5. Experimental results

In this section, we validate the effectiveness of the combined deep learning and explainability model. First, the application of the 
model to the five types of datasets selected (PeMSD3, PeMSD4, PeMSD7, PeMSD8 and PeMS-Bay) is compared. This is followed by 
a detailed explanation of the model training. Finally, we discuss the results of the model on the PeMS-Bay dataset of the city of San 
11

Jose in California, USA.
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Fig. 3. Progression of the loss function over the validation set during training on PeMS-Bay.

Table 5

GraphMask training hyperparameters 
values on AGCRN.

Hyperparameters Value

Epochs (layer 1) 2
Epochs (layer 0) 10
Learning Rate 0.003
Allowance 0.125

Fig. 4. Progression of the mean MAE difference during GraphMask training on PeMS-Bay.

5.1. Comparison of PeMS results

To observe the effect of applying GraphMask on the model, a series of tests was performed on the datasets used in Table 2, as 
well as on the PeMS-Bay dataset, which contains the geographic coordinates of different nodes, in order to subsequently visualize 
the results on a map. This dataset (PeMS-Bay) contains the average speed of vehicles, measured on 325 sensors in 5-minute periods.

The training of the model, applying GraphMask, was carried out seeking to conserve the minimum number of edges without 
exceeding a 10% increase in the MAE. In this way, we sought to apply explainability to the model, minimizing the effect on the 
prediction accuracy, eliminating only the edges with less weight on the prediction.

Table 4 shows the results obtained, varying the number of messages retained from 44.21% to 5.18%. The best result was obtained 
on PeMS-Bay, in which with only a 7.78% increase in the MAE, only 5.18% of the messages were retained, discarding almost 95% of 
them. This result drastically reduces the number of variables in the model predictions, simplifying the exploration and analysis of 
12

the inferences made.
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Fig. 5. MAE progression during GraphMask training on PeMS-Bay.

Fig. 6. Node set prediction.

5.2. Model training

The aim of the paper is not only to explore the different alternatives for traffic prediction, but also to explore the explainabil-
ity options. Therefore, the model was trained on the PeMS-Bay dataset, which contains the geographic coordinates of the nodes, 
facilitating a visualization on a map and enhancing the exploration possibilities of the explainability results.

Figs. 2 and 3 show the evolution of the loss function over the training and evaluation set, showing a behavior that seems to 
indicate the ability of the model to generalize over both the training and validation sets.

The model was trained, implementing GraphMask using the hyperparameters listed in Table 5. Of all the hyperparameters, 
13

it is important to highlight allowance, which refers to the threshold of allowed error. In this case, it was set to 0.125, and so 
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Fig. 7. Selected node together with the significant nodes in the first and second AGCRN layers.

GraphMask attempts to mask as many messages as possible, provided that the average MAE of the predictions does not exceed this 
threshold.

Regarding the GraphMask training, Figs. 4 and 5 show a good behavior, since the difference between the MAE of the original 
model and the model masked by GraphMask is reduced. Both values decrease until the last iterations, where the MAE starts to 
oscillate.

5.3. Discussion

First, the model performance was tested, using one week’s data from the PeMS-Bay dataset of the city of San Jose in California 
(USA). In order to understand the model, the masks and predictions obtained by the ACGRN model with GraphMask implemented 
and trained were visualized. It should be noted that each prediction is composed of a window of 12 values with 5 minutes difference 
between them, with the mask being shared by the 12 values of the prediction.

Fig. 6 shows a color map with the traffic prediction of the set of nodes in the network. Each node represents a sensor, with 
the colors showing the average speed of vehicles in the different zones. Thus, darker colors represent a lower average speed, and, 
therefore, higher traffic congestion, and lighter colors represent a higher average speed and, consequently, lower traffic congestion.

Fig. 7 shows the mask applied by GraphMask. The selected node is highlighted with a white border and only the nodes used in 
the prediction of that node are shown. These nodes are indicated with a green or gray border. This differentiation only distinguishes 
the nodes used in the prediction in layer 0 of AGCRN (green color) and those used in layer 1 of AGCRN (black color). In this way, it is 
easy to observe not only the nodes used by the model to make the prediction of a specific node, but also the depth at which they are 
used (indicated by the layer). This differentiation between layers is important, since, due to the functioning of the GCN architecture 
on which AGCRN is based, the information reaching layer 1 is more complex, given that it originates from the convolutions of layer 
0.

In order to carry out an exhaustive analysis of the behavior of the model, we began by examining the relationship between the 
number of nodes used and the amount of existing traffic. To do this, the average hourly speed prediction was first compared with the 
number of nodes that had not been masked (hidden), and had therefore been taken into account by the model to make the prediction. 
In addition, for a more complete analysis, the number of masked nodes in layer 0 was separated from those in layer 1.

