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A B S T R A C T

This paper aims to provide an improvement in the modeling of supply chain designs by incorporating correlated
uncertainty among multiple parameters, resulting in a more resilient design. A new methodology to generate
forecasts for historically correlated time series, regardless of their underlying probability distributions, is
presented and applied to generate scenarios for energy and carbon prices, which historically proved to
be correlated. These scenarios are then used in a stochastic computation to obtain a three-echelon supply
chain design in Europe maximizing the economic performance. The emissions were monetarized through the
incorporation of the European Union cap-and-trade emissions trading system into the model. The social impact
of the supply chain network is measured in terms of the direct, indirect and induced jobs it creates, which
are proportional to the economic performance. By combining the developed methodology with data mining
algorithms, a reduction in the number of required scenarios by more than 90% was achieved. The numerical
case study moreover shows that the stochastic design ensures an average reduction of emissions by more than
3 ktons compared to the use of a deterministic approach. In comparison, the computation of a stochastic supply
chain design without parameter correlation takes 5 times longer.
1. Introduction

There are several possible sources of uncertainty in a supply chain
model. One of them is referred to as structural uncertainty and de-
scribes the inability of a model to represent real-world situations,
such as disregarding legal regulations. If regulatory uncertainty is not
considered when designing a supply chain, companies may for example
hesitate to invest in sustainable changes to their production process.
Furthermore, the resulting design may lack flexibility in meeting future
regulations, leading to unexpected investment costs. Carbon regulations
have become an increasingly relevant topic in recent years, and the
introduction of an Emissions Trading System (ETS) by governments is
a key driver of this trend. Both customers and production companies are
encouraged to move towards products with a better carbon footprint,
and it has been confirmed that the most efficient approach to reduce
emissions is through carbon pricing (World Bank Group, 2019). To link
the emission to overall profit, the model incorporates the cap-and-trade
system from the European Union. As a result, the total emissions will
be indirectly minimized (European-Union, 2016).

Another type of uncertainty is the so-called parameter uncertainty,
and it occurs when the values of different parameters, such as product
demand on different markets, energy prices or raw material prices,
are assumed for the entire time horizon under study and not known
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beforehand. In this manuscript, uncertainty in energy and carbon prices
will be studied. Both have undergone major changes during the last
years, and exposed the difficulties of supply chains to handle them. Not
accounting for uncertainty in energy and carbon prices may lead to less
flexible supply chain designs, and low flexibility may lead to higher
emissions and costs than necessary. To incorporate uncertainty into a
stochastic numerical model, various methods have been investigated in
the literature. One of them is Chance Constraint Optimization (CCO),
in which constraints do not have to be satisfied for each scenario,
but rather only for a certain level of confidence. CCO can be used to
investigate and balance the trade-off between cost and risk and has
been employed for example by Mitra et al. (2008), who considered
uncertainty in the demand of 34 products of a supply chain network.

Another method is Robust Optimization (RO), in which uncertain
parameters are assumed to move in a known range. RO then aims
to optimize the objective for the worst-case scenario, while ensuring
feasibility for the entire parameter range. Robust optimization was em-
ployed by Khorshidvand et al. (2021), who presented a novel modeling
approach for closed-loop supply chains with uncertain demand, and
by Krishnan et al. (2022) who used it to design a food supply chain
under supply uncertainty. In the present manuscript, Stochastic Opti-
mization (SO) is used. Stochastic optimization considers uncertainty in
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Table 1
Topics studied in various recent publications.
Article Energy

prices
Social
dimension

Carbon regulation Correlation Scenario reduction

Baringo and Conejo (2013) ✓ ✓

Das and Shaw (2017) ✓ ✓

Jahani et al. (2018) ✓

Fattahi et al. (2018) ✓

Dehghani et al. (2020)
Delberis et al. (2021) ✓ ✓

Xu et al. (2022) ✓ ✓

Garcia-Castro et al. (2022) ✓ ✓

Krishnan et al. (2022) ✓

This manuscript ✓ ✓ ✓ ✓ ✓
the parameters by generating a number of scenarios and corresponding
probabilities. It then optimizes the expected outcome of the objective of
all scenarios. There are different methods to generate these scenarios,
with one of the most prominent ones being the Monte Carlo method,
which uses randomness to generate new samples. Elsayed et al. (2022)
used the Monte Carlo technique to sample demand and supply scenarios
for a blood supply chain. Another sampling method is Latin Hypercube
Sampling, which using an a priori discretization of the parameter space
is able to achieve a certain level of sampling-accuracy using fewer
samples than the Monte Carlo method, at the cost of higher complexity.
(Fattahi et al., 2018) presented a multi-stage stochastic problem, in
which they employed Latin Hypercube Sampling to generate demand
scenarios.

The present manuscript investigates uncertainty in energy and car-
bon prices, since both of these quantities have undergone substantial
changes in the recent past, not least as a result of the EU energy
crisis (ecoinvent, 0000). Since the exact probability distribution of
neither energy nor carbon prices is known, a straight-forward applica-
tion of the previously mentioned sampling methods was not expected
to produce realistic pricing scenarios. Therefore, an AutoRegressive
Integrated Moving Average (ARIMA) model that best fits the historical
price data was identified, and could subsequently be used to forecast
realistic future pricing scenarios. ARIMA models have been widely
used in different contexts, for example by Fanoodi et al. (2019) in
combination with neural networks to predict blood platelet demand.

When considering uncertainty in more than one parameter, a less
considered topic is the correlation among these parameters. Not taking
the correlation into account when generating scenarios treats both un-
certain variables as if they were independent, which introduces a new
source of structural uncertainty into the model. Lately, several authors
have taken correlation of the data into consideration and pointed out
its implications in their analysis. Delberis et al. (2021) proposed the
use of correlated scenarios for energy, power demand and spot prices
to optimize the parameters of a contract for a large electricity consumer
in Brazil. They used a Seasonal ARIMA (SARIMA) model and considered
risk management. In 2020, Dehghani et al. presented a design of a
photovoltaic supply chain in Iran under correlated uncertainty using
a robust optimization method and Jahani et al. (2018) studied the
redesign of a supply chain network considering correlated scenarios
in demand and prices, modeled as two correlated Geometric Brownian
Motion (GBM) processes. The GBM is linked to the normal distribution,
for which correlated samples can be generated using explicit formulas.
Their results indicate that ignoring the effect of correlation leads to
profit overestimation.

A main limitation of stochastic simulations is the fast increasing
number of variables and equations for a growing number of scenar-
ios. However, the underlying probability space must be adequately
discretized, and the number of scenarios cannot be chosen arbitrarily
small. A reasonable trade-off between the accuracy of the stochastic
method and its complexity needs to be found. Xu et al. (2022) presented
an eco-friendly closed-loop supply chain under uncertainty in carbon
2

price and demand. To reduce the number of scenarios they applied
a forward and reverse scenario reduction technique. Garcia-Castro
et al. (2022) presented a cooperative sustainable supply chain design
under uncertainty in carbon dioxide allowance prices and compared
the reduction of scenarios using the k-means clustering technique and
the Scenario Reduction algorithm (ScenRed), a powerful scenario tree
reduction algorithm for multivariate data (Dupacova et al., 2002).
In this manuscript the Balanced Iterative Reducing and Clustering
using Hierarchies (BIRCH) algorithm is used to reduce the number of
required scenarios. Classical clustering algorithms such as k-means or
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
clustering methods perform well on datasets having visually separable
clusters, while the BIRCH algorithm can handle highly connected, dense
datasets.

In the present manuscript, a new methodology for generating cor-
related time series, that does not require a priori knowledge of the
corresponding probability distributions, is presented. This methodology
is then applied to generate scenarios with correlated energy and carbon
prices. The cap-and-trade system is implemented to create a direct
link between economic and environmental performance and to reduce
structural uncertainty in the model. The social impact of the network
and its risk robustness were also analyzed. Finally, the results were
compared with the design obtained form a deterministic approach,
and the design from a stochastic optimization that does not consider
correlation of parameters. This comparison helps to better understand
the impact of correlation in a stochastic optimization.

Table 1 presents a summary of the topics that have been studied in
recent publications. In this manuscript, all the mentioned topics will be
addressed conjointly.

