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Measuring Object Rotation via Visuo-Tactile
Segmentation of Grasping Region

Julio Castaño-Amorós1 and Pablo Gil2

Abstract—When carrying out robotic manipulation tasks, ob-
jects occasionally fall as a result of the rotation caused by
slippage. This can be prevented by obtaining tactile information
that provides better knowledge on the physical properties of
the grasping. In this paper, we estimate the rotation angle of
a grasped object when slippage occurs. We implement a system
made up of a neural network with which to segment the contact
region and an algorithm with which to estimate the rotated
angle of that region. This method is applied to DIGIT tactile
sensors. Our system has additionally been trained and tested
with our publicly available dataset which is, to the best of our
knowledge, the first dataset related to tactile segmentation from
non-synthetic images to appear in the literature, and with which
we have attained results of 95% and 90% as regards Dice and
IoU metrics in the worst scenario. Moreover, we have obtained a
maximum error of ≈ 3º when testing with objects not previously
seen by our system in 45 different lifts. This, therefore, proved
that our approach is able to detect the slippage movement, thus
providing a possible reaction that will prevent the object from
falling.

Index Terms—Perception for Grasping and Manipulation,
Grasping, Force and Tactile Sensing

I. INTRODUCTION

THE methods employed to carry out robotic manipulation
tasks, which are based on 2D/3D vision techniques [1],

generally take into account only the geometric properties of
objects in the scene. The physical properties of the objects,
such as their mass distribution (variable or otherwise), the
center of gravity, or friction are not contemplated, signifying
that the object could fall if it is not correctly grasped. In
contrast, the use of tactile sensors makes it possible to measure
and react to these physical properties in order to achieve stable
grasping [2].

Several technologies with which to attain a sense of touch
and thus find solutions to complex problems such as slip de-
tection have been designed. The most common are electrical-
based tactile sensors, such as capacitive, piezoresistive or
optical-based tactile sensors [3], on which our work is focused.
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The most typical event to cause an object to fall from
human or robotic hands during a manipulation task is probably
slippage. In order to achieve a stable grasping while a robotic
hand is manipulating an object, it is necessary to obtain
and interpret information concerning the contact between the
sensor surface and the grasped object. Tactile sensors can,
therefore, be used to sense the slippage [4] and the data
obtained can then be used to control the movement of the
robotic hand. For example, tactile readings have previously
been used: to classify the grasping in slip or non-slip states,
as shown in [5], to classify the kind of movement (rotation
and translation) that takes place when a slippage occurs [6],
or to measure displacement by using visual markers on tactile
optical sensors [7].

In this paper, we present an algorithm with which to esti-
mate the rotation angle of an object that is being manipulated
when slippage occurs. This method is applied to optical DIGIT
sensors [8] whose tactile reading is simply an RGB image
without visual markers, depth information or force values. Our
main contribution is threefold:

• The implementation of a two-stage method based on deep
learning and traditional computer vision algorithms in
order to segment the contact region and estimate the
rotational slippage angle for the task of grasping and
lifting an object.

• The generation and public sharing of our tactile segmen-
tation dataset. This is, to the best of our knowledge, the
first dataset related to tactile segmentation in literature
containing data from real DIGIT sensors, whose objective
is to reduce the manual labeling process and encourage
the use of learning techniques in order to expand these
data to other units of DIGIT sensors.

• Extensive and rigorous experimentation and the com-
parison of different segmentation neural networks and
computer vision algorithms used for the task of tactile
segmentation. We also compare our proposal with other
state-of-the-art methods for the estimation of the angle of
rotational slippage.

This paper is organized as follows: Section II provides a
brief introduction to related works regarding contact segmenta-
tion and angle estimation for slippage detection, while Section
III provides a detailed description of our proposed method and
how it differs from the other approaches. Section IV shows two
comparisons: one of the different variants of the two stages of
our method, and the other of our final proposal and other state-
of-the-art methods in literature. Finally, the results obtained are
summarized and discussed in Section V, as are the limitations
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of this work.

