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a b s t r a c t 

The evaluation of Handwritten Text Recognition (HTR) systems has traditionally used metrics based on 

the edit distance between HTR and ground truth (GT) transcripts, at both the character and word levels. 

This is very adequate when the experimental protocol assumes that both GT and HTR text lines are the 

same, which allows edit distances to be independently computed to each given line. Driven by recent ad- 

vances in pattern recognition, HTR systems increasingly face the end-to-end page-level transcription of a 

document, where the precision of locating the different text lines and their corresponding reading order 

(RO) play a key role. In such a case, the standard metrics do not take into account the inconsistencies 

that might appear. In this paper, the problem of evaluating HTR systems at the page level is introduced 

in detail. We analyse the convenience of using a two-fold evaluation, where the transcription accuracy 

and the RO goodness are considered separately. Different alternatives are proposed, analysed and empir- 

ically compared both through partially simulated and through real, full end-to-end experiments. Results 

support the validity of the proposed two-fold evaluation approach. An important conclusion is that such 

an evaluation can be adequately achieved by just two simple and well-known metrics: the Word Error 

Rate (WER), that takes transcription sequentiality into account, and the here re-formulated Bag of Words 

Word Error Rate (bWER), that ignores order. While the latter directly and very accurately assess intrin- 

sic word recognition errors, the difference between both metrics ( �WER) gracefully correlates with the 

Normalised Spearman’s Foot Rule Distance (NSFD), a metric which explicitly measures RO errors associ- 

ated with layout analysis flaws. To arrive to these conclusions, we have introduced another metric called 

Hungarian Word Word Rate (hWER), based on a here proposed regularised version of the Hungarian Al- 

gorithm. This metric is shown to be always almost identical to bWER and both bWER and hWER are also 

almost identical to WER whenever HTR transcripts and GT references are guarantee to be in the same 

RO. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Archives and libraries throughout the world hold billions of his- 

orical manuscripts. Many of these documents are already digitised 

nto images, but their access is limited because the contents are 

ot available in a symbolic format that would allow modern treat- 

ent of textual matters such as editing, indexing, and retrieval. 

andwritten Text Recognition (HTR) 1 is the cornerstone in this sit- 
∗ Corresponding author. 

E-mail addresses: evidal@prhlt.upv.es (E. Vidal), ahector@prhlt.upv.es (A.H. 

oselli), arios@dlsi.ua.es (A. Ríos-Vila), jcalvo@dlsi.ua.e (J. Calvo-Zaragoza) . 
1 While all the problems and methods discussed in this paper equally apply to 

rinted text and OCR transcripts, we keep the main focus on handwritten text, where 

he problems become more insidious and the solutions more relevant. 
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ation which aims to provide automatic ways of transcribing these 

ocuments [25] . 

In classical HTR laboratory experiments, the text lines are as- 

umed to be given. Therefore, the performance is evaluated at the 

ine level. Traditional evaluation measures for line-level HTR are 

he Character Error Rate (CER) and the Word Error Rate (WER), 

orrowed from the Automatic Speech Recognition field. These met- 

ics indicate the length-normalised number of elementary editing 

perations needed to produce a reference (correctly transcribed) 

equence from the HTR hypothesis, at the character (CER) or word 

WER) level. Under the premise of a line-level formulation, it is 

enerally acknowledged that these metrics provide a good measure 

f performance. 

Due to recent advances in the field, especially brought about by 

he intensive use of deep neural networks, line-level HTR is con- 
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Fig. 1. Example of misleading WER evaluation, caused by wrong reading order due to text-line detection flaws. While all the words in the automatic transcript are perfectly 

correct, the WER is 70% (13 matching words, 13 substitution errors, 4 insertions and 4 deletions). The image is part of a page of the Bentham Papers collection (see Section 3 ). 
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idered practically solved, or close to. Therefore, the field is ex- 

eriencing a paradigm shift towards end-to-end full-page scenar- 

os. In a page-level application, lines are not given. Instead, im- 

ges are usually processed to first extract single lines, under a pro- 

ess generally known as Layout Analysis (LA). 2 Then, each line is 

ranscribed independently with line-level HTR. Furthermore, some 

orks do not explicitly include any LA step and aim to obtain 

he transcription hypothesis by processing whole pages or para- 

raphs [2,9] . 

Despite moving from the line-level to the page-level HTR sce- 

ario, the traditional CER and WER metrics are still generally used 

or assessment. However, this evaluation protocol is too naive: full- 

age real applications do suffer from LA errors which systemati- 

ally lead to inconsistencies when evaluating the model using such 

etrics. Fig. 1 shows a real example of this kind of issues related 

o LA (see other examples in Figs. 2 , 7 , and 10 ). While all the words

re perfectly recognised, the WER is 70%, which is absolutely mis- 

eading. Clearly, if this figure is meant to reflect anything, it is a 

A problem — nothing related with word recognition errors! This 

ind of problems become even more insidious in approaches that 

ypass the LA step. When researchers were hard-pressed to obtain 

cceptable performance values, questioning the traditional evalu- 

tion protocol did not seem relevant. However, with an increas- 

ng number of effective page-level transcription workflows, we see 

he need to ask ourselves about the nature of its evaluation and 

hether the traditional line-level evaluation faithfully represents a 

roper indicator of page-level transcription performance. 

The difficulties underlying the evaluation of page-level HTR re- 

ults boil down to a Reading Order (RO) problem [7,26,30,33] . A 

umber of recent proposals try to heuristically weight and com- 

ine both word recognition and LA geometric errors into a sin- 

le scalar value [10,19] . Unfortunately, this hinders the capability 

o sort out the nature of the corresponding errors and thereby 

aking a comprehensive, useful assessment. Here we instead ad- 

ocate for a two-fold evaluation approach which decouples the im- 

act of word (and character) recognition errors from the influence 
2 Many present-day HTR systems use simplified forms of LA which only focus 

n detecting the text-lines of each image. In the sequel, the term LA will be used 

ndistinctly to refer to proper LA as well as to just line detection. 

b

b

l

h

u

2 
f wrong RO and, furthermore, it is largely agnostic to geometry- 

elated flaws. 

One possibility to assess page-level word recognition accuracy 

egardless of RO is to rely on the Bag of Words concept, as pro- 

osed and used in early works by Antonacopoulos, Clausner and 

letschacher [4–6,30] (see also [8] ), and later by other authors [37] . 

ere we will argue that a properly defined WER based on the 

ag of Words concept can not trivially consist on just counting 

ow many words do not appear both in the reference and HTR 

ranscripts. So we (re-)define a bag-of-words WER (bWER) so that 

t becomes faithfully comparable with the traditional WER and 

roves to be a very convenient page-level RO-independent word 

rror metric. 

However, the bWER approach does not allow measuring 

haracter-level error, nor it provides the word alignment infor- 

ation needed to compute RO assessment metrics. Instead, both 

ord- and character-level RO-independent recognition accuracy 

an be precisely computed using the well-known Hungarian Algo- 

ithm (HA) [3,16] . Here we introduce a regularised version of the 

A which provides HA-based WER values (hWER) that are almost 

dentical to those of bWER and, moreover, are also practically equal 

o those of the classical WER when the reference and HTR tran- 

cripts are in the same RO. In addition, it further provides the in- 

ormation needed to compute RO assessment metrics such as the 

ormalised Spearman’s Footrule Distance (NSFD) [17,33] . 

In this work, we study all these related approaches to sepa- 

ately assess at the page-level both the HTR word (and character) 

ecognition accuracy and the quality of the RO. The problems con- 

idered and the proposed solutions will be presented along with 

mpirical results obtained on a semi-artificial task, where the typi- 

ally expected LA errors and associated RO problems are simulated. 

he proposed assessment methods will be then applied to a series 

f real page-level end-to-end HTR experiments, considering both 

A-based and holistic page-level transcription approaches. 

Our experiments will show that: i) in the traditional line-level 

etting, bWER and WER are typically almost identical; ii) the WER 

ased on the regularised HA is almost the same as the bWER and 

oth accurately approach page-level WER in the traditional line- 

evel evaluation setup; iii) the difference between WER and bWER 

ighly correlates with the NSFD and is much more efficient than 

sing the HA, needed to compute the NSFD. 
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The remainder of this work is structured as follows. Classical 

ER and CER measures are reviewed in Section 2 ; the RO prob- 

em and the NSFD measure are discussed in Section 3 ; the pro- 

osed bWER and hWER metrics are described in Section 4 and 

 , respectively; and a summary of the different metrics consid- 

red is provided in Section 6 . Then, simulated and real experi- 

ents are reported and analysed in Section 7 and 8 , respectively. 

e close the article by outlining related works in Section 9 and 

oncluding in Section 10 . Finally, Appendix A presents detailed ex- 

mples of the computation of the different metrics proposed and 

ppendix B provides details for public access to the datasets and 

oftware tools used and developed in this work. 

. Word & character error rates based on the edit distance 

Traditional HTR assessment is based on line-level WER and CER. 

s commented above, this ignores possible line detection and/or 

xtraction errors made by the LA stage in real automatic transcrip- 

ion tasks. This section reviews this evaluation approach, as an in- 

roduction to the forthcoming sections, where we propose new ap- 

roaches for fair page-level end-to-end HTR assessment. 

.1. Edit distance, WER and CER for word sequences 

Let the word sequences x = x 1 , . . . , x | x | and y = y 1 , . . . , y | y | be a

eference text and a HTR hypothesis, respectively. The word edit 

istance from x to y , d(x, y ) , is the minimum number of word

nsertion, substitution and deletion edit operations that trans- 

orm x into y [46] . Edit operations define a “trace” or align- 

ent between word instance positions of x and y , which may 

e formulated in several equivalent ways. Here we loosely fol- 

ow the work of Marzal and Vidal [24] and define an align- 

ent A (x, y ) as a sequence of ordered pairs of integers (word in-

ices), ( j, k ) , 1 ≤ j ≤ | x | , 1 ≤ k ≤ | y | , such that for every two dis-

inct pairs ( j, k ) , ( j ’ , k ’ ) ∈ A (x, y ) , j < j ’ ⇔ k < k ’ . In what fol-

ows, word alignments which fulfil this sequentiality constraint will 

e denoted as T (·, ·) , leaving the notation A (·, ·) only for uncon-

trained alignments. 