The next section presents the methodology, which is divided into
four subsections: The mathematical formulation of the supply chain
model; the proposed method to generate correlated scenarios and re-
duce the total number of scenarios needed; the social assessment; and
risk management applied to the resulting supply chain design. In the
last two sections, numerical results and conclusions that can be drawn
from them are presented.

2. Methodology and mathematical formulation

The presented mathematical model integrates the calculation of
benefit and cost associated with a certain supply chain network. It also
includes the determination of the Global Warming Potential (GWP), ac-
counting for emissions associated to energy use, raw material consump-
tion and transportation, as well as the carbon cap-and-trade system,
which links the emissions to the total profit of the network. The model
includes uncertainty through a number of scenarios for the carbon and
energy prices, taking into consideration the correlation of the historical
data. For the obtained design, the social corresponding impact and risk
are calculated using different indicators. Each of the mentioned topics

will be described in detail in the followings subsections.
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2.1. Supply chain model

The supply chain network is described by different blocks of equa-
tions, including economic assessment, mass balances and capacity con-
straints, environmental impact assessment as well as the corresponding
constraints to the cap-and-trade regulations.

In the following equations, the subscript 𝑠 ∈ S denotes the scenario,
= {0,… , 𝑛𝑇 − 1} is the set of 𝑛𝑇 timesteps, 𝑡 ∈ T denotes a certain

ime period and 𝑝 ∈ P stands for the plant of interest. Warehouses
nd markets are indicated by the subscripts 𝑤 ∈ W, resp. 𝑘 ∈ K. For
hemicals and technologies, the respective subscripts are 𝑗 ∈ J and 𝑖 ∈ I.

If in time period 𝑡 ∈ T the capacity of technology 𝑖 ∈ I is extended
t plant 𝑝 ∈ P, the binary variable YP𝑝,𝑖,𝑡 takes value one, otherwise it
s zero. Analogously, the binary variable YW𝑤,𝑡 takes value one, if the
apacity of warehouse 𝑤 ∈ W is extended in timestep 𝑡 ∈ T.

.1.1. Mass balance constraints
The variable PU𝑝,𝑗,𝑡,𝑠 designates the amount of chemical 𝑗 ∈ J that

s purchased by plant 𝑝 ∈ P. 𝐹𝑝,𝑖,𝑗,𝑡,𝑠 denotes the flow rate of chemical
due to production or consumption in technology 𝑖 ∈ I at plant 𝑝 ∈ P.
astly, 𝜈𝑖,𝑗 represents the material balance for chemical 𝑗 in technology
, and 𝜉P𝑗,𝑝,𝑤,𝑡,𝑠 denotes the amount of chemical 𝑗 transported from plant
to warehouse 𝑤 ∈ W. The mass balances

PU𝑝,𝑗,𝑡,𝑠 −
∑

𝑤∈W
𝜉P𝑗,𝑝,𝑤,𝑡,𝑠 =

∑

𝑖∈I
sign 𝜈𝑖,𝑗 ⋅ 𝐹𝑝,𝑖,𝑗,𝑡,𝑠 (1)

ust be satisfied for all 𝑝 ∈ P, 𝑗 ∈ J, 𝑡 ∈ T and 𝑠 ∈ S. Each technology
∈ I has certain main products, denoted JM𝑖 ⊂ J, that imply further
ass balances,

F𝑝,𝑖,𝑗,𝑡,𝑠 = | 𝜈𝑖,𝑗 |F𝑝,𝑖,𝑗,𝑡,𝑠, (2)

or all 𝑗 ∈ JM𝑖. The variable 𝜃𝑗,𝑤,𝑡,𝑠 represents the inventory of chem-
cal 𝑗 ∈ J stored at warehouse 𝑤 ∈ W, which in each timestep is
odified due to the amount of incoming product 𝜉P𝑗,𝑝,𝑤,𝑡,𝑠, and the

mount of product 𝑗 ∈ J transported from the warehouse to a market
∈ K, 𝜉W𝑗,𝑤,𝑘,𝑡,𝑠. In Europe, transportation is mostly done via trucks

owered by diesel. Therefore, and to simplify the model, only this type
f transportation is considered. The following equation describes the
arehouse mass balances, assuming that 𝜃𝑗,𝑤,−1,𝑠 ∶= 𝜃𝑗,𝑤 is a given

initial value.

𝜃𝑗,𝑤,𝑡,𝑠 +
∑

𝑘∈K
𝜉W𝑗,𝑤,𝑘,𝑡,𝑠 = 𝜃𝑗,𝑤,𝑡−1,𝑠 +

∑

𝑝∈P
𝜉P𝑗,𝑝,𝑤,𝑡,𝑠, (3)

for all 𝑗 ∈ J, 𝑤 ∈ W, 𝑡 ∈ T and 𝑠 ∈ S. The amount of chemical 𝑗 that
a market 𝑘 receives from all warehouses 𝑤 ∈ W, must equal SA𝑗,𝑘,𝑡,𝑠,
being the amount of chemical 𝑗 sold at this market, i.e.

SA𝑗,𝑘,𝑡,𝑠 =
∑

𝑤∈W
𝜉W𝑗,𝑤,𝑘,𝑡,𝑠, ∀(𝑗, 𝑘, 𝑡, 𝑠) ∈ J ×K ×T×S . (4)

2.1.2. Capacity constraints
The total mass flow of chemicals in any technology 𝑖 ∈ I at plant

𝑝 ∈ P cannot exceed the corresponding capacity of this technology at
the plant, QP𝑝,𝑖,𝑡, i.e.
∑

𝑗∈JM𝑖

F𝑝,𝑖,𝑗,𝑡,𝑠 ≤ QP𝑝,𝑖,𝑡, ∀(𝑝, 𝑖, 𝑡, 𝑠) ∈ P× I ×T×S . (5)

However, these capacities are eventually extended by 𝛾P𝑝,𝑖,𝑡, satisfying

𝛾
EP𝑝,𝑖,𝑡

⋅ YP𝑝,𝑖,𝑡 ≤ 𝛾P𝑝,𝑖,𝑡 ≤ 𝛾EP𝑝,𝑖,𝑡 ⋅ YP𝑝,𝑖,𝑡, ∀(𝑝, 𝑖, 𝑡) ∈ P× I ×T, (6)

here 𝛾
EP𝑝,𝑖,𝑡

and 𝛾EP𝑝,𝑖,𝑡 are fixed lower, resp. upper expansion limits.
The capacity in timestep 𝑡 equals the capacity in the previous

imestep plus the capacity expansion carried out, that is

Q = Q + 𝛾 , ∀(𝑝, 𝑖, 𝑡) ∈ P× I ×T, (7)
3

P𝑝,𝑖,𝑡 P𝑝,𝑖,𝑡−1 P𝑝,𝑖,𝑡
with a given initial capacity QP𝑝,𝑖,−1 ∶= QP𝑝,𝑖
for all 𝑝 ∈ P and all 𝑖 ∈ I.

Similarly, the capacity of any warehouse 𝑤 ∈ W, QW𝑤,𝑡 is expanded by
𝛾W𝑤,𝑡, defined within fixed bounds

𝛾
EW𝑤,𝑡

⋅ YW𝑤,𝑡 ≤ 𝛾W𝑤,𝑡 ≤ 𝛾EW𝑤,𝑡 ⋅ YW𝑤,𝑡, ∀(𝑤, 𝑡) ∈ W×T, (8)

where 𝛾
EW𝑤,𝑡

and 𝛾EW𝑤,𝑡 denote the lower, resp. upper expansion limit
of the warehouse. Similar to plants, also for warehouses an initial
capacity QW𝑤,−1 ∶= QW𝑤

is defined, and the expanded capacity reads

QW𝑤,𝑡 = QW𝑤,𝑡−1 + 𝛾W𝑤,𝑡, ∀(𝑤, 𝑡) ∈ W×T . (9)

The parameter 𝜏𝑤 describes how many times per timestep the ware-
ouse can be entirely filled and emptied. This imposes further con-
itions on the amount of chemicals that can be transported to the
arkets,
1
𝜏𝑤

∑

𝑗∈J

∑

𝑘∈K
𝜉W𝑗,𝑤,𝑘,𝑡,𝑠 ≤ QW𝑤,𝑡, ∀(𝑤, 𝑡, 𝑠) ∈ W×T×S . (10)