II. RELATED WORK

A. Estimating the Contact Region

Estimating the contact region between the robot’s fingertips
and the object being grasped is crucial to the performance of
any manipulation task. For example, the objective of the work
presented in [9] and [10] was to estimate the contact region
by subtracting contact and non-contact tactile images. In [11]
and [12], the authors used vision-based tactile sensors with
markers to estimate the contact region. In the first case, it was
obtained by detecting and grouping the moving markers, while
in the second it was estimated through the use of a Gaussian
regression model. Other authors, in [13], used synthetic tactile
images obtained from simulation to train a Residual NN model
of contact recognition for 3D reconstruction of object surfaces.
Following a similar line, [14] and [15] solved the contact
estimation task for the surface reconstruction between the
object and the fingertips implementing photometric algorithms.

Finally, the approach that inspired our work consists of
segmenting the contact region with neural networks. In [16],
the authors used a vanilla Convolutional Neural Network
(CNN) to generate heightmaps from tactile images with the
aim of reconstructing the local contact surface. In [17] they
used Generative Adversarial Networks (GANs) to segment the
region of contact in order to track the contour of the object
by applying Reinforcement Learning (RL) techniques.

In contrast, in this work, we use tactile segmentation to
calculate the rotation angle of an object when slippage occurs
during manipulation tasks. Although our work is inspired by
the aforementioned works, the main differences lie in the fact
that we use DIGIT sensors without markers [11], [12], which
do not produce depth information [14], [15], and state-of-the-
art segmentation neural networks, which are more robust than
subtracting operations [9], [10] and vanilla CNN [16], and
whose training is more stable when compared to the training of
GANs [17]. Moreover, in this paper, our methods are trained in
order to segment several contact geometries of real household
objects, while in [16] the authors trained their CNNs using
basic 3D printed geometries, and in [17] they trained an RL
agent to follow contours and surfaces by segmenting edges.

B. Slip Detection and Estimation of the Object Rotation

Slippage is a common physical event that occurs during
object manipulation, and attempts to solve it have been made
for several years. For example, in [18] the authors imple-
mented traditional image preprocessing techniques in order to
detect slippage from tactile images. In [19], Long Short-Term
Memory (LSTM) neural networks were trained to identify
translation, rotation or rolling slip movements from tactile
images. In [20], the authors combined CNNs and Recurrent
Neural Networks (RNNs) so as to classify slippage in transla-
tion, clockwise and counterclockwise rotation from sequential
pressure values. A more advanced approach is to quantify
the translation or rotation. In this line, [9] used vision-based
tactile sensors with markers to calculate the rotation angle
from the estimation of the rotation center by employing a least

square algorithm. Another approach consists of exchanging the
vision-based sensors for force/torque sensors in order to obtain
the rotation angle in a pivoting task as occurs in [21], in which
the authors trained RNNs to calculate the pivoting angle from
sequential force values.

The work presented in this proposal was inspired by the
methods that characterize and quantify the rotational slippage
in order to evaluate the performance of different algorithms,
which can be combined in the pipeline of our method, for the
estimation of the rotation angle from the segmented region
of predicted contact. We additionally compare our two-stage
method with an end-to-end method for this same task.

III. METHODS

A. Our Method for the Estimation of the Slippage Angle

We propose a two-stage method with which to estimate the
angle of rotation caused by slippage during a robotic task
concerning the grasping and lifting of an object. Figure 1
shows a scheme that defines the different parts of the two
stages of our method. Besides, other algorithms are described
to define other approaches to carry out a comparative and
ablation study for the validation of our method.

Fig. 1: Scheme of our system combining both stages

The first stage, denominated as Tactile Segmentation Neural
Network (TSNN), receives a raw RGB image from a DIGIT
sensor as input, which is normalized by scaling the pixel values
in a range of between 0 and 1. This normalized image is
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sent as input to a PSPNet model [22] that was trained to
segment the contact region of the tactile image. A sigmoid
activation function is applied so as to transform the output of
the PSPNet model, known as logits, into pixel values in a range
of [0-1]. Note that this is important in order to later use an
empirically obtained restrictive threshold of 0.7 to classify the
pixel values from the [0-1] range in two classes: background
(0-pixel value) and contact region (1-pixel value). Finally, a
post-processing step is carried out, which consists in applying
the inverse normalization of the pre-processing step in order
to transform the pixel values into a [0-255] range so as to
generate the final output mask.