T (x, y ) can be conveniently extended to explicitly represent 

ord insertions and deletions. To this end, a dummy position, de- 

oted by ε, is assumed in both x and y which points to the “empty

ord”, λ; that is, x ε = y ε
def = λ. The edit distance from x to y is thus

ormally defined as: 

(x, y ) = min 

T (x,y ) 

∑ 

( j,k ) ∈T (x,y ) 

δ(x j , y k ) (1) 

here δ(a, b) is defined to be 1 if a � = b and 0 otherwise. With

hese editing costs, it is often called Levenshtein distance. For the 

bove sequentiality constraint to still be meaningful, we assume 

hat the predicate j < j ′ is true for any j, j ′ such that j or j ′ are ε. 

By analysing the pairs in the optimal trace T (x, y ) , the sum

n Eq. (1) can be decomposed into separate counts for insertions, 

ubstitutions and deletions; i.e., d(x, y ) = i + s + d . Example 1 in

.1 illustrates the computation of the word edit distance and the 

orresponding trace 3 for x = “To be or not to be, that is the

uestion” and y = “to be oh! or not to be: the question”, with 

 = 1 , s = 2 , d = 2 and d(x, y ) = 5 . 
3 To avoid nonessential complications such as (language-dependent) tokenization 

nd capitalisation, any character sequence delimited with withe space is considered 

 “word”. Therefore: δ( be , be, ) = δ( be , be: ) = δ( The , the ) = 1 . 

v

a

t

d

l

3

The WER of y with respect to x is defined as the edit distance,

ormalised by the length of the reference text, 4 n = | x | : 

ER (x, y ) = 

d(x, y ) 

n 

≡ i + s + d 

c + s + d 
(2) 

here c is the number of correct words (those which do not need 

diting). In Example 1 (A.1) , WER (x, y ) = (1 + 2 + 2) / (6 + 2 + 2) =
 / 10 = 50% . 

The CER is defined similarly, by just assuming that n is the total 

umber of characters in x and i, s, d, c are character , rather than

ord edit operations and correct matching counts. 

.2. Traditional, line-based page level WER and CER 

Let I be a text image and X the reference GT transcript of I . Let 

 be the transcription hypothesis provided by an HTR system for 

. Both X and Y are made up of the same number M of individ- 

al text-lines x 1 , x 2 , · · · , x M and y 1 , y 2 , · · · , y M , respectively, where

ach text-line is a sequence of words. Each pair of text-lines x � 

nd y � are transcripts of the same image line, which is simply de- 

oted as �, 1 ≤� ≤M. In the traditional setting, page-level WER is 

hen computed as: 

ER (X, Y ) = 

∑ M 

� =1 d(x � , y � ) 

N 

≡
∑ M 

� =1 (i � + s � + d � ) ∑ M 

� =1 (c � + s � + d � ) 
(3) 

here N = | X| is the total number of word instances of X . 

Another way to compute WER (X, Y ) is to concatenate all the M

ines of X and Y in any arbitrary order (the same order for X and 

 ) and directly compute the edit distance between the concate- 

ated texts. Except for small possible differences in the text-line 

oundaries, the editing operations obtained by this computation 

ill be essentially the same as those involved in the M edit dis- 

ances d(x � , y � ) , 1 ≤� ≤M of Eq. (3) . Therefore: 

ER (X, Y ) ≈ d(X, Y ) 

N 

≡ i ′ + s ′ + d ′ 
c ′ + s ′ + d ′ (4) 

here i ′ , s ′ , d ′ and c ′ are now counts of word edit operations and

atchings involved in the computation of d(X, Y ) for the whole 

exts X and Y . 

As in Section 2.1 , the CER is defined similarly by just assuming 

hat N is the total number of characters in X and i, s, d, c, i ′ , s ′ , d ′ , c ′ 
re character , rather than word edit operation and correct matching 

ounts. 

.3. Page-level end-To-End assessment using traditional WER and CER 

In a realistic scenario, image-lines may be given for the GT ref- 

rence transcript, X . But these lines may not correspond one-to- 

ne with lines automatically detected in the text image I . More- 

ver, the number of text-lines in X and Y might be different. 

To overcome this hurdle, it is often ignored that the lines of 

 may not be in the same reading order (RO) as those of X and 

he WER is thus naively computed for the whole texts in X and Y 

s in Eq. (4) . This is the approach often followed in experiments 

hich aim to provide end-to-end performance assessment such 

s [2] and [35] (Sec.8, Test-B2). 
4 Note that, defined in this way, it may happen that WER (x, y ) > 1 , which pre- 

ents WER to be properly interpreted as an error probability. For the same reasons 

 Word Accuracy can not be defined just as 1 − WER . The Normalised Edit Dis- 

ance [24,44] would overcome these drawbacks but, following time-honoured tra- 

ition in ASR and HTR alike, we stick with the conventional normalisation by the 

ength of the reference sequence. 
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Fig. 2. Examples of frequent reading order issues, from the Bentham Papers collection. 
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. The reading order problem 

The RO of a sequence of words W = w 1 , . . . , w n is just the lin-

ar sequence 1 , . . . , n of the positions of these words in Z. Loosely

peaking, two transcripts X and Y of an image I are said to be 

n a similar RO if a sequential, monotonous correspondence (i.e., 

 trace) exists between the positions of the matching words of X

nd Y . Note that this applies to documents written in occidental or 

atin-derived left-to-right writing style, as well as to other scripts 

here writing follows right-to-left or top-to-bottom directions. 

As noted in Section 1 , assuming that reference and hypothesis 

ranscripts are in similar RO is generally unrealistic. This is par- 

icularly the case in many historical handwritten text images such 

s those shown in Fig. 2 . 5 If Eq. (4) of Section 2.3 is applied in

his scenario, the resulting WER figures will reflect an uncontrolled 

ombination of actual word recognition failures and errors due to 

naccurate RO generally due to poor LA. 

On the other hand, it is important to realise that the RO pro- 

ided by reference transcripts and/or other layout GT annotations 

s generally only one among several possible RO annotations which 

ould be all correct. Therefore, mixing RO and word recognition 

rrors into a single assessment measure (as in [10,19] ) does not 

eem the best idea for understanding which are the inner issues 

f an end-to-end full-page HTR system. 

These facts lead us to propose a two-folded evaluation approach 

hich completely decouples the RO from word recognition errors, 

hile also providing a simple, comprehensive picture of the end- 

o-end system performance. 

Research on RO has some tradition for printed docu- 

ents [7,18,26] . More recently, RO analysis has also been consid- 

red for handwritten documents, where RO issues are specially rel- 
5 From the Bentham Papers collection. See, e.g.: http://prhlt-kws.prhlt.upv.es/ 

entham 

c

a  

d

b  

4 
vant. In the work of Quiros and Vidal [33] , effective methods to 

earn line RO in handwritten text images from examples are pro- 

osed and empirically assessed. 

.1. Assessing reading order: Normalised Spearman’s footrule distance 

RO assessment issues are discussed in [33] , where two metrics 

re finally proposed and used in the experiments: the Kendall’s 

au rank distance (also called bubble-sort distance) [15] and the 

ormalised Spearman’s Footrule Distance (NSFD) [17] . Here we 

dopt the latter because it measures not only how many elements 

re not placed in the correct position within the expected order, 

ut also how far these elements are from their correct positions. 

hereby it provides reasonable estimates of the human effort that 

ould be needed to render a sequence of elements in a correct or- 

er given by a reference sequence. The NSFD can be defined as: 

(X, Y ) = 

1 


 1 
2 

N 

2 � 
∑ 

( j,k ) ∈A (X,Y ) 

| j − k | (5) 

here A (X, Y ) is an alignment between the reference text X and 

he HTR hypothesis Y , and N = max (| X| , | Y | ) is the number of

ords of the longest text. Note that the alignment A (X, Y ) does

ot need to fulfil the sequentiality constraint used in Section 2.1 to 

efine the word edit distance. In what follows, we assume that 

he alignment used in Eq. (5) will be provided by the methods 

iscussed in Section 5 . Example 2 in A.2 illustrates the computa- 

ion of the NSFD for X = “To be or not to be, that is the ques-

ion” and Y = “The big question: to be or not to be”, with 

(X, Y ) = 27 / 50 (54%) . 

From a user point of view, insertions and deletions do not typi- 

ally affect the RO in a substantial way. Therefore, in Eq (5) we just 

ssume that | j − ε| = | ε − k | def = 1 ∀ j, k . However, insertions and

eletions may indirectly affect significantly the result of Eq. (5) , 

ecause of the contribution of subsequent values of | j − k | . This is

http://prhlt-kws.prhlt.upv.es/bentham
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llustrated in Example 2 as well, along with the approach we pro- 

ose to circumvent this problem by just renumbering the positions 

f words of Y and/or X according to the inserted or deleted words 

pecified in A (X, Y ) . 

. Bag of words WER 

In Section 2 , X and Y were considered sequences where the or- 

er of text-lines and words is relevant for computing word errors. 

owever, in page-level performance assessment, once we have a 

pecific metric to measure RO, it is desirable to largely ignore the 

rder of words in X and Y to measure word recognition perfor- 

ance. 

A simple way to achieve this goal is to rely on the “Bag of 

ords” concept, as discussed in Section 1 . To this end, X and Y 

re now considered multi-sets (or “bags”) of words and the num- 

er of instances of each word can be used to compute a metric 

hich is fairly closely related to the WER. 

Let V X and V Y be the respective sets of different words (vocab- 

laries) of X and Y , and V = V X ∪ V Y . For each word v ∈ V let f X (v )
nd f Y (v ) be the number of instances of v in X and Y , respectively.

he “bag of words distance” between X and Y is defined as: 

(X, Y ) = 

∑ 

v ∈ V 
| f X (v ) − f Y (v ) | (6) 

hen, if N is the number of words in the reference X , a simple 

BoW WER” can be rather naively defined as: 

WER ( X, Y ) = 

B ( X, Y ) 

N 

≡ 1 

N 

∑ 

v ∈ V 
| f X ( v ) − f Y ( v ) | (7) 

As defined in Eq. (6) , B(X, Y ) is the number of word instances

f X which fail to appear in Y plus the number of word instances 

n Y which are not in X . This can be properly interpreted in terms

f editing operations just as the total number of word insertions 

nd deletions that would be needed to transform X into Y , without 

llowing for word substitutions . 

In the classical WER, a combined deletion and insertion pair of 

dit operations can be achieved by a single substitution. So, if X

nd Y are in the same RO, the bag of words distance will always be

arger than or equal to the corresponding word edit distance; that 

s, B(X, Y ) ≥ d(X, Y ) . If word substitution were allowed, many pairs

f the B(X, Y ) insertions and deletions could be advantageously ex- 

hanged by single substitutions. In the best case, the number of 

hese word substitutions would be exactly B(X, Y ) / 2 . However, if

 

X | � = | Y | , it is unavoidable that a number of words b = | | X | − | Y | |
ave to be actually deleted or inserted, without any possible pair- 

ng for interpretation as single substitutions. We will say that these 

nsertions or deletions are unavoidable . 