.1.3. Objective function
The next equation defines the expected Net Present Value E(NPV),

hich will be maximized during the solution of the model,

(NPV) =
∑

𝑠
P(𝑠) ⋅ NPV(𝑠), (11)

ith 0 < P(𝑠) < 1 denoting the probability of scenario 𝑠 ∈ S. The net
resent value of a scenario 𝑠 is the sum of cashflows in all timesteps,

NPV𝑠 = Cf low𝑡=1,𝑠 +
∑

𝑡∈T,𝑡>1

Cf low𝑡,𝑠

(1 + 𝜄)𝑡−1
− 𝜒

∑

𝑗∈J
𝑘∈K
𝑡∈T

𝛾𝑗,𝑘,𝑡 ⋅(𝜎𝑗,𝑘,𝑡 − SA𝑗,𝑘,𝑡,𝑠) (12)

with 𝜄 being the interest rate. The net present value for each scenario
includes a penalization term in case of unsatisfied demand, which was
set as to a fraction 𝜒 of the profit that was not realized. For any
𝑡 ∈ T, the difference between the Fraction of Total Depreciable Capital,
FTDC𝑡,𝑠 and the net earnings, defines the cashflow,

Cf low𝑡,𝑠 =

⎧

⎪

⎨

⎪

⎩

NETE𝑡,𝑠 −
FCI
𝑛𝑇

, 0 ≤ 𝑡 < 𝑛𝑇 − 1

NETE𝑡,𝑠 −(1 − |T | ⋅ SV) FCI𝑛𝑇
, 𝑡 = 𝑛𝑇 − 1,

(13)

where |T | = 𝑛𝑇 denotes the cardinality of the set T, i.e. the number of
elements contained in T, and 𝑛𝑇 is the last timestep. The parameter SV
denotes the Salvage Value fraction of the supply chain network. Its net
earnings are calculated for any 𝑡 ∈ T, 𝑠 ∈ S as difference between total
income and costs, including taxes,

NETE𝑡,𝑠 =(1 − TAX)
∑

𝑗∈J
𝑘∈K

𝛾𝑗,𝑘,𝑡 ⋅SA𝑗,𝑘,𝑡,𝑠 +NETCO2𝑡,𝑠

−
∑

𝑝∈P
𝑗∈J

𝜆𝑝,𝑗,𝑡 ⋅PU𝑝,𝑗,𝑡,𝑠 −
∑

𝑝∈P
𝑖∈I
𝑗∈J

F𝑝,𝑖,𝑗,𝑡,𝑠 ⋅ 𝛿P𝑝,𝑖,𝑗,𝑡

−
∑

𝑗∈J
𝑤∈W
𝑘∈K

𝜉W𝑗,𝑤,𝑘,𝑡,𝑠

𝜏𝑤
𝛿W𝑗,𝑤,𝑡

−
∑

𝑗∈J
𝑝∈P
𝑤∈W

𝜉P𝑗,𝑝,𝑤,𝑡,𝑠 ⋅PE𝑡,𝑠 ⋅ dP𝑝,𝑤 ⋅0.014

−
∑

𝑗∈J
𝑤∈W
𝑘∈K

𝜉W𝑗,𝑤,𝑘,𝑡,𝑠 ⋅PE𝑡,𝑠 ⋅ dW𝑤,𝑘 ⋅0.014 − DEP𝑡,𝑠

(14)

here DEP𝑡,𝑠 is the depreciation term

DEP𝑡,𝑠 =
1 − SV FCI, (15)

|T |
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that is calculated using the total Fixed Cost Investment (FCI),

FCI =
∑

𝑝∈P
𝑖∈I
𝑡∈T

𝛼P𝑝,𝑖,𝑡 ⋅ 𝛾P𝑝,𝑖,𝑡 + 𝛽P𝑝,𝑖,𝑡 ⋅YP𝑝,𝑖,𝑡

+
∑

𝑡∈T
𝑤∈W

𝛼W𝑤,𝑡 ⋅ 𝛾W𝑤,𝑡 + 𝛽W𝑤,𝑡 ⋅YW𝑤,𝑡 .
(16)

Here, 𝛼P and 𝛽P stand for the variable and fixed costs of running a plant
𝑝 ∈ P, whereas 𝛼W and 𝛽W denote the variable and investment cost for

warehouse 𝑤 ∈ W. The cost of transportation is proportional to the
mount of product transported, 𝜉P𝑗,𝑝,𝑤,𝑡,𝑠 resp. 𝜉W𝑗,𝑤,𝑘,𝑡,𝑠, the price of

energy, PE, and the distance, dP𝑝,𝑤, resp. dW𝑤,𝑘. A truck approximately
consumes 0.014 liters of diesel to transport one ton of goods over a
distance of one kilometer (Ministerio de Formento, 2019).

2.1.4. Environmental impact assessment
There are different indicators to quantify the environmental impact

of a supply chain. In this work, the global warming potential will be
addressed. Emissions due to the consumption of raw materials are taken
into consideration by multiplying the amount of raw material 𝑗 pur-
chased, PU𝑝,𝑗,𝑡,𝑠, by the Life Cycle Impact Assessment (LCIA) indicator
IRM𝑗 , which denotes the amount of CO2-equivalent emissions per ton
of chemical 𝑗 being consumed. Moreover, emissions associated with
energy consumption are calculated using the LCIA indicator IEN, related
to the amount of CO2 emissions per ton of fuel oil consumed. This factor
will be multiplied by the parameter EN𝑖, that describes the amount of
energy required to produce one ton of material using technology 𝑖, and
the amount of chemical being produced. Lastly, the indicator ITR is used
to quantify CO2 emissions associated with transportation of one ton
of chemicals over a distance of one kilometer. Transportation between
plants and warehouses as well as between warehouses and markets is
also accounted for, and the corresponding distances are denoted dP𝑝,𝑤,
resp. dW𝑤,𝑘. The global warming potential for one timestep 𝑡 ∈ T and
scenario 𝑠 ∈ S is calculated as
GWP𝑡,𝑠 =

∑

𝑝∈P
𝑗∈J

PU𝑝,𝑗,𝑡,𝑠 ⋅IRM𝑗 +
∑

𝑝∈P
𝑖∈I

𝑗∈JM𝑖

F𝑝,𝑖,𝑗,𝑡,𝑠 ⋅EN𝑖 ⋅IEN

+
∑

𝑝∈P
𝑗∈J
𝑤∈W

𝜉P𝑗,𝑝,𝑤,𝑡,𝑠 ⋅ dP𝑝,𝑤 ⋅ITR

+
∑

𝑗∈J
𝑤∈W
𝑘∈K

𝜉W𝑗,𝑤,𝑘,𝑡,𝑠 ⋅ dW𝑤,𝑘 ⋅ITR

(17)

leading to the total global warming potential

GWP𝑠 =
∑

𝑡∈T
GWP𝑡,𝑠, ∀𝑠 ∈ S . (18)

2.1.5. Carbon regulation
Governments are implementing different regulations to achieve a

reduction of the total carbon dioxide emissions over time. In Europe,
supply chains are subject to the European emissions trading cap-and-
trade system. This system reduces the maximum feasible amount of
emissions MAXCO2𝑡,𝑠 over the years. In the present model, the initial
amount of CO2 allowances is set to 2 × 108 kg. An annual reduction
rate of the CO2 allowances by 2.2% per year is estimated, according
to the EU ETS emissions right phase 4 (European-Commission, 2015).
The different companies can trade the available emissions. For this
reason, the buying and selling price of CO2 allowances, PRICECO2𝑡,𝑠
and COSTCO2𝑡,𝑠, are highly volatile and should be considered as an
uncertain parameter. For simplification, the ideal case that PRICECO2 =
COSTCO2 at all timesteps and for all pricing scenarios is assumed.