The output mask from the previous stage is used as input
in the second stage to obtain the predominant contour present
in the image. An ellipse-fitting [23] algorithm is then used to
reduce the noise of the segmented output mask, and a Skeleton
Thinning [24] algorithm is later applied in order to obtain
the main axis of the output mask. This axis can be used to
estimate the angle of rotation by fitting a line with a least
square process and calculating the arctan function. The angle
is processed by a window filter that averages the last n angles
in order to produce the mean angle of rotation. This filter helps
reduce the noise from the camera’s signal, which affects the
segmented region by changing its size and shape.

B. Variants of our Method for a Comparative and Ablation
Study

As stated previously, our method is made up of two stages:
one for the contact region segmentation and another for the
estimation of the slippage angle. Our TSNN is based on
PSPNet architecture, which extracts a feature map from the
last layer of a CNN in order to later process it with a Pyramid
Pooling module so as to learn features on different scales, and
finally concatenate the original and the processed feature maps
in order to generate the output mask. Furthermore, our angle
estimation method is based principally on the Skeleton Thin-
ning algorithm, which narrows the contact region into a line
by blackening white pixels depending on the neighborhood.

In order to carry out comparative experimentation, two seg-
mentation NNs (DeepLabV3+ [25] and Unet++ [26]) adapted
to our task and two angle estimators (Principal Component
Analysis (PCA) [27] and Ellipse Fitting [23]) were considered.

On the one hand, DeepLabV3+ and Unet++ architectures
differ from the PSPNet architecture since they are based on the
encoder-decoder scheme. Moreover, while Unet++ is known
for re-designing the skip connections in Unet so as to reduce
the semantic gap in order to capture fine-grained details,
DeepLabV3+ is characterized by the use of a combination
of atrous or dilated convolutions and depthwise separable
convolutions, which reduce the computational complexity
while maintaining the performance. On the other hand, PCA
and Ellipse Fitting differ from Skeleton Thinning since they
estimate the angle of slippage by calculating the eigenvalues
and eigenvectors. In PCA, the covariance matrix is used to
calculate the eigenvalues and eigenvectors in order to identify
the principal components of the data. In Ellipse Fitting, the
LIN algorithm [23] is applied to estimate the curve that best

fits a set of input points (in our case, the contour points of
the segmented region) and its output is the eigenvectors from
which the angle is calculated.

The following section, therefore, shows an experimen-
tal comparison of our proposal (PSPNet-Skeleton) ver-
sus the other eight possible combinations of segmentation
(DeepLabV3+, UNet++, our TSNN based on PSPNet) and
angle estimators (PCA, Ellipse Fitting, Skeleton Thinning) in
the comparative and ablation study.

IV. EXPERIMENTATION AND RESULTS

A. Data Acquisition and Dataset Generation

Although the number of works using visual-based tactile
sensors has increased over the last few years, we have been
unable to find any dataset related to tactile segmentation
containing data from real DIGIT sensors as a basis in our
experimentation. We have chosen to work with real instead
of synthetic images [13] to avoid losing contact features that
can be presented in non-rigid objects and affect the grasping.
We have, therefore, generated our own dataset by applying
an automatic data recording process with a UR5e robot, a
3F Robotiq gripper, and a visual-based tactile sensor known
as DIGIT (see Fig. 2). The recording process consisted of
capturing tactile images from the sensors while the robot
was grasping an object, each time with a different pose. The
grasping force was also varied (range ≈ [0.2-1.8N]) depending
on the mass, rigidity, type of surface and geometry of the
grasping area of the object. Only two fingers were used to
grasp the objects in order to test our system in extremely
unstable conditions.

Fig. 2: Setup made up of an external camera, a UR5e robot
arm with a 3F Robotiq gripper and DIGIT sensors mounted
on the fingertips

Our tactile segmentation dataset was created by using 16
objects (see Fig. 3), and between 200 and 250 tactile images
were then captured per object. The objects belong to the
YCB dataset [28] and contain different features related to
touch sensing, such as texture, rigidity, size, mass, friction, or
shape, thus, allowing us to contribute to the repeatability of the
experimentation and the benchmarking of tactile manipulation.