Therefore, to define a “bag of words WER” which can be fairly 

ompared with the traditional WER, we assume that each in- 

ertion/deletion pair, except those unavoidable, is equivalent to 

 single substitution. Formally speaking, the above definition of 

ag of words distance needs to be revamped into B 

′ (X, Y ) = b +
 (B(X, Y ) − b) / 2 � . Since B(X, Y ) − b is always even, the bag of

ords WER is thus defined as: 

WER (X, Y ) = 

B 

′ (X, Y ) 

N 

= 

1 

2 N 

( ∣∣ N − | Y | ∣∣ + 

∑ 

v ∈ V 
| f X (v ) − f Y (v ) | 

)
(8) 

Through the computation of Eq. (8) , the number of word in- 

ertions, deletions and (implicit) substitutions can be easily de- 

ived, even though which specific words are involved in the differ- 

nt operations remain unknown. This becomes a significant draw- 

ack, because it prevents to derive any kind of word-to-word or 

osition-to-position alignment that could be used to compute the 
5 
SFD or any other metric to assess RO mismatch. For the same 

eason, a CER associated with bWER can neither be properly com- 

uted. (Note that a “bag of characters” error rate would be overtly 

eceptive, and therefore is not an option). The examples in A.3 il- 

ustrate the computation of β WER and the reformulated version 

ere proposed bWER ( Eq. (8) ), along with their relation with the 

lassical WER. 

It is important to note that the WER is based on sequentially 

onstrained alignments (see Section 2.1 ), while the bWER does not. 

herefore, bWER can be (much) lower than WER, especially if the 

O of X and Y are very different. Even without the RO issue, the 

WER can underestimate word errors. Example 3a in A.3 shows 

 simple case of this. However, based on empirical evidence pre- 

ented in Sections 7 to 8 , these cases are rare in practice. The page-

evel bWER ( Eq. (8) ), therefore, becomes a good approximation to 

he corresponding WER in traditional experimental settings where 

O is not an issue. This is interesting because bWER is much sim- 

ler and cheaper to compute than WER. 

. CER, WER and NSFD based on bipartite graphs and the 

ungarian algorithm 

As discussed above, determining RO-independent word and 

haracter recognition accuracy at the full-page level, requires 

ords and/or word positions from the reference transcript X to be 

reely aligned or paired with corresponding words of the transcrip- 

ion hypothesis Y . Edit distance computation provides word align- 

ents (traces) as a byproduct, but the trace sequentiality restric- 

ion leads to alignments which lack the freedom needed for RO- 

ndependent word pairing. A proper formulation of the required 

ind of word alignments is given by the so-called “minimum-weight 

atching or assignment problem” [3] . 

Let G = (V, E) be a bipartite graph , where the set of nodes V is

omposed of two disjoint subsets A, B , A ∪ B = V , A ∩ B = ∅ , and the

et of edges E is a subset of V × V such that (u, v ) ∈E ⇒ u ∈A ∧ v ∈
 . A matching M ⊂E is a set of pairwise non-adjacent edges; that 

s, no two edges share a common node. A node is matched if it is

n endpoint of one of the edges in the matching. Otherwise, the 

ode is unmatched. M is said to be maximum if it contains the 

argest possible number of edges and it is a perfect matching if all 

he vertices of the graph are matched. Every perfect matching is 

lso maximum. A bipartite graph G = (V, E) is weighted if a real-

alued weight g(u, v ) is assigned to each edge (u, v ) ∈E. Then, the 

eight of a matching M is the sum of the weights of the edges

n M . Given a weighted bipartite graph, the assignment problem 

s to find a perfect matching with minimum weight. An efficient 

olution to this problem is provided by the Hungarian Algorithm 

HA) [16] . 

In our HTR assessment task, A and B are, respectively, the word 

nstances of the reference transcript X and the HTR hypothesis Y 

f a page image; E = { (X j , Y k ) , 1 ≤ j ≤ | X | , 1 ≤ | Y | } is the set of all

airs of word instances in X and Y , and the weight g(X j , Y k ) is the

haracter edit distance between the j-th word of X and the k -th 

ord of Y . Word insertions and deletions are represented by as- 

ignments to “dummy” nodes, which represent the empty word λ. 

hese nodes need to be added to both sets, not only because in 

eneral | X| � = | Y | , but also because we need to simultaneously sup-

ort both insertions and deletions for any given pair of transcripts. 

he cost of an edge connecting a dummy node with a word v is

hus defined as g(v , λ) = g(λ, v ) = 

1 
2 | v | , where | v | is the number

f characters of v and, as in Section 4 , the factor 1 
2 is introduced

o balance the cost of a word substitution with that of an equiva- 

ent combined word insertion and deletion. 

The assignment problem is to pair each (maybe empty) word 

nstance of X with a (maybe empty) word instance of Y so that the 

um of character edit distances between the paired words is mini- 
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Fig. 3. Assignment obtained by the Hungarian algorithm for a bipartite graph cor- 

responding to the word sequences X and Y . Dotted edges have a null cost and 

coloured words are insertions or deletions. For this assignment, d h (X, Y ) = 1 + 1 + 

4 / 2 + 2 / 2 + 1 + 1 + 3 / 2 = 8 . 5 . 
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um. Therefore, the HA yields what could be called “HA Character 

dit Distance”: 

 h ( X, Y ) = min 

A 

∑ 

( j,k ) ∈A ( X,Y ) 

g 
(
X j , Y k 

)
; (9) 

ig. 3 illustrates all the above concepts for a pair of word sen- 

ences. 

The optimal alignment ˆ A (X, Y ) associated with Eq. 9 is a set of

airs ( j, k ) , 1 ≤ j ≤| X| = N, 1 ≤k ≤| Y | , along with two additional sets

f pairs of the form ( j, ε) and (ε, k ) to account for word deletions

nd insertions, respectively. Let D be the number of these dummy 

airs in 

ˆ A (X, Y ) and, as in Eq. (8) , let b = | | X | − | Y | | . Since both in-

ertions and deletions are allowed in 

ˆ A (X, Y ) , D ≥ b. So, as in the

ase of Eq. (8) for the bWER, the (now typically few) D − b excess 

airs of insertions and deletions, can be interpreted as single sub- 

titutions. Then, the “HA WER” (hWER) can be defined as: 

WER (X, Y ) = 

1 

N 

∑ 

( j,k ) ∈ ̂  A (X,Y ) 

δ(X j , Y k ) − (D − b) 

2 N 

(10) 

here δ(·, ·) is the 0 / 1 function introduced in Section 2.1 . Also us-

ng ˆ A (X, Y ) , the NSFD ρ(X, Y ) can be computed straightaway as in

q. (5) . 

To compare hWER with bWER, note that the optimisation of 

q. (9) ensures a word alignment with minimum sum of character 

dit distances between the paired words. But this alignment may 

ot always lead to a minimum word edit distance . Thus, while it 

an be easily shown that bWER (X, Y ) ≤ hWER (X , Y ) ∀ X ,Y, the strict

quality may not hold in some cases. 

The examples in A.4 further illustrate the computation of 

WER for the more realistic texts used in Example 3. It is worth 

oting that the values of hWER in these examples are identical to 

he corresponding bWER values of Example 3 (A.3) . 

When multiple instances of some word exist in X and/or in Y , 

s in the examples of A.4 , the HA is free to pair any matching in-

tances, as long as the values of d h (X , Y) are the same. In other 

ords, there may be multiple alignments which provide the same 

ptimal result for Eq. (9) and the HA has no means to decide which

ne would be more consistent with the positions of these words in 

he RO of the compared texts. 

This is discussed in detail in A.5 for one of the examples of 

.4 . Because of unlucky tie breaks, the NSFD between two ex- 

mple sentences X and Z which are almost in the same RO is 

(X, Z) = 13 . 3% . However, if ties are broken more favourably (and in

 more natural way), the resulting NSFD is ρ(X, Z) = 1 / 
 14 2 / 2 � =
6 
 . 0% , which much better reflects the very minor RO discrepancy 

etween X and Z. 

To avoid this kind of ties, we propose to regularise the HA cost 

ith a term which measures the contribution of each pairing to 

ncrease the NSFD. That is, we propose changing Eq. (9) into: 

 h (X, Y ) = min 

A 

∑ 

( j,k ) ∈A (X,Y ) 

(
g(X j , Y k ) + γ

| j − k | 
N 

)
(11) 

here γ is the regularisation factor and, as in Eq. (5) , it is assumed

hat | j − ε| = | ε − k | = 1 ∀ j, k . 

If γ is close to 0, the HA will just behave as usual, yielding 

WER values very close or identical to those of bWER, but align- 

ents ˆ A (·, ·) not ideal for assessing RO discrepancies. On the other 

xtreme, for large γ the HA will tend to provide alignments which 

o not change word order; that is, alignments close to the sequen- 

ial trace T (·, ·) of the traditional edit distance (cf. Eq. (1) ), with

SFD values close to 0. For small values of γ it is expected that the 

WER result provided by Eq. (10) and Eq. (11) will be very close or 

dentical to those obtained with γ = 0 ; but the alignment ˆ A (·, ·) , 
hen used in Eq. (5) , will result is NSFD values which more fairly 

eflect RO discrepancies. 

To define a proper “HA character error rate” (hCER), note that 

he HA score d h (X, Y ) is not directly suitable because of the regu- 

arisation and the special treatment of word insertions and dele- 

ions. However, a simple approximation can be easily computed 

s hCER (X, Y ) 
def = CER (X, ̃  Y ) , where CER (·, ·) is the standard char- 

cter error rate (see Section 2.2 ) and 

˜ Y is obtained by reorder- 

ng the word hypothesis Y according to the optimal alignment 

f Eq. (11) . The values obtained in this way for the examples in

.4 are: hCER (X, Y ) = 8 . 1 , hCER (X, Z) = 16 . 1 , 

. Summary of the different metrics proposed 

This section summarises the properties of the most important 

valuation metrics discussed above. In all the cases, it is assumed 

hat X is a full-page reference transcript, with N running words, 

nd Y a corresponding HTR hypotheses with O (N) running words. 

WER (X, Y ) : The traditional Word Error Rate, defined in Eqs. (1) ,

and (4) , with a computational cost in O (N 

2 ) . If Y is in the

same RO as X , the WER just measures the word recognition 

error rate. Otherwise, this metric is expected to grow mono- 

tonically with the amount of RO mismatch between X and Y , 

with an offset that reflects the actual word recognition fail- 

ures. This offset can accurately be estimated by the bWER or 

the hWER. 

βWER (X, Y ) : An early, naive notion of “bag of words error 

rate” defined as B(X , Y ) /N, where B(X , Y ) measures text dis-

crepancies in terms of only word insertions and deletions 

( Eq. (6) ). It can be computed in O (N) time. When Y is in the

same RO as X , the classical WER yields (much) lower values 

than the βWER, but if the RO is very different, WER is ex- 

pected to be much larger. The use of this metric is, therefore, 

not appealing. 

bWER (X, Y ) : A redrafted version of βWER, given in Eq. (8) ,

which exactly estimates how many word insertions and 

deletions can be equivalently resolved with word substitu- 

tions. It can be computed in O (N) time. When Y is in the

same RO as X , it is expected to yield values which are only 

slightly lower than those of the classical WER but, in con- 

trast to WER, it is completely insensible to RO mismatch. 

A drawback of this metric is that it does not provide any 

word-to-word alignment, thereby preventing to compute a 

character error rate or to be used as a basis to estimate a 

RO mismatch metric. 
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Table 1 

hWER and NSFD results (in percentage) for increasing values of the regularisation factor γ . 

The corresponding WER and bWER results were 42 . 6% and 12 . 4% , respectively. 

γ 0 10 −4 0.1 1 2 5 10 20 50 100 

ρ 14.7 12.9 12.9 12.8 12.6 11.5 9.0 5.3 1.6 0.9 

hWER 12.4 12.4 12.4 12.4 12.5 13.8 17.9 25.4 36.5 42.7 

 

 

7

p

t

a

i

t

7

T

P

r

a

i

t

o

i

H

m

m

p

W

t

r

r

u

Table 2 

Test set main statistics of the evaluated datasets. Except for ICDAR17, the running 

words and lexicon sizes correspond to untokenized “words”, which may include 

punctuation marks. 

ICFHR14 IAMDB ICFHR16 ICDAR17 FCR 

Number of pages 33 336 50 57 100 

Number of lines 860 2 915 1 138 1 412 6 183 

Running words 6 966 23 406 3 546 14 460 33 999 

Running chars 38 474 123 090 22 396 80 568 214 785 

Lexicon 2 278 6 398 1 834 4 648 9 890 

Alphabet size 82 75 80 104 83 
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hWER (X, Y ) : The “Hungarian Algorithm Word Error Rate”, de- 

fined in Eq. (10) based on a RO-independent word alignment 

obtained as a byproduct of computing Eq. (11) . Its computa- 

tional cost is O (N 

3 ) . In terms of word error rate, hWER is

almost identical to bWER, but it may provide slightly higher 

values than bWER in some cases. In contrast with bWER, 

hWER does provide word alignments which allow comput- 

ing a character error rate and can be used to estimate a RO 

mismatch (with the NSFD, e.g.). 

ρ(X, Y ) : Normalised Spearman Footrule Distance (NSFD), de- 

fined in Eq. (5) to explicitly estimate the amount of RO mis- 

match between X and Y . It requires a word-to-word align- 

ment which is assumed to be available as a byproduct of 

computing the hWER. Its computational cost is O (N) , but 

taking into account the cost of obtaining the required align- 

ment, the overall cost is O (N 

3 ) . The values of NSFD are ex-

pected to grow monotonically with the degree of RO mis- 

match. It is also expected that these values be closely cor- 

related with the values of the classical WER, after discount- 

ing the offset due to actual word recognition errors which, 

as previously mentioned, can be accurately estimated by the 

bWER or the hWER. 

. Simulation experiments 

A first series of experiments were carried out to check and em- 

irically analyse the properties of the proposed metrics under con- 

rolled conditions. To this end a simple HTR dataset was adopted 

nd real full-page HTR transcription results were artificially altered 

n order to simulate typical conditions that are expected to affect 

he different evaluation results. 

.1. A Basic Dataset for testing different assessment approaches 

The well known and widely used ICFHR14 dataset was adopted. 

his is a small subset of selected manuscripts from the Bentham 

apers collection, 6 mostly written by the English philosopher and 

eformer Jeremy Bentham. 7 

The ICFHR14 dataset contains text-line images extracted from 

round 433 page images, some examples of which are shown 

n Fig. 4 . It was first used in the ICFHR-2014 HTR competi- 

ion [39] and is now freely available for research purpose at zen- 

do (see Appendix B ). 

This early dataset was carefully prepared by the ICFHR14 organ- 

sers so as to avoid the need of LA and to simplify “non-essential”

TR matters as much as possible. To this end, text lines were 

anually detected and extracted and small pieces of text such as 

arginalia were ignored. Thus, all the benchmarking results re- 

orted so far for this dataset have been based only on conventional 

ER, exactly as discussed in Section 2.2 . That is, the given training 

ext-line images and their corresponding GT transcripts were di- 

ectly used for model training and the WER was evaluated on the 

esults achieved for the independent set of test line images. 
6 The full collection (searchable using PrIx [42] ) is here: http://prhlt-kws.prhlt. 

pv.es/bentham 

7 http://blogs.ucl.ac.uk/transcribe-bentham/jeremy-bentham . 

a

w

a

7 
Here we will use the test-set line images to simulate differ- 

nt shortcomings typically expected both from HTR and LA. Main 

tatistics of this test set are reported later in Table 2 . 

.2. General settings to analyse the proposed metrics 

For each test-set page, the transcripts of the different text-lines 

ere concatenated into a single word sequence, 3 following the RO 

pecified in the GT of that page. From this sequence, WER , bWER 

nd hWER can be computed according to Eqs. (4) , 8 ) and (10) , re-

pectively. NSFD, in turn, can be determined according to Eq. (5) , 

sing the alignment derived from the computation of hWER , after 

he position renumbering described in Section 3.1 . Finally, CER and 

CER can be calculated as explained in Section 2.2 and at the end 

f Section 5 . 

To obtain global values of these metrics for a whole test set 

f K page images, let C = { (X 1 , Y 1 ) , (X 2 , Y 2 ) , . . . , (X K , Y K ) } be the set

f page-level pairs of reference and transcription hypothesis. We 

erform “micro-averaging” that somewhat minimises the impact of 

he relative page sizes (number of words or characters). For any 

etric m (·, ·) , the global micro-average, m̄ (C) , can be expressed as 

he weighted sum of values of m computed for each page: 

¯
 (C) = 

∑ K 
k =1 N k m (X k , Y k ) ∑ K 

k =1 N k 

(12) 

here m (·, ·) can be one of the following page-level metrics: WER , 

WER , hWER , CER , hCER or NSFD. That is, page metric values are 

eighted by the corresponding number of reference words (or 

haracters) in the page, N k , accumulated over all the test-set pages, 

nd finally normalised by the total number of reference words (or 

haracters for CER ). 

Among the proposed metrics, only hWER has a tunable pa- 

ameter; namely, the regularisation factor of Eq. (11) , γ . Through- 

ut several tests, it has been consistently found that this parame- 

er does not require critical tuning. For one of these typical tests, 

able 1 reports NSFD and hWER results for increasing values of γ . 

hese results were obtained in a controlled RO–alteration experi- 

ent, described in Section 7.4 , where random swaps were applied 

o 4 text lines of each image, at distances ranging from 4 to 7 lines

part. 

As discussed in Section 5 , ρ actually decreases monotonically 

ith γ , while hWER is almost constant and identical to bWER for 

 wide range of γ < 5 . According to these and other similar results, 

http://prhlt-kws.prhlt.upv.es/bentham
http://blogs.ucl.ac.uk/transcribe-bentham/jeremy-bentham
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Fig. 4. Page images of the ICFHR14 dataset. 
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Fig. 5. Evaluation results for increasingly distorted transcripts, as a function of the 

CER artificially induced by the distortion process. Left: words are distorted indi- 

vidually avoiding induced white space errors to break or join words. Right: distor- 

tion is applied at full line level, allowing white space to be deleted/inserted be- 

tween/within words. Curves with very similar or identical values are depicted with 

the same colour and/or point shape. The prefix “t” in tCER, tWER and tNSFD indi- 

cates the corresponding values are theoretically computed. 
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he regularization factor was set to γ = 1 . 0 for all the experiments

resented in this paper. 

.3. Inducing word-level character errors, while the RO is kept 

ssentially unchanged 

In this experiment we applied increasingly higher character- 

evel insertions, deletions and substitution distortion to the test- 

et reference transcripts, while keeping text lines in their original 

correct) RO. Two different settings were considered: 1) “line-level”, 

here white-space editing operations are allowed to separate or 

oin words, and 2) “word-level”, where white-space was excluded 

rom editing operations in order to keep the number of running 

ords unchanged. 

The lowest distortion was chosen so as to induce a CER of 

 . 25% , which is the CER of real HTR transcripts obtained in a

egular experiment (see Table 8.2 ). Increasing distortion was then 

rogressively applied according to tCER (n ) = 3 . 25 n, n ∈ { 1 , 2 , . . . , 6 } ,
ntil reaching an induced (or ”theoretical”) tCER of 19 . 5% . The dis-

ribution of the total tCER into the different character error types 

as set proportional to the observed proportions of substitutions, 

nsertions and deletions. Further, for line-level distortion, the pro- 

ortion of white-space characters was set according to the charac- 

er error distribution observed in the real HTR experiment. 

Fig. 5 plots the empirical WER , bWER and hWER results, along 

ith the theoretical values of induced CER (tCER, dotted-line) and 

ER (tWER, dashed-line, calculated according to tWER (n ) = 4 . 65 ·
CER (n ) , where 4.65 is the average word length in the reference 

ranscripts). 

Results for the word-level distortion are shown in Fig. 5 -left. 

s the RO in this case is not altered at all, the theoretical NSFD

tNSFD) is 0 (horizontal dash-dotted line). As expected, all the em- 

irical NSFD values are also very close to 0. Moreover, the empiri- 

al values of WER , bWER and hWER all grow almost identically for 

ncreasing tCER. This also holds for CER and hCER . 

For line-level distortion the results are shown in Fig. 5 -right. In 

his case, for large tCER, the empirical NSFD results become signif- 

cantly larger than 0, and CER is also somewhat larger than hCER . 

his is clearly due to the white-space editing operations which, for 

arge tCER, results in significant variations in the number of words. 

he HA need to accommodate these variations by means of inser- 

ions and/or deletions, which explicitly increases the NSFD, albeit 

nly moderately. 
8 
.4. Altering text line RO for HTR transcripts with fixed word errors 

Here we evaluated the impact of altering the RO of the real 

TR transcripts produced in a regular HTR experiment (namely, 

he one whose results are reported in the first row of Table 8.2 of

ection 8.2 ). For the sake of simplicity, alterations considered in 

his section are limited to whole-line swapping. This aims to sim- 

late typical failures in text-line ordering, often caused by poor 

implicit or explicit) LA of images with multi-column text blocks, 

arginalia, etc. 