In Figs. 8a, 8b and 8c, the average velocity in each hour is compared with the number of nodes used in each of the two layers 
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of the model. In Fig. 8c, a robust correlation between velocity and number of nodes can be observed, indicating that the lower the 
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Fig. 8. Comparison between the average speed and the number of nodes used per hour in layers 0 and 1.

velocity, the larger is the number of nodes used in that layer. This behavior shows that the model uses a greater number of nodes in 
layer 1 to make the prediction at times of higher traffic, due to the larger number of variables to be taken into account. It is worth 
noting that, due to the architecture of graph convolutional networks (GCN), in layer 1, the messages are propagated between the 
different nodes, such that their information also contains information related to other nodes, providing more data about the traffic 
context. Therefore, it can be deduced that the model makes use of a greater amount of information at times of higher traffic, with it 
being able to predict the traffic at times of lower traffic only with the information from the nodes of layer 0.

Once the correlation between the average speed and the number of nodes used is explored, the next step is to analyze the 
relationships at the specific node level and at spatial level. For this purpose, a series of maps were generated where the different 
nodes, the average velocity at these points and the number of times they are used by the model were plotted. Thus, Fig. 9 shows 
a comparison made between the average speed per hour of each of the nodes of the network (Fig. 9a) and the average number of 
nodes used in layers 0 and 1, respectively (Fig. 9b, Fig. 9c). In neither layer 0 nor layer 1 is a clear correlation observed between the 
average velocity at each node and the number of times it is used by the model. However, it is possible to observe a series of nodes 
consulted more than the average number of times, mainly in the central area of the map. Likewise, there is another series of nodes, 
scattered across the map, which are also used more than the average.

Examining the behavior of node use by hours, different patterns related to traffic can be observed. To perform an analysis of 
such patterns, the data was explored at three different times: at 3am, 12pm and 9pm. These three times were selected based on the 
behavior of the average speed per hour observed in Fig. 8a, which clearly shows the times of maximum and minimum speed. At 
3am, the traffic is at one of its lowest levels (which is why the average speed is higher). At 12am, traffic is at a local maximum, and, 
at 9pm, it is at a global maximum. In this way, traffic patterns can be observed more clearly when comparing the results.

The first comparison, corresponding to 3am, relates the average speed per node (Fig. 10a) to the number of nodes used in layer 0
(Fig. 10b), and layer 1 (Fig. 10c). In this case, analyzing the nodes in isolation, no correlation is observed between the traffic and the 
number of nodes used. However, if we look at the whole, we can see the patterns detected above. At low speeds, the use of nodes in 
layer 1 is minimal and the use of nodes in the layer 0 is much higher, showing a tendency to consider the nodes in the central area 
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of the map as more significant.
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Fig. 9. Comparison between the average speed and nodes used per hour in layers 0 and 1.

In the 12pm case, Fig. 11b shows that traffic increases, but the number of nodes used in layer 0 increases only slightly. However, 
in layer 1 in Fig. 11c, there is a noticeable increase in the number of nodes used. In this case, there is a correlation between the 
traffic detected at a node and the number of times this node is used, with the nodes with the greatest amount of traffic being those 
most used.

The time with highest level of traffic is 9pm and the behavior of the model can be seen in Figs. 12b and 12c. While at 12
o’clock noon, the model shows a correlation between traffic and the number of times the nodes in layer 1 are used, in this case, this 
correlation is extended to layer 0 where, the higher the level of traffic, the greater is the number of times it is queried by the model. 
This phenomenon can be visualized in Fig. 12b and is consistent with the situation in Figs. 8b and 8c, which show that, at 9pm, 
the average number of nodes is close to their maximum. From this behavior, it can be deduced that the model, at the moments of 
maximum traffic, continues to increase the use of nodes to be used, but, at a certain point, instead of increasing the number of nodes 
in layer 1, it starts to increase the number of nodes in layer 0. This is because the model needs more information, and, being unable 
to obtain it from the combination of messages from a few nodes in layer 0 and its propagation through layer 1, the number of nodes 
to be consulted also increases in the layer 0, with the information being composed of more nodes and with greater complexity.

To summarize, the analysis conducted facilitates a better understanding of how the model works. Thus, regardless of the traffic, 
the model makes use of a few nodes scattered around the map, which it consults to obtain the prediction. Of these base nodes, those 
16

located in the central area of the map are the most significant. Likewise, the model queries a smaller number of nodes when traffic is 
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Fig. 10. Comparison between the average speed and the nodes used for layers 0 and layer 1 at 3am.

low, and the number of nodes increases as traffic increases and vice versa. In addition, it uses more complex information and more 
of it, the higher the level of traffic to be predicted. This can be seen by observing how, for a low amount of traffic, it mostly uses 
nodes in layer 0. However, as traffic increases, it increases the number of nodes in layer 1, making use of more complex information 
propagated through the network. Finally, when reaching the peak traffic, it makes use of more nodes in both layers 0 and 1, in order 
to obtain the greatest amount of information possible.

6. Conclusions

This work carried out an analysis of different fields of artificial intelligence, with the aim being to provide a model that per-
forms predictions with an explainability component. Firstly, to approach data related to traffic flows, a comparison was made 
between the three most commonly used techniques: statistical regression, classic machine learning and deep learning. The results 
show that the techniques based on deep learning present the best results. However, as a consequence of the great variety of models 
based on deep learning, it was necessary to carry out another performance comparison between different architectures applied to 
spatio-temporal traffic flow data (PeMSD3, PeMSD4, PeMSD7 and PeMSD8). We compared the following different models: Diffu-
sion Convolutional Recurrent Neural Network, Graph WaveNet, Spatio-Temporal Graph Convolutional Networks, Attention Based 
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Spatial-Temporal Graph Convolutional Networks, Spatial-Temporal Synchronous Graph Convolutional Networks, Spatial-Temporal 
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Fig. 11. Comparison between the average speed and the nodes used for layers 0 and layer 1 at 12pm.

Fusion Graph Neural Networks, Spatial-Temporal Graph Ordinary Differential Equation Networks and Adaptive Graph Convolutional 
Recurrent Networks. The final conclusion is that the predictive model that best adapts to spatio-temporal traffic data is the Adaptive 
Graph Convolutional Recurrent Network (AGCRN).

However, the AGCRN predictive model behaves as a black box, requiring the use of a post-hoc explainability technique to better 
understand its behavior. At this point, due to the specificity and complexity of determining the optimal explainability method for 
Graph Convolutional Recurrent Network models, we focus on finding the method that provides the best performance with respect to 
sparsity and fidelity. We conclude that the sparsity and fidelity values for the GraphMask method are notably higher than with other 
explainability methods used.

The main aim of this article can be considered to be the integration of technologies based on Graph Convolutional Networks and 
on explainability (Graphmask) applied to traffic prediction. In order to test the combination capacity of predictive techniques based 
on deep learning and explainability methods, experiments were conducted on traffic density data in the city of San Jose (California).

The analysis and discussion of the results obtained reveal a logical behavior. The model uses only a few nodes, preferably in the 
central part, to make predictions in low traffic contexts, where prediction should be easier to perform. Moreover, in these low traffic 
contexts, the nodes used contain simpler information as they belong to layer 0. In turn, the model uses a greater amount of more 
complex information as traffic increases, which is to be expected, as more elements influence the prediction and more information is 
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required. As an example, with the application of explainability through GraphMask, it was possible to mask about 95% of the nodes, 



Information Sciences 645 (2023) 119320J. García-Sigüenza, F. Llorens-Largo, L. Tortosa et al.

Fig. 12. Comparison between the average speed and the nodes used for layers 0 and 1 at 9pm.

with only a 7.78% increase in the Mean Absolute Error (MAE), as can be seen in the Table 4. This reduction of nodes allowed us to 
examine the masks obtained and so perform an analysis, which helped detect patterns in the performance of the model, allowing, in 
turn, for a better understanding of said model.

All the above provides confidence in the model, since it went from being a black box of whose working we had no knowledge, 
to a model in which we could intuit the elements that influence its behavior. Summarizing, the introduction of explainability in a 
predictive deep learning model allows for a better knowledge of its behavior and why the prediction has been made, thus increasing 
confidence in the model.

Based on these results, several avenues open up for future work. From the usability approach, it would be possible to study the 
use cases of explainability in GCNNs, for instance, to apply explainability in models before their use in real problems to verify that 
the model follows a logical behavior before making predictions that affect people. In this way, a model with explainability would 
be used for model validation and the original model would be employed for user predictions. Additionally, in the case of wishing 
to provide an explanation for each prediction, the model with explainability could be used to make a prediction together with an 
explanation for the user, for instance, indicating not only the best route to use, but also why that route is the best option. Another 
possible use would be to identify the most important nodes when traffic congestion occurs and thus assist in the process of improving 
19

the transportation network.
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Regarding the improvement of the presented model, the reduction of the loss of accuracy in the explainability method could be 
explored, as well as combining the deep learning model with fuzzy systems to produce outputs closer to human logic, labeling the 
output as of low, medium or high traffic.
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