We manually defined 15 poses (a combination of 3 positions
and 5 orientations) per object, and ensure that our DIGIT
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sensor was capturing different geometries from the local
contact with the object. This number of poses per object
was, therefore, sufficient to form our dataset owing to the
uniformity and symmetry of the surfaces of the objects. The
variability of objects and poses thus enabled the neural net-
works trained with our dataset to achieve high generalization
capabilities. The black rectangles in Fig. 3 represent the grasp-
ing areas established in order to record our dataset so as to
capture a large variety of tactile images with different contact
geometries. The bigger boxes represent a higher percentage of
grasping actions in this area.

Fig. 3: Objects from YCB dataset used to generate our tactile
segmentation dataset. Link to download dataset

In this work, we have formulated the tactile segmentation
task as a supervised learning problem, signifying that it was
necessary to label our data. This was done by using the
LabelMe tool [29] to label the contact regions on the tactile
samples. The labeling process was carried out manually by
observing the contact images with respect to a non-contact
image reference.

The initial tactile segmentation dataset, which contains a
total of 3675 images, was then used to generate three sets
(Ds1, Ds2, and Ds3) by applying the 3-fold cross-validation
technique. This was done in order to carry out an optimal
evaluation of our models. We randomly split each set by
following a distribution of 70% of the objects (11 objects) for
training, 20% (3) for validation, and 10% (2) for testing. Table
I shows the corresponding identifiers of the objects shown in
Fig. 3 for each set.

TABLE I: 3-fold cross-validation technique and mapping be-
tween our tactile segmentation dataset and object’s identifiers

Ds1 Ds2 Ds3

Train set
1, 2, 4, 5, 6, 8, 10,

12, 13, 14, 15
1, 2, 3, 4, 6, 7,

10, 11, 12, 13, 16
1, 3, 5, 6, 7, 8, 9,

10, 11, 13, 14
Validation set 7, 9, 11 5, 9, 14 4, 15, 16

Test set 3, 16 8, 15 2, 12

B. Performance Evaluation of our Proposal vs. other Ap-
proaches

The performance of the trained models was evaluated using
the Dice and IoU scores, which are described in Eqs. 1 and
2, respectively.

Dice =
2 ∗ pred ∗ y
pred+ y

(1)

IoU =
pred ∗ y

pred+ y − pred ∗ y
(2)

where pred are the images containing the predicted contact
regions and y are the images with the labeled contact regions.
The Dice score is a metric that is similar to the average
performance, while the IoU score is more like the worst-case
scenario.

The training phase was carried out employing an NVIDIA
A100 Tensor Core GPU with 40 GB of RAM, along with the
following optimal hyperparameters obtained from a process of
searching and tuning: a batch size of 32, a learning rate of 1e-
4, the Adam optimizer, the Focal loss, 30 training epochs and a
ResNet18 backbone. We also trained with the EfficientNet-B3
backbone, but as ResNet18 achieved higher metric values in all
of the training sessions, we have not included the experimental
results in our work. ResNet architecture is well-known for the
residual blocks that help reduce the vanishing gradient problem
in deep neural networks. The testing phase was carried out
using an NVIDIA GeForce GTX 1650 Ti with 4GB of RAM
to perform the comparison regarding real-time capabilities.

Table II shows the results of the testing phase in terms of the
Dice, IoU and time values when our TSNN was compared to
the other approaches adapted to the task using each set (Ds1,
Ds2, and Ds3) of our dataset.

TABLE II: Segmentation results for the sets Ds1, Ds2, and
Ds3 comparing our TSNN with Unet++ and DeepLabV3+,
using the ResNet18 backbone

Unet++
Dice IoU Time(s)

Ds1 0.950 ± 0.018 0.906 ± 0.033 0.008 ± 0.001

Ds2 0.955 ± 0.008 0.915 ± 0.015 0.009 ± 0.002

Ds3 0.969 ± 0.006 0.940 ± 0.011 0.009 ± 0.001
Avg 0.958 ± 0.011 0.920 ± 0.020 0.009 ± 0.001

DeepLabV3+
Dice IoU Time(s)

Ds1 0.947 ± 0.020 0.899 ± 0.036 0.007 ± 0.002

Ds2 0.951 ± 0.012 0.906 ± 0.021 0.006 ± 0.002

Ds3 0.969 ± 0.007 0.937 ± 0.013 0.006 ± 0.002
Avg 0.956 ± 0.013 0.914 ± 0.023 0.006 ± 0.002

TSNN
Dice IoU Time(s)

Ds1 0.937 ± 0.026 0.883 ± 0.045 0.007 ± 0.003

Ds2 0.953 ± 0.009 0.910 ± 0.017 0.006 ± 0.003

Ds3 0.963 ± 0.008 0.929 ± 0.014 0.006 ± 0.001
Avg 0.951 ± 0.014 0.907 ± 0.025 0.006 ± 0.002

It will be first noted that the Dice scores are higher
than the IoU scores in every case. It will be also noted
that the difference in the average offline inference time is
not significant, signifying that the three neural architectures
can make predictions in real time. Finally, note that all the
approaches, including our TSNN, achieve higher metric values
with the Ds3 set. This may be for several reasons, such as
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the fact that the objects in the Ds3 test set are easier to
segment than are those in the other test sets. However, there are
no significant differences in the difficulty of segmenting the
objects from each set. We consequently believe that the Ds3

set contains a better distribution of contact surfaces that yield
higher metric values. We therefore decided that the weights
obtained from the training with the Ds3 set would be used for
the study and comparison of our TSNN versus the remaining
segmentation approaches. Figure 4 shows examples of our
tactile segmentation with different samples from the test sets.

Fig. 4: Examples of tactile segmentation made by our TSNN.
The first row corresponds to the raw tactile images, the second
row is the ground truth segmented images and the third row
corresponds to the predicted contact region

The performance was evaluated by implementing the task
of grasping and lifting an object while our system carried out
the tactile segmentation and angle calculation of the segmented
contact region. As shown in Fig. 5, this task is divided into
three parts: the first when the robot grasps the object, the
second when the robot lifts it, and the last when the robot holds
it on one side. In this work, we focus solely on the second part
(part B in Fig. 5) because this is where the slippage movement
may occur.

Fig. 5: Description of rotation angle calculation during the ma-
nipulation task with object 2 from our set of experimentation

Figure 5 shows the predicted angle in blue and the ground
truth angle in orange. The predicted angle is calculated as

being the difference between the current and the initial angle
obtained from the methods described in Section III. The
ground truth angle θ is obtained with the formula described
in Eq. 3, where p⃗ is the current vector (green line) and q⃗ is
the initial vector (red line) that links the two ArUco markers.

θ = acos(
p⃗ · q⃗

|p⃗| · |q⃗|
) (3)

The noise from the camera’s signal affects the segmented
region, thus making the angle calculation noisier. We therefore
applied a filtering window that consisted of calculating the
mean of n consecutive angles (predicted angle).

We validated our system by randomly selecting two objects
from our dataset, concretely, objects 1 and 7 from Fig. 3,
and testing it with seven unseen objects (1 to 7 in Fig. 6).
These nine objects form the dataset (Da) for the slip angle
experimentation, which differs from the dataset shown in Fig.
3 because the objective was to test our proposal with new
objects and grasping surfaces.

The experimentation consisted of making five lifts per object
(45 in total) while calculating the Rotational Error (RE) as
the absolute difference in degrees between the predicted and
ground truth angles. The results have been divided into two
parts.

First, a comparative and ablation study was carried out
with the proposed method and the other eight possible ap-
proaches from Section III-B. In this study, the Mean Absolute
Rotational Error (MARE) was calculated for each of the
9 methods, varying the size of the window filter from 2
to 10 with a step of 2, as can be seen in Table III. In
order to compute the MARE, we calculated the mean RE
and standard deviation for each of the 45 lifts with each
method and window size n. We then computed the average
of these 45 mean REs and standard deviations in order to
obtain the MARE. Note that a 2-size window filter yields the
lowest MARE for every method. Increasing the window size
does not improve the results because when we increase the
window size, the noise is filtered, but the angle magnitude
is reduced, thus increasing the error between the predicted
and ground truth angle. The Skeleton algorithm obtained the
lowest MARE with all segmentation methods, no matter which
window size, obtaining almost half the error of the other
angle approaches. This is because the Skeleton algorithm
simplifies the segmented contact region to a single line and
does not, therefore, calculate the angle directly from the
segmented mask as the PCA and Ellipse approaches do. Small
changes in size or translations of the segmented contact region
consequently affect the angle calculation to a lesser extent.
In summary, the MAREs obtained are similar, although the
results obtained with our proposal when combining a TSNN
based on PSPNet and Skeleton Thinning are slightly better.

Having proved which method and window size is optimal,
we now show the RE for the 5 lifts of each object in the
boxplot graphic in Fig. 6.

Note that the horizontal yellow lines represent the median
RE, the box represents the interquartile range and the vertical
lines represent the minimum and maximum REs. Overall, our
proposal achieves a MARE of 1.85º ± 0.96º (see Table III),
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TABLE III: Comparison of our proposal, TSNN based on PSPNet and Skeleton Thinning, versus the rest of the approaches

Method

Window Size
2 4 6 8 10

DeepLabV3+ and PCA 3.52º±1.71º 3.81º±1.66º 4.13º±1.61º 4.42º±1.55º 4.76º±1.52º

DeepLabV3+ and Ellipse 2.82º±1.40º 3.06º±1.37º 3.36º±1.36º 3.65º±1.32º 3.97º±1.32º

DeepLabV3+ and Skeleton 1.85º±0.99º 2.02º±0.96º 2.18º±0.97º 2.37º±1.01º 2.62º±1.04º

UNET++ and PCA 3.48º±1.62º 3.78º±1.59º 4.05º±1.56º 4.33º±1.50º 4.66º±1.47º

UNET++ and Ellipse 2.93º±1.40º 3.17º±1.39º 3.43º±1.39º 3.72º±1.36º 4.03º±1.36º

UNET++ and Skeleton 1.90º±0.90º 2.01º±0.93º 2.20º±0.95º 2.44º±0.99º 2.67º±1.06º

PSPNet and PCA 3.56º±1.71º 3.86º±1.67º 4.18º±1.63º 4.50º±1.57º 4.81º±1.54º

PSPNet and Ellipse 2.90º±1.39º 3.14º±1.37º 3.42º±1.37º 3.72º±1.35º 4.02º±1.37º

Proposed method 1.85º±0.96º 2.02º±0.94º 2.19º±0.97º 2.41º±1.03º 2.63º±1.09º

signifying that our approach estimates the angle of rotational
slippage with a maximum MARE of 2.81º in the worst case.
Note that the maximum REs are obtained when testing with the
objects 5 and 7. This is owing to the geometry of the grasping
surface and the segmented region of contact. However, these
maximum REs are isolated cases of one of the 5 lifts.

Fig. 6: REs for each object using the proposed method
(PSPNet and Skeleton Thinning) with a window size of 2

Following the same guidelines described above, the black
rectangles in Fig. 6 represent the different areas of the objects
used as the grasping contact origin for the different trials. Note
that we set up the contact origins in an attempt to reproduce the
way in which a human operator would do so by, for example,
avoiding dangerous areas of the objects such as the sharp part
of the knife.

Figures 5 and 7 show some examples of RE calculation
using our two-stage method with different objects. Note that
the slippage angle varies in a range between of 0º and 30º for
all the lifts because we have limited the angle measurement

considering that a robot should react before the slippage angle
becomes this value in order to prevent the object from falling.

Fig. 7: Examples of REs calculation for slipping during lift
task with different objects from Fig. 6. First row: objects 1,
3. Second row: 4, 5. Third row: objects 6, and 7

The error of the measurement depends on many factors,
such as the contact shape, the mass and geometry of the object,
etc. The error obviously also depends on the magnitude of the
slippage, which is usually higher when the slippage magnitude
is higher, but it is not directly related, as can be observed in the
case of the objects 5 and 7 in Fig. 7. In this case, object 7 gets
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a higher error due to a small distance between the grasping
pose and the center of mass of the object.

C. Objective and Subjective Comparison of our proposal vs
State-of-the-Art Methods

As it is complex to find benchmarks for the proposed task
because of the variability of data and sensors, we carried
out two comparisons. First, a subjective comparison between
the proposed method and two other works [9], [21] was
performed. This comparison was subjective owing to the fact
that we were unable to reproduce the results obtained in the
aforementioned studies because the sensors employed were not
available, although the test was carried out with the same or
similar objects. Second, we show the results of an objective
comparison of our work with another [30]. Here, objective
signifies that we implemented our own version of the other
authors’ work in order to reproduce their results and compare
them with ours using the exact same objects and data, as their
code was not available.

On the one hand, [9] approached the task of slip detection
using vision-based tactile sensors containing visual markers
and a least-square algorithm, while [21] employed force tactile
sensors and RNNs to predict the pivoting angle during slip-
page. Although we did not carry out the test with the exact set
of objects, it was possible to make a subjective comparison in
order prove that competitive results could be attained for this
task while using poorer tactile readings, such as only an RGB
image. The comparison is shown in the right-hand column of
Table IV.

On the other hand, [30] presented an NN denominated
AngleNet, based on the ConvNext neural architecture, that was
used to predict the rotation angle, from DIGIT images, with
respect to the vertical axis of tubular objects in Sim-to-Real
tasks. In order to compare AngleNet with our work in the
most competitive scenario, we trained it with the 45 lifts from
our previous experimentation, and we also tested it with the
training data so as to obtain the results in the best possible
case. The results obtained are shown in the left-hand column
of Table IV. The higher error of AngleNet may be owing to
the fact that in an end-to-end approach it is harder to estimate
the angle from the tactile reading without knowing where the
contact shape is and what it is like.

TABLE IV: Objective and subjective comparison of the pro-
posed method and other state-of-the-art approaches regarding
MARE error and standard deviation

Objective Subjective
[9] - 4.39º ± 0.18º
[21] - 3.96º ± UNK
[30] 3.23º ± 1.69º -

Ours 1.85º ± 0.96º 1.85º ± 0.96º

D. Discussion and Limitations of our Method

Although this work proves that our approach achieves
promising results, our system also has limitations. For exam-
ple, when the segmented contact region is like a circle. In

this case, our proposed method converts a circular mask into
a single point rather than a line after applying the Skeleton
transformation, as described in Fig. 8, and the predicted angle
is not, therefore, reliable. This limitation could be solved by
using a vision system that calculates the grasping points on a
surface with a low curvature or edge. In Fig. 9, we show how
the angle calculation varies depending on the grasping surface
by using two different objects from Fig. 8. If the surface is like
an edge, the results are promising, but the calculation of the
angle is less reliable with surfaces with large curvature. Non-
homogeneous objects which generate non-continuous contact
shapes are also a limitation, although only closed contact
shapes are considered in this work.

(a) (b) (c) (d)

Fig. 8: Example of angle calculation when the segmented
contact region is almost circular

Fig. 9: Angle calculation with different grasping surfaces. First
row: edge surface, second row: cylindrical surface

V. CONCLUSIONS

In this proposal, we propose a two-stage system with which
to measure the rotation angle caused by slippage events when
we work with DIGIT tactile sensors whose tactile reading is
an RGB image. Our proposal uses TSNN based on PSPNet to
obtain the local contact region between the robot’s fingertips
and the manipulated object, after which the Skeleton Thinning
algorithm estimates the rotation angle. Our method achieves a
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MARE of 1.85º±0.96º when subjectively compared with the
error of 3.96º ± UNK in [9] and the error of 4.39º ± 0.18º
in [21], and objectively compared with the error of 3.23º ±
1.69º in [30]. Moreover, the code is available at github link
and a demo is shown in the following video link. Our system
also has some limitations regarding the shape of the contact
region. When this shape is nearly a circle, it is impossible
to estimate its rotation movement. In this case, we propose
to grasp the object by surfaces with a small curvature and
show how this improves the results in comparison with large
curvature surfaces. On the other hand, objects such as a spiked
ball, which generate more than one contact shape, would make
the estimated angle less reliable. In addition, as future work,
we are working on solving these two limitations to expand
our method to detect slippage when grasping more complex
objects.
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[18] J. Castaño-Amorós, I. de L. Páez-Ubieta, P. Gil, S. Puente, ”Visual-
tactile manipulation to collect household waste in outdoor”. Revista
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