
The International Journal of Advanced Manufacturing Technology
https://doi.org/10.1007/s00170-023-11252-0

ORIG INAL ART ICLE

Efficient GPU Cloud architectures for outsourcing high-performance
processing to the Cloud

Víctor Sánchez-Ribes1 · Antonio Maciá-Lillo1 · Higinio Mora1 · Antonio Jimeno-Morenilla1

Received: 4 October 2022 / Accepted: 9 March 2023
© The Author(s) 2023

Abstract
The world is becoming increasingly dependant in computing intensive applications. The appearance of new paradigms, such
as Internet of Things (IoT), and advances in technologies such as Computer Vision (CV) and Artificial Intelligence (AI) are
creating a demand for high-performance applications. In this regard, Graphics Processing Units (GPUs) have the ability to
provide better performance by allowing a high degree of data parallelism. These devices are also beneficial in specialized
fields of manufacturing industry such as CAD/CAM. For all these applications, there is a recent tendency to offload these
computations to the Cloud, using a computing offloading Cloud architecture. However, the use of GPUs in the Cloud presents
some inefficiencies, where GPU virtualization is still not fully resolved, as our research on what main Cloud providers
currently offer in terms of GPU Cloud instances shows. To address these problems, this paper first makes a review of current
GPU technologies and programming techniques that increase concurrency, to then propose a Cloud computing outsourcing
architecture to make more efficient use of these devices in the Cloud.

Keywords GPU · Cloud computing · High-performance processing · Offloading computation

1 Introduction

Cloud computing is one of the technologies that are shaping
today’s world. This computation model has collaborated in
the development of the information society, and is being used
extensively in many areas, transforming and creating new
business models, where the challenges of traditional systems
are being overcome. In this regard, businesses must make use
of this technology to stay competitive in a globalized mar-
ket. Cloud systems provide extensive benefits to enterprises
and users with respect to ubiquitous access to data, resource
management and information processing.

B Antonio Maciá-Lillo
a.macia@ua.es

Víctor Sánchez-Ribes
vsr37@alu.ua.es

Higinio Mora
hmora@ua.es

Antonio Jimeno-Morenilla
jimeno@ua.es

1 Department of Computer Science Technology and
Computation, University of Alicante, Alicante, Spain

DistributedCloudArchitectures, such as “Edge” and other
intermediate layers, are envisioned as a key technology
that will model the future of Information and Communi-
cation Technologies (ICT) [1]. This infrastructure is being
enriched by adding specific purpose computing devices, such
as Graphic Processing Units (GPU). Their use is specially
useful in external processing architectures where comput-
ing intensive tasks of specialized fields such as CAD/CAM
[2, 3] or Artificial Intelligence (AI) [4] are being offloaded
to the Cloud, where the use of GPUs provides better perfor-
mance [5, 6], and allows commodity hardware to perform
these operations. This brings superior parallel computing
capabilities that tackle new computing intensive needs [7].
However, this is at the expense of new challenges, specially
in themanufacturing industry [8], where small businesses are
prone to design incorrect Cloud strategies, underutilizing the
advantages that bring this paradigm.

Cloud providers offer GPUs as a part of the virtual infras-
tructure, usually using the Pass-Through method, where the
entire GPU is being used exclusively by a single virtual
instance. This strategy, although valid for big enterprises,
may not be optimal for smaller ones, such as CAD/CAM
clients of manufacturing industry, online video games and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-11252-0&domain=pdf
http://orcid.org/0000-0002-4339-2687
http://orcid.org/0000-0001-8356-7616
http://orcid.org/0000-0002-8591-0710
http://orcid.org/0000-0002-3789-6475


The International Journal of Advanced Manufacturing Technology

AI [9, 10],where individual applicationsmayunderutilize the
full potential provided by GPUs. Other method is the GPU
virtualization (vGPU). This is based on a time multiplex-
ing strategy to provide concurrent GPU access to multiple
independent applications [11–13]. GPU virtualization via
this method presents inefficiencies, as sequential execution
of Kernels that do not make use of all GPU resources
leaves those extra resources unused. However, new technolo-
gies such as Nvidia Multi-Instance GPU (MIG) [14], may
improve this scenario in the near future.

The need to provide an efficient method for using these
specialized processing architectures in the Cloud for small-
medium workloads has opened up a research line focusing
on optimizing the execution of specific code on process-
ing devices. Following this trend, the aim of this paper is
to explore new ways to take advantage of the specialized
devices and improve the capabilities of GPUs by reviewing
and comparing available parallel programming techniques,
and propose optimal Cloud architecture configuration and
development of applications to improve the degree of par-
allelization of specialized processing devices, serving as a
basis for their increased exploitation in the Cloud for small
and medium-sized enterprises.

This paper is organized as follows. Besides the introduc-
tion, we sketch the overview of the current state of research
in computing outsourcing of intensive specialized computa-
tions to the Cloud, and current state of GPU usage in the
Cloud. Then, a review of GPU technologies that improve
performance of applications by increasing the concurrency
and overall GPU usage is done. After this, a Cloud architec-
ture that uses these techniques is proposed, as a way of using
the GPU more efficiently. Next, experiments that test and
show the benefits and characteristics of the techniques and
the presented architecture are shown. And last, conclusions
are drawn from the research done in this paper.