According to the price and amount of carbon allowances being
traded in any scenario 𝑠 at every timestep 𝑡, the net income related
to the trading of emissions, NETCO2, can be defined as

NET = PRICE ⋅ sales − COST ⋅ buy . (19)
4

CO2𝑡,𝑠 CO2𝑡,𝑠 CO2𝑡,𝑠 CO2𝑡,𝑠 CO2𝑡,𝑠
The net amount of CO2-allowances being traded influences the upper
bound for the global warming potential,

salesCO2𝑡,𝑠 + GWP𝑡,𝑠 ≤ MAXCO2𝑡, 𝑠 + buyCO2𝑡,𝑠, ∀𝑡 ∈ T, ∀𝑠 ∈ S . (20)

The cap-and-trade system creates a link in the model between the
environmental and economic performance, since NETCO2𝑡,𝑠 is included
in the calculation of net earnings of the network.

2.2. Scenario generation and reduction

To consider uncertainty in the model, correlated scenarios for CO2
allowance prices and energy prices were introduced. Firstly, using
the historical data for the carbon prices, the best fitting parameters
for an ARIMA model using the Akaike/Bayesian Information Criteria
(AIC/BIC) were identified. Using this ARIMA model, 1000 possible
future carbon price scenarios were generated (Shumway and Stoffer,
2000; Brockwell and Davis, 2016). Afterwards, the methodology pre-
sented below in Section 2.2.2 was used to generate energy pricing
scenarios that are correlated to these carbon pricing scenarios in the
same extent as the historical data for both prices. Details on ARIMA
models and its parameters will be described in Section 2.2.1.

Solving the stochastic model with a very large number of scenarios
can easily exceed the capacity of state-of-the-art computers. In order
to overcome this limit, the deterministic model was solved for all 1000
correlated scenarios, before applying the BIRCH algorithm to cluster
the scenarios according to their economic (NPV) and environmental
(GWP) performance. The BIRCH algorithm generates clusters of dif-
ferent sizes and forms, and it requires the desired number of clusters
as an input parameter. This number of clusters can never be generic
and should be decided upon using some measure of suitability of the
resulting clustering to the data. In order to find a suitable number of
scenarios, the S-dbw index was used, which measures the goodness of
approximation of the clustering.

2.2.1. AutoRegressive Integrated Moving Average (ARIMA) models
Future values of historical time series may be forecasted using

numerical models. One class of such models are ARIMA models, which
are defined by three input parameters 𝑝, 𝑑, 𝑞 ∈ N. They can be fitted
against the historical data, meaning that several internal parameters of
the model are adjusted to the data. A scoring in form of the AIC/BIC
is computed, measuring the probability that the model at hand can
reproduce the historical data. By comparing the scoring for different
𝑝, 𝑑, 𝑞, a best-fitting model can be identified.

The parameter 𝑑 describes the number of times, that the time
series at hand is integrated, meaning that instead of the data points
themselves, 𝑑th order differences of the data are considered. When
chosen appropriately, this preprocessing helps to remove any seasonal
trend from the data. The parameter 𝑝 denotes the number of lagged
observations used in an autoregression of the data points. Instead of
the integrated data points themselves, one computes weighted averages
of several previous observations. Finally, approximation quality of the
model can be improved by using an appropriate number of moving
average terms, described by parameter 𝑞. For further details on ARIMA
models, the reader is referred to Shumway and Stoffer (2000).

2.2.2. Generation of correlated scenarios
In this subsection, the process of generating scenarios for two time

series which are correlated to a certain extent will be described. Not
only the historical correlation between the CO2 prices, PRICECO2, and
the prices of energy, PE, was studied, but also their individual corre-
lations with the historical interest rates 𝜄. The latter were lower than
0.1 in both cases, and therefore the focus will be on the correlation
of PRICECO2 and PE. The corresponding historical values are shown in
Fig. 1 (Statista Research Department, 2022; ADAC, 2022).

A linear interpolation was applied to the historical CO2 prices and
the historical energy prices to obtain daily values. The mean, variance,
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Table 2
Left to right: Dataset name, mean value, variance, standard deviation and correlation factor for/between the historical time series for
CO2 and energy prices. CO2 prices are given in e/ton, energy prices are given in e/MW.

X 𝑋 Var(𝑋) 𝜎(𝑋) Cov(PRICECO2 ,X) 𝜚(PRICECO2 ,X)

PRICECO2 0.01700 0.0003 0.0170 0.0003 1.0000
PE 1.2300 0.0262 0.1620 0.0013 0.5000
Fig. 1. Historical prices of energy and carbon-dioxide allowances. Left axis (blue): price of allowances.
standard deviation, and correlation factors between these time series
were computed. The results are shown in Table 2.

It can be noticed, that PRICECO2 and PE are correlated positively,
and that the correlation is quite strong. Hence, scenarios will be gener-
ated in the following way: First, a suitable ARIMA model will be used
to generate 𝑛𝑆 scenarios for future CO2 prices. Afterwards, the method
described below to generate future energy prices in such a way that
the correlation factor remains invariant will be applied. For this, let
the historical values of two time series 𝑥𝑛 = {𝑥𝑖}𝑛𝑖=1 and 𝑦𝑛 = {𝑦𝑖}𝑛𝑖=1 be
given and compute their corresponding correlation factor,

𝜚(𝑥𝑛, 𝑦𝑛)
𝐷𝑒𝑓.
=

Cov(𝑥𝑛, 𝑦𝑛)
𝜎(𝑥𝑛)𝜎(𝑦𝑛)

. (21)

Suppose now that 𝑥𝑛 has been extended by 𝑚 values. In this manuscript,
𝑥𝑛 denotes the historical CO2 prices and 𝑥𝑛+𝑟 ∶= {𝑥1,… , 𝑥𝑛, 𝑥𝑛+1,… ,
𝑥𝑛+𝑟} for all 𝑟 = 1,… , 𝑚 denotes their extension by a forecast of
an ARIMA model. Consequently, 𝑦𝑛 = {𝑦1,… , 𝑦𝑛} will be the histor-
ical data of the energy prices, and new values 𝑦𝑛+1,… , 𝑦𝑛+𝑚 will be
constructed iteratively.

Using 𝑥𝑛+1, a feasible value for 𝑦𝑛+1 that leaves the correlation
invariant can be found by solving the equation

𝜚(𝑥𝑛, 𝑦𝑛) = 𝜚(𝑥𝑛+1, 𝑦𝑛+1). (22)

In order to find a value 𝑦𝑛+1 such that 𝑦𝑛+1 ∶= {𝑦1,… , 𝑦𝑛, 𝑦𝑛+1}
satisfies Eq. (21), one needs to solve

𝜚(𝑥𝑛, 𝑦𝑛) =
Cov(𝑥𝑛+1, 𝑦𝑛+1)
𝜎(𝑥𝑛+1)𝜎(𝑦𝑛+1)

(23)

that is

𝜚(𝑥𝑛, 𝑦𝑛)𝜎(𝑥𝑛+1)𝜎(𝑦𝑛+1) = Cov(𝑥𝑛+1, 𝑦𝑛+1). (24)

For simplicity of the subsequent calculations, the equation is rewritten
in squared form, reading

𝜚(𝑥𝑛, 𝑦𝑛)2Var(𝑥𝑛+1)Var(𝑦𝑛+1) = Cov(𝑥𝑛+1, 𝑦𝑛+1)2. (25)

Next, note that

Cov(𝑥𝑛+1, 𝑦𝑛+1)
Def.
= 1

𝑛+1
∑

(𝑥𝑖 − 𝑥𝑛+1)(𝑦𝑖 − 𝑦𝑛+1) (26)
5

𝑛 + 1 𝑖=1
as well as

𝑦𝑛+1 = 1
𝑛 + 1

𝑛+1
∑

𝑖=1
𝑦𝑖 =

𝑛
𝑛 + 1

(

1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖

)

+ 1
𝑛 + 1

𝑦𝑛+1

= 𝑛
𝑛 + 1

𝑦𝑛 + 1
𝑛 + 1

𝑦𝑛+1

(27)

By inserting Eq. (27) into Eq. (26) it can be seen that

Cov(𝑥𝑛+1, 𝑦𝑛+1) = 𝐴 + 𝑦𝑛+1𝐵 (28)

with

𝐴 = 1
𝑛 + 1

𝑛
∑

𝑖=1
𝑥𝑖𝑦𝑖 −

𝑛
𝑛 + 1

𝑦𝑛 𝑥𝑛+1

𝐵 = 1
𝑛 + 1

𝑥𝑛+1 −
1

𝑛 + 1
𝑥𝑛+1.

(29)

Analogously, inserting (27) into the definition of the variance,

Var(𝑦𝑛+1) = 1
𝑛 + 1

𝑛+1
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑛+1)2, (30)

yields

Var(𝑦𝑛+1) = 𝐶𝑦2𝑛+1 +𝐷𝑦𝑛+1 + 𝐸 (31)

with coefficients

𝐶 = 𝑛2 + 𝑛
(𝑛 + 1)3

𝐷 = −2𝑛
(𝑛 + 1)2

𝑦𝑛

𝐸 = 1
𝑛 + 1

𝑛
∑

𝑖=1
𝑦2𝑖 −

𝑛3 + 𝑛2

(𝑛 + 1)3
(

𝑦𝑛
)2

.

(32)

Finally, (28) and (31) can be combined with (25). This yields an
equation that can be written in terms of the unknown value 𝑦𝑛+1 and
the coefficients 𝐴,𝐵, 𝐶,𝐷,𝐸, reading

(𝐴 + 𝐵𝑦𝑛+1)2 − 𝜚(𝑥𝑛, 𝑦𝑛)2Var(𝑥𝑛+1)(𝐶𝑦2𝑛+1 +𝐷𝑦𝑛+1 + 𝐸) = 0. (33)

After introducing the new coefficient

𝐹 = 𝜚(𝑥𝑛, 𝑦𝑛)2Var(𝑥𝑛+1) (34)

a quadratic equation in 𝑦𝑛+1 is obtained, reading

𝑦2 + 2𝐴𝐵 −𝐷𝐹 𝑦 + 𝐴2 − 𝐸𝐹 = 0. (35)
𝑛+1 𝐵2 − 𝐶𝐹 𝑛+1 𝐵2 − 𝐶𝐹



Journal of Cleaner Production 414 (2023) 137612F.L. Garcia-Castro et al.

I
t
m
a
(

s
t

o
a
p
t
w
g
b
m
t
t
n

t
t
o
i
T
w
n
t
o
s
i
l
a
o
i
a

2

(
t
d
o
o
s
(
(
e
l
w
a

c
c
I
s

2

e
F
b
d
l
b
a
t
T
t
a
n

D

w
i
s
w
r
i

p
g

I

t
c
c

s
e

v

D

w

𝛿

S
i

V

This equation can have 0, 1 or 2 solutions depending on the value of
the discriminant in the formula

𝑦𝑛+1,1∕2 = − 2𝐴𝐵 −𝐷𝐹
2(𝐵2 − 𝐶𝐹 )

±

√

(

2𝐴𝐵 −𝐷𝐹
2(𝐵2 − 𝐶𝐹 )

)2
− 𝐴2 − 𝐸𝐹

𝐵2 − 𝐶𝐹
. (36)

f (36) is not solvable, then there does not exist a feasible value 𝑦𝑛+1
o extend the time series. If there are two solutions, the value that best
atches the historical variance of the dataset 𝑦 is taken. Proving that

lways at least one solution exists means showing that

2𝐴𝐵 −𝐷𝐹
2(𝐵2 − 𝐶𝐹 )

)2
− 𝐴2 − 𝐸𝐹

𝐵2 − 𝐶𝐹
≥ 0 (37)

holds, and this task turns out to be highly nontrivial for generic data.
In our numerical examples, it was always possible to solve (36). The
calculations described are then repeated iteratively to obtain the values
at subsequent timesteps 𝑦𝑛+2,… , 𝑦𝑛+𝑚. The result is an energy pricing
cenario that is correlated to the forecasted CO2 pricing scenario with
he historical correlation factor.

One benefit of using correlated scenarios is that the network will
nly be optimized for realistic cases. As energy and CO2 prices are
ssumed to be interrelated, generating correlated scenarios of these two
arameters enables the model to exclude unlikely scenario realizations
hat would result in a more conservative supply chain design (i.e., with
orse performance). Our approach, described above, works for any
iven input data, even if the underlying distributions differ or cannot
e specified analytically, compared to other methods used to generate
ultivariate (log-)normally distributed variables. Another advantage is,

hat correlation can reduce the number of scenarios needed to cover
he underlying probability space, which in turn drastically reduces the
umerical complexity of the overall stochastic problem.

The proposed method has two potential limitations. Firstly, note
hat solving a stochastic optimization problem is a priori much harder
han solving a deterministic optimization problem, and an application
f the method to more complex supply chain models may result in an
nfeasible increase in computational resources required to solve them.
his is due to the number of variables and equations increasing sharply
ith the number of scenarios. A second potential limitation is the
umber of scenarios needed to characterize the joint distribution of
wo or more correlated parameters. Note that, in general, the number
f scenarios needed will be large for non-correlated parameters, and
maller if they are correlated. However, if the corresponding determin-
stic problem, which only includes one scenario, is still solvable, both
imitations can be overcome by using decomposition techniques such
s the Augmented Lagrangian Relaxation, which splits the problem into
ne-scenario subproblems. These subproblems are solved individually,
.e. deterministically, and their solutions are then linked in an iterative
lgorithm until all subproblems converge to the same network design.

.2.3. BIRCH algorithm and S-dbw index
The Balanced Iterative Reducing and Clustering using Hierarchies

BIRCH) algorithm is a powerful data mining algorithm that is able
o perform hierarchical clustering of large datasets. Instead of storing
etailed information about the elements in each cluster, a cluster is
nly represented by a triple (𝑁,𝐿𝑆, 𝑆𝑆) with 𝑁 being the number
f points in the cluster, and 𝐿𝑆 resp. 𝑆𝑆 being the linear, resp.
quared, sum of the cluster points. This is called a Clustering Feature
CF) representation of the cluster. The algorithm constructs a CF tree
i.e. a clustering) by first subsequently inserting the points into an
xisting leaf, or, if this would violate the given threshold, into a new
eaf. Once all leafs are constructed, the algorithm tries to merge leafs
ithout violating the threshold until the desired number of clusters is
ttained (Zhang et al., 1996).

The S-dbw validity index measures the goodness of a clustering by
omputing the sum of the mean dispersion of the datapoints inside each
luster and an inter cluster density. The best value achievable is 0.
n this case, the clusters will have a high density and can be strictly
6

eparated from each other (Desgraupes, 2017; Arbelaitz et al., 2013).
.3. Social assessment

A sustainable supply chain network has three dimensions, being the
nvironmental impact, the economic viability and the social dimension.
or the first two, there are different quantitative indicators that have
een widely implemented during the last years. Nevertheless, the social
imension is very complex and usually difficult to quantify. In the
iterature, there are different qualitative and quantitative indicators
ut only some of them have been implemented and studied by other
uthors so far. The indicator that can be found most often in publica-
ions is the number of job positions generated by the supply network.
he number of jobs created by the supply chain does not only include
he ones related directly to production, but also those generated as
n indirect or induced consequence of the supply chain design. The
umber of direct jobs DJ𝑡,𝑠 is calculated as

J𝑡,𝑠 = 𝑅(𝑉 𝐴𝑡,𝑠 − 𝐸𝐵𝐸𝑡,𝑠) + 𝐴, (38)

here 𝑉 𝐴𝑡, 𝑠 is the value added and 𝐸𝐵𝐸𝑡,𝑠 denotes the earnings before
nterest, tax, depreciation and amortization for each timestep 𝑡 and
cenarios 𝑠. The 𝑅 value of 1.431 ⋅ 10−5 and a regression coefficient 𝐴
ith value 2.539 for the chemical sector are considered. The reader is

eferred to the work of Chazara et al. (2017) for more details on these
ndicators.

The number of indirect jobs is estimated by considering an em-
loyment multiplier for the chemical sector of 𝑊 = 2.89 indirect jobs
enerated for each direct job (Economic Policy Institute, 2019)

J𝑡,𝑠 = 𝑊 DJ𝑡,𝑠 . (39)

The number of induced jobs is estimated by taking into considera-
ion information on the region, such as the total number of jobs in the
hemical sector 𝐽𝐼𝐴𝑝, the Gross Domestic Product due to household
onsumption 𝐺𝐷𝑃𝑝, average household size 𝑆𝐹𝑝 and size of the pop-

ulation 𝑃𝑜𝑝𝑝. These values for the different regions of the European
upply chain network under study can be found in Table 3, and the
quation describing the creation of induced jobs for each 𝑡, 𝑠 reads

𝐼𝑑𝐽𝑡,𝑠 =
∑

𝑝∈P

JIA𝑝 GDP𝑝(DJ𝑡,𝑠 + IJ𝑡,𝑠)𝑆𝐹𝑝

Pop𝑝
. (40)

2.4. Risk management

The optimization of supply chain networks under uncertainty pro-
vides valuable information for the decision makers, since the expected
performance in multiple scenarios will outperform the results of a
deterministic approach. The class of indicators that are most important
for decision makers, and can mostly be found in literature, are risk
management indicators. These indicators provide information regard-
ing the economic robustness of the network. Four different indicators
were studied: First, the expected Downside Risk (DR) for a target value
of 𝛺 = 190 million euros which indicates the expected deviation from
the target value for all scenarios 𝑠 having a lower profit than the target
alue,

R(𝑠,𝛺) ∶= E[𝛿𝛺(𝑠)], (41)

here for all 𝑠 ∈ S

𝛺(𝑠,𝛺) ∶=

{

𝛺 − Prof it(𝑠), if Prof it < 𝛺
0, if Prof it(𝑠) ≥ 𝛺.

(42)

econd, the Value at Risk (VaR), that indicates the minimal profit that
s obtainable with a certain probability 1 − 𝛼, i.e.

aR(𝑠, 𝛼) ∶= inf
𝓁∈R

{𝓁 ∶ P(Prof it(𝑠) ≤ 𝓁) ≤ 𝛼}, ∀𝑠 ∈ S . (43)

Third, the Conditional Value at Risk (CVaR), which indicates the ex-
pected profit for all scenarios 𝑠 with profit lower than VaR,

CVaR(𝑠, 𝛼) ∶= E[Prof it(𝑠)|Prof it(𝑠) ≤ VaR(𝑠, 𝛼)]. (44)

Lastly, the worst case scenario provides a lower bound to the overall

economic performance.



Journal of Cleaner Production 414 (2023) 137612F.L. Garcia-Castro et al.

s
c
1
m
t
h
s
m
e
e
o
o
o
d
i
t
f
u
e
i
t
p
1
g
d
c
t
T
p
f
d
s
m
6
e
p
w

i
b
w
e
a

p
p
t
u
f
p

Table 3
Average household size SF𝑝, size of population Pop𝑝, gross domestic product due to household consumption 𝐺𝐷𝑃𝑝 and number of jobs
in the chemical sector JIA𝑝 for each location in the supply chain network (United Nations and Social Affairs, 2019; Eurostat, 2008;
theGlobalEconomy.com, 2021).

Location Avgerage household
size

Size of
population

GDP due to household
consumption
[billion Euros]

number of jobs in the
chemical sector

Germany 2.02 83783942 2141.9 362000
Italy 2.58 60461826 1214.6 119000
Spain 2.83 46754778 797.7 94000
Portugal 2.79 10196709 160.5 15072
Czech Republic 2.5 10708981 128.6 56600
Poland 2.84 37864611 382.5 91000
t
w

3. Results and discussion

The model was implemented in Python 3.8 using pyomo and
olved using IBMs CPLEX solver algorithm. The experiments were
onducted on a Macbook Pro model 2020 running on OSX 11.6 with
6 GB RAM and a 2.6 GHz 6-Core Intel Core i7 processor. In the
odel of a sustainable supply chain, various trade-offs exist. One of

hem is between the economic and environmental performance, which
as been previously studied, e.g. by Ruiz-Femenia et al. (2013). They
olved a multi-objective model that maximizes the profit while mini-
izing the global warming potential using the 𝜀-constraint method. As

xpected, the emissions are much higher when only focusing on the
conomic performance of the network. In this work, the environmental
bjective is indirectly optimized by quantifying its monetary impact
n the supply chain and incorporating it into the objective function
f the model. The resulting optimization problem can be solved either
eterministically, i.e. for one specific pricing scenario, or stochastically,
ncorporating uncertainty. While stochastic models are usually harder
o solve, the obtained designs are more resilient towards possible
uture changes of the uncertain parameters. In the model under study,
ncertainty is incorporated through the use of scenarios for CO2 and
nergy prices. To forecast the carbon price scenarios, an ARIMA model
s used. According to the AIC/BIC criteria, the best fitting model for
he historical data from August 2005 to August 2022 is given for
arameters 𝑝 = 2, 𝑑 = 1, 𝑞 = 3, and this model was used to generate
000 carbon price scenarios. Afterwards, the proposed methodology to
enerate the correlated energy pricing scenarios is applied. Next, the
eterministic Mixed Integer Linear Program (MILP) problem for each
orrelated scenario is solved, and the BIRCH algorithm is used to cluster
he resulting economic (NPV) and environmental (GWP) performance.
he BIRCH algorithm needs the desired number of clusters as an input
arameter. In Fig. 2, the left plot shows the value of the S-dbw index
or different numbers of scenarios. The slope of the resulting curve
ecreases sharply for a number of clusters lower than 30, then the
lope flattens and for a number of clusters larger than 100 the index
erely improves. In practice, the computation was parallelized with all
available processors solving one problem at a time. To allow for an

ven balancing among the processors, the number of scenarios should
referably be divisible by 6. Resulting from the foregoing discussion, it
as decided to consider 102 = 17 ⋅ 6 scenarios in our computation.

The right plot in Fig. 2 shows a plot of the NPV and GWP of the orig-
nal 1000 scenarios, as well as the centroids of the 102 clusters marked
y an ’×’. Table 4 shows the number of variables and constraints, as
ell as the overall solution time for the model with 102 scenarios. Fig. 3
xemplarily shows the carbon prices for the 102 reduced scenarios that
re used in the computation.

The superstructure under study in this manuscript is a three-echelon
etrochemical supply chain. The first echelon consists of production
lants that are located all over Europe (Karzincbarcika, Leuna, Man-
onva and Wloclaweck), which are able to process up to 18 chemicals
sing different technologies to produce 6 possible final products. The
inal products are acethaldehyde, acrylonitrile, isopropanol, cumene,
henol and acetone. Each plant has an initial capacity of 20 kt/year.
7

Table 4
Statistics for the solution of the model under study.
Number of variables 1108750
Number of inequality constraints 360620
Number of equality constraints 518470
Runtime (wall-clock) 27195 s

To each plant there is a corresponding warehouse, and all plants can
deliver their final products to any of these warehouses. Each warehouse
has an initial inventory of zero tons and an expansion limit between 5
and 400 kt per year. The last echelon are the markets. The superstruc-
ture counts with four European markets (Leuna, Neratovice, Sines and
Tarragona) where the products can be sold. The model considers a time
horizon of ten years.

The network obtained from the stochastic computation shows, that
all plant and warehouse expansions are made during the first time
period. The plant undergoing the largest expansion is the one in Karz-
incbarcika, followed by the one in Wloclaweck. The main reason for
this capacity distribution is the operation cost, which is lowest for
these two plants. More than 30% of the total capacity expansions of
both plants is dedicated to expanding the use of the technology ’One
step oxidation of ethylene’ to produce acetaldehyde. Another 30% is
dedicated to the technology ’Reaction of benzene and propylene’ to
produce cumene, which is a raw material required in the production of
phenol and acetone. The warehouse experiencing the biggest expansion
is the one in Mantova, since even tough the products are produced
in other plants, this warehouse is located in the geographical center
of the whole supply chain. The markets of Sines and Tarragona will
mainly be supplied by the warehouse in Mantova, which is the clos-
est and therefore ensures minimal CO2 emissions. For acethaldehyde,
the stochastic model decides to send more product from the plant
in Karzincbarcika, which has the highest production capacity, to the
warehouse in Mantova than to its own warehouse being located in Karz-
incbarcika. The same applies for the markets in Leuna and Neratorive,
which will be provided by the warehouses in Leuna and Wloclaweck,
and Karzincbarcika and Wloclaweck, respectively. Nevertheless, and to
deal with possible changes in carbon prices and energy prices, there
are also transportation links between the warehouse of Mantova and all
four markets. This decision provides the network with more flexibility
and makes it more robust. Fig. 4 represents the supply chain network
for acethaldehyde, which is the product with the highest demand,
exemplarily for scenario 0 at timestep 5.

In order to determine the impact of the stochastic simulation on
he resulting design, the network obtained from the stochastic model
as fixed and exposed to all original 1000 correlated pricing scenarios.

The same procedure was repeated for a supply chain design obtained
from a deterministic approach. Table 7 presents the economic and
environmental performance of the resulting supply chain network for
both stochastic and deterministic approach.

The results indicate that, on average, the stochastic model performs
better than the deterministic model, with a difference of 73670eand
a reduction of more than 3 ktons of CO2-equivalent in emissions.
While these improvements may not be significant in relative terms,
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Fig. 2. (a) S-dbw index of the BIRCH clustering for different numbers of scenarios. (b) BIRCH clustering of the original 1000 scenarios into 102 clusters. The scenarios forming
the centroids are marked with an ’×’.
Fig. 3. Historical data, as well as the 102 reduced forecasted scenarios for the carbon price.
Table 5
Expected net present value, global warming potential and number of constraints for the stochastic and deterministic
model network.
Indicator Stochastic model Deterministic model Units

Expected net present value 199565301 199491631 Euros
Expected global warming potential 8129607929 8133004126 kg CO2-eq.
Number of constraints 879090 9174
Table 6
Expected global warming potential, as well as sum of carbon and energy costs for all timesteps, for models
obtained minimizing carbon resp. energy costs.
Objective Minimization

of carbon cost
Minimization
of energy cost

Units

Global warming potential 3641353555 11372014890 kg CO2-eq.
Sum of carbon costs for all timesteps 309557678 492806927 Euros
Sum of energy costs for all timesteps 275121422 175986840 Euros
any reduction in carbon footprint is crucial because companies are
investing substantial amounts of money to discover ways to mitigate
their carbon emissions. Therefore, any contribution to sustainability
goals outweighs the additional computational effort required to solve
the stochastic optimization model. Moreover, the moderated gains of
the stochastic model with respect to the deterministic design obtained
in our case study are expected to increase for more complex supply
chains or under correlated uncertainty in a larger number of param-
eters. To show the increased numerical difficulty of the problem, the
number of constraints is also stated in the table. The stochastic model
required almost 100 times the number of constraints appearing in the
deterministic approach (see Table 5).
8

Another trade-off in the model is between the reduction of carbon
cost and energy cost, both very relevant for a sustainable supply
chain design. Two deterministic simulations for one specific energy and
carbon pricing scenario were carried out. In the first one the carbon cost
is minimized, while in the second one the objective was to minimize the
energy cost of the supply chain design. Table 6 presents the obtained
results. It is clearly visible that the carbon cost and global warming
potential will be higher when minimizing energy costs.

Fig. 5 shows the expected cost and CO2 distribution of the stochastic
network. The largest contributor to the overall costs is due to raw
material purchases. A reduction of the related costs can be achieved by
investigating alternative production technologies and materials, which
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Fig. 4. Supply chain network obtained with the stochastic model for product acethaldehyde for carbon and energy price scenario 0 and timestep 5. The arrows represent the
amount of product transported from a certain warehouse to a market. The gray boxes contain information regarding the plant capacity expansion for different technologies. T0
refers to technology ’one step oxidation of ethylene’, T3 is ’Hydration of propylene’, T4 is ’Reaction of benzene and propylene’ and T5 is ’Oxidation of cumene’.
may lead to higher investment cost in the short and long term. The
second-largest contributor to cost is the purchase of carbon allowances.
The emissions of the overall supply chain may be reduced for example
by the usage of more efficient technologies, and green raw materials.
In the short term, this may lead to an increase in raw material and
production costs, together with higher investment costs. The model also
accounts for emissions due to energy consumption and transportation,
and the use of renewable energy sources may have a significant positive
impact on the overall global warming potential of the supply chain. At
the moment, the lack of availability and higher prices of clean energy
would imply an increase in energy costs, while reducing emissions as
well as the need to buy allowances. Nowadays, sustainability goals
in the public and private sector are becoming more important, while
changes in prices and regulations are frequent. This shows, that un-
certainty and correlation of uncertain quantities need to be considered
not only for the ’here-and-now’ decisions, but also when monitoring
and adjusting a supply chain to match the economic and environmental
goals.

Another trade-off occurs between the environmental and social
performance, but since the number of created jobs is proportional
to the economic performance, it will be indirectly maximized when
maximizing the profit. The value added and the number of job positions
are proportional, meaning that a larger VA leads to a larger number of
jobs. Hence, the number of jobs created is calculated a posteriori from
the supply chain design obtained. When exposing the network obtained
with the stochastic model to the 1000 possible scenarios, it would
generate an average of 726557 jobs (direct, indirect and induced).

To obtain a better understanding of the risk associated with the
obtained supply chain network, the cumulative distribution function
is represented in Fig. 6. It can be seen that the worst case scenario
attains a NPV of 142.3 million euros. A target value of 190 million
euros was used, a value that is approx. 5% smaller than the expected
net present value. The expected downside risk, that represents the
average deviation from this target value in case of a worse economic
performance is 12.2 million euros, implying a mean deviation of less
than 7%. Regarding the Value at Risk (VaR), the obtained NPV for a
probability of 5% is 168.2 million euros, and the associated Conditional
Value at Risk (CVaR) is 160.1 million euros.
9

In order to further investigate the benefits of incorporating correla-
tions of uncertain parameters into the model, an additional stochastic
simulation using uncorrelated scenarios was carried out. It was as-
sumed, that the stochastic behavior of both carbon and energy price
may be characterized using 100 scenarios each, and in both cases the
pricing predictions were generated using the best-fitting ARIMA model
to the historical data. By combining these independent scenarios, only a
fraction of the resulting 10000 scenarios will show correlation between
energy and carbon prices. This way, relevant statistical information
from the historical conjoint behavior of both quantities is not rep-
resented adequately in the scenarios. Analogously to the correlated
simulation described above, the scenarios were then clustered using
the BIRCH algorithm into 102 clusters, and a stochastically optimized
supply chain design was determined. This network design was then
exposed to 1000 possible future pricing scenarios, leading to two conclu-
sions: First, a claim made in the introduction can be corroborated, since
the emissions caused by the network based on correlated scenarios are
3.28 ktons of CO2-equivalent lower than with the network based on
independent pricing scenarios. Second, it was observed that the com-
putation of the network based on independent pricing scenarios took
more than 5 times longer. This is due to the fact, that the correlation
in the pricing scenarios reduces the feasible region of the stochastic
problem, which in turn simplifies its solution.

4. Conclusions

In this manuscript, a methodology to generate correlated time se-
ries is presented, that can be applied regardless of the underlying
probability distributions of the historical data. The method is able
to maintain the historical correlation factor among both quantities of
interest. It was applied in the context of stochastic optimization of a
supply chain under uncertain and correlated energy and carbon prices.
The obtained network was compared to a network obtained from a
deterministic approach, which is widely used in literature. The results
show, that through different investment decisions regarding expansion
and transportation links, the stochastic network based on correlated
uncertainty is in average more flexible to possible changes in carbon
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Fig. 5. Top: Expected distribution of cost for the supply chain design obtained through stochastic optimization and using correlated scenarios. Bottom: Expected distribution of
CO2 emissions of the same network.
Fig. 6. Cumulative distribution function of the net present value for the supply chain network obtained from the stochastic model. The red dotted line represents the downside
risk for a target value of 190 million euros. The green arrows represent the value at risk and conditional value at risk. The violet arrow indicates the worst case.
Table 7
Expected net present value, global warming potential and runtime for the stochastic model with correlated scenarios and the
stochastic model with uncorrelated scenarios.
Indicator Correlated scenarios Uncorrelated scenarios Units

Expected net present value 199565301 199558713 Euros
Expected global warming potential 8129607929 8132893011 kg CO2-eq.
Runtime 27195 183655 s
10
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and energy prices, ultimately leading to a reduction in emissions by
more than 3 ktons of CO2-equivalent.

The number of scenarios required to adequately characterize the
robabilistic behavior of one or more parameters is usually a limiting
actor in stochastic optimization. A combination of the methodology
ith data mining methods allowed for a reduction of the required
umber of correlated scenarios by more than 90%, with only a minor
oss in statistical information. A trade-off between carbon and energy
osts has been identified, therefore an analysis of the distribution of
ost and emissions of the obtained stochastic network obtained was
arried out. It can be concluded that the performance of the network
ay be improved through investments in green raw materials and

fficient technologies and processes, as well as through the use of
enewable energy. All of these decisions have a trade-off between short-
erm profitability and long-term investment, and the ability to achieve
ustainability goals. In further work, it may be of interest to consider
orrelation among energy and carbon prices together with possible
ustainability strategies, in order to reduce energy and carbon costs
ssociated with the resulting supply chain design. Additionally, this
elps to prevent delays in the decision-making process for sustainability
nvestments, which otherwise could have an adverse effect on the
etwork performance.

To further understand the impact of correlation on the resulting
upply chain design, a stochastic optimization with uncorrelated com-
inations of scenarios for energy and carbon prices was carried out.
oth stochastic designs were compared, showing that the network
btained using correlated scenarios has a better environmental perfor-
ance. Moreover, the computation of the network using scenarios of

ndependent carbon and energy prices was harder to compute, further
ighlighting the positive impact of considering correlation among both
arameters. Therefore, if historical real-world data shows correlation
etween two or more parameters, this should always be taken into
ccount for better model performance.

ets

I set of technologies, indexed by 𝑖
J set of chemicals, indexed by 𝑗
K set of markets, indexed by 𝑘
P set of plants, indexed by 𝑝
S set of scenarios, indexed by 𝑠
T set of timesteps, indexed by 𝑡
W set of warehouses, indexed by 𝑤

Parameters

𝛼P𝑝,𝑖,𝑡 variable investment coefficient associated with technol-
ogy 𝑖 at plant 𝑝 in timeperiod 𝑡 [e/ton]

𝛼W𝑤𝑡 variable investment coefficient associated with ware-
house 𝑤 at timestep 𝑡 [e/ton]

𝛽P𝑝,𝑖,𝑡 fixed investment term associated with technology 𝑖 at
plant 𝑝 in timeperiod 𝑡 [e]

𝛽W𝑤,𝑡 fixed investment term associated with warehouse 𝑤 at
timeperiod 𝑡 [e]

COSTCO2𝑡,𝑠 cost of CO2 allowances at time 𝑡 in scenario 𝑠 [e/ kg of
CO2-equiv.]

𝛿P𝑝,𝑖,𝑗,𝑡 production cost per unit of main product 𝑗 manufactured
with technology 𝑖 at plant 𝑝 at timestep 𝑡 [e/ton]

𝛿W𝑗,𝑤,𝑡 inventory cost per unit of main product 𝑗 at warehouse
𝑤 in timeperiod 𝑡 [e/ton]

dP𝑝,𝑤 distance between plant 𝑝 and warehouse 𝑤 [km]
dW𝑤,𝑘 distance between warehouse 𝑤 and market 𝑘 [km]
EN𝑖 primary energy requirements per ton manufactured with
11

technology 𝑖 [tons of fuel oil equivalent / ton]
QP𝑝,𝑖
initial capacity of technology 𝑖 at plant 𝑝 [tons]

QW𝑤
initial capacity warehouse 𝑤 [tons]

𝛾𝑗,𝑘,𝑡 price of final product 𝑗 at market 𝑘 in timestep 𝑡 [e/ton]
IEN emissions of CO2 equivalent per ton of fuel oil consumed

[Kg CO2-equiv. / ton of fuel oil equivalent]
IRM𝑗 emissions of CO2 equivalent per ton of chemical con-

sumed raw material 𝑗 [Kg CO2-equiv. / ton]
ITR emissions of CO2 equivalent per km and ton transported

[Kg CO2-equiv. / (ton ⋅ km)]
𝜄 yearly interest rate [dimensionless]
𝜃𝑗,𝑤 initial amount of product 𝑗 at warehouse 𝑤 at timestep

𝑡 = 0 [tons]
𝜆𝑝,𝑗,𝑡 price of raw material 𝑗 at plant 𝑝 in timeperiod 𝑡 [e/ton]
MAXCO2𝑡,𝑠 emissions cap of CO2 allowances at time 𝑡 in scenario 𝑠

[kg of CO2-equiv.]
𝜒 penalty factor for demand insatisfaction
PRICECO2𝑡,𝑠 price of CO2 allowances at time 𝑡 in scenario 𝑠 [e/ kg of

CO2-equiv.]
P𝑠 probability of scenario 𝑠 [dimensionless]
𝛾
EP𝑝,𝑖,𝑡

lower bound for expansion of technology 𝑖 at plant 𝑝
during timestep 𝑡 [tons]

𝛾
EW𝑤,𝑡

lower bound for expansion of warehouse 𝑤 at timestep 𝑡
[tons]

𝛾EP𝑝,𝑖,𝑡 upper bound for expansion of technology 𝑖 at plant 𝑝
during timestep 𝑡 [tons]

𝛾EW𝑤,𝑡 upper bound for expansion of warehouse 𝑤 at timestep 𝑡
[tons]

SV salvage value fraction of the network [dimensionless]
TAX tax rate [dimensionless]
𝜏𝑤 turn over ratio of warehouse 𝑤 [dimensionless]

Variables

buyCO2𝑡,𝑠 amount of CO2 allowances bought at timestep 𝑡 for sce-
nario 𝑠 [Kg CO2-equiv.]

Cf low𝑡,𝑠 cashflow at timestep 𝑡 for scenario 𝑠 [e]
DEP𝑡,𝑠 depreciation term for timestep 𝑡 in scenario 𝑠 [e]
ENPV expected net present value [euro]
F𝑝,𝑖,𝑗,𝑡,𝑠 input/output flow of chemical 𝑗 for technology 𝑖 at plant

𝑝 during timestep 𝑡 for scenario 𝑠 [tons]
FCI total fixed cost investment [e]
FTDC𝑡,𝑠 fraction of the total depreciable capital that must be paid

in period 𝑡 for scenario 𝑠 [e]
GWP𝑡,𝑠 global warming potential at timestep 𝑡 for scenario 𝑠 [Kg

CO2-equiv.]
𝜃𝑗,𝑤,𝑡,𝑠 inventory of chemical 𝑗 kept in warehouse 𝑤 in period 𝑡

for scenario 𝑠 [tons]
NETCO2𝑡,𝑠 net income related to the trading of CO2 allowances [e]
NETE𝑡,𝑠 net earnings at timestep 𝑡 for scenario 𝑠 [e]
NPV𝑠 net present value for scenario 𝑠 [euro]
PU𝑝,𝑗,𝑡,𝑠 purchase of chemical 𝑗 produced in plant 𝑝 during period

𝑡 in scenario 𝑠 [tons]
QP𝑝,𝑖,𝑡 capacity of technology 𝑖 at plant 𝑝 during timeperiod 𝑡

[tons]
𝛾P𝑝,𝑖,𝑡 capacity expansion of technology 𝑖 at plant 𝑝 during

timeperiod 𝑡 [tons]
𝛾W𝑤,𝑡 capacity expansion of warehouse 𝑤 at timeperiod 𝑡 [tons]
QW𝑤,𝑡 capacity of warehouse 𝑤 at timeperiod 𝑡 [tons]
SA𝑗,𝑘,𝑡,𝑠 sales of product 𝑗 on market 𝑘 at period 𝑡 for scenario 𝑠

[tons]
salesCO2𝑡,𝑠 amount of CO2 allowances sold at timestep 𝑡 for scenario

𝑠 [Kg CO -equiv.]
2
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𝜉P𝑗,𝑝,𝑤,𝑡,𝑠 amount of chemical 𝑗 being transported from plant 𝑝 to
warehouse 𝑤 at timestep 𝑡 for scenario 𝑠 [tons]

𝜉W𝑗,𝑤,𝑘,𝑡,𝑠 amount of chemical 𝑗 being transported from warehouse
𝑤 to market 𝑘 at timestep 𝑡 for scenario 𝑠 [tons]

YP𝑝,𝑖,𝑡 binary variable: 1 if manufacturing capacity of technol-
ogy 𝑖 at plant 𝑝 is expanded during timestep 𝑡, else
0

YW𝑤,𝑡 binary variable: 1 if capacity of warehouse 𝑤 is expanded
during timestep 𝑡, else 0
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