For each test-set page with M text lines, the order of line tran- 

cription hypotheses is changed by swapping a given number of 

ine pairs, S, at a given distance or range, r. Line pairs are ran-

omly selected, but lines already swapped are not candidate for 

urther swapping. For a given S, depending on the value of r, the 

ctual number of possible swapping on a page may be lower than 

. For example, the maximum number of swappable line pairs of 

 page with M = 8 lines, at a distance r = 7 , is only one: the first

ine with the last one of that page. 
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Fig. 6. Evaluation results on actual HTR transcripts where the line order is dis- 

torted by random line swaps and breaks. Curves with almost identical values are 

depicted with the same colour and symbol. tNSFD corresponds to theoretically com- 

puted values. The “swp” and “brk” labels denote line swap and split, resp. (see 

Section 7.4 and 7.5 ). 
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For a given range of swap distances r ∈ [ R ′ , R ] , and a given num-

er of pages, K, the expected NSFD induced by this process, ˜ ρ , can 

e approximated as: 

˜ (K, S, R 

′ , R ) ≈ S(R 

′ + R ) 

K 

K ∑ 

k =1 

1 


 M 

2 
k 
/ 2 � (13) 

here M k is the number of lines of the k -th page. In our exper-

ments, K = 33 , R ′ = 4 , R = 7 , and 

∑ K 
k =1 1 / 
 M 

2 
k 
/ 2 � = 0 . 136 , yield-

ng: ˜ ρ(S) = 0 . 045 S. In the right plot of Fig. 6 shows these ex-

ected NSFD values as the dashed line labelled “tNSFD swp”). 

The left plot of Fig. 6 shows WER values obtained for different 

maximum) numbers of swapped lines, where each value is the 

verage over a range of swap distances [4,7]. As expected, while 

ER increases quickly with the number of swapped lines, the cor- 

esponding bWER and hWER remain almost constant. On the other 

and, the right plot shows how the empirical NSFD values also 

row as the number of line swaps increases, more or less closely 

ollowing the expected linear tendency (tNSFD swp). Fig. 6 also in- 

ludes WER and NSFD results of the experiments discussed in the 

ext subsection. 

.5. Impact of text line splitting errors 

Finally we check the effect of randomly inserting line-breaks in 

he HTR transcripts. This aims to simulate (implicit or explicit) line 

etection errors which lead to wrong intra-line text ordering. To 

his end, the following procedure was carried out for the HTR tran- 

cripts of each test page: 1) S lines are randomly selected. 2) For 

ach selected line a splitting position is randomly chosen; it can 

e at character or word level, with a chance of 1 to 4 respectively.

) The split line fragments are relocated according to one of these 

hree equiprobable options: i) the line suffix goes before the pre- 

x, ii) the line suffix goes after the line next to the selected one, 

r iii) the line prefix goes after the line next to the selected one. 

hese cases correspond to relatively common flaws of (implicit or 

xplicit) LA, which may happen mainly with highly skewed text 

mages, as illustrated in Fig. 7 (see also Fig. 2 ). 

As in Section 7.4 , we can estimate the impact of these RO alter-

tions on the NSFD metric. Ignoring the effect of word breaks, the 
9

SFD induced for K page images can be approximated as: 

˜ (S) ≈ 7 

6 

S 

K 

K ∑ 

k =1 

N k /M k 


 M 

2 
k 
/ 2 � (14) 

here, as before, M k and N k are respectively the number of lines 

nd words of the k -th page image. For our K = 33 page images,

his leads to ˜ ρ(S) = 0 . 0048 S. The dotted line labelled “tNSFD brk”

n the right plot of Fig. 6 shows these expected NSFD values. 

Note that, unlike the RO alteration simulation of Section 7.4 , 

ere not only the RO is changed (in this case at a range dis- 

ance r = 1 ), but also some words are distorted because a line

plit point may happen to fall within a word, thereby produc- 

ng two word fragments. Such word splits happen with probabil- 

ty S (K/ 4) / 
∑ K 

k =1 N k and for each split, two word errors are ex-

ected. In our case, K = 33 and, for the transcription hypotheses, 
 K 
k =1 N k = 6955 . Therefore, the expected increase of bWER (and 

WER ) is 0 . 0023 S ( 0 . 23 S in %), which explains the tiny increase

f bWER -brk and hWER -brk observed in Fig. 6 . 

.6. WER–NSFD Correlation and computational costs 

In Section 7.3 ( Fig. 5 ) we have seen that, when the amount of

haracter (and word) errors increases without changing the word 

rder, the NSFD remains essentially constant and close to 0. In con- 

rast, all the word and character error metrics grow almost linearly 

ith the amount of induced character errors. Moreover, the three 

ord error metrics ( WER , bWER and hWER ) yield almost identi- 

al values in all the cases. On the other hand, we have seen in 

ection 7.4 ( Fig. 6 ) that if the amount of word errors is kept con-

tant but the RO of the transcripts is increasingly perturbed, both 

ER and NSFD (and also CER ) grow fairly linearly with the amount 

f induced RO mismatch. In contrast, now bWER (and hWER ) re- 

ain practically constant and equal to the value of WER when HTR 

nd reference transcripts are in the same RO. 

All these results (those of Fig. 6 in particular) suggest a strong 

orrelation between NSFD and WER , with an offset given by bWER 

or hWER ). This is explicitly put forward in Fig. 8 , where val- 

es of �WER 

def = WER − bWER (and also WER − hWER ) are plot- 

ed against the corresponding values of NSFD. We also include in 

his plot a few points corresponding to real end-to-end evalua- 

ion results of some of the experiments that will be presented in 

ection 8 ( Table 8.2 ). It can be seen that these points also show a

air linear correlation between �WER and NSFD. 

Regarding the relative costs of the different metrics, computing 

imes are plotted in Fig. 9 as a function of the number of words per

age. All the times were measured on the same computer, using 

he C++ implementations of WER , bWER , and hWER described in 

ppendix B . The points correspond to real end-to-end evaluation 

f individual pages and the least-square fitted curves clearly show 

he different time complexities of each method. 

. Examples of real end-to-End evaluation 

The proposed evaluation metrics have been applied to assess 

nd-to-end HTR systems in real scenarios. The HTR datasets con- 

idered, the empirical settings and the results obtained are pre- 

ented in the following subsections. 

.1. Datasets and methods 

Besides the historical dataset ICFHR14 [39] already used in the 

receding sections, four additional datasets were selected to test 

he proposed evaluation metrics; namely: the traditional modern 

andwriting benchmark IAMDB [23] , and three historical hand- 

riting datasets: ICFHR16 [34] and ICDAR17 [40] , compiled for 
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Fig. 7. Real examples from Bentham Papers images 010_0 03_0 02, 019_0 04_0 03, which illustrate text line splitting errors that affect RO. In the simulation experiments these 

examples correspond, top to bottom, to Cases 1, 2 and 3. 

Fig. 8. Correlation of WER −bWER (and WER − hWER ) with NSFD. Real results from 

Table 8.2 are included, along with a straight line fitted to these points. Curves with 

almost identical values are depicted with the same colour and symbol. 

t
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t
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p
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Fig. 9. Computing Times of hWER , O (N 3 ) , WER , O (N 2 ) and bWER , O (N) , fitted re- 

spectively to polynomials of degrees 3, 2 and 1 (linear). 
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he ICFHR-2016 and ICDAR-2017 HTR competitions, and the Finnish 

ourt Records dataset (FCR) [33] from the “Renovated District 

ourt Records” held by the National Archives of Finland. Informa- 

ion about how to download each of these datasets is given in 

ppendix B . 

IAMDB is a well known modern English handwritten text cor- 

us, gathered by the FKI-IAM Research Group on the base of the 

ancaster-Oslo/Bergen text Corpus (LOB) [13] . The last released ver- 

ion (3.0) contains about 1 500 scanned text pages, written by 657 

ifferent writers. 
10 
The ICFHR16 dataset encompasses 450 page images which are 

 subset of the Ratsprotokolle collection, written in old German 

nd composed of handwritten minutes of council meetings held 

rom 1470 to 1805. One remarkable characteristic of this dataset is 

hat their text lines are short, each one containing very few (long) 

ords. 

The ICDAR17 dataset comprises around 10K page images, most 

f which taken from the Alfred Escher Letter Collection . This col- 

ection is mostly written in German, but it also includes pages in 

rench and Italian. Here, the performance evaluation was carried 
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ut on the pages corresponding to the partition called “Test-B2”

n [40] , which was aimed to evaluate not only text recognition ac- 

uracy but also (indirectly) LA performance. 

Finally, the FCR dataset consists of 500 manuscript images 

hich contain records of deeds, mortgages, traditional lifeannuity, 

mong others. They were written in Swedish by many hands dur- 

ng the 18th century. Here, the evaluation was done on 100 im- 

ges (48 are double-page images) which are a subset of the test 

artition used in [45] . For more details about ICFHR14, ICFHR16, 

CDAR17 and FCR datasets, refer to [33,35] . 

It is important to remark that no tokenization (e.g. to sepa- 

ate punctuation marks from words) was applied to text references 

r HTR transcripts, excepting ICDAR17 whose original references 

nd HTR results obtained in the associated competition were used. 

able 2 reports the main statistics only for the test sets , which are

he focus of the proposed evaluation metrics. 

Except ICDAR17 (for which the same transcripts as in [40] were 

sed), for each dataset we trained specific optical character models 

sing the provided training images and the corresponding refer- 

nce transcripts. Character modelling was based on Convolutional- 

ecurrent Neural Networks (CRNN), trained using the state-of-the- 

rt freely available PyLaia Toolkit. 8 The same setup described 

n [45] was adopted here to specify the CRNN topology and meta- 

arameters. 

HTR transcripts of test images were obtained through two 

ifferent ways of line extraction: 1) use the line locations and 

O given in the GT; and 2) use a Region Proposal Network 

RPN) [32] trained to detect and extract lines with a RO given by 

heir positions on image, from top-to-bottom and left-to-right as 

n [33] . To this end, the same RPN topology and meta-parameter 

ettings as in [32] was adopted. For both ways of line extraction 

nd each dataset, the corresponding CRNN model trained with Py- 

aia was used to decode the extracted line images. Finally, HTR 

ull-page transcripts were produced by concatenating the predicted 

ext lines according to their RO given by the GT or computed by 

he RPN. 

In addition to the above “classical” HTR experiments, as an ex- 

mple of what we consider the ultimate aim of the proposed met- 

ics, we also test the end-to-end LA + HTR approach named Simple 

redict & Align Network (SPAN) [9] . 9 This model learns to transcribe 

aragraphs by aligning all the text line representations via a hori- 

ontal feature map unfolding. By training with the CTC loss strat- 

gy, this model learns how to align input information with the fea- 

ure map rows and produce a sequential output, without requiring 

ny specific LA preprocessing. 

.2. Real end-to-end evaluation results 

Table 3 reports performance in terms of the proposed evalu- 

tion metrics for different end-to-end HTR approaches, tested on 

he datasets outlined before. The way of line extraction and order- 

ng, as well as the HTR system adopted, appear on the columns 

abelled LA+RO and HTR, respectively. Selected values of �WER = 

ER − hWER and NSFD, highlighted in boldface, are plotted in 

ig. 8 , as already mentioned in Section 7.6 . 

In all the cases, hWER is slightly higher than or identical to 

WER and both are always smaller than WER , as discussed in 

ections 4,5 (and summarises in Section 6 ) – and as expected from 

he simulation results of Section 7 . Also as expected, all the HTR 

pproaches which use the (perfect) text lines and RO given by 

he GT, achieve lower NSFD and �WER , compared with other ap- 

roaches involving automatic line detection. 
8 https://github.com/jpuigcerver/PyLaia . 
9 https://github.com/FactoDeepLearning/SPAN . 

h

R

l

11 
Another important general remark is the fairly tight correlation 

bserved between NSFD and �WER . It is more clearly seen for re- 

ults more or less affected by RO issues, specifically those high- 

ighted in boldface which, as commented, are also plotted in Fig. 8 . 

his further endorses the discussion in Section 7.6 and adds empir- 

cal support to consider �WER as a suitable metric to put forward 

A or, in general, RO problems. 

IAMDB has a very simple RO structure and no significant dif- 

erences exist among the different error rate metrics. To a lesser 

xtent, the same can be said for ICFHR14. 

The case of ICFHR16 is worth commenting. The WER achieved 

y RPN–CRNN ( 33 . 5% ) is significantly higher than the bWER 

 26 . 4% ), leading to �WER = 7 . 1% . This makes it clear that the RO

rovided by RPN LA is far from perfect, an issue directly supported 

y the fairly high value of NSFD ( 5 . 20% ). As discussed later in more

etail, most RO errors are due to marginalia transcripts for which 

he system fails to place in the correct RO. 

Also interesting is the case of FCR, which contains a mixture 

f single- and double-page images. For double-page images, the 

egular RPN settings (denoted in the table just as “RPN”) dramat- 

cally fail to separate the lines of each page and render them in 

he correct RO. So, even though the individual words are fairly 

ell recognised (with bWER = 26 . 7% ), the conventional WER is ex- 

rbitant ( 72 . 4% ). This leads to a very large �WER ( 45 . 7% ) which

learly shows the massive RO mismatch, also reflected by the very 

arge value of NSFD ( 26 . 6% ). Of course, this experiment was only

imed at providing a clear illustration of the behaviour of pro- 

osed metrics. So we also tested a more reasonable LA approach 

called “RPN1” in the table). In this approach, when a double-page 

s identified, each detected text line is classified as belonging to 

he left or to the right page and then the usual RPN RO is ap-

lied page-wise. This approach provides identical individual word 

ecognition performance ( bWER = 26 . 7% ) and greatly solves the RO 

ssues – albeit not completely, as assessed by the still high values 

WER = 9 . 8% and NSFD = 5 . 92% . 

Regarding CER and hCER results, in general they reflect similar 

endencies as WER and hWER when RO issues are involved. Note 

owever that, as discussed in Section 5 , hCER is only an approxi- 

ation and is not as directly and faithfully comparable with CER 

s hWER is with WER . 

The SPAN (true full-page) approach, was tested on two datasets. 

esults for IAMDB are comparatively good in terms of word and 

haracter error metrics and also in terms of RO as assessed by 

SFD and �WER . 

The SPAN results for ICFHR16 deserve a more detailed analy- 

is. The RO-independent word recognition results ( hWER ≈bWER = 

9 . 9% ) are sensibly worse than those of RPN+CRNN discussed 

bove ( hWER ≈bWER =26 . 4% ), while the conventional WER is 

omewhat better ( 31 . 5% vs. 33 . 5% ). So the �WER for SPAN is sig-

ificantly lower ( 1 . 6% vs. 7 . 1% ) – which is also consistent with

SFD ( 1 . 3% vs. 5 . 2% ). This indicates that the transcripts provided

y SPAN have more word errors but are in significantly better RO 

han RPN+CRNN. 

To better understand these results, we can gather additional 

valuation clues from the distribution of bWER errors. In this case, 

rom bWER =29 . 9% , 25 . 7% errors are substitutions, 0 . 3% insertions

nd 3 . 9% deletions. So we observe that SPAN makes many word 

eletions, around 10 times more than RPN+CRNN (with 0 . 4% dele- 

ions, 0 . 6% insertions and 25 . 4% substitutions). A closer look at 

he SPAN transcripts reveals that, indeed, SPAN almost systemat- 

cally delete (i.e., fails to detect and recognise) the many margina- 

ia lines existing in the ICFHR16 images. Clearly, while the RO is 

ardly affected by this fact, there is a noticeable impact on the 

O-independent recognition accuracy, evidenced by the relatively 

arger values of bWER and hWER . 

https://github.com/jpuigcerver/PyLaia
https://github.com/FactoDeepLearning/SPAN
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Table 3 

Real evaluation results for different datasets, LA and HTR approaches. All values are percentages. �WER denotes WER −bWER . RO mismatch (NSFD) and �WER values 

corresponding to points shown in Fig. 8 are marked in boldface. WER , bWER and hWER 95% confidence intervals are narrower than ±1.6% for ICFHR16 and ±1% for all the 

other datasets. The LA+RO approach “TRB” for ICDAR17 stands for Transkribus platform. 

Dataset \ Metric LA + RO HTR NSFD �WER WER bWER hWER CER hCER 

ICFHR14 GT CRNN 0.3 0.3 12.7 12.4 12.4 3.3 4.0 

RPN CRNN 0.9 1.1 17.4 16.3 16.3 5.5 5.9 

IAMDB GT CRNN 0.6 0.5 27.0 26.5 26.5 7.5 8.2 

RPN CRNN 0.7 0.5 27.8 27.3 27.3 7.9 8.7 

SPAN 0.5 0.6 26.7 25.9 26.0 7.5 8.3 

ICFHR16 GT CRNN 0.3 0.6 27.7 27.1 27.2 5.7 6.6 

RPN CRNN 5.2 7.1 33.5 26.4 26.6 13.7 6.5 

SPAN 1.3 1.6 31.5 29.9 30.0 10.7 10.9 

ICDAR17 GT CRNN 1.4 2.2 18.6 16.4 16.5 6.3 6.6 

TRB CRNN 1.6 2.5 20.1 17.6 17.7 7.0 7.1 

FCR GT CRNN 0.8 1.1 25.2 24.1 24.4 5.6 6.4 

RPN CRNN 26.6 45.7 72.4 26.7 27.0 50.8 8.5 

RPN1 CRNN 5.9 9.8 36.5 26.7 27.0 15.1 8.2 

Fig. 10. A page from the ICHFR16 dataset (ID: Seite0418). The red and blue texts and shadings correspond to the text blocks affected by RO issues, while word recognition 

errors are marked with shadowed boxes. The top-middle panel is the reference transcript. The right-panel shows the RPN-CRNN’s hypothesis, with bWER = hWER = 31 . 4% 

and �WER = 10% which fairly reflects the RO errors caused by poor LA. The bottom panel shows the SPAN’s hypothesis, which clearly failed to detect and recognise all the 

marginal note words (in red colour). As compared with RPN-CRNN, SPAN has produced the same amount of word errors ( bWER = hWER = 31 . 4% ), but the transcript is in 

better RO, a fact fairly reflected by �WER = 1 . 4% . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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As a specific example of this general fact, Fig. 10 shows an 

CFHR16 page image, along with its GT, RPN+CRNN and SPAN tran- 

cripts. In the RPN+CRNN transcript, the lines corresponding to the 

arginal note (in red) are correctly detected and all their words 

ecognised (with two errors). However, they are mixed with the 

ines of the last paragraph (in blue). The total number of word 

rrors is 22 ( 31 . 4% ), but because of the mixed marginal lines,

he RO is rather poor, as properly reflected by �WER =10% . For 

he SPAN transcript, hWER = bWER =31 . 4 , exactly the same as for 
12 
PN+CRNN. But, as suspected, it has completely failed to transcribe 

he marginal note words. However, all the transcribed words are in 

ood RO, a fact faithfully reflected by �WER =1 . 4% . 

. Related works 

The problem of assessing the quality of full-page automatic 

ranscripts, taking into account LA and/or RO errors has been ad- 

ressed in many previous works. In this section, we briefly review 
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he literature both in HTR and other research fields where alter- 

ative metrics have been proposed in this regard. The review is 

rganised into four topics, corresponding to what we consider the 

our main contributions of our work. 

.1. LA and/or RO awareness in HTR metrics 

Almost all the works cited in this section consider only printed 

historical) documents and the task of full-page, end-to-end eval- 

ation is always more or less explicitly linked to (geometric) is- 

ues caused by faulty LA—see eg. [26] for a recent work in this 

ategory. Going deeper in this direction, Antonacopoulos, Clausner 

nd Pletschacher are among the earlier authors who explicitly put 

orward the importance of this problem and its relation with RO 

ifficulties — and propose pioneering practical approaches for RO- 

ware evaluation [7,30] . 

Note, however, that with the exception of [7,30] (and others 

iscussed in the coming subsections), these works are not directly 

oncerned with transcription evaluation . Some produce end-to-end 

ranscription results, while others deal with LA and/or RO meth- 

ds; but all need evaluation metrics and some of them make pro- 

osals that seem adequate to assess their results. On the other 

and, as far we can tell, none of the cited works makes a convinc- 

ng assessment of the adequateness of the proposed metrics for 

eneral-purpose evaluation and benchmarking of full-page tran- 

cripts of text images. 

In comparison, our work explicitly analyses and proposes 

eneral-purpose metrics which are agnostic of geometry and other 

etails of LA. We also report comprehensive results that support 

he adequateness of these metrics for unbiased evaluation of the 

verall quality of end-to-end transcription results of handwritten 

or printed) text images. 

.2. Metrics related with the bag of words 

BoW-based assessment appears in [30] and [37] , and it has 

een used in several ICDAR competitions [4–6] . In these papers 

nd competitions the Bag of Words concept was used to define 

valuation measures based on, or related with recall (or missed 

ords) and precision (or falsely detected words), generally com- 

ined into a kind of F-measure referred to “success rate” [1] . How- 

ver, the formal details of these measures are not sufficiently doc- 

mented and most probably they are largely unrelated with the 

etrics we are proposing in this paper. Moreover, by relying on 

isses and false detections, the “success rate” implicitly overlooks 

ord substitutions, thereby making it difficult to establish mean- 

ngful relations with the traditional WER. 

The definition of bWER in Eq. (8) explicitly considers substitu- 

ions, thereby making it almost identical to hWER and allowing for 

 proper comparison with the WER . This leads to the introduction 

f �WER , which proves to be a very convenient way to measure 

O logical mismatch. 

It is worth mentioning that our definition of bWER is not new. 

he idea was first suggested in [27] to obtain a rough measure of 

he quality of Machine Translation (MT) results disregarding word 

rder. Under the name “Position-independent Error Rate” (PER), 

hat idea was later presented more formally in [31] . By looking 

losely at the proposed formulation, one can observe that the core 

omputation is indeed essentially the same as that of our Eq. (8) . 

.3. Metrics related with the hungarian algorithm 

The HA has been adopted in many document analysis and 

ecognition tasks, many of them related with full-page, end-to-end 

raining and/or text image recognition [22,41] . It has been pro- 

osed as well for other miscellaneous tasks such as invoice anal- 
13
sis [28] , pairing different versions of historical manuscripts [14] , 

nd reassembling shredded document stripes [20] , to name a few. 

ll these works are completely unrelated with evaluation of HTR 

ranscripts, which is the topic of this paper. 

Among the works which explicitly deal with evaluation, we 

hould mention an interesting early work in the field of Com- 

uter Vision, which considers the evaluation of visual objects de- 

ection [21] . Several works on LA make use of the HA to evalu-

te results of line detection and/or text region segmentation [12,48] . 

hile this task may seem similar to ours, the overall framework 

s quite different. In these proposals, the elements to be paired are 

mage regions, and the pairing criterion is strongly based on re- 

ion geometry information. In contrast, our proposal is applied to 

ranscripts, represented just by character strings. And evaluation is 

ompletely blind to the existence of text lines and explicitly ig- 

ores geometric features of the text images and/or their GT anno- 

ations. 

It is worth mentioning that our point of view in this matter 

s similar to the one adopted in [36] for assessment of video OCR 

esults. However, the metric proposed in [36] aims to assess not 

nly the quality of the transcripts (and their RO), but also the posi- 

ions of the detected and recognised words in the image. Therefore, 

his evaluation approach mixes geometric and text criteria, which 

s contrary to the principles adopted in our work. 

Perhaps the most interesting proposal that is close to our work 

s the so called “Flexible Character Accuracy” metric [8] (FCA). It 

s based on computing the character edit distance between two 

hunks of text by iteratively comparing the lines with minimum 

dit distance, following a greedy strategy. The method is further 

ased on several heuristics which need four weighting factors to 

ontrol how much relevance is given to the offset and length dif- 

erence of the matched strings. Additionally, unmatched substrings 

re considered insertion or deletion operations, so they are added 

s a penalty to the whole result. This metric was used to assess 

TR transcription results in the ICDAR 2019 competition on Recog- 

ition of Documents with Complex Layouts [6] . 

In our opinion, FCA does succeed in providing a reasonable 

ord accuracy score which is fairly RO-independent. Nevertheless, 

t has two important drawbacks. First, it is just based on a greedy, 

uboptimal solution to a line matching or assignment problem, for 

hich the here proposed regularised HA would provide an opti- 

al solution. In comparison, the approaches here proposed ensure 

ptimal word pairings and, moreover, they do not need to assume 

ny kind of LA units such as text blocks or lines. Second, FCA heav- 

ly depends on several tunable weights. Indeed, in the experiments, 

he reported results correspond to a best-scoring combination of 

arameters for each algorithm run. Clearly, this makes the method 

oo dependent on the datasets considered, which would become 

roblematic for general-purpose benchmarking of full-page tran- 

cription results. 

In addition to the above discussions, perhaps our most impor- 

ant contribution to the use of the HA for HTR evaluation is to in- 

roduce a regularised HA version. Thanks to the proposed regulari- 

ation term, the HA not only minimises the character edit distance 

etween the paired words, but also avoids as far as possible word 

rder mismatch, as measured by the NSFD. 

Such an enhancement has allowed us to define a HA WER 

hWER) which exhibits all the desired properties: a) it yields 

ssentially the same results as the bag-of-words WER (bWER) 

nd thereby provides a proper RO-independent evaluation of in- 

ividual word recognition performance; b) it provides practi- 

ally the same results as the conventional WER, whenever ref- 

rence and system transcripts are in the same RO; and c) it 

roduces the alignments needed to compute a RO-independent 

haracter error rate and used by NSFD to explicitly measure RO 

ismatch. 
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.4. Integrating evaluation of WER and reading order mismatch 

All the works dealing with full-page, end-to-end HTR need to 

ssess not only word recognition performance, but also the impact 

f errors due to flaws in (explicit or implicit) LA [2,9,47] . Of course, 

he main focus in these works is on the proposed HTR methods; 

o they do not generally pay much attention to how to properly 

easure the performance they achieve. 

A popular idea is to measure LA errors using conventional LA 

etrics and then make do with conventional WER or CER to mea- 

ure word or character recognition errors. Finally, both measures 

re somehow combined to obtain a single scalar figure which 

opefully represents an “overall performance” metric [10] . In a 

imilar vein, but explicitly devoted to HTR evaluation, the work 

resented in [19] ,goes deeper in the metric combination idea, 

ith daunting mathematical formulation. However, this is a ut- 

erly theoretical work which does not provide any empirical evi- 

ence that would support the proposed formulation or methods in 

ractice. 

As we see it, the metric combination idea has several draw- 

acks: 1) as discussed throughout this paper, if reference and 

ystem transcripts are not in the same RO, conventional WER 

r CER systematically provide misleading word recognition per- 

ormance values – and any combination of misleading values is 

bviously also misleading; 2) metric combination requires ade- 

uately tuned weights which are impossible to adjust for general- 

urpose benchmarking; and 3) the required GT is expensive be- 

ause of the effort entailed by manual annotation of LA geometric 

etails. 

Another idea that has been adopted in some works [40,41,47] is 

o assess the overall quality of system transcripts using the so 

alled “BLEU” measure [29] . It is borrowed from the field of Ma- 

hine Translation and is based on matching n-gram frequencies of 

he system transcript with those of the GT reference. While this 

dea avoids the complications and exceedingly high cost of tak- 

ng into account LA geometric details, it does suffer form the same 

roblems of directly using the conventional WER; namely, it jum- 

les errors coming from different flaws and it often fails to provide 

he kind of insights needed for system improvement. 

In contrast with the methods discussed above, the evaluation 

ramework proposed, developed and assessed in this paper, favours 

 two-fold evaluation approach which completely decouples intrin- 

ic word recognition errors from RO errors caused by poor (explicit 

r implicit) LA. 

Before closing this section it is worth to cite the work pre- 

ented in [38] , which aims at assessing HTR results without resort- 

ng to GT reference annotations. While this is indeed an interest- 

ng prospect, it is completely unrelated with the aims and methods 

iscussed in this paper. 

0. Concluding remarks 

In classical HTR experiments each relevant text-line image is 

iven and accuracy is adequately assessed using conventional WER 

nd CER. When moving to an end-to-end full-page transcription 

cenario, page-level accuracy is often being assessed using two 

ery different metrics: geometric accuracy of layout analysis and 

ER/CER. We consider that this assessment approach is doubly 

isleading. First, geometric accuracy seldom matches well with 

ogical relation between relevant image elements (text lines). Sec- 

nd, WER values are systematically tainted with false word recog- 

ition errors caused by well recognised words which are not 

laced in the “correct” order. 

We argue that methods which aim at end-to-end processing, 

r at full integration of layout analysis with word recognition at 

age-image level, need assessment criteria which do not rely on 
14 
ny kind of geometric accuracy. Having this in mind, we have pro- 

osed page-level assessment approaches which: a) are geometry 

gnostic, b) provide a measure of word recognition accuracy which 

oes not depend on word reading order, and c) provides a mea- 

ure of logical mismatch of transcription elements (words or lines) 

hich is largely independent on the accuracy with which individ- 

al words are recognised. 

As a basic, simple and computationally cheap method to as- 

ess word recognition errors with independence of reading or- 

er, we advocate for a reformulated version of the popular bag- 

f-words WER, which we refer to as bWER. It should be pointed 

ut, however, that the bWER does have some applicability lim- 

tations. Specifically, as commented in Section 4 and illustrated 

n Example 3a (A.3) , it can provide optimistically low values if 

he evaluated transcripts have many word repetitions. Clearly, the 

robability that a chunk of text contains repeated words grows 

ith the size of the text. Consequently, bWER is prone to be- 

ome increasingly optimistic as the size of the evaluation sam- 

le (e.g., page image transcript) becomes larger. This is thoroughly 

tudied in [43] and the results show that, in general, bWER can 

e safely used for typical page sizes and text densities, up to a 

ome hundreds words per page, or even much larger in some 

atasets. 

In addition, we have introduced another reading-order indepen- 

ent WER, called hWER, which is based on a new, regularised ver- 

ion of the Hungarian Algorithm. Both bWER and hWER provide 

lmost identical results, but hWER is much more computation- 

lly expensive. However, the proposed regularised Hungarian Algo- 

ithm underlying the hWER also produces word alignments which 

an be used to compute specific reading-order metrics such as the 

ormalised Spearman Footrule Distance (NSFD). Moreover, if sys- 

em and references transcripts are in the same reading order, these 

lignments very closely approach the traditional word-to-word se- 

uential “traces” underlying the word edit distance assumed in the 

lassical WER. 

The proposed methods are analysed both formally and with the 

elp of illustrative examples, as well as through a series of par- 

ially simulated experiments. Finally we have applied state-of-the- 

rt line detection and HTR methods to a good number of popular 

enchmark tasks and assessed the achieved end-to-end accuracy 

sing the proposed metrics. 

An important conclusion from both simulated and real assess- 

ent experiments is that the bWER is ideal in practice to assess 

he performance of recognising individual words, with full inde- 

endence of how these words are ordered in the reference tran- 

cripts or in the HTR transcription hypotheses. Moreover, empirical 

vidence also shows that bWER is almost identical to the classical 

ER in the classical, simplified HTR experimental setting where 

he same reading order for reference and system transcripts is 

rather artificially) guaranteed. 

Another important conclusion is that the difference between 

ER and bWER ( �WER ) is a very good indicator of the amount of 

ogical or reading-order mismatch between reference and system 

ranscripts. Our experiments show that this difference graciously 

orrelates, almost linearly, with the NSFD, which explicitly mea- 

ures the reading-order mismatch. Thanks to this correlation, the 

SFD (which is rather complex and requires alignments yield by 

he expensive Hungarian Algorithm) becomes largely unnecessary. 

o, both the individual word recognition accuracy and the degree 

f logical or reading order mismatch between (page-level) tran- 

cripts, can be assessed using just the well-known WER and (the 

roperly redefined version of) bWER. 

Therefore, our closing recommendation for benchmarking end-to- 

nd full-page transcription systems is to provide these two assessment 

gures: bWER and �WER 

def = WER −bWER . 
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Appendix B we provide publicly available software to reliably compute 

t  used in this work, the Regularised Hungarian Algorithm WER (hWER) 

a the hWER. 

orks we aim to develop adequate loss functions that allow training 

e ed assessment criteria. 

D

ncial interests or personal relationships that could have appeared to 

i

D

A

0 (MultiScore) and PID2020-116813RB-I00a (SimancasSearch), funded 

b s developed in part with the Valencian Graduate School and Research 

N  Valenciana and the European Union). The second author is supported 

b ersidades and the European Union NextGenerationEU/PRTR. The third 

a D+i de la Generalitat Valenciana”. 

A

A

g trace T (x, y ) . Deleted and inserted words are marked with red and 

b

T 8 , ε) , (9 , 8) , (10 , 9) 

 , s = 2 , d = 2) 
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ppendix A. Examples 

1. Example 1 

Computation of the edit distance d(x, y ) and the correspondin

lue colour, respectively. See also footnote 3. 

 (x, y ) = (1 , 1) , (2 , 2) , (ε, 3) , (3 , 4) , (4 , 5) , (5 , 6) , (6 , 7) , (7 , ε) , (

d(x, y ) = 1 + 0 + 1 + 0 + 0 + 0 + 1 + 1 + 1 + 0 + 0 = 5 (i = 1

2. Example 2 

Computation of the NSFD for a given alignment A 

′ . The original

pplied to circumvent the indirect effects of deletions and insertio

q. (5) to compute the NSFD. To account for the unit-cost contribu

 

′ (X, Y ) = (1 , 4) , (2 , 5) , (3 , 6) , (4 , 7) , (5 , 8) , (6 , 9) , (7 , ε) , (8 , ε) ,

A (X, Y ) = (1 , 3) , (2 , 4) , (3 , 5) , (4 , 6) , (5 , 7) , (6 , 8) , ( - ε) , ( - , ε) , (

ρ(X, Y ) = (2 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 6 + 6 + 1) / 
 10 

2 / 2 � =
15 

https://doi.org/10.13039/501100003359
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A

d two hypotheses Y and Z, and its relation with the naive bag-of- 

w or (4) . In both cases, the number of unavoidable insertions is b = 

|
nswered 

 be 

 

β

b  / (2 ·14) = 21 . 4% 

+ 1) / 14 = 21 . 4% 

E t be considered “true” word recognition errors which, in this example, 

w

b

A

.3) . As in Example 2 (A.2) , here ˆ A 

′ (·, ·) are original alignments obtained 

a , and 

ˆ A (·, ·) are the ones used to compute NSFDs after word renum- 

b ice that the values of hWER (X, Y ) and hWER (X, Z) are identical to the 

c

 (8 , 7) , (9 , 1) , (10 , 2) , (11 , ε) , (12 , 4) , (13 , 13) , (14 , 6) 

 (8 , 7) , (9 , 1) , (10 , 2) , (−ε) , (11 , 4) , (12 , 13) , (13 , 6) 

h

3. Example 3 

Computation of bWER Eq. 8 ) for a reference transcript X an

ords WER, βWER ( Eq. 7 ) and with the classical WER ( Eq. 2 

 | X | − | Y | | = | | X | − | Z | | = 14 − 13 = 1 . 

X = to be or not to be that is the question that needs be a

Y = the question that needs be answered is to be or not to

Z = to be or not to be, that is the question to be answered

WER (X, Y ) = 1 / 14 = 7 . 1% βWER (X, Z) = 5 / 14 = 35 . 7% 

WER (X, Y ) = (1 + 1) / (2 · 14) = 7 . 1% bWER (X, Z) = (1 + 5)

WER (X, Y ) = (0 + 11 + 1) / 14 = 85 . 7% WER (X, Z) = (0 + 2 

xample 3a . The bWER can considerably underestimate what migh

ould be 6 / 10 = 60% : 

X = to be or not to be, that is the question 

Y = to be, to not or be the is that question 

WER (X, Y ) = (0 + 0) / (2 ·20) = 0% 

4. Example 4 

Computation of hWER for the same texts used in Example 3 (A

s a byproduct of Eq. (9) and used in Eq. (10) to compute hWER

ering to circumvent the effects of insertion and/or deletions. Not

orresponding bWER values of Example 3. 

ˆ A 

′ (X, Y ) = (1 , 8) , (2 , 5) , (3 , 10) , (4 , 11) , (5 , 12) , (6 , 9) , (7 , 3) ,

ˆ A (X, Y ) = (1 , 8) , (2 , 5) , (3 , 10) , (4 , 11) , (5 , 12) , (6 , 9) , (7 , 3) ,

WER (X , Y) = (0 + 11 + 1) / 14 = 85 . 7% 

WER (X, Y ) = (0 + 0 + 1) / 14 = 7 . 1% 

ρ(X, Y ) = 71 / 
 14 

2 / 2 � = 72 . 4% 
16 
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 , 8) , (9 , 9) , (10 , 10) , (11 , 11) , (12 , $ ε$) , (13 , 6) , (14 , 13) 

 , 8) , (9 , 9) , (10 , 10) , (11 , 11) , ( − $ ε$) , (12 , 6) , (13 , 13) 

h

A

s in the examples of A.4 , the HA is free to pair any matching instances, 

a re may be multiple alignments which provide the same optimal result 

f be more consistent with the positions of these words in the RO of the 

c

 “be” and X 13 = “be” with Z 6 = “be,”. Because of these pairings, the 

r count that X and Z are almost in the same RO. Clearly, more consis- 

t ith Z 6 = “be,” and X 13 = “be” with Z 12 = “be”. A complete alternative 

(  

A 9 , 9) , (10 , 10) , (11 , 11) , (−ε) , (12 , 12) , (13 , 13) . 

T  � = 1 . 0% , which better reflects the very minor RO discrepancy between 

X

A

 to evaluate End-to-End HTR approaches, is freely available to download 

a

 computation of the NSFD metric and the building of the edit-distance- 

b 9) for using with the HA. Regarding the time-critical HA computation, 

w lemented in C and with a python-wrapper, which is based on the one 

d e computation, it was employed an extended version of fasterwer 12 

( pped in python for ease of use. In this library we have also included 

s onalities like the implementation of bag-of-words (see Eq. (8) ) based 

o  backtrace algorithm to obtain the aligning-path through a minimum 

e

st of them from the zenodo platforms: ICFHR14 14 , IAMDB 

15 , ICFHR16 16 , 

I

ˆ A 

′ (X, Z) = (1 , 1) , (2 , 2) , (3 , 3) , (4 , 4) , (5 , 5) , (6 , 12) , (7 , 7) , (8

ˆ A (X, Z) = (1 , 1) , (2 , 2) , (3 , 3) , (4 , 4) , (5 , 5) , (6 , 12) , (7 , 7) , (8

WER (X, Z) = (0 + 2 + 1) / 14 = 21 . 4% 

WER (X, Z) = (0 + 2 + 1) / 14 = 21 . 4% 

ρ(X, Z) = 15 / 
 14 

2 / 2 � = 13 . 3% 

5. Impact of multiple word instances and ties in NSFD 

When multiple instances of some word exist in X and/or in Y , a

s long as the values of d h (X , Y) are the same. In other words, the

or Eq. (9) and the HA has no means to decide which one would 

ompared texts. 

For instance, in Example 4, ˆ A (X, Z) pairs X 6 = “be” with Z 12 =
esulting NSFD, ρ(X, Z) = 13 . 3% , is exceedingly high, taking into ac

ent or “natural” pairings with the same d h (X , Y) are: X 6 = “be” w

renumbered) alignment, with identical d h (and hWER ), would be:

ˆ 
 (X, Z)= (1 , 1) , (2 , 2) , (3 , 3) , (4 , 4) , (5 , 5) , (6 , 6) , (7 , 7) , (8 , 8) , (

he NSFD of such an alignment is much lower: ρ(X, Z) = 1 / 
 14 2 / 2

and Z. 

ppendix B. Software Tools and Datasets 

The software, with the implementation of the metrics employed

nd use for replicating the results reported in this paper. 10 

Most of its functionalities have been programmed in python, like

ased cost-matrix with the proposed regularisation factor of Eq. (

e employ the implementation provided by the scipy library 11 imp

escribed in [11] . For the also time-critical Levenshtein edit-distanc

forked from the original one 13 ), a library written in C++ and wra

upport for UTF-8 encoding as well as others time-critical functi

n hashing for faster computation, and the implementation of the

dit-distance between reference and hypothesis strings. 

The datasets used throughout this work can be downloaded mo

CDAR17 17 and FCR 

18 . 
10 https://github.com/PRHLT/E2EHTREval.git 
11 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear _ sum _ assignment.html 
12 https://github.com/PRHLT/fastwer 
13 https://github.com/kahne/fastwer 
14 https://zenodo.org/record/44519 
15 https://fki.tic.heia- fr.ch/databases/iam- handwriting- database 
16 http://doi.org/10.5281/zenodo.1164045 
17 http://doi.org/10.5281/zenodo.835489 
18 https://zenodo.org/record/3945088#.Y3u _ tkjMLZ8 

17 

https://github.com/PRHLT/E2EHTREval.git
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
https://github.com/PRHLT/fastwer
https://github.com/kahne/fastwer
https://zenodo.org/record/44519
https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
http://doi.org/10.5281/zenodo.1164045
http://doi.org/10.5281/zenodo.835489
https://zenodo.org/record/3945088#.Y3u_tkjMLZ8
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