2 Current state of research

This section makes a review on the current state of the art of
processing outsourcing architectures and technologies, and
the current state ofGPUusage andvirtualization in theCloud,
in order to draw the border of knowledge on themost relevant
issues concerned with the objectives of our proposal.

2.1 Processing outsourcing

The externalization process to offload part of the comput-
ing load to the Cloud allows to increase the capabilities
of devices and other computing platforms at the Edge. In
this area, mobile Cloud Computing paradigm was initially
designed to extend the battery life of IoT things and mobile

devices [15]. However, this trend has evolved as a way to
give enhanced performance and access to high-performance
computing resources [16–18].

Outsourcing the processing of computingworkloads using
a distributed Cloud architecture has some technical chal-
lenges, as the numerous offload possibilities to Edge and
Cloud infrastructures introduce new variables that must be
taken into account [16]. The Edge paradigm is based on the
use of computation platforms in the same location as where
the data is being gathered, giving increased processing power
and data protection to the system [19]. In this line, a dis-
tributed computation model in the Cloud has the physical
location of the servers running the platform as a part of its
definition [20].

The evolution of the Cloud paradigm becomes more
importantwith the recent introduction of 5Gnetworks, which
provide greater connectivity and data exchange capabili-
ties [21], and the proliferation of new Internet of Things
applications [22] such as smart lighting [23] or Internet of
Vehicles (IoV) whose purpose is the offloading of process-
ing on servers (Edge) for content decoding tasks [24] to the
closest available servers in order to obtain shorter response
times.

In this regard, managing the outsourcing process to the
Cloud is one of the main challenges to be addressed in build-
ing new software of IoT, mobile devices and other distributed
systems [25]. Usually, the most common case is the use of
the CPU as the final execution platform for the outsourced
workload.

Nowadays, there are an increasing number of proposals
trying to apply this paradigm for offloading workloads with
specific needs to specialized and massive parallel devices
such as GPUs [26]. These proposals aim to optimize or
accelerate the computation of highlymathematical primitives
taking advantage of the performance of these specialized
computing platforms [27, 28]

2.2 GPU usage in Cloud architectures

GPUs are a widely used tool in order to obtain better per-
formance in intensive computation of specialized fields,
as they provide high computing power for geometric and
matrix computations, as their Single Instruction Multiple
Threads (SIMT) architecture gives the best results with
data parallelism.

Small and medium enterprises of the traditional man-
ufacturing sector make use of CAD/CAM and Artificial
Intelligence applications that use GPU hardware [29].

CAD/CAM applications that involve intensive computa-
tion tasks rely on GPUs for the development of efficient
software tools that can upgrade their performances [29].
A few examples of CAD/CAM applications that make use

123



The International Journal of Advanced Manufacturing Technology

of this kind of hardware are Real-time co-design with 3D
model visualization and rendering, computation algorithms
for solidmodels, real-time engineering simulation and analy-
sis, collision detection, and data exchange between different
parties [29]. There are several works on these fields. In [30],
an optimization method that uses GPUs to improve the tool-
path computation and reduce the average machining time is
presented. There are works that show the use of GPUs in
cloth simulation [31], cloth collision detection [32], cloth
animation [33, 34], and authoring and simulating of cloth or
garment patterns [35]. In [36], a parallelized genetic algo-
rithm that is implemented on the GPU finds the best model
orientation that minimizes the building time and supporting
area. In [37], a genetic algorithm that is based on CUDA
achieves an optimum part deposition orientation.

In Artificial Intelligence (AI), algorithms are being sped
up using GPUs [38, 39]. Moreover, AI applications make
extensive use of the GPU to speed up the training process
[40, 41]

As these applications started to use processingoutsourcing
architectures, there is an inherent need to include these spe-
cialized devices in Cloud architectures. Tomeet this demand,
Cloud Providers started offeringGPUs as a part of their avail-
able services. In general, a GPU can be offered in a Cloud
service in two ways:

• Exclusive dedication of the GPU to the entire platform
(pass-through)

• GPU virtualization

Thepass-throughmethod is valid for companieswith large
compute needs capable of leveraging this powerful hardware,
but this method wastes GPU computing power when used
with small applications that are not able to fully occupy the
capabilities of a large GPU platform, but still benefit from
them with better performance.

On the other hand, GPU virtualization aims to share
a physical GPU concurrently between different virtual
machine clients in a securemanner, where hardware resources
can be split and provisioned to different virtual GPUs,
depending on the needs of the specific applications. Tradi-
tionally, this is done sharing the utilization of the graphic card
by spreading the time across several instances or processes
through a round robin scheduling [11–13, 42].Although shar-
ing by time multiplexing helps to reduce GPU idle times,
this can also be inefficient, as kernels may not utilize all
GPU resources during its execution window. To accomplish
a more efficient GPU virtualization, NVIDIA launched its
MIG technology for the newAmpere architecture. This tech-
nology allows for hardware supported virtualization, where
each virtual GPU instance can run concurrently in a secure

manner, having separated allocated memory and computing
resources, with assured Quality of Service (QoS) and fault
isolation [14].

A study has been conducted on popular Cloud service
providers to know which methods have available for a Cloud
GPU instance. Table 1 shows the results. A total of ten ser-
vice providers have been reviewed. Almost all of them offer
GPUs in their Cloud servers via the pass-through method,
which grants exclusive use of the GPU hardware to a single
client. These servers are meant for applications with high
computing needs. On the contrary, only two of them (Azure
andTencentCloud) offer smaller and cheaper virtualGPUs to
adjust for the needs of smaller applications, with very limited
options and configurations.Azure only allows its virtualGPU
instances to use theWindows operating system [43], andTen-
cent only has vGPU option available in its GN7 instances,
with the option of having 1/2 or 1/4 of the resources of a
NVIDIA Tesla T4 graphics card [44].

2.3 Findings

From the previous review, the following general findings are
drawn:

• Hardware virtualization is of great importance for the
right deployment and optimal utilization of powerful spe-
cific computing platforms such as GPUs in the Cloud.

• The use of GPUs in Cloud platforms is underused due to
inefficiencies in the methods they are currently provided.

• Programmingongraphics cards usingCUDAcanbecome
inefficient due to serial execution and programming over-
heads.

The rest of this paper will cope with these problems by
reviewing and proposing different technologies, program-
ming models and architectures.

Table 1 Cloud providers support for GPU instances

PROVIDER PASS-THROUGH VGPU

AWS yes no

Azure yes yes

Google Cloud yes no

IBM Cloud yes no

Alibaba Cloud yes no

Oracle Cloud yes no

Tencent Cloud yes yes

OVHcloud yes no

Digital Ocean no no

Linode yes no

123



The International Journal of Advanced Manufacturing Technology

3 Technologies involved

As shown by the study on Cloud providers, GPU virtualiza-
tion in the Cloud is, to this day, not developed enough. The
virtualization of this computing platform is still not properly
resolved, due to its sophisticated architecture and the nature
of the applications that make use of it. As a result, Cloud
systems have limitations in the shared use of this resource.

As it is not possible to provide virtual Cloud instances
with a virtual GPU with the exact resources required by the
concrete application, it is left to the Cloud client to opti-
mize the deployments for the physical GPUs available at an
application level. In this line, this section is going to analyze
the common architecture used for processing outsourcing of
GPU accelerated computations, and the main techniques that
can be used to increase the GPU usage, allowing to obtain
better performance at a lower cost.

3.1 Computing outsourcing architecture

The architecture shown in Fig. 1 represents a basic model of
reference of a Cloud architecture for computing outsourcing
that uses a GPU to accelerate intensive specific processing.
This architecture is based on the infrastructure offered by
main Cloud providers to increase the efficiency of intensive
computing primitives by the parallelization of those opera-
tions using a GPU. This architecture operates by receiving
computing primitives of clients such as IoT devices, comput-
ing those primitives, and returning the results to the client.

In this environment, total execution time of a petition (T )
is defined by adding the communication time (TCommunication)
to the processing time (TProcessing), as shown in the formula.
δT is an error threshold to ensure a minimum QoS.

T = TCommunication + TProcessing + δT (1)

Although communication time is intrinsic to the time
it takes to process a petition in a Cloud architecture, and
has important aspects to maintain QoS such as transmission
speed or distance between the client and the server, the scope
of this paper is limited to improve the computation time. In

the rest of the paper, techniques are presented with the pur-
pose of reducing TProcessing at an application level.

3.2 Techniques at the application level

The following technologies can be used to optimize GPU
accelerated applications increasing GPU usage by increas-
ing the parallelism. By default, kernel calls from within an
application are executed sequentially [45]. CUDAStreams is
a technique to increase concurrencyof a process that launches
multiple CUDAkernels [45, 46]. It is based on a set of queues
(Streams) where kernel execution requests can be enqueued
by the host in a non-blocking fashion [47]. Each queue runs
the enqueued kernels sequentially, but kernels of different
queues can run concurrently in the GPU device [46]. The
programmer has to explicitly assign every kernel call to a
desired Stream. Kernel calls that are not assigned to a Stream
are allocated in the default stream, or Stream 0 [46], being
this the reason why by default, kernels run in a serial manner.

Although all kernels can be scheduled in different Streams
to be run in parallel, an important aspect of GPU kernel
concurrency is that there are physical limits that affect how
kernels can run concurrently. In [45] a theoretical model
is presented to predict kernel concurrency behavior. The
amount of threads that can be scheduled every running round
depends on several factors, such as the number of multipro-
cessors available, the number of blocks and threads of the
kernel, or the amount of shared memory [45].

On a process level, it is also possible to obtain concur-
rency, with NVIDIA MPS. MPS is a implementation of the
CUDA API that uses a runtime client–server architecture to
achieve GPU concurrency between multiple processes [48].
Although this technology was developed with the objective
of optimizing GPU accelerated MPI applications, it is useful
in a variety of systems, as it allows for an increase in per-
formance when single processes do not make full use of the
resources present in the device.

As told by NVIDIA [48], MPS gives the benefits of an
increase in GPU usage between different CUDA processes,
lower video memory usage, and a reduction of the amount
of context changes.

Fig. 1 Reference model of
Cloud computing outsourcing
architecture

123



The International Journal of Advanced Manufacturing Technology

NVIDIA graphics cards implement this technology since
Kepler architecturewas introduced.However, since the intro-
duction of Volta architecture, new characteristics in the line
of increasing security and isolation between concurrently
running processes were added. Nowadays, MPS offers these
characteristics in terms of security:

• Execution resource provisioning: Client contexts can be
set to only use a portion of the available threads. This can
be used as a classic QoS mechanism to limit available
compute bandwidth.

• Memory protection: Applications are provided with a
private video memory space, completely isolated from
external processes.

• Error containment: When a fatal exception happens, it
is reported to all processes that are running in the GPU
in that moment, without any indication of which process
has generated the exception. The GPU then is temporally
blocked from accepting new processes until all processes
that were running exit.

Due to these features, MPS cannot be used as way of
virtualizing the GPU, as the error containment system does
not provide enough isolation between processes to allow for
a complete virtualization.

4 Proposed Cloud architecture

With the technologies explained before, an architecture for
computing outsourcing to theCloud is presented, that ensures
a better utilization of the GPU resources. This has the
potential of reducing costs, as well as increasing overall per-
formance. This architecture is aimed at Cloud applications
that do not fully utilize the GPU, but benefit from the use of
this kind of hardware.

The architecture, shown in Fig. 2, consists of a group
of docker containers that run GPU accelerated applications.
These containers are grouped in a Cloud server instance that
has aGPU assigned via the passt-hroughmethod. The host of
the docker containers has a MPS server, and every container
has a client to the MPS server. This connexion is possible
by binding the files that represent the MPS UNIX socket
(/tmp/nvidia-mps) from the host and the container. This is
the main reason why the architecture uses containers instead
of virtual machines, as UNIX sockets cannot be accessed
natively by virtual machines.

With this architecture, different applications running
inside the docker containers can efficiently share the GPU
concurrently, increasing its usage.

Fig. 2 Proposed Cloud architecture for computing outsourcing

In terms of security, it inherits the characteristics of the
MPS technology. It is possible to establish Quality of Service
restrictions, assigning specific amount of GPU computing
resources and video memory to each container application.
Modern GPUs (since Volta architecture) have fully isolated
memory space, and provisionedGPU resources for the differ-
ent processeswhen running aMPS server [48]. Data transfers
between theGPUand the processes happenwithin the operat-
ing system environment, so they have the traditional process
isolation. As every application is running inside a container,
they have an isolated environment from the other applica-
tions. Apart from the specific characteristics described, this
architecture has the same security and privacy challenges in
terms of data generation, transfer, use, share, storage, archival
and destruction as a traditional Cloud architecture [49, 50].
This means security issues associated with data transfers
between the cloud servers and the clients, and data storage in
the cloud have been extensively researched [51] and can be
mitigated with techniques such as encryption [52] and data
audit mechanisms such as verification signatures [53].

As memory is fully isolated between different MPS
clients, data from a container application is secured from
other processes, which brings some security assurance.
However, as this technology has limited error containment,
applications running in this architecture must be trusted. As
any MPS process that provokes a fatal exception will propa-
gate it to any other process running in the GPU at the same
time, applications must take into account that exceptions
caused by other external processes may be received. This
is another reason why this architecture uses containers. The
architecture is meant to be used by a single client with trusted

123



The International Journal of Advanced Manufacturing Technology

applications. Therefore, the increased security that virtual
machines provide should not be needed, and containers pro-
vide better performance [51].

5 Experiments and results

In this section, the techniques to increase GPU usage
explained before are going to be tested. For this experimen-
tation, an effective parallelization framework is proposed by
outsourcing the workload to GPU devices deployed on the
Cloud servers, where in the first experiment, a classic exter-
nalization architecture will be used, and in the second the
proposed architecture will be tested. In this environment, the
client’s request will be transferred to the server, which will
execute the calculations and return the results to the client.
As stated before, from the total time perceived by each client,
only the results concerning the processing time (TProcessing)
are relevant to this study.

The GPU deployed is the NVIDIA TITAN RTX. This
device has been built according to the NVIDIA Turing archi-
tecture, and it has 24GB VRAM, 576 Tensor cores and 4608
CUDA cores.

For experimentation, the gradient descent method has
been used over the Rosenbrock function [54]. This method
calculates the local greatest or least value of a function when
its variables are restricted to a given region. Usually, each
variable represents a point in 2D or 3D. This method is com-
monly used in 3D calculations for optimizing CAD/CAM
designs for industry and engineering [55, 56], and inArtificial
Intelligence applications [57, 58]. The implementation com-
putes the local minimum of every point of a vector (randomly
generated) of a defined length. The kernel configuration con-
sists on a thread per block, where there is a block for every
point of the vector.

The metric used in the results shown is Floating Point
Operations per Second (FLOPS). To get this metric, the
amount of floating point operations that a kernel does has
been calculated theoretically

FLOPS = 27 ∗ I terations ∗ Points

time
(2)

where the number of floating point operations is obtained by
multiplying a constant number of operations by the number
of iterations and the number of points in the vector. The total
number of operations is then divided by the time of execution
registered in the experiment.

In the first experiment, the objective is to test the capabili-
ties of the Streams technique. The gradient descent method is

run both in the normal way and using Streams. Several input
data sizes have been used (50, 100, and 500) for comput-
ing increasing rounds of iterations to find the local minimum
in the Rosenbrock function. The iterations per round can be
consulted in Table 2. Ten independent kernels are launched
by the main process. In the Streams version, every kernel is
allocated in a different Stream. The results of this experiment
can be seen in Fig. 3.

This experiment shows the benefits of the Streams tech-
nique. In this experiment, the concurrency limit is the 128
maximum parallel Streams that the NVIDIA TITAN RTX
has.With this limit, the Stream version of the experiment has
better performance than the default one. The GPU is being
better utilized with Streams, which produces the increase
in performance shown. An interesting aspect shown in the
figure is that with default mode of execution, the perfor-
mance increases until it reaches a stable point. On the other
hand, with Streams, performance is stable from the begin-
ning. This happens because with default execution, kernel
scheduling and memory copies presents an overhead that has
to be compensatedwith sufficient execution time (iterations).
WithStreams, these operations run concurrently, allowing for
stable performance even with resource intensive kernels with
low execution time.

Table 2 Number of iterations per round

Round Iter. Round Iter. Round Iter.

1 500 21 10,500 41 20,500

2 1000 22 11,000 42 21,000

3 1500 23 11,500 43 21,500

4 2000 24 12,000 44 22,000

5 2500 25 12,500 45 22,500

6 3000 26 13,000 46 23,000

7 3500 27 13,500 47 23,500

8 4000 28 14,000 48 24,000

9 4500 29 14,500 49 24,500

10 5000 30 15,000 40 25,000

11 5500 31 15,500 51 25,500

12 6000 32 16,000 52 26,000

13 6500 33 16,500 53 26,500

14 7000 34 17,000 54 27,000

15 7500 35 17,500 55 27,500

16 8000 36 18,000 56 28,000

17 8500 37 18,500 57 28,500

18 9000 38 19,000 58 29,000

19 9500 39 19,500 59 29,500

20 10,000 40 20,000 60 30,000

123



The International Journal of Advanced Manufacturing Technology

Fig. 3 Experiment 1:
performance with different
vector sizes with and without
Streams

Round

M
FL

O
PS

0

25

50

75

100

125

10 20 30 40 50 60

50 no Streams

50 Streams

100 no Streams

100 Streams

200 no Streams

200 Streams

500 no Streams

500 Streams

In the second experiment, the proposedCloud architecture
for computing outsourcing is evaluated. As in the previous
experiment, the localminimumpoint is calculated on random
vectors with different sizes for several rounds of iterations.
This time, ten different applications launch a kernel call to
compute the local minimum in the Rosenbrock function.
With default mode, kernels are expected to run sequentially,
as the applications will share the GPU usage by time multi-
plexing, but with MPS, the applications will connect to the
MPS server via the MPS clients, so some level of concur-
rency is expected. The results of this experiment are shown
in Fig. 4. The performance obtained is not directly compa-
rable to the Streams experiment, and it is expected to be

lower, as whole process times are being measured, and in the
previous experiment, only kernel execution times have been
measured.

The results in the second experiment show performance
gains by the use of the proposed Cloud architecture. This
difference increases with the number of iterations. This is
expected, as measuring process time introduces the time
of the process being created by the operating system.
However, the experiment shows that some overhead is asso-
ciated with setting up the MPS client, as in some cases,
with low number of iterations, performance is lower with
the MPS technique than with default CUDA operating
mode.

Fig. 4 Experiment 2:
performance with different
vector sizes using different
processes with and without MPS

Round

M
FL

O
PS

0

25

50

75

100

125

10 20 30 40 50 60

50 no MPS

50 MPS

100 no MPS

100 MPS

200 no MPS

200 MPS

500 no MPS

500 MPS

123



The International Journal of Advanced Manufacturing Technology

6 Conclusions

The new needs for the industry require the incorporation of
technology that makes possible the transformation towards
more agile production systems capable of giving a flexible
response to market preferences, even more so in those tra-
ditional sectors subject to a changing consumer demands.
In this line, computing outsourcing architectures of comput-
ing intensive computations to the Cloud, with architectures
that include specialized devices such as GPUs, are a way
to achieve greater performance for IoT, mobile devices and
other Edge platforms.

This computing paradigm depends on finding efficient
methods to virtualise GPU infrastructure and maximize
the hardware utilization of these devices. However, at the
moment, Cloud providers do not provide a way of provi-
sioning a personalized amount of GPU resources adapted to
specific applications, as they currently do not widely sup-
port GPU virtualization. To address these problems, GPU
programming techniques have been researched, and a Cloud
architecture for computing outsourcing has been proposed
for applications that not fully utilize all the resources of the
GPU.

The experiments have put to the test the proposed tech-
niques and architecture. The results show that performance
can be increased by incrementing overall GPU usage. In
the case of Streams, it is a great technology to increase
kernel parallelism fromwithin an application level. Program-
mers may use this technique for an increase in performance
whenever possible. The proposed Cloud architecture has
also shown promising results. It allows for multiple GPU
accelerated applications to share the use of the GPU con-
currently, presenting a great opportunity to reduce costs and
increase performance, as it makes a more efficient use of
Cloud resources.

However, this architecture cannot be used in a general
way, with totally independent applications. As the architec-
ture does not present complete GPU virtualization, due to the
limitations of the MPS technology, specially with the error
containment system, this architecture is reserved to trusted
and closely related applications. In the future, this research
should be extended to cover remaining challenges around this
paradigm and to propose an extended model with effectively
virtualized GPUs in the Cloud. In this regard, NVIDIAMIG
technology is a great candidate for providing complete and
efficient GPU virtualization for Cloud systems.

Author Contributions All authors have contributed equally in the devel-
opment of this work.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work was supported by the
SpanishResearchAgency (AEI) under projectHPC4Industry PID2020-
120213RB-I00.

Declarations

Ethical approval Not applicable.

Consent to participate All authors have read and approved the final
manuscript.

Consent for publication All authors agree to publish in The Interna-
tional Journal of Advanced Manufacturing Technology.

Conflict of interest The authors of this paper have no conflict of interest
with regard to this publication.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Gartner (2020) Gartner Top Strategic Technology Trends for 2021
— gartner.com. https://www.gartner.com/smarterwithgartner/
gartner-top-strategic-technology-trends-for-2021. Accessed 15
Sep 2022

2. Efstathiou C, Tapoglou N (2022) Simulation of spiral bevel gear
manufacturing by face hobbing and prediction of the cutting forces
using a novel cad-based model. Int J Adv Manuf Technol 1–25

3. Stavropoulos P, TzimanisK, SouflasT,BikasH (2022)Knowledge-
based manufacturability assessment for optimization of additive
manufacturing processes based on automated feature recognition
from cad models. Int J Adv Manuf Technol 122(2):993–1007

4. Kounta CAKA, Arnaud L, Kamsu-Foguem B, Tangara F (2022)
Review of ai-based methods for chatter detection in machining
based on bibliometric analysis. Int J Adv Manuf Technol 1–26

5. Rico-Garcia H, Sanchez-Romero JL, Jimeno-Morenilla A,
Migallon-Gomis H, Mora-Mora H, Rao RV (2019) Comparison
of high performance parallel implementations of tlbo and jaya
optimization methods on manycore gpu. IEEE Access 7:133822–
133831

6. Khouzami N, Michel F, Incardona P, Castrillon J, Sbalzarini
IF (2022) Model-based autotuning of discretization methods in
numerical simulations of partial differential equations. J Comput
Sci 57:101489. https://doi.org/10.1016/j.jocs.2021.101489

7. Sfiligoi I, Schultz D, Riedel B, Wuerthwein F, Barnet S, Brik V
(2020) Demonstrating a pre-exascale, cost-effective multi-cloud
environment for scientific computing: producing a fp32 exaflop
hour worth of icecube simulation data in a single workday. Prac-
tice and Experience in Advanced Research Computing (PEARC
’20). Association for Computing Machinery, New York, pp 85–90.
https://doi.org/10.1145/3311790.3396625

8. Lloret-Climent M, Nescolarde-Selva JA, Mora-Mora H, Jimeno-
Morenilla A, Alonso-Stenberg K (2019) Design of products

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021
https://www.gartner.com/smarterwithgartner/gartner-top-strategic-technology-trends-for-2021
https://doi.org/10.1016/j.jocs.2021.101489
https://doi.org/10.1145/3311790.3396625


The International Journal of Advanced Manufacturing Technology

through the search for the attractor. IEEE Access 7:60221–60227.
https://doi.org/10.1109/ACCESS.2019.2915678

9. Chen H, Lu M, Ma Z, Zhang X, Xu Y, Shen Q, Zhang W
(2021) Learned resolution scaling powered gaming-as-a-service
at scale. IEEE Trans Multimedia 23:584–596. https://doi.org/10.
1109/TMM.2020.2985538

10. Han Y, Guo D, Cai W, Wang X, Leung VCM (2022) Virtual
machine placement optimization in mobile cloud gaming through
qoe-oriented resource competition. IEEE Trans Cloud Comput
10(3):2204–2218. https://doi.org/10.1109/TCC.2020.3002023

11. Peña AJ, Reaño C, Silla F, Mayo R, Quintana-Ortí ES, Duato
J (2014) A complete and efficient cuda-sharing solution for hpc
clusters. Parallel Comput 40(10):574–588. https://doi.org/10.
1016/j.parco.2014.09.011

12. Giunta G,Montella R, Agrillo G, Coviello G (2010) A gpgpu trans-
parent virtualization component for high performance computing
clouds. In: D’Ambra P, GuarracinoM, Talia D (eds) Euro-Par 2010
- Parallel Processing. Springer Berlin Heidelberg, Berlin, pp 379–
391

13. NVIDIA (2022a) Virtual GPU Software User Guide :: NVIDIA
Virtual GPU Software Documentation— docs.nvidia.com. https://
docs.nvidia.com/grid/13.0/grid-vgpu-user-guide/index.html.
Accessed 16 Sep 2022

14. NVIDIA (2022b) NVIDIA Multi-Instance GPU (MIG) —
nvidia.com. https://www.nvidia.com/es-es/technologies/multi-
instance-gpu/. Accessed 16 Sep 2022

15. Waheed A, Shah MA, Mohsin SM, Khan A, Maple C, Aslam S,
Shamshirband S (2022) A comprehensive review of computing
paradigms, enabling computation offloading and task execution in
vehicular networks. IEEE Access

16. Mora H, Mora Gimeno FJ, Signes-Pont MT, Volckaert B
(2019) Multilayer architecture model for mobile cloud computing
paradigm. Complexity 2019

17. Dash S, Ahmad M, Iqbal T et al (2021) Mobile cloud comput-
ing: a green perspective. In: Intelligent Systems. Springer, pp 523–
533

18. Mora Mora H, Gil D, Colom Lopez JF, Signes Pont MT (2015)
Flexible framework for real-time embedded systems based on
mobile cloud computing paradigm. Mobile Inf Syst 2015

19. QiuT,Chi J, ZhouX,NingZ,AtiquzzamanM,WuDO(2020)Edge
computing in industrial internet of things: architecture, advances
and challenges. IEEE Commun Surv Tutorials 22(4):2462–2488.
https://doi.org/10.1109/COMST.2020.3009103

20. Yuan H, Zhou M (2021) Profit-maximized collaborative compu-
tation offloading and resource allocation in distributed cloud and
edge computing systems. IEEE Trans Autom Sci Eng 18(3):1277–
1287. https://doi.org/10.1109/TASE.2020.3000946

21. Zheng G, Zhang H, Li Y, Xi L (2020) 5g network-oriented hierar-
chical distributed cloud computing system resource optimization
scheduling and allocation. Comput Commun 164:88–99. https://
doi.org/10.1016/j.comcom.2020.10.005

22. Etemadi M, Ghobaei-Arani M, Shahidinejad A (2020) Resource
provisioning for iot services in the fog computing environment:
An autonomic approach. Comput Commun 161:109–131. https://
doi.org/10.1016/j.comcom.2020.07.028

23. Mora H, Peral J, Ferrandez A, Gil D, Szymanski J (2019) Dis-
tributed architectures for intensive urban computing: a case study
on smart lighting for sustainable cities. IEEE Access 7:58449–
58465

24. Fang Z, Xu X, Dai F, Qi L, Zhang X, Dou W (2020) Computa-
tion offloading and content caching with traffic flow prediction for
internet of vehicles in edge computing. In: 2020 IEEE International
Conference on Web Services (ICWS). IEEE, pp 380–388

25. Li M (2021) Computation offloading and task scheduling on net-
work edge. PhD thesis, University of Waterloo. http://hdl.handle.
net/10012/17188

26. Ribes VS, Mora H, Sobecki A, Gimeno FJM (2020) Mobile
cloud computing architecture for massively parallelizable geomet-
ric computation. Comput Ind 123:103336

27. Martinez-Noriega EJ, Yazaki S, Narumi T (2021) Cuda offloading
for energy-efficient and high-frame-rate simulations using tablets.
Concurr Comput Pract Experience 33(2):e5488

28. Tsog N, Mubeen S, Bruhn F, Behnam M, Sjödin M (2021)
Offloading accelerator-intensive workloads in cpu-gpu heteroge-
neous processors. In: 2021 26th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA). IEEE,
pp 1–8

29. Jimeno-Morenilla A, Azariadis P, Molina-Carmona R, Kyratzi S,
Moulianitis V (2021) Technology enablers for the implementa-
tion of industry 4.0 to traditional manufacturing sectors: a review.
Comput Ind 125:103390. https://doi.org/10.1016/j.compind.2020.
103390

30. Morell-Giménez V, Jimeno-Morenilla A, García-Rodríguez J
(2013)Efficient tool path computation usingmulti-core gpus.Com-
put Ind 64(1):50–56. https://doi.org/10.1016/j.compind.2012.09.
009

31. Tang M, Tong R, Narain R, Meng C, Manocha D (2013) A gpu-
based streaming algorithm for high-resolution cloth simulation.
In: Computer Graphics Forum, vol 32. Wiley Online Library,
pp 21–30

32. Vassilev TI (2016) Garment simulation and collision detection on a
mobile device. Int JMobComputMultimediaCommun (IJMCMC)
7(3):1–15

33. XueChuanyu DH, Mingmin Z, Zhigeng P (2017) Real-time sim-
ulation on virtual dressing based on virtual human body model. J
Syst Simul 29(11):2847

34. Hui Z, Zhen L, Yanjie C et al (2018) Real-time collision detection
method for fluid and cloth. J Comput Aided Des Graph 30(4):602–
610

35. Leaf J, Wu R, Schweickart E, James DL, Marschner S (2018)
Interactive design of periodic yarn-level cloth patterns. ACMTrans
Graph 37(6). https://doi.org/10.1145/3272127.3275105

36. Li Z, Xiong G, Zhang X, Shen Z, Luo C, Shang X, Dong X,
Bian GB, Wang X, Wang FY (2019) A gpu based parallel genetic
algorithm for the orientation optimization problem in 3d printing.
In: 2019 International Conference on Robotics and Automa-
tion (ICRA). pp 2786–2792. https://doi.org/10.1109/ICRA.2019.
8793989

37. Huang R, Dai N, Li D, Cheng X, Liu H, Sun D (2018) Parallel non-
dominated sorting genetic algorithm-ii for optimal part deposition
orientation in additive manufacturing based on functional features.
Proc IME C J Mech Eng Sci 232(19):3384–3395. https://doi.org/
10.1177/0954406217737105

38. Talib MA, Majzoub S, Nasir Q, Jamal D (2021) A systematic liter-
ature review on hardware implementation of artificial intelligence
algorithms. J Supercomput 77(2):1897–1938

39. Jimeno-Morenilla A, Sanchez-Romero JL, Migallon H, Mora-
Mora H (2019) Jaya optimization algorithm with gpu acceleration.
J Supercomput 75(3):1094–1106

40. ChenZ,Wang J,HeH,HuangX (2014)A fast deep learning system
using gpu. In: 2014 IEEE International Symposium on Circuits and
Systems (ISCAS). pp 1552–1555. https://doi.org/10.1109/ISCAS.
2014.6865444

41. Li B, Arora R, Samsi S, Patel T, ArcandW, Bestor D, Byun C, Roy
RB, Bergeron B, Holodnak J, Houle M, Hubbell M, Jones M, Kep-
ner J, Klein A, Michaleas P, McDonald J, Milechin L, Mullen J,
Prout A, Price B, Reuther A, Rosa A,Weiss M, Yee C, Edelman D,
Vanterpool A, ChengA, Gadepally V, Tiwari D (2022) Ai-enabling
workloads on large-scale gpu-accelerated system: characterization,
opportunities, and implications. In: 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA). pp
1224–1237. https://doi.org/10.1109/HPCA53966.2022.00093

123

https://doi.org/10.1109/ACCESS.2019.2915678
https://doi.org/10.1109/TMM.2020.2985538
https://doi.org/10.1109/TMM.2020.2985538
https://doi.org/10.1109/TCC.2020.3002023
https://doi.org/10.1016/j.parco.2014.09.011
https://doi.org/10.1016/j.parco.2014.09.011
https://docs.nvidia.com/grid/13.0/grid-vgpu-user-guide/index.html
https://docs.nvidia.com/grid/13.0/grid-vgpu-user-guide/index.html
https://www.nvidia.com/es-es/technologies/multi-instance-gpu/
https://www.nvidia.com/es-es/technologies/multi-instance-gpu/
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1109/TASE.2020.3000946
https://doi.org/10.1016/j.comcom.2020.10.005
https://doi.org/10.1016/j.comcom.2020.10.005
https://doi.org/10.1016/j.comcom.2020.07.028
https://doi.org/10.1016/j.comcom.2020.07.028
http://hdl.handle.net/10012/17188
http://hdl.handle.net/10012/17188
https://doi.org/10.1016/j.compind.2020.103390
https://doi.org/10.1016/j.compind.2020.103390
https://doi.org/10.1016/j.compind.2012.09.009
https://doi.org/10.1016/j.compind.2012.09.009
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1109/ICRA.2019.8793989
https://doi.org/10.1109/ICRA.2019.8793989
https://doi.org/10.1177/0954406217737105
https://doi.org/10.1177/0954406217737105
https://doi.org/10.1109/ISCAS.2014.6865444
https://doi.org/10.1109/ISCAS.2014.6865444
https://doi.org/10.1109/HPCA53966.2022.00093


The International Journal of Advanced Manufacturing Technology

42. Herrera A (2015) Nvidia grid vgpu: delivering scalable graphics-
rich virtual desktops. Retrieved Aug 10:2015

43. vikancha MSFT (2022) Serie NVv4 - Azure Virtual Machines
— learn.microsoft.com. https://learn.microsoft.com/es-es/azure/
virtual-machines/nvv4-series. Accessed 26 Sep 2022

44. Cloud T (2022) GPU Cloud Computing Instance Types. https://
main.qcloudimg.com/raw/document/intl/product/pdf/tencent-
cloud_560_11625_en.pdf. Accessed 26 Sep 2022

45. Li H, Yu D, Kumar A, Tu YC (2014) Performance modeling in
cuda streams - a means for high-throughput data processing. In:
2014 IEEE International Conference on Big Data (Big Data). pp
301–310. https://doi.org/10.1109/BigData.2014.7004245

46. NVIDIA (2015) GPU Pro Tip: CUDA 7 Streams Simplify Concur-
rency—developer.nvidia.com. https://developer.nvidia.com/blog/
gpu-pro-tip-cuda-7-streams-simplify-concurrency/. Accessed 27
Sep 2022

47. Olmedo IS, Capodieci N, Martinez JL, Marongiu A, Bertogna
M (2020) Dissecting the cuda scheduling hierarchy: a perfor-
mance and predictability perspective. In: 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS).
pp 213–225. https://doi.org/10.1109/RTAS48715.2020.000-5

48. Corporation N (2021) Multi-Process Service :: GPU Deployment
andManagementDocumentation—docs.nvidia.com. https://docs.
nvidia.com/deploy/mps/index.html. Accessed 15-Sep-2022

49. Chen D, Zhao H (2012) Data security and privacy protection issues
in cloud computing. In: 2012 International Conference on Com-
puter Science and Electronics Engineering, vol 1. pp 647–651.
https://doi.org/10.1109/ICCSEE.2012.193

50. Mushtaq MF, Akram U, Khan I, Khan SN, Shahzad A, Ullah A
(2017) Cloud computing environment and security challenges: a
review. Int J Adv Comput Sci Appl 8(10)

51. SinghA, Chatterjee K (2017) Cloud security issues and challenges:
a survey. J NetwComputAppl 79:88–115. https://doi.org/10.1016/
j.jnca.2016.11.027

52. Ate SZA (2020) Improved cloud data transfer security using hybrid
encryption algorithm. Institute of Advanced Engineering and Sci-
enceVol 20,No1:October 2020. https://ijeecs.iaescore.com/index.
php/IJEECS/article/view/21787/14240

53. SelvamaniK, Jayanthi S (2015)A reviewon cloud data security and
its mitigation techniques. Proc Comput Sci 48:347–352. https://
doi.org/10.1016/j.procs.2015.04.192. International Conference on
Computer, Communication and Convergence (ICCC 2015)

54. Rosenbrock H (1960) An automatic method for finding the greatest
or least value of a function. Comput J 3(3):175–184

55. Barral D, Perrin JP, Dombre E, Liegeois A (2001) Simulated
annealing combined with a constructive algorithm for optimising
assemblyworkcell layout. Int JAdvManuf Technol 17(8):593–602

56. Ns WEE (1994) Bezier curve approximation in cad/cam system.
Commun Korean Math Soc 9(1):253–259

57. Deepa N, Prabadevi B, Maddikunta PK, Gadekallu TR, Baker
T, