
Research on smart-locks cybersecurity and vulnerabilities

Cándido Caballero-Gil1 • Rafael Álvarez2 • Candelaria Hernández-Goya1 • Jezabel Molina-Gil1

Accepted: 2 May 2023
� The Author(s) 2023

Abstract
Smart-locks have become increasingly popular for access to homes and businesses in many countries, because of their ease

of use and adaptability. These locks offer a simple and secure alternative to traditional key-based entry, making them an

attractive choice for both residential and commercial properties. Nevertheless, it is essential to acknowledge the potential

security threats that come with any new technology. The security of smart-locks is particularly critical, as a breach could

result in unauthorized entry. Since the smart-locks can connect, there are different ways to check if vulnerabilities can be

found easily or on the contrary, if the security level is high. Two of the main ways of checking the security level of this

kind of IoT device are the information that can be obtained from the Android application and the security level of the

Bluetooth connection. Many vulnerabilities can be found in the Android smart lock management application. This

application is very useful to perform all the configurations with such a lock, but if it is not properly implemented and

secured, it can provide clues for malicious users to perform unauthorized access to the system. Another security factor is

the Bluetooth connection. This ensures that only authorized users have access to the property. In this work, we have

analyzed the security level of different parts of smart-locks. In particular, we have analyzed the security of the applications

for the most important smart-locks on the market. This study reveals relevant information such as whether the application

is obfuscated or not, the encryption algorithm for the Bluetooth connection, or relevant URLs that applications use to

connect to the cloud. The security of the Bluetooth connection between the smartphone application and two selected smart-

locks was also analyzed. It was demonstrated that if no encryption is used for the Bluetooth connection, the smart-lock is

not secure, but if AES encryption is used, the security level is high.

Keywords Smart-lock � Cybersecurity � Cyber-attack � Ethical hacking � Threat modeling � Bluetooth � Android app

reversing

1 Introduction

Smart-locks (see Fig. 1) have been made possible by

technological progress, and they offer greater protection for

both homes and businesses. These locks allow doors to be

opened or unlocked using various methods, such as a

mobile device, remote control, NFC card, fingerprint, or

numeric code. Not only can these locks provide different

access options, but they can also be considered smart since

they can store and retrieve an access log, and communicate

and sync with calendars to manage access based on pre-

determined criteria. Furthermore, some of these locks even

allow door access by entering a code upon touching the

door.

However, as with any new technology, there are always

potential risks and vulnerabilities that must be considered.

Here we will discuss some of the cybersecurity risks

& Cándido Caballero-Gil

ccabgil@ull.edu.es

Rafael Álvarez

ralvarez@ua.es

Candelaria Hernández-Goya

mchgoya@ull.edu.es

Jezabel Molina-Gil

jmmolina@ull.edu.es

1 Ingenierı́a Informática y de Sistemas, Universidad de La

Laguna, San Cristóbal de La Laguna, S/C de Tenerife, Spain

2 Department of Computer Science and Artificial Intelligence,

Universidad de Alicante, Alicante, Spain

123

Wireless Networks
https://doi.org/10.1007/s11276-023-03376-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6910-6538
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-023-03376-8&domain=pdf
https://doi.org/10.1007/s11276-023-03376-8

associated with smart-locks, and how to mitigate them.

One of the most common risks associated with smart-locks

is that of hacking [1]. If a hacker is able to gain access to

the lock’s security, for example, by capturing packets with

the Wireshark tool [2] and a Bluetooth Sniffer, they could

potentially unlock the door without the owner’s permis-

sion. To mitigate this risk, it is important to ensure that the

lock is sufficiently secure and that only authorised users

have access.

Another risk that needs to be considered is that of

physical manipulation. Smart-locks are typically installed

on the exterior of doors, making them more susceptible to

tampering. If someone were to physically tamper with the

lock, they could potentially bypass the security measures

and gain access to the property. To mitigate this risk, it is

important to choose a smart-lock that is tamper-resistant

and has a robust physical security design.

Finally, it is also important to consider the risk of human

error. While smart-locks are designed to be user-friendly,

there is always the potential for user error. For example, if

a user forgets to lock the door, or fails to properly secure

the lock, this could lead to a security breach. To mitigate

this risk, it is important to educate users on the proper use

of smart-locks, and to ensure that they are aware of the

importance of security.

1.1 Smart-locks

Smart-locks are a type of electronic lock that can use an

encrypted keypad, Bluetooth device, smartphone, WiFi

Bridge, or other methods to grant access to a locked door.

They offer a number of advantages over traditional

mechanical locks, including the ability to add or remove

users without re-keying the lock, and the ability to receive

notifications when someone accesses the locked door.

There are different smart-locks, but in this work, we have

concentrated on locks that do not require any modification

to the door mechanism. It is not necessary to disassemble

the original lock because it is adhered to the door by a very

strong 3M adhesive or screws (see Fig. 2).

Its installation is very simple. It adapts to the cylinder

that the user has in the door and one of the keys is used

inserted in the smart-lock to open the door, the key could

also be used to open if the door has a double clutch

cylinder, while the lock is installed, for its correct opera-

tion. It is glued directly over the one that is currently

available.

In particular, smart-locks that have been analyzed

physically in this work are the following:

1.1.1 Nuki smart-lock

The Nuki smart-lock [3] has been gaining considerable

popularity in recent years. Nuki stands out for its security

and easy installation. The Nuki lock is a motorized lock

whose motor turns the key automatically.

The Nuki lock was the first smart-lock in Europe that

opens doors with the help of a smartphone. In addition, it is

the first most flexible lock, i.e. it can be installed on almost

all existing European locks.

Nuki is supported by a physical button, as well as an app

control, a keypad or a remote control, and has other fea-

tures that allow it to be defined as smart. It is compatible

with both horizontal and vertical locks and is designed to

be strong enough to work with multi-point locks. It also

doesn’t matter how many turns the lock has. Nuki is

designed to work with all models. Nuki has a remote, a

keypad, a WiFi bridge (available separately), or the

smartphone app that can be linked to the Nuki smart-lock

to allow you to open your door (see Fig. 3).

It has other functions such as assigning secure access

permissions via the application and digital key sharing.

These functions are practical for occasions when you want

to give someone access to your home without granting

them permanent access. For example, you can give per-

mission for the cleaner to access your home between 08:00

and 12:00 every Wednesday for example.

You can also control who has entered and who has left

through the Activity Log. This log shows which family

members have access to the house, as well as any other

activity that has taken place at the door. It lists how the

door has been opened, by whom, and by what method,

whether manual, sensor or button, etc. Nuki has an API

connection with tourist platforms like Airbnb or Booking.

In this way, it generates a temporary code that can be

issued to users to prevent keys from being lost or copied.

This lock allows several users to register at the same time,

sending them an invitation code, which can be withdrawn

as soon as desired. The reason to choose this smart-lock

was that this device is one of the most famous in the

European market.

Fig. 1 Smart-locks

Wireless Networks

123

1.1.2 Sherlock S2 smart-lock

Xiaomi’s Sherlock S2 [4] was one of the best-selling and

best-rated locks on the market. Probably because it was one

of the cheaper and easier to install. This is the second lock

to be analyzed in this work. The Sherlock lock has multiple

ways of unlocking. Using the original key, a SmartKey (a

remote control that is configured from the mobile app to

operate the lock), fingerprint unlocking (sliding the finger

on the side of the lock) and, finally, using the Sherlock

mobile app. The reason for choosing this smart-lock was

the lack of security information from the manufacturer.

Note that nowadays, this smart-lock and the associated

Android app are not being maintained by its manufacturer.

2 State of art

In the state of the art of this work, we analyze papers

related to smart-lock security, from Bluetooth security,

mobile application security, secure smart-lock design, as

well as general Bluetooth security issues. For example,

authors in [5] present an approach for deobfuscating

Android APKs based on probabilistic learning of large

code bases. The experimental results indicate that DeGuard

is practically effective: it recovers 79.1% of the program

element names obfuscated with ProGuard, it predicts third-

party libraries with an accuracy of 91.3%, and it reveals

string decoders and classes that handle sensitive data in

Android malware.

Paper in [6] demonstrates several practical attacks based

on the threat models toward August smart-lock including

handshake key leakage, owner account leakage, personal

Fig. 2 Smart-locks physical

mechanism

Fig. 3 Nuki smart-lock

connection scheme

Wireless Networks

123

information leakage, and denial-of-service (DoS) attacks.

Authors in paper [7] propose several defenses that mitigate

different attacks. One of these defenses is a novel approach

to securely and usefully communicate a user’s intended

actions to smart-locks, which was prototyped and

evaluated.

Authors in [8] analyzed a realistic smart-lock solution

and identified the main requirements that access control

systems for IoT should satisfy. In their approach, an initial

blueprint for developing access control mechanisms for

edge-cloud-enabled IoT was incrementally extended to

incorporate new access control capabilities. Paper [9]

evaluates the security of the Verisure smart-lock system by

identifying and attempting to exploit potential vulnerabil-

ities using threat modeling and penetration testing. It

concludes that the system under consideration is relatively

secure. Authors of [10] cover a security assessment of a

smart-lock, focusing on the firmware of the embedded

devices as the main assets. Based on the identified threats,

penetration tests are conducted to demonstrate the security

of the firmware. The results show that the firmware could

not be obtained and that the product constitutes a good

example within consumer IoT for how to manage the

firmware of embedded devices. Paper [11] presents an

efficient access control scheme for smart-lock based on

asynchronous communications. The proposed

scheme avoids the break-in. They also present a light-

weight and efficient tree-based access control solution. The

experiment results prove that our scheme provides higher

security and it requires low calculation load and storage

resources, ensuring it can be implemented in IoT devices.

A smart door lock that can be completely monitored and

controlled from a remote location using an Android

application on a smartphone is proposed in paper [12].

Paper [13] outlines various features that are currently

available in smart locks. Considering the different versions

discussed, it presents a comprehensive understanding of

how the smart-lock system enhances the security of the

home or workplace by providing hassle-free access from

anywhere.

Artificial intelligence and Internet of Things (AIoT)

technologies were used to develop an integrated system for

remote room authentication and power management.

Through hardware and software integration, the study in

[14] created the AIoT smart-lock, promoted the use of IoT

devices in relevant industries, and enhanced the competi-

tiveness of product research and development. Paper [15]

conducts a case study on three different Bluetooth smart

devices. They show how these devices can be attacked and

abused to not work properly. They also present a vulner-

ability that is due to the behavior of BLE smart devices and

the Just Works pairing mode. This vulnerability can be

exploited to generate an attack that affects BLE

availability. The authors propose a solution to mitigate the

attack. Paper [16] analyzes the security of the BLE link

layer, focusing on the scenario in which two previously-

connected devices reconnect. Authors developed BLE

Spoofing Attacks (BLESA). These attacks enable an

attacker to impersonate a BLE device and to provide

spoofed data to another previously paired device.

The study [17] aims to assess the security of a smart-

lock unit. They first present a background including threat

modeling and previously found vulnerabilities. Then a

methodology section for different attacks performed as

well as the results from doing them. Finally, a discussion

where they assess the security implications of the results.

The conclusion to be drawn from the results is that the

smart lock has weaknesses in its design. Specifically, its

file system encryption, resistance to disruption attacks, and

consistency of access granted to guests. Authors in [18]

present a methodology to carry out ‘wireless spiking’

attacks on smart-lock devices that would allow an unau-

thenticated adversary to open a lock, without direct phys-

ical tampering, through the manipulation of its electrical

control circuitry using IEMI. They demonstrate the pro-

posed methodology–reverse engineering, identification of

attack points, development of an attack vector, and design

and transmission of attack signals–on a commercially

popular smart-lock.

The next section presents the attack models that we have

performed to achieve the objective of this work. We try to

verify the security level of current smart locks and show

that such security is sometimes not sufficient.

3 Attack models and use cases

Smart-locks can work in different ways. These locks can

use different types of authentication mechanisms such as

biometric sensors, key fobs, mobile apps, or PIN codes to

verify the identity of the user. However, like any other

digital device, smart-locks are vulnerable to cyber-attacks.

This paper is centered on the cyber-security of the smart-

locks with an Android app, on a smartphone or tablet.

This section presents, firstly, the attack models that can

be performed on smart locks and, secondly, the selected

attacks performed to check the cybersecurity of some smart

locks with different characteristics. Here are some attack

vectors for smart locks:

Brute Force Attack In this attack, an attacker tries every

possible combination of PIN codes or passwords to gain

access in case the smart-lock has a keyboard. If the user has

chosen a weak or easily guessable PIN code, the attacker

may be able to unlock the smart-lock by trying all the

possible combinations.

Wireless Networks

123

Bluetooth Hacking Smart-locks that use Bluetooth

technology to communicate with the user’s smartphone can

be vulnerable to Bluetooth hacking. An attacker may

intercept the Bluetooth signal and gain access to the smart-

lock without the user’s permission.

Physical Tampering Smart-locks that use biometric

sensors, such as fingerprint or facial recognition, may be

vulnerable to physical tampering. An attacker can create a

fake fingerprint or face to fool the biometric sensor and

gain access to the smart-lock.

Man-in-the-Middle (MITM) Attack In this attack, an

attacker intercepts the communication between the user’s

smartphone and the smart-lock. The attacker can then

modify the communication to gain access to the smart-lock

without the user’s permission.

Malware Attack Smart-locks that use mobile apps for

authentication can be vulnerable to malware attacks. An

attacker may infect the user’s smartphone with malware

that can steal the user’s login credentials and use them to

unlock the smart-lock.

Denial of Service (DoS) Attack In this attack, an attacker

floods the smart-lock with a large number of authentication

requests, making it unresponsive. This attack can render

the smart-lock useless and prevent the user from gaining

access to the locked area.

It’s essential to use strong authentication mechanisms

and keep the smart-lock updated with the latest security

patches to prevent these attacks.

After an analysis of the possible attacks that can be

performed on smart-locks, in this work we have chosen to

perform two different types of analysis. First, an Android

app reversing allows us to check the possibility of per-

forming brute force attacks or malware attacks, and can

provide information to perform Bluetooth hacking or man-

in-the-middle attack. Second, a Bluetooth replication attack

can allow us to perform Bluetooth hacking and man-in-the-

middle attacks. Physical tampering and denial of service

are outside the scope of this work because these types of

attacks do not allow access to the protected space.

3.1 Android app reversing

Reversing an Android app can reveal the underlying code

and logic used in the app, including its functionality, user

interface, and communication with servers or other devi-

ces. In the context of a smart-lock app, reversing can

provide valuable information about how the app interacts

with the smart-lock and its associated services. The first

aspects that can be discovered by reversing an Android app

are knowing if the app code is obfuscated as well as finding

the IP paths that the app connects to.

Here are some more things that can be discovered by

reversing an Android app for a smart-lock:

Communication Protocol This information can help

identify potential vulnerabilities in the communication

protocol or URLs to connect and provide insight into how

an attacker could exploit these vulnerabilities.

Encryption Smart-lock apps must use encryption to

secure the communication between the app and the smart-

lock but not always do it. Reversing the app can reveal the

encryption algorithm used and the keys used for encryption

and decryption.

User Authentication Smart-lock apps typically require

users to authenticate themselves before accessing the lock.

Reversing the app can reveal how the app handles user

authentication, including the storage and handling of user

credentials.

Authorization The access controls used by the app to

restrict access to the smart-lock can be revealed. This

information can help identify potential vulnerabilities in

the authorization process and provide insight into how an

attacker could bypass these controls. Even it is possible to

find Authorization tokens to the cloud database embedded

in the app.

Device Security Smart-lock apps often include features

that enhance the security of the lock, such as locking the

app with a PIN or fingerprint. Reversing the app can reveal

how these security features are implemented and whether

they can be easily bypassed.

User Privacy Reversing the app can also reveal how the

app handles user privacy, including the collection and

storage of user data. This information can help identify

potential privacy risks and provide insight into how user

data is used by the app and its associated services.

It’s important to note that reversing an Android app can

be a complex and time-consuming process, and it may

require specialized tools and expertise. It’s also important

to follow ethical hacking practices and not use the infor-

mation obtained through reversing for malicious purposes.

In order to reverse an Android app, there are some steps

that must be done. Firstly, the attacker has to obtain the

APK file. It can be obtained from the smartphone by using

different apps or downloaded directly from the internet

using sites such as APKPure, APKMirror, APKDon-

wloader, or much more [19]. Once obtained the APK, there

are some tools that can help to obtain the code:

ApkTool [20] This tool helps to decompile the applica-

tion (Fig. 4) to get the SMALI code. Smali, also called

baksmali, is a tool that was created to decompile Android

executables into a language that could be readable. This

way, you can decompile an application, modify it and

recompile it to run on Android. The Smali code is remi-

niscent of assembly language code, but in this case, you see

the Java and Android class names and method names. Its

syntax is based on the Jasmin and Dedexer languages. In

Wireless Networks

123

order to decompile the APK file, the next sentence must be

executed.

java � jarapktool:jard½victimpath:apk�
� o½pathfromdirectorynametocreate�

Jadx-Gui [21] This tool is used to be able to understand

the code, in this case, this tool allows you to execute in

graphical form, as well as at command level to obtain the

Java code (Fig. 5).

Jad-Gui can also help in case the code of the app is

obfuscated. It is even possible to modify the SMALI code

and recompile the application with a modified behavior,

but in this work, we will not perform this part.

Most of these applications are obfuscated. Jadx-Gui

allows to de-obfuscated code with limited results. In many

of these applications, relevant URLs were easily found. All

these applications are complex with more than 20 or 30

permissions required to work. File AndroidManifest.xml

shows relevant information such as the Landing Page or the

activities. All the applications except the Sherlock lock

uses AES encryption to communicate with the smart-lock.

Next Table 1 shows the main Android apps for smart-

locks and some information from their code. After

Fig. 4 Android App reversing - Obtaining SMALI code

Fig. 5 Android App reversing - Jadx-Gui to obtain Java code

Wireless Networks

123

downloading and performing a reversing of the apps, some

relevant information has been found.

3.2 Bluetooth replication attack for two smart-
locks

The process of locking and unlocking the lock is very

simple. The user must enter the app with the username used

to register previously. Then the app will take him to the

main menu of the application, where if there is already a

lock associated, it will appear with the options to unlock,

sliding the finger to the right, or lock, by sliding the finger

to the left. Another way to unlock the smart-lock is by

using a key fob or a keyboard with its corresponding PIN.

In order to study the Bluetooth security of the smart-

lock, we will check how the sending of information

between the application and the lock works. This attack has

been performed for two different locks with different levels

of cyber-security.

The objective of this process is to be able to capture the

traffic when the lock connects with the smartphone and

sends it the key to unlocking the door, and then try to

replicate that traffic. For this purpose, we use a tool to

make the connection between our computer, the applica-

tion, and the lock. In this project, we use the Adafruit

bluefruit LE sniffer, which allows us to capture and

analyze the packets in transit between the devices. To

analyze the traffic captured in the Wireshark application,

we first need to link the information received by the sniffer.

The nRF Sniffer for Bluetooth LE program is used for it.

This tool allows us to see in real-time all the devices that

are being captured by the sniffer in order to capture the

data to later filter that content in Wireshark and check the

information in detail. Thanks to this tool we can see all the

available nearby Bluetooth devices with their respective

MAC addresses. Furthermore, there is a guide to all the

useful commands we can use with this tool.

Adafruit bluefruit LE Sniffer Adafruit bluefruit LE

Sniffer [22] is programmed with a firmware image that

makes it an easy-to-use firmware image that makes it an

easy-to-use Bluetooth Low Energy (BLE) sniffer.

Bluetooth antenna CBT40NANO The CBT40NANO

Bluetooth Nanoadapter [14] is used to establish a wireless

connection with other Bluetooth devices. In this project, it

is used to create a connection through a virtual machine,

running the Linux operating system, to the lock. In this

way, the traffic required to unlock the lock can be

replicated.

Wireshark Wireshark is the most widely known and

used packet analyzer in the world and is the program used

in this project to analyze the packets sent between the

mobile device and the lock. Thanks to this program, you

Table 1 Android apps for smart-locks and information after decompiling the apps

Android App Version Downloads Rate Unique app ID Obfusca API Route / URLs

Remote Lock 4.63.2 10k \3 com.lockstate. remotelock No https://firebase.google.com/support/privacy/

Kwikset Kevo 2.9.1 500k? 3,3 com.unikey.kevo Yes https://mykevo.com/forgot_password

https://mykevo.com/mobile_login/

https://tumblerprod.unikey.com/

August Home 23.1.0 1 M? 3,5 com.august.luna Yes http://logback.qos.ch

https://github.com/grpc/grpc-java

https://console.firebase.google.com

Lockitron

(TTLock)

6.4.5 500 M? 3,2 com.tongtongsuo.

app

No https://servlet.ttlock.com

https://qiniuroommaster.ttlock.com

Schlage Home 3.7.0 100k? 3,6 com.allegion.leopard No https://cdn.branch.io/

http://acs.amazonaws.com/groups/global/Auth

Wink-Smart

Home

7.0.44 500 M? 3,0 com.quirky.android.

wink

No https://subscription-staging.wink.com

https://subscription.wink.com

Yale Doorman 11.6.2 100 M? 4.3 com.august.bennu Yes https://global-config.autust.com

https://api-production.august.com

https://logger.august.com

tcp://stage-mqtt.august.com:1883

Nuki 2023.2.1 500 M? 4.6 io.nuki Partially https://nuki.io

com.google.firebase.encoders.json

Sherlock lock 3.6.6 Not working – com.aerolite.smartlock Yes https://api1.venus.aerolite.net

Wireless Networks

123

https://firebase.google.com/support/privacy/
https://mykevo.com/forgot_password
https://mykevo.com/mobile_login/
https://tumblerprod.unikey.com/
http://logback.qos.ch
https://github.com/grpc/grpc-java
https://console.firebase.google.com
https://servlet.ttlock.com
https://qiniuroommaster.ttlock.com
https://cdn.branch.io/
http://acs.amazonaws.com/groups/global/Auth
https://subscription-staging.wink.com
https://subscription.wink.com
https://global-config.autust.com
https://api-production.august.com
https://logger.august.com
https://nuki.io
https://api1.venus.aerolite.net

can capture and analyze in detail all network traffic

entering and leaving your PC. This free program allows

you to perform an in-depth inspection of hundreds of

protocols, as it supports the physical layer, link layer,

network layer, transport layer, and application layer

protocols.

Gatttool Gatttool [23] is a tool that allows obtaining

information or manipulating attributes of a BLE device.

Thanks to this tool, in this project we have implemented

the writing of keys in the lock.

3.2.1 Sherlock S2 lock bluetooth attack

In order to carry out a Bluetooth attack, firstly, The

Wireshark program detects the Sherlock lock once the

device is located. The next step is to analyze its traffic in

Wireshark. To do this, we select the lock and press the ’w’

key, this will redirect us directly to the Wireshark tool,

filtering only the traffic of the selected Bluetooth device.

Another method to capture the traffic between the two

devices, implemented for the development of the project is

through the HCI snoop log function [24]. This is a log file

containing all Bluetooth transmissions that have been made

from a smartphone. To be able to use this functionality, the

developer mode must be activated on the mobile device

and, once activated:

• Activate Bluetooth HCI logging, to enable the logs.

• And, USB debugging, to later be able to extract the logs

via USB and view them on a computer.

Bluetooth is then turned ’on’ and ’off’ to enable data col-

lection. Once Bluetooth is enabled, the lock can be

unlocked to capture traffic.

In order to analyze the collected data on a computer, the

log is passed through an adb (Android Debug Bridge)

command line tool [25], which enables communication

with a device, and finally, a .log file is generated that can be

analyzed in Wireshark. This method was discarded because

the use of a Bluetooth sniffer streamlines the data collec-

tion process. Once in Wireshark, we can start the analysis.

To filter the traffic more effectively, the ’btatt’ filter [26] is

used. This filter shows all protocols related to Bluetooth

traffic and, therefore, we can obtain only the packets that

are sent between the lock and the application. When the

filter has been introduced, we start capturing the traffic by

blocking or unblocking the lock. In this way, information

will start to reach the program, which we will later use to

replicate the traffic and check if it is possible to hack it. A

brief explanation of the details of the list of packets cap-

tured in the process is provided below.

The protocol used for the connection is ATT (Attribute

Protocol) [27], an attribute-based protocol belonging to the

BLE protocols, with client–server architecture, which

allows the exchange of information. This protocol defines

how data is represented and the methods by which this data

can be read or written. In this case, it acts as a server,

holding the data until the phone requests it. This data is

stored in the BLE server as attributes. Image 6 shows the

packets sent from the smartphone to Sherlock. The last

column notifies us about the information being acquired at

each packet in the connection. The point we are interested

in for our investigation is when the key is sent from Master

to Slave.

This is a packet that is making a written request with a

Handle 0x0019. The Handles [28] are the components that

process each of the packets that belong to the captures. The

Handle extracts from the packet the necessary information,

as in this case the value being sent. We can observe that

three key writing requests are sent from the lock to the

smartphone. Subsequently, the mobile application responds

to the lock by sending a series of notifications informing

that the value has been received. Finally, Sherlock again

sends four key write requests to the device. This implies

that unlocking the lock requires entering seven keys in

total.

The next step is to look at the values that are written in

each write packet. We can see this information by selecting

the packet we want to analyze and a number of charac-

teristics of that packet will appear. To see the value, we are

interested in the information provided by the ATT protocol.

The ATT protocol provides us with the three most

important points to solve the problem:

• Opcode (Operation code) [29]. In this case, it is a write

operation ’Write Command’

• Handle (Pointer). Indicates the attribute to which the

script is pointing.

• Value. Tells us the value of the key that is going to be

written.

When we get all the keys that are sent, we can move on to

replicating the packets. To do this, we need a Linux

operating system or a virtual machine containing it. In our

case, we opted for the latter option. Because of this, a

Bluetooth adapter is needed as the virtual machine does not

have a Bluetooth connection. First, we check that a signal

is being received from the lock. To do this, we use the

hcitool tool to scan for nearby Bluetooth devices. By

executing the following command ’sudo hcitool lescan’ we

can see the available BLE devices with their respective

MAC address and check that we have a connection to our

lock.

The next step is to use the hciconfig command,

which is used to configure Bluetooth devices. hciX is

the name of a Bluetooth device installed on the system. In

our case, the one we have installed is hci0. To be able to

work with Bluetooth devices it is required to initialize it.

Wireless Networks

123

The last tool used and the most important for our

research is Gatttool. This tool allows us to connect to BLE

devices with the MAC address of the device and manipu-

late its attributes with a series of commands available from

the tool. In such a way, it will be possible to replicate the

packets we have previously captured. In case the MAC

address of the lock to be analyzed is not known, there are

two options for searching for it. Firstly, we can obtain this

information from packet capture in Wireshark, which

shows the addresses of the two communicating devices.

Secondly, thanks to the hcitool tool, mentioned above, we

can easily see the BLE devices found and their associated

MAC address. The Gatttool tool has several interesting

commands for manipulating Bluetooth devices or simply

acquiring relevant information about them. Bluetooth

devices or simply to acquire relevant information from

them.

Once the commands necessary to replicate packets are

clear, we connect to the lock and send the keys obtained. At

first, in order to connect to the device, each key is entered

individually by using Gattool.

This was not feasible because the connection to the lock

was lost a few seconds after initialization, and since 7 keys

had to be entered, it was unfeasible to establish the con-

nection for each key that had to be entered. Therefore, a

simple bash script has been implemented, see Fig. 7) which

contains all the necessary commands for connecting and

writing, making the process of sending packets easier and

faster.

In this way, all the commands explained above are

executed together saving a lot of time when hacking the

lock. And finally, the lock is unlocked by replicating the

packets. It’s a fairly simple process and one that raises

questions about the security of this brand of smart-lock.

However, even though it is easy and quick to hack, Sher-

lock does have some security measures, such as changing

the keys after several minutes have passed since the door

has been opened.

However, there is still ample time to perform packet

replication. In addition, in the future, a program could be

implemented or the script could be optimized to make the

data collection more effective and faster, thus unlocking

the lock in a matter of seconds.

3.2.2 Nuki lock bluetooth attack

Nuki lock has been studied in this project. Next, some

technical concepts about it and its operation will be shown,

and then proceed to the analysis of its security. It is

especially noteworthy that the Nuki lock operates at the

highest level of security encryption, as it uses AES with

256-bit keys. AES is a symmetric block cipher, which

Fig. 6 Capturing packet traffic from Sherlock using Wireshark, with requests and responses

Wireless Networks

123

means that it encrypts and decrypts data in blocks of 128

bits each. To do this, it uses a specific cryptographic key,

which is effectively a set of protocols for manipulating

information. This key can be 128, 192, or 256 bits long.

AES-256, the 256-bit key version of AES, is the encryption

standard used by LE VPN. It is the most advanced form of

encryption and consists of 14 rounds of substitution,

transposition, and mixing for an exceptionally high level of

security. Its larger key size makes it essentially unbreak-

able, meaning that even if hacked, the data would be

impossible to decrypt. The Nuki lock stands out in Europe

for its good reviews regarding its security, therefore, it has

been analyzed if a package replication would hack it.

With the Adafruit bluefruit LE sniffer and its nRF

Sniffer for Bluetooth program to detect nearby BLE devi-

ces, we connect to the Nuki lock to later analyze the

packets sent and received in Wireshark. Once Wireshark

has been started and the ’btatt’ filter has been introduced to

acquire only Bluetooth traffic, we can unlock the lock and

check what information is reaching us and if it will be

possible to hack it. In Fig. 8 we can appreciate the com-

munication between the Nuki lock and our Samsung

mobile device.

The protocol used for the connection is also ATT where

the attributes sent are stored, but in the column indicating

the packet information, slight formatting changes can be

observed, which will be discussed later. In this case, we can

see that several write requests are made to the lock to send

the keys with Handle 0x0092 with the command:

Sent Write Request, Handle 0x0092

Therefore, we must collect all the values that are sent in

order to later perform their replication. In order to see these

values, we are interested in the information provided by the

ATT protocol. Once we have all the keys that are sent, we

can replicate the traffic again from our virtual machine.

First, we check that we are receiving a connection from the

Nuki lock with the hcitool tool and, since we get a signal,

we can run our bash script, previously modified with the

values found in Wireshark. However, even though the

values are correctly written to the lock, it fails to unlock it.

This is because, when unlocking the door, Nuki instantly

changes the key for the next opening, being unfeasible to

hack the lock with this method, since the previously col-

lected keys would be automatically obsolete.

In the following, we will explain in detail how the

encryption works in the Nuki lock [30]. This lock uses the

principle of end-to-end encryption, i.e., it applies a cipher

to the key in such a way that only the receiving device can

decrypt it. To establish communication between the Nuki

app and the smart-lock, a proprietary key is used that is

known only to both devices. To protect against attackers,

the data is encrypted before it is transmitted by the sender

(the Nuki app). This is done using the NaCl (Networking

and Cryptography library) process [31]. In this process,

unique combinations of numbers and letters are used only

once. This data is transferred via Bluetooth and decoded

again when received by the receiver (Nuki smart-lock).

1. The Nuki app sends the ‘‘unlock’’ instruction and

encrypts it in such a way that only the app and Nuki

smart-lock know the key.

2. The Nuki app transfers the encrypted message via

Bluetooth to the lock.

3. Nuki smart-lock knows the key and can therefore

decrypt the contained message and execute the ‘‘un-

lock’’ command.

4. In the unlocking process, the Nuki app receives a

random number. The ‘‘unlock’’ instruction can only be

sent to the lock when it necessarily contains an

identical random number.

If another unlock instruction with the same random number

is subsequently sent to the door lock, Nuki smart-lock

rejects the instruction. This analysis shows us that the

security level of Nuki is high, as reported by the

Fig. 7 Bluetooth script for

sending Sherlock lock keys

Wireless Networks

123

manufacturers, and that overall it is a lock that the market

can currently rely on. However, since the packet replication

method used in this project is only one of the options for

hacking, this research does not imply that there may not be

another procedure for unlocking the lock and that this lock

may end up being vulnerable to attack.

3.2.3 Bluetooth cyber-security comparison (Nuki-Sherlock
S2)

Having analyzed the operation of both locks and seen how

the packets are sent between the two devices, we can make

an analysis of the differences that have been found during

the hacking procedure for both locks. First of all, it has

been possible to verify that the Nuki lock has better

security than the Sherlock lock, since during the investi-

gation Sherlock was successfully unlocked, but not Nuki.

In addition, there is more open information about the

encryption used in the Nuki lock than in the case of the

Sherlock, and in fact, it is known that the Nuki lock uses

AES with 256-bit keys.

In conclusion, there are a number of points that show the

main differences between the two locks and why one is

more vulnerable than the other.

• Packet writing format Although in both connections

write requests are made and keys are stored in the ATT

protocol, the request is not sent in the same format. In

the Sherlock lock ‘‘Rvcd write command’’ is used which

means that it has received the write command with the

key value and in the Nuki lock ‘‘Sent Write Request’’ is

used which implies that the requested write has been

sent with that value. Moreover, in the first case, it is the

lock that sends the value and in the second case, it is the

mobile application that does the sending. With this

information it can be assumed that we manage to

unlock the Sherlock lock because we are attacking the

lock, however, we were unable to hack the Nuki lock

because we attacked the mobile device, which would

not be present at the time of the cyberattack.

• Key change time AAs mentioned above, Sherlock keeps

the same key for a few minutes after unlocking the

door, making it easy to attack his security. However,

Fig. 8 Capturing packets traffic of Nuki Smart-Lock using Wireshark

Wireless Networks

123

Nuki controls time much more securely. This lock

changes the key the instant the door is unlocked. In this

way, there is no time margin for burglary. This is the

most important and strongest point of Nuki in terms of

its security and the one that makes it stand out from

Sherlock.

4 Conclusions and future work

In conclusion, the security of smart-locks in general is

quite good. Most of them use AES encryption for the keys

used in Bluetooth communication and have obfuscated the

Android app code. However, security in the use of Blue-

tooth technology is of utmost importance due to the

potential risk of unauthorized access. As demonstrated in

this research, smart-locks using Bluetooth can be vulner-

able to man-in-the-middle attacks if there is no encryption

is used, as is the case with the Sherlock S2 smart-lock. This

attack can result in unauthorized access to the lock and

compromise the security of the property. It is therefore

important to be aware of the security gap that can exist in

some smart-locks against such attacks. Smart-locks with

AES encryption and one-time keys, such as the Nuki lock,

are secure, and as you can see in the analysis of the smart-

locks application code, most of them use AES and are

generally secure.

Future Work There are several potential avenues for

future work to investigate further the vulnerabilities of

some types of smart-locks. First, research should focus on

thorough code reviews to find bugs that allow unauthorized

access or other types of errors. Second, efforts should be

made to develop modified Android apps to bypass the

authentication required to open the smart-locks. Thirdly,

check the connection between the Android app and the

vendor API in the cloud using Burp Suite to see if there is

any relevant information or any kind of SQL injection, GIT

code online, etc. Finally, old versions of Android apps can

be scanned for information and security vulnerabilities.

Overall, it is important to continue to research and look

for vulnerabilities to ensure that smart-locks have robust

security and cannot be compromised, and that users can

continue to rely on them to secure their properties.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature. Research supported by the Cátedra

Institucional de Ciberseguridad Binter and the Cátedra Edosoft de

Computación en la Nube e Inteligencia Artificial, both from the

University of La Laguna.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Palle, S. (2017). Smart locks: Exploring security breaches and

access extensions. PhD thesis, Oklahoma State University.

2. Lamping, U., & Warnicke, E. (2004). Wireshark user’s guide.

Interface, 4(6), 1.
3. Solutions, N.H. (2013). Nuki smart lock. https://nuki.io/es/smart-

lock/.

4. Xiaomi. Sherlock smart lock. https://cerradurasinteligentes.net/

xiaomi/xiaomi-sherlock-s2/.

5. Bichsel, B., Raychev, V., Tsankov, P., & Vechev, M. (2016).

Statistical deobfuscation of android applications. In Proceedings
of the 2016 ACM SIGSAC conference on computer and commu-
nications security, pp. 343–355.

6. Ye, M., Jiang, N., Yang, H., & Yan, Q. (2017). Security analysis

of internet-of-things: A case study of august smart lock. In 2017
IEEE conference on computer communications workshops
(INFOCOM WKSHPS), pp. 499–504. IEEE.

7. Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., & Wagner,

D. (2016). Smart locks: Lessons for securing commodity internet

of things devices. In Proceedings of the 11th ACM on Asia
conference on computer and communications security,
pp. 461–472.

8. Ahmad, T., Morelli, U., Ranise, S., & Zannone, N. (2018). A lazy

approach to access control as a service (ACaaS) for IoT: an AWS

case study. In Proceedings of the 23nd ACM on symposium on
access control models and technologies, pp. 235–246.

9. Hassani, R. (2020) Security evaluation of a smart lock system.

10. Borg, A., & Francke, C.A. (2020). IoT Pentesting: Obtaining the

firmware of a smart lock.

11. Han, Z., Liu, L., & Liu, Z. (2019). An efficient access control

scheme for smart lock based on asynchronous communication. In

Proceedings of the ACM Turing celebration conference-China,
pp. 1–5.

12. Pinjala, S.R., & Gupta, S. (2019). Remotely accessible smart lock

security system with essential features. In: 2019 international
conference on wireless communications signal processing and
networking (WiSPNET), pp. 44–47. IEEE

13. Aluri, D. C. (2020). Smart lock systems: An overview. Interna-
tional Journal of Computer Applications, 177(37), 40–43.

14. Lin, P.-J., Ho, C.-T. (2020). Smart lock security system based on

artificial internet of things. In 2020 IEEE Eurasia conference on
IOT, communication and engineering (ECICE), pp. 79–81. IEEE

15. Lounis, K., & Zulkernine, M. (2019). Bluetooth low energy

makes ‘‘just works’’ not work. In 2019 3rd cyber security in
networking conference (CSNet), pp. 99–106. IEEE

16. Wu, J., Nan, Y., Kumar, V., Tian, D.J., Bianchi, A., Payer, M., &

Xu, D. (2020). Blesa: Spoofing attacks against reconnections in

Bluetooth low energy. In WOOT@ USENIX Security Symposium.

17. Persman, P., & Öjebrant, S. (2021). Security analysis of a

smartlock.

Wireless Networks

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://nuki.io/es/smart-lock/
https://nuki.io/es/smart-lock/
https://cerradurasinteligentes.net/xiaomi/xiaomi-sherlock-s2/
https://cerradurasinteligentes.net/xiaomi/xiaomi-sherlock-s2/

18. Mohammed, A.Z., Singh, A., Dayanıklı, G.Y., Gerdes, R., Mina,

M., & Li, M. (2022). Towards wireless spiking of smart locks. In

2022 IEEE security and privacy workshops (SPW), pp. 251–257.
IEEE.

19. Price, D. The 7 Best Sites for Safe Android APK Downloads.

https://www.makeuseof.com/tag/safe-android-apk-downloads/.

20. Connor Tumbleson, R.W. ApkTool: A tool for reverse engi-

neering Android apk files. https://ibotpeaches.github.io/Apktool/.

21. Github. jadx - Dex to Java decompiler. https://github.com/skylot/

jadx.

22. Adafruit. Bluefruit LE Sniffer - Bluetooth Low Energy (BLE 4.0)

- nRF51822. https://www.adafruit.com/product/2269.

23. Gatttool: Gatttool. http://manpages.ubuntu.com/manpages/cos

mic/man1/gatttool.1.html.

24. snoop log, H. HCI snoop log. https://www.mybluetoothreviews.

com/what-is-bluetooth-hci-snoop-log/.

25. Google. Android Debug Bridge (adb). https://developer.android.

com/studio/command-line/adb?hl=es-419.

26. Wireshark. btatt Filter. https://www.wireshark.org/docs/dfref/b/

btatt.html.

27. Programmerclick.com. ATT (Attribute Protocol). https://pro

grammerclick.com/article/68241335665/.

28. Wikipedia. Handle. https://es.wikipedia.org/wiki/Handle.

29. Wikipedia. Opcode. https://es.wikipedia.org/wiki/Cdigo_de_

operacin.

30. Nuki. Nuki Encryption. https://nuki.io/es/blog/sientete-seguro/

seguridad-en-primer-plano-concepto-de-cifrado-de-nuki-expli

cado-de-forma-sencilla/.

31. Wikipedia. NaCl. https://en.wikipedia.org/wiki/NaCl_(software).

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cándido Caballero-Gil is a

Senior Lecturer in the area of

Computer Architecture and

Technology at the University of

La Laguna, Tenerife, Spain. He

received his degree in Computer

Science Engineering from the

University of Las Palmas de

Gran Canaria in 2007 and his

Ph.D. from the University of La

Laguna in 2011. His research

interests include ad hoc net-

works and VANET security,

cryptography, especially in the

area of key management and

privacy. He is a member of the CryptULL research group, dedicated

to the development of cryptology projects (since 2007), and is

involved in several projects and publications in this area. He has

authored several conference and journal papers.

Rafael Álvarez is a Senior Lec-

turer in the Department of

Computer Science and Artificial

Intelligence at the University of

Alicante, Spain. He received a

combined Bachelor’s and Mas-

ter’s degree in Computer Sci-

ence in 2001, a Ph.D. in

Computer Science in 2005, and

the Extraordinary Doctorate

Award in 2009. He is a member

of the Computational Security

and Cryptology Research Group

and is interested in security,

cryptography, machine learning,

and their applications in computer science. He has participated in

numerous international conferences and has been published in pres-

tigious journals.

Candelaria Hernández-Goya was

born in Santa Cruz de Tenerife,

Spain, on June 18, 1970. She

received the M.S. and the Ph.D.

degrees in Mathematics from

the University of La Laguna,

Spain in 1995 and 2003,

respectively. She has been Lec-

turer at the University of La

Laguna since 1998 and Senior

Lecturer since 2010. Her major

interests are security in vehicu-

lar ad hoc networks, authenti-

cation, and cryptographic

protocols.

Jezabel Molina-Gil is a Ph.D.

Assistant Professor of Computer

Science and Artificial Intelli-

gence at the University of La

Laguna, Tenerife, Spain. She

received her degree in Com-

puter Science Engineering from

the University of Las Palmas de

Gran Canaria in 2007 and her

Ph.D. from the University of La

Laguna in 2011. Her research

focuses on cryptography and

VANET security, especially in

the areas of cooperation and

data aggregation. She is a

member of the CryptULL research group, dedicated to the develop-

ment of projects in cryptology (since 2007), and is involved in several

projects and publications related to this area. She has authored several

conference and journal papers.

Wireless Networks

123

https://www.makeuseof.com/tag/safe-android-apk-downloads/
https://ibotpeaches.github.io/Apktool/
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://www.adafruit.com/product/2269
http://manpages.ubuntu.com/manpages/cosmic/man1/gatttool.1.html
http://manpages.ubuntu.com/manpages/cosmic/man1/gatttool.1.html
https://www.mybluetoothreviews.com/what-is-bluetooth-hci-snoop-log/
https://www.mybluetoothreviews.com/what-is-bluetooth-hci-snoop-log/
https://developer.android.com/studio/command-line/adb?hl=es-419
https://developer.android.com/studio/command-line/adb?hl=es-419
https://www.wireshark.org/docs/dfref/b/btatt.html
https://www.wireshark.org/docs/dfref/b/btatt.html
https://programmerclick.com/article/68241335665/
https://programmerclick.com/article/68241335665/
https://es.wikipedia.org/wiki/Handle
https://es.wikipedia.org/wiki/Cdigo_de_operacin
https://es.wikipedia.org/wiki/Cdigo_de_operacin
https://nuki.io/es/blog/sientete-seguro/seguridad-en-primer-plano-concepto-de-cifrado-de-nuki-explicado-de-forma-sencilla/
https://nuki.io/es/blog/sientete-seguro/seguridad-en-primer-plano-concepto-de-cifrado-de-nuki-explicado-de-forma-sencilla/
https://nuki.io/es/blog/sientete-seguro/seguridad-en-primer-plano-concepto-de-cifrado-de-nuki-explicado-de-forma-sencilla/
https://en.wikipedia.org/wiki/NaCl_%28software)

	Research on smart-locks cybersecurity and vulnerabilities
	Abstract
	Introduction
	Smart-locks
	Nuki smart-lock
	Sherlock S2 smart-lock

	State of art
	Attack models and use cases
	Android app reversing
	Bluetooth replication attack for two smart-locks
	Sherlock S2 lock bluetooth attack
	Nuki lock bluetooth attack
	Bluetooth cyber-security comparison (Nuki-Sherlock S2)

	Conclusions and future work
	Open Access
	References

