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Abstract
The recognition of patterns that have a time dependency is common in areas like speech recognition or natural language
processing. The equivalent situation in image analysis is present in tasks like text or video recognition. Recently, Convolutional
Recurrent Neural Networks (CRNN) have been broadly applied to solve these tasks in an end-to-end fashion with successful
performance. However, its application to Optical Music Recognition (OMR) is not so straightforward due to the presence
of different elements sharing the same horizontal position, disrupting the linear flow of the timeline. In this paper, we study
the ability of the state-of-the-art CRNN approach to learn codes that represent this disruption in homophonic scores. In our
experiments, we study the lower bounds in the recognition task of real scores when the models are trained with synthetic data.
Two relevant conclusions are drawn: (1) Our serialized ways of encoding the music content are appropriate for CRNN-based
OMR; (2) the learning process is possible with synthetic data, but there exists a glass ceiling when recognizing real sheet
music.

Keywords Optical music recognition · Deep learning · End-to-end recognition · Music encoding

1 Introduction

Music amounts to a language used and understood world-
wide. It is an art that has been crossing borders since its
inception, beingoneof themain culturalmanifestations of the
human being. It is for this reason that over the centuries there
has been a need to preserve the content in the best possible
way, whether in cathedrals, libraries, or historical archives.
However, access to these documents is often limited since
continued use may end up damaging them irretrievably.

There exist multiple projects and organizations whose
purpose is comprehensively documenting extant historical
sources of music all over the world, such as the following
ones:
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• International Music Score Library Project1

• Répertoire International des Sources Musicales (RISM)2

• Choral Public Domain Library3

• Mutopia4

• Classical Archives Collection5

• OpenScore6

• Cantus Manuscript Database7

All of them are making a great effort to digitize musical
scores into images, allowing their collections to be accessible
as images through the Internet. But for those musical doc-
uments to be truly accessible, they must be transcribed into
a digital format that enables tasks such as indexing, editing,
or critical publication. This process is often done manually
and is costly and tedious. Score editing tools are complex
to use, which makes the process prone to introducing errors;

1 https://imslp.org.
2 http://www.rism.info.
3 http://www.cpdl.org.
4 https://www.mutopiaproject.org.
5 https://www.classicalarchives.com.
6 https://openscore.cc.
7 http://cantus.uwaterloo.ca.
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Fig. 1 By using OMR techniques, the content in a digitized image can
be encoded in a symbolic format

thereby, several rounds of review are needed to approve a
transcript as a good one. In certain scenarios, such as those
related to ancient musical documents, there may not even be
suitable tools for that. All of this entails a great deal of work
that is not feasible on a large scale. That is why it is very
important to find technologies capable of revaluing all the
existing musical heritage.

A promising alternative that would overcome the previ-
ous challenge is the use of automatic recognition techniques.
Here is where Optical Music Recognition (OMR) comes in.
OMR is the field of research that investigates how to compu-
tationally read music notation in documents [9, 16].

As seen in Fig. 1, a digitized image can be converted
into encoded content automatically by means of OMR. This
encoded content is the digital transcription (in terms ofmusic
notation symbols) of the score. Thus, an effective OMR sys-
tem enables the study of existing musical documents for
digital humanities. And not only that, but it is the only alter-
native capable of doing so in reasonable time and cost.

OMR has been an active research field for decades
[4, 32]. Traditional approaches to OMR are based on the
usual pipeline of sub-tasks that characterizes many artifi-
cial vision systems, adapted to this particular task: document
pre-processing [7, 29]—including staff-line removal [10,
15]—symbol classification [28, 31], reconstruction of the
music notation [27, 30], and output encoding in a suitable
symbolic format.

In recent years, there has been a paradigm shift toward
the use of Machine Learning (ML) techniques. These tech-
niques make it possible to design flexible and versatile OMR
systems capable of solving a wide variety of problems. This
is due to the relationship between the purpose of both fields:
ML studies how to make machines learn to perform certain
tasks, which is exactly what OMR seeks, to teach machines
to perform the task of reading musical scores.

Recent advances in ML—namely Deep Learning (DL)—
which have achieved great results in several visual challenges
[24], allow us to be optimistic about developing more accu-
rate and effective OMR systems. The current trend is the use
of end-to-end (or holistic) systems that treat the process as
a single step, instead of explicitly performing the sub-tasks.

(a) The recognition process of text does follow a linear
left-to-right flow.

(b) The recognition process of music does not follow
a linear left-to-right flow.

Fig. 2 Differences in reading between text and music

Using this approach, training pairs only have to contain the
input image and its complete transcription [5, 13], bypassing
especially the need to annotate the exact positions of indi-
vidual symbols.

These approaches typically rely on Convolutional Recur-
rent Neural Networks (CRNN), which are only able to
formulate the output as one-dimensional sequences. This per-
fectly fits natural language tasks (text or speech recognition,
or machine translation) since their outputs mostly consist of
character (or word) sequences (see Fig. 2a). However, its
application to music notation is not so straightforward due
to the presence of different elements sharing the same hor-
izontal position and long-term dependencies. The vertical
distribution of these elements disrupts the linear flow of the
timeline (see Fig. 2b). This fact is not trivial to encode and
can cause significant difficulties in the performance of recog-
nition systems that make use of the temporal relationships
between the recognized elements.

The problem can be drastically simplified by consider-
ing that the process will work with each staff independently
from the others—a process that could be analogous to the
text recognition systems that decompose the document into
a series of independent lines [21]. This is not a strong assump-
tion as there are successful algorithms for identifying staves
[17]. Even so, we still have to deal with elements that take
place simultaneously in the “time” line, like the notes that
make up a chord, irregular groups, or expression marks, to
name a few.

Within the range of music score complexities, one possi-
ble simplification of the problem that applies to many sheet
music is to assume a homophonic music context. In that case,
there are multiple parts, but they move in the same rhythm.
This way, multiple notes can occur simultaneously, but only
as a single voice. Therefore, all the notes starting at the same
time last the same, so the score can be segmented into verti-
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Fig. 3 Homophonic music: All the notes starting at the same time have
the same duration

Fig. 4 Example of ambiguities that might appear when music symbols
belong to a vertical distribution. The two notes that appear together,
must be played at the same time, but a linear symbol sequence without
specific marks cannot be interpreted unambiguously

cal slices that may contain one or more music symbols (see
Fig. 3).

Even in this simplified context, there is a need for a clear
and structured output coding that avoids the ambiguities that
the representation of a linear output can show in presence of
vertical structures in the data (see Fig. 4). This has also been
stated in some previous works [6].

There already exist several structured formats for music
representation and coding, like XML-based music formats
[18, 22] that are focused on how the score has to be encoded
to properly store all its content. This application makes it
unsuitable to adopt them as output for an optical recognition
system because the code is full of irrelevant markings for
the system to generate when graphically analyzing the score.
An OMR system is primarily interested in what symbols are
there and where they are. Furthermore, these XML-based
music languages do not represent sequential data, but rather
hierarchical structures, so they are not suitable output formats
for DL-based OMR.

Due to that, we have designed a specific coding language
to represent the output of end-to-end OMR, based on seri-
alizing the music symbols found in a staff of homophonic
music. The sequential nature of music reading must be com-
patible and unambiguous with respect to the representation
of vertical distributions. In addition, this representation has
to be easy to generate by the system,which analyzes the input
sequentially and produces a linear series of symbols.

Preliminary research has been carried out to validate
whether this represents a feasible research avenue [2]. How-
ever, the serialized ways of encoding the music content have
never been tested with real data. This work aims to solve
that and properly evaluate the problem. Also, we study and
evaluate the possible existing boundaries of learning with
synthetic data when recognizing real music scores.

The rest of the paper is organized as follows: Sect. 2
overviews the state-of-the-art recognition framework based
on DL, including the ad hoc serializations for homophonic
music; Sect. 3 introduces the experimental setup; Sect. 4

shows the results obtainedwith real homophonic sheetmusic;
finally, Sect. 5 concludes the present work, along with some
ideas for future research.

2 Recognition framework

To carry out the OMR task in an end-to-end manner, we
follow the state-of-the-art approach based on Convolutional
Recurrent Neural Networks (CRNN). These neural archi-
tectures permit us to model the posterior probability of
generating output symbols, given an input image. Input
images are assumed to be single-staff sections, analogously
to text recognition that assumes independent lines [21]. As
mentioned before, staves can be easily isolated by means of
existing methods [17].

A CRNN consists of one block of convolutional layers
followed by another block of recurrent layers [33]. The con-
volutional block is responsible for learning how to process
the input image, that is, extracting relevant image features for
the task at issue so that the recurrent layers interpret these
features in terms of sequences of musical symbols. In this
work, the recurrent layers are implemented as Bidirectional
Long Short-Term Memory (BLSTM) units [19].

The unit activations of the last convolutional layer can be
seen as a sequence of feature vectors representing the input
image, x. These features are fed to the first BLSTM layer, and
the unit activations of the last recurrent layer are considered
estimates of the posterior probabilities for each vector:

P(σ | x, f ), 1 ≤ f ≤ F, σ ∈ � (1)

whereF is the number of feature vectors of the input sequence
and � is the set of considered symbols. Note that � must
include a “non-character” symbol ε that acts as a separator
when two or more instances of the same musical symbol
appear consecutively [19].

Since both convolutional and recurrent blocks can be
trained through gradient descent, using the well-known Back
Propagation algorithm [34], a CRNN can be jointly trained.
However, a conventional end-to-end OMR training set only
provides, for each staff image, its corresponding transcrip-
tion, not giving any type of explicit information about the
location of the symbols in the image. It has been shown
that the CRNN can be conveniently trained without this
information by using the so-called Connectionist Temporal
Classification (CTC) loss function [20]. The resulting CTC
training procedure is a form of Expectation-Maximization:
CTC provides a means to optimize the CRNN parameters so
that it is likely to give the correct sequence given an input
[20].

Once the CRNN has been trained, an input staff image can
be decoded into a sequence of music symbols ŝ ∈ �∗. First,
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Fig. 5 Graphical scheme of the
CRNN considered for the
end-to-end approach. The
network is trained by using the
CTC loss function

the most probable symbol per frame is computed:

σ̂i = argmax
σ∈�

P(σ | x, i), 1 ≤ i ≤ F (2)

Then, a pseudo-optimal output sequence is obtained as:

ŝ = arg max
s∈�∗ P(s | x) ≈ D(σ̂1, . . . , σ̂F ) (3)

where D is a function that first merges all the consecutive
frames with the same symbol and then deletes the ε symbols
[19].

A graphical scheme of the framework explained above is
given in Fig. 5.

This framework follows the architecture first applied in
the work of Shi et al. [33] and later tuned by Calvo-Zaragoza
et al. [11]. As stated in the latter work, its expressiveness
could be sufficient when working with simple scores where
all the symbols have a single left-to-right order. However,
we want to extend these approaches so that they are able
to model richer scores such as those of homophonic sheet
music. In such a case, issues like chords may appear, where
several symbols share a horizontal position. As seen in Fig. 4,
a one-dimensional sequence is not expressive enough for
this situation. That is why in the next section we describe
our representation proposal to perform end-to-end OMR for
homophonic scores.

2.1 Serialization proposals

The research developed in this paper involves the study
of four different deterministic, unambiguous, and serialized
representations to encode the kind of scenarios that happen
in homophonicmusic so that theOMR system becomesmore
effective when recognizing complexmusic score images. For
that, we propose four different types of music representa-
tions that differ not in the encoding of the musical symbols
itself, but in the way horizontal and vertical distributions of

the musical symbols are represented. The grammar for these
musical codifications must be unambiguous, allowing us to
analyze a given document in only one way.

Our representation does not make assumptions about the
musical meaning of what is represented in the document
being analyzed; that is, the elements are identified in a cata-
logue of musical symbols by their shape and where they are
placed on the staff. This has been referred to as “agnostic rep-
resentation,” as opposed to a semantic representation, where
music symbols are encoded according to what they represent
in terms of music notation [11]. This difference is illustrated
in Fig. 6.

Asmentioned before, the only difference between the four
proposedmusical codes is how to represent the horizontal and
vertical dimensions. Each one of the four codes has one or
two characters that indicate whether, when transcribing the
score, the system should move forward, that is, from left to
right, or downward, from top to bottom. These characters are
referred to as separators.

The four different codes proposed are described as fol-
lows:

• Remain-at-position character codewhen transcribing the
score, the different musical symbols are assumed to be
placed left to right, except when they are in the same
horizontal position. In that case, they are separated by
a slash, “/”. This acts as a remain-at-position character,
meaning that the system has to advance downward (see
Fig. 7b). This behavior is similar to the backspace of
typewriters. The carriage advances after typing, and if we
want to align two symbols, we need to keep the carriage
in a fixed position (by moving it back to one position).

• Advance-position character code this type of coding uses
a “+” sign to force the system to advance forward. This
way, when that sign is missing, the output does not move
forward and a vertical distribution is being coded (see
Fig. 7c).
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Fig. 6 Semantic and agnostic representations, respectively, of the two
eighth notes forming a beam group (highlighted in red). The agnostic
representation only provides graphic information—that is, the line or
space of the staff on which the note is placed, or the direction of its
beam—as opposed to the musical information (pitch and type of note)
of a semantic representation (colour figure online)

• Parenthesized code when a vertical distribution appears
in the score, the system outputs a parenthesized structure,
like vertical.start musical_symbol . . . musical_symbol
vertical.end (see Fig. 7d).

• Verbose code this last coding is a combination of the two
first ones. It uses the “+” sign as the advance-position
character to indicate that the system has to move for-
ward, and the “/” sign as the remain-at-position character
to indicate that the system has to advance downward (see
Fig. 7e). So, here, every two adjacent symbols are explic-
itly separated by a symbol indicating whether the system
must remain in the same horizontal position or has to
advance to the next one.

Note that the codes represent the data unambiguously;
thus, it is possible to deterministically translate from any
encoding to any other.

3 Experimental setup

In this section, we present the synthetic training dataset and
the real RISM test dataset, the neural model architecture, and
the evaluation protocols used.

3.1 Synthetic data: corpus generation

As introduced above, the current trend for the development of
OMR systems is to use DL techniques able to infer the tran-
scription from correct examples of the task, namely, set of
pairs (x, s). Given the complexity of music notation, for these
techniques to produce satisfactory results, it is necessary to
use a set of sufficient size. To achieve this, a system of auto-
matic generation of labeled data has been developed [1] by
using algorithmic composition techniques [26]. The devel-
oped system provides two outputs: the expected transcription
of the generated score in any of the encodings described in
Sect. 2.1, and the corresponding score image artificially dis-

(a) Musical excerpt.

clef.G:L2 accidental.flat:S3 digit.2:L4 / digit.4:L2 rest.eighth:L3 dot:S3 note.quarter:S2 / slur.start:S2 
note.sixteenth:S2 / slur.end:S2 verticalLine:L1 note.quarter:L3 / note.quarter:L2 / note.quarter:L1 
note.beamedRight:S2 note.beamedLeft:L2 verticalLine:L1 

(b) Remain-at-position character code.

clef.G:L2 + accidental.flat:S3 + digit.2:L4 digit.4:L2 + rest.eighth:L3 + dot:S3 + note.quarter:S2 
slur.start:S2 + note.sixteenth:S2 slur.end:S2 + verticalLine:L1 + note.quarter:L3 note.quarter:L2 
note.quarter:L1 + note.beamedRight:S2 + note.beamedLeft:L2 + verticalLine:L1 

(c) Advance-position character code.

clef.G:L2 accidental.flat:S3 vertical.start digit.2:L4 digit.4:L2 vertical.end rest.eighth:L3 dot:S3 
vertical.start note.quarter:S2 slur.start:S2 vertical.end vertical.start note.sixteenth:S2 slur.end:S2 
vertical.end verticalLine:L1 vertical.start note.quarter:L3 note.quarter:L2 note.quarter:L1 vertical.end 
note.beamedRight:S2 note.beamedLeft:L2 verticalLine:L1 

(d) Parenthesized code.

clef.G:L2 + accidental.flat:S3 + digit.2:L4 / digit.4:L2 + rest.eighth:L3 + dot:S3 + note.quarter:S2 / 
slur.start:S2 + note.sixteenth:S2 / slur.end:S2 + verticalLine:L1 + note.quarter:L3 / note.quarter:L2 / 
note.quarter:L1 + note.beamedRight:S2 + note.beamedLeft:L2 + verticalLine:L1 

(e) Verbose code.

Fig. 7 Musical excerpt presenting a number of different situations
where vertical distributions occur and its transcription using the pro-
posed codifications

torted as in [12]. With both outputs, the necessary pairs for
the DL algorithm are obtained.

For the generation system, three differentmethods of algo-
rithmic composition are used to obtain compositions with
diverse musical features. Furthermore, the range of pitches
that can be coded according to the clef is limited in order to
achieve a score with as much musical coherence as possible.
In the end, in music scores, according to the clef, there is a
range of pitches that is more common than another. A range
of 22 different pitches is chosen for each clef (see Fig. 8).
The pitch series defined for each clef are major or minor dia-
tonic scales in some keys. The clefs that can be encoded by
the system are: G1-clef, G2-clef, F4-clef, C1-clef, C2-clef,
C3-clef, and C4-clef.

The score generator creates a musical event one at a time.
Such an event might be sound (by default 90% of the time) or
silence (10% the time). The type of sound or silence event is
chosen from a catalog of possible music symbols (from six-
teenth to whole notes, as well as silences, beamed notes, or
chords comprising up to a maximum of 3 notes, triplets, etc.)
following a random process. The pitch of the sound events
is conditioned to one of three possible algorithmic composi-
tion methods described below. Only a general outline of the
score generator is given, as more specific details are beyond
the scope of this work. For complete details about the imple-
mentation, please refer to [1].8

8 The code developed in the work is publicly available for reproducible
research at: https://github.com/mariaalfaroc/ScoreGenerator.git.
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(a) G2-clef.

(b) F4-clef.

(c) C3-clef.

C4 D4B3
E3 F3 G3 A3

E4 F4 G4 A4 B4 C5

D5 E5 F5 G5 A5 B5 C6 D6 E6

F3 G3
A3 B3 C4 D4 E4 F4 G4

E2 F2D2
G1 A1 B1 C2

G2 A2 B2 C3 D3 E3

F3 G3 A3 B3 C4 D4

E4 F4
G4 A4 B4 C5 D5 E5 F5

D3 E3C3
F2 G2 A2 B2

Fig. 8 Range of the 22 pitches coded for the 3 system clefs considered

3.1.1 Random generation according to the normal
distribution

The normal distribution, Gaussian distribution, or Laplace-
Gauss distribution, is a probability distribution of continuous
variable. It is of great application in the fields of engineering,
physics, and social sciences because it allows us to model
numerous natural, social, and psychological phenomena.

The normal distribution is defined in Eq.4, where 0 and
N represent the extreme values of the domain, being, in our
case, 0 and 21, respectively—integers associated with spe-
cific pitches depending on the clef used. This way, the range
of pitches associated with each clef links each pitch to an
integer in [0, 21] so that 0 maps to the lowest pitch of the
range and 21 to the highest pitch.

f[0,N ](x) = N (μ, σ ) =
exp

(
− (x−μ)2

2σ 2

)
√
2πσ

(4)

We use the N (10.5, 6.5) distribution that provides a sym-
metric distribution centered on the mean, which corresponds
to the space surrounding the central line of the staff. The
mean defines the location of the peak for normal distribu-
tions, but, in our case, since the mean is a decimal value, it
is not associated with any pitch, and therefore the highest
probabilities are given to both rounded up (third line of the
staff) and rounded down (third space of the staff) values of
the mean. The probability is minimum at the extreme values,
being f[0,N ](0) = f[0,N ](N ) = 0.0166, i.e., 1.66% proba-
bility of occurrence for those pitches. This is illustrated in
Fig. 9.

As we can see in Fig. 9, the graph of its density function
has a bell shape and is symmetric with respect to the average.

This curve is known as Gaussian bell and is the graph of a
Gaussian function.

Fig. 10 shows an example of a musical excerpt created by
the automatic generation system when the normal distribu-
tion composition method is used.

3.1.2 Randomwalk

A random walk is a mathematical formalization of the tra-
jectory that results from making successive random steps.
In this system, the random walk always starts at the central
pitch of the pitch range determined for the system. There are
three possible random steps (all equally likely) after emitting
pitch:

1. One-step forward: The pitch that follows is the next
higher in the defined pitch series.

2. One-step backward: The pitch that follows is the next
lower in the defined pitch series.

3. No step: The pitch that follows is the same as the current
one.

There are situations inwhichmoving forward or backward
will not be allowed because the pitch to be coded would be
outside the established range. In these situations, two solu-
tions are given:

• Reflective limit as its own name indicates, it works like
a mirror, making the step to take to be the reflection of
what was initially intended to be taken. If the movement
was intended to be forward, now it will be backward and
vice versa. That is, the pitch of the current note is the
second of the range starting either from the upper limit
or from the lower one, as appropriate.

• Absorbing limit the pitch of the current note is that cor-
responding to the upper or lower limit, as appropriate, of
the pitch range.

The solution is chosen randomly, both being equal of prob-
able.

Fig. 11 shows an example of a musical excerpt created
by the automatic generation system when the random walk
composition method is used.

3.1.3 Sonification of the logistic equation

The logistic equation is defined by Eq.5:

xn+1 = r xn(1 − xn) where n = 0, 1, 2, 3, ... (5)

This equation defines an iteration, where x0 is equal to 0 and
the parameter r is a value between 0 and 4. The resulting
value will always be in [0, 1].
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Fig. 9 Gaussian distribution for
the automatic generation of
music data

Fig. 10 Music snippet created by the automatic generation systemusing
the normal distribution (N (10.5, 6.5)) composition method

Fig. 11 Music snippet created by the automatic generation systemusing
the random walk composition method

Fig. 12 Music snippet created by the automatic generation systemusing
the sonification of the logistic equation (r = 3.75)) compositionmethod

When this method is used, the value for r should be between
3.5 and 4, since it is the range of values for which the most
interesting note sequences are generated. The sequences for
3 ≤ r ≤ 3.5 produce repetitions of 2 or 4 pitches, with no
variability. Values for r < 3 generate constant pitch (unison)
sequences after a short transition period.

Fig. 12 shows an example of a musical excerpt created by
the automatic generation system when the sonification of the
logistic equation composition method is used.

Thefirst and the lastmethods generate skipwise or disjunct
melodic motions, characterized by frequent skips between
notes, whereas the second method produces stepwise or con-
junct melodic motions, where all the intervals will never be
greater than four semitones. These differences lead us to con-
sider whether the pitch generation method used to generate
the training set affects the way the DL model used for the

Fig. 13 Staff sample from the selected RISM corpus. Incipit RISM ID
no. 000139189111

OMR task learns. Since what we want is to find the most
possible optimal scenario for the OMR learning task, we
consider this to be an issue that needs further investigation
and decide to approach it together with the coding proposals
in the next section.

3.2 Real data

We aim to find the most favorable scenario for the OMR
learning task when training with homophonic synthetic
scores and testing with homophonic real scores. For a proper
evaluation, we consider a sufficiently large set of real data
taken from the RISM repository that contains the same sym-
bols that our score generator is able to produce. The selected
corpus contains 1 954 realmusic staves of homophonic incip-
its.9 For each incipit, an image with the rendered score with
artificial distortions—the same as those used for the syn-
thetic data—as well as the expected transcription in any of
the encodings described in Sect. 2.1 is provided. Figure13
depicts an example of a particular staff from this corpus.
It must be noted that the Camera-based Printed Images of
Music Staves (Camera-PrIMuS) database [12] is not suit-
able for the present work since it contains only monophonic
RISM-based music scores.

9 Short sequences of notes, typically the first measures of the piece,
used to index and identify a melody or musical work.
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Table 1 Layer-wise description for the CRNN architecture considered.
Notation: Conv( f , w × h) stands for a convolution layer of f filters
of size w × h pixels, BatchNorm performs the normalization of the
batch, LeakyReLU(α) represents a Leaky Rectified Linear Unit acti-

vation with a negative slope value α, MaxPool(w × h) represents the
max-pooling operator of w × h dimensions and striding factors, and
BLSTM(n, d) denotes a bidirectional Long Short-Term Memory unit
with n neurons and d dropout value parameters

Convolutional block Recurrent block

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Conv(64, 5 × 5) Conv(64, 5 × 5) Conv(128, 3 × 3) Conv(128, 3 × 3)

BatchNorm BatchNorm BatchNorm BatchNorm BLSTM(256) BLSTM(256)

LeakyReLU(0.20) LeakyReLU(0.20) LeakyReLU(0.20) LeakyReLU(0.20) Dropout(0.50) Dropout(0.50)

MaxPool(2 × 2) MaxPool(1 × 2) MaxPool(1 × 2) MaxPool(1 × 2)

The selected RISM set amounts to a total 63 011 music
symbols, representing 341 different classes. From the total
number of symbols, 15 699 belong to a vertical distribution—
two or more symbols that share the same horizontal position.
There are 7 546 vertical distributions.

3.3 Neural network configuration

As mentioned in Sect. 2, the neural model considered in
this work is based on the architecture by Calvo-Zaragoza
et al. [11]. In this sense, while the configuration is broadly
described in Sect. 2, the actual composition of each layer is
depicted in Table 1.

The model is trained following the backpropagation
method provided by CTC for 300 epochs using the ADAM
optimizer [23] with a fixed learning rate 0.001 and a batch
size of 16 elements.

3.4 Evaluation protocol

Concerning evaluation metrics, there is an open debate on
how to evaluate the capabilities of OMR systems [8, 25].
In this work, OMR is simply understood as a pattern recog-
nition task, so we shall consider metrics that allow us to
draw reasonable conclusions from the experimental results.
Due to that, the performance of the recognition schemes pre-
sented is assessed by considering the symbol error rate (SER,
%) as utilized in previous works addressing end-to-end tran-
scription tasks [12]. This figure of merit is computed as the
average number of elementary editing operations (insertions,
deletions, or substitutions) necessary to match the sequence
predicted by the model with the ground truth sequence, nor-
malized by the length of the latter.

The number of separators used in the transcription to deal
with simultaneities in the horizontal dimension (the “time”
line) is different for the four proposed encodings. This fact
might have implications for learning. Hence, we also report
the results restricted to the symbols that are not separators:
We refer to the SER metric as NonSep-SER. To obtain more
insights into the system’s performance on simultaneities as

opposed to monophonic segments, we also show the propor-
tion of NonSep-SER caused by the editing operations that
happen in regions (i) that belong to a simultaneity in the
ground truth, defined as Sim-SER, and (ii) that are mono-
phonic in the ground truth, denoted as NonSim-SER.

4 Results

This work aims to provide insights into (i) which serialized
ways of encoding the music content presented in Sect. 2.1
are more suitable for recognizing real homophonic music
scores and (ii) how the use of synthetic training data affects
the transcription of the previously mentioned data. For that,
we specifically consider two evaluation cases: a first one,
denoted as Best Encoding Experiment, devoted to finding
the most suitable code out of the four proposed in Sect. 2.1
for the OMR output; and a second one, named Best Algorith-
mic Composition Method Experiment, that studies the most
appropriate composition method for the OMR learning task.

It must be noted that for all the considered scenarios the
evaluation set refers to the real homophonic scores collected
from RISM. Hence, the synthetic data generated are cre-
ated in a way that it contains a similar number of measures
per staff, symbols per staff, and vertical distributions per
staff—all of them on average—as the selected RISM cor-
pus. Moreover, the generated data are distorted in the same
way as the RISM data are.

4.1 Best encoding experiment

The experiment aims to determine which of the four seri-
alization proposals works best as the output for the OMR
task in a homophonic music scenario. To do so, a corpus of
1 500 labeled scores, each consisting of a single staff, is gen-
erated using the system for automatic generation of labeled
data explained in the previous section. Each sample is a pair
composed of the image with a rendered staff and its corre-
sponding representation with the format imposed by one of
the four musical encodings proposed, like in the example
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Table 2 Results obtained for each encoding when models are tested on
the 1 954 selected RISM incipits. Remain stands for remain-at-position
character coding, Advance stands for advance-position character cod-

ing, Parenthesized stands for parenthesized coding, and Verbose stands
for verbose coding. Best results are highlighted in bold type

Remain Advance Parenthesized Verbose

SER (%) 26.8 17.1 26.3 19.1

NonSep-SER (%) 26.8 26.0 26.9 28.3

Sim-SER (%) 09.5 09.2 09.2 09.9

NonSim-SER (%) 17.3 16.8 17.7 18.4

shown in Fig. 7. As explained above, the operation of the
three composition methods of the automatic generation sys-
tem makes them produce heterogeneous music scores. That
is why the three of them are equally used when generating
this corpus so that it is not biased in favor of any particu-
lar style. We refer to this procedure as the mix composition
method.

We derive two non-overlapping partitions—train and
validation—corresponding to 60% and 40% of the data,
respectively, following a fivefold cross-validation scheme.
Each fold is tested on the selected RISM corpus described in
Sect. 3.2. The results obtained in terms of the SER metric—
the figures provided represent the average values for the test
partition in which the validation data achieve its best per-
formance for each of the considered cases—are presented in
Table 2.

An initial remark is that the results depicted inTable 2 indi-
cate that the neural network is indeed learning from synthetic
data but, as seen in previous efforts [2], the encoding of the
output for this OMR task plays an important role in the train-
ing, and consequently, in the recognition performance. The
advance-position character coding achieves the best results
for the NonSep-SER. The remain-at-position character and
the parenthesized codes follow closely, both with similar
results, while the verbose code places the last. This order
is altered when the results are observed from the SER met-
ric side: Wordy encodings are favored, leading to deceiving
insights. In other words, a more wordy code, e.g., the verbose
encoding, could predict all the separators symbols correctly
while missing the remaining symbols—the ones that would
really matter to the user—and still achieve a lower error rate
than another less verbose encoding, e.g., the remain encod-
ing.

We believe that the fact that the advance encoding per-
forms better is due to how the CTC loss function works: The
system reads vertical slices and outputs the symbols present
on them. In the case of contiguous input frames contain-
ing only staff lines, the system could output either nothing
or an “empty-output” symbol, such a symbol being the “+”

Table 3 Statistical significance analysis of the different presented
encoding schemes considering the Wilcoxon signed-rank test with a
significance value of p < 0.05 for the symbol error rate metric when
the corresponding separators symbols are excluded from the computa-
tion, i.e., NonSep-SER. Symbols <, >, and = represent that the error
of the method in the row is significantly lower than, greater than, or no
different to that in the column, respectively

Remain Advance Parenthesized Verbose

Remain – > = <

Advance < – < <

Parenthesized = > – <

Verbose > > > –

advance separator. On the opposite side, we find that the
remain and parenthesized codes overload the learning pro-
cess as we are forcing the system to output more symbols
in the same situation. This idea is reinforced by the verbose
encoding’s results. Therefore, neither the remain-at-position
character code nor the parenthesized code nor the verbose
code is a suitable choice for transcribing the content of homo-
phonic scores with the CTC objective function.

As the last remark, we would like to point out that the
results obtained suggest that simultaneities do not present a
recognition problem by themselves. When decomposing the
NonSep-SER into its two component fractions, Sim-SERand
NonSim-SER, Table 2 reports that the highest proportion of
errors occurs in monophonic zones.

To support the relevance of those statements, we shall
now assess the results in terms of statistical significance. For
that, we resort to the nonparametric Wilcoxon signed-rank
test [14]. This analysis considers that each result obtained for
each fold constitutes a sample of the distributions to compare.
Considering this assessment scheme, the results obtained are
reported in Table 3.

The results obtained with a significance value of p < 0.05
show that the advance-position character coding has signifi-
cant differences with respect to the other representations and
therefore it will be used in all further experiments.
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Table 4 Results obtained for each composition method when models
are tested on the 1 954 selectedRISM incipits.Normal stands for normal
distribution method, Random stands for random walk method, Logistic
stands for sonification of the logistic equation method, and Mix stands
for mix method (it refers to the equal use of the three previous methods
in the data set). Best results are highlighted in bold type

Normal Random Logistic Mix

SER (%) 21.1 16.8 39.8 17.1

NonSep-SER (%) 32.7 25.2 67.2 26.0

Sim-SER (%) 10.3 09.3 14.6 09.2

NonSim-SER (%) 22.4 15.9 52.6 16.8

Table 5 Statistical significance analysis of the different presented com-
position methods considering the Wilcoxon signed-rank test with a
significance value of p < 0.05 for the symbol error rate metric. Sym-
bols <, >, and = represent that the error of the method in the row
is significantly lower than, greater than, or no different to that in the
column, respectively

Normal Random Logistic Mix

Normal – > < >

Random < – < =
Logistic > > – >

Mix < = < –

4.2 Best algorithmic compositionmethod
experiment

This experiment is addressed to identify which algorithm(s)
for the synthetic generation of data works better for real data.
For this purpose, we also generate a corpus of 1 500 labeled
scores for the three remainder composition methods, given
that the one for the mix algorithm is already generated. The
results obtained in terms of the different considered metrics
are presented in Table 4. Note that the figures provided rep-
resent the average values for the test partition, in which the
validation data achieve its best performance for each of the
considered cases.

The results reveal the following conclusions: (1) The
sonification of the logistic equation method by itself does
not work well since about 40% of the symbols predicted
are wrong; (2) the normal distribution method halves the
SER compared to the previous method; and (3) the ran-
dom walk method and mixing data from all methods (mix
method) further enhance that improvement, with both meth-
ods depicting similar values. Such a trend is visible in all the
figures of merit considered. To support the relevance of those
statements, we also assess the results in terms of statistical
significance following the nonparametric Wilcoxon signed-
rank test introduced in Sect. 4.1. The analysis is reported in
Table 5.

SE
R

 (
%

)

Fig. 14 Average results obtained on the RISMdata for different sizes of
the synthetic training corpus. The synthetic procedure follows the mix
method since it has achieved, on average, lower error rates (see Table 6).
Nevertheless, the conclusions can be extrapolated to the random walk
method. Nonlinear least squares are used to fit the data

The results obtained with a significance value of p < 0.05
show that random and mix methods significantly outperform
the other composition strategieswhile showing no significant
differences between them. This implies that the two compo-
sition algorithms are most suitable for generating synthetic
training data.

We would like to reduce the error figures on the selected
RISM corpus by exploiting the fact that we have an “infinite”
generator; that is, thanks to the automatic generation system
we will always be able to generate new data that the neu-
ral network has not probably seen before. To gain insights
into this issue first, we compute the greatest achievable per-
formance with real training data—the lower bound that we
want to surpass. For that, we derive three non-overlapping
partitions—train, validation, and test—corresponding to
60%, 20%, and 20% of the 1 954 selected RISM incipits,
respectively, following a fivefold cross-validation scheme.
We train a model using those partitions. We compare it with
those trained with 1 500, 3 000, 15 000, and 150 000 sam-
ples generated using the random walk method and the mix
method, respectively, when evaluated over the same RISM
test partition. Table 6 reports the results obtained.

The results reveal an exponential decay in the various fig-
ures of merit considered: while going from 1 500 to 15 000
improves SER by 5 points, multiplying the size of the data by
10 for the second time achieves an improvement of less than 1
point. It suggests that in the second zone,we reach the plateau
of the curve (see Fig. 14). In other words, there exists a glass
ceiling when recognizing real scores with synthetic-trained
models. The nonparametric Wilcoxon signed-rank test intro-
duced in Sect. 4.1 reinforces the finding by stating that the
error rates are not significantly different.

The lower error bound found, of around 12%,might be due
to the underlying (musical) language model of the composi-
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Table 6 Results obtained for
each composition method when
models are trained using
different set sizes and tested on
the same RISM samples as the
real-only model. Best results are
highlighted in bold type

Size of the synthetic training corpus RISM

1 500 3 000 15 000 150 000

Random Mix Random Mix Random Mix Random Mix

SER (%) 16.9 17.3 15.3 15.3 12.7 12.4 12.1 11.5 3.3

NonSep-SER (%) 25.3 26.4 22.9 23.3 18.9 18.3 17.7 16.8 4.8

Sim-SER (%) 09.7 09.7 08.7 08.9 07.6 07.3 07.4 07.2 2.5

NonSim-SER (%) 15.6 16.7 14.2 14.4 11.3 11.0 10.3 09.6 2.3

SE
R

 (
%

)

Fig. 15 Average symbol error rate (%) attained for each scenario with
respect to the number of randomly selected RISM training staves, L

tion algorithms. The generated synthetic corpora are created
in a way that contains a similar number of measures per staff,
symbols per staff, and vertical distributions per staff—all of
them on average—as the selected RISM corpus as well as the
same graphical appearance. However, it might not be enough
as the synthetic data distribution fails to capture all the char-
acteristics of the real data. Table 6 shows that training with
real homophonic scores yields an error rate of 3.3%. This
is less than one-third of the errors made by the best model
trained on synthetic data only.

We would like to stress again how simultaneities do not
represent a problem.When the training data correctly capture
the distribution of the test data, the error rate in the simultane-
ities and in themonophonic segments is roughly the same (see
RISM column in Table 6). At the same time, this reinforces
our idea about the glass ceiling. For the rest of themodels, the
error rate is bigger in monophonic regions since the synthetic
distribution is not properly modeling that of RISM data. The

underlying problem is one of out-of-distribution learning, for
which no satisfactory solution is known at this time, at least
for the CRNN-CTC framework.

To validate our intuition about the cause of the glass
ceiling, we start from the premise that one possible solu-
tion would be to add scores from the test distribution to
the training set. For that, we derive three non-overlapping
partitions—train, validation, and test—corresponding to L ,
L , and 1 954−2L of the 1 954 selectedRISM incipits, respec-
tively, where L is the number of randomly selected samples.
We add the train and validation sets to the corresponding syn-
thetic train and validation partitions of the random and mix
corpora of size 150 00, respectively, and use the test set to
evaluate such synthetic-with-real models. We compare those
models with a model trained only with the aforementioned
RISM partitions. We want to see (i) whether the glass ceil-
ing can be broken by using real samples and (ii) how many
of them are needed if (i) proves to be the case. It must be
noted that a fivefold cross-validation scheme is followed for
this experiment to ensure that the results are not conditioned
to the randomly selected samples. The results obtained in
terms of the SER metric for the contemplated scenarios are
presented in Fig. 15 and Table 7.

First, it is necessary to state that the glass ceiling caused
by the synthesis process can be broken by incorporating real
scores into the synthetic train partition. This outcome sup-
ports the initial premise that the lower error bound attained
with synthetic-only models was due to the synthesis process.
We only need 50 real scores to decrease the 17% error rate
to 10% and 100 to halve it—when combined with synthetic
data. If used on their own, the real-only model is not able
to solve the transcription task. Such a model starts to do so
after 150 samples, and even so, using either only synthetic
data or combining it with real data still yields better results.

Table 7 Results obtained in
terms of the symbol error rate
for each scenario with respect to
the number of randomly
selected RISM training staves,
L . Best results are highlighted in
bold type

Number of randomly selected RISM training staves, L

0 50 100 150 200 250 300 350 400

RISM – 90.6 74.1 15.6 12.2 8.9 8.3 7.3 6.4

Random 16.8 10.6 08.4 07.4 06.3 5.9 5.6 5.2 4.6

Mix 17.1 10.2 07.9 07.1 06.1 5.9 5.0 5.1 4.6
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This implies thatmanually labeling some samples is compen-
sated as combining synthetic and real data bring out synergies
that help reduce the baseline error rate set by the only-real
model. Moreover, as analyzed in [3], the posterior correction
of errors of the synthetic-and-real models is more than offset
by the time saved when compared with the real model, as the
latter needs more manually transcribed training samples.

Regarding the synthesis method, it can be seen in both
Fig. 15 and Table 7 that even though their performance is
quite similar for all cases, the mix method tends to achieve
slightly lower error rates.

5 Conclusions

In this work, we have studied the suitability of the state-
of-the-art end-to-end neural approach to recognize real
homophonic music scores by presenting and analyzing four
different encodings for the OMR output. Throughout the
research, we have trained the neural network with synthetic
scores, created by the system of automatic generation of
labeled data. Thismakes the use of an infinitemusic data gen-
erator helpful in dramatically reducing the costs of acquiring
scores for training OMR systems.

As reported in the first part of the experiments, our seri-
alized ways of encoding the music content prove to be
appropriate for our DL-based OMR, as the learning process
is successful, and low SER figures are eventually attained.
In addition, it is shown that the choice of the encoding has
some impact on the lower bound of the error rates that can be
achieved: the advance-character position code is the one that
most benefits the learning process in the recognition of ver-
tical structures found in a homophonic music environment.
These facts reinforce our initial claim that the encoding of
the output for OMRdeserves further considerationwithin the
end-to-end DL paradigm.

It has also been possible to demonstrate that the algo-
rithmic composition method used in the creation of synthetic
music has a strong influence on the recognition results, being
the random walk method and the mix method the most suit-
able algorithmic composition techniques. However, although
the learning process was successful, there exists a glass
ceiling when recognizing real scores: the Sym-ER never
decreased below 11%, regardless of largely increasing the
size of the training set. To break the glass ceiling, the use
of real sheet music is necessary. It indicates that there is a
part of the learning process that is not related to the graph-
ical aspects of the scores but to the underlying (musical)
language model. We believe this opens up new avenues for
research. For example, modeling more intelligent systems of
automatic generation of labeled data. It might be convenient
to first learn some characteristics of the language model of
the music that will be recognized at a later time in order

to generate music scores that follow such a particular style.
Then, the glass ceiling could be broken and the advantage
of having an infinite data generator could be exploited to the
fullest.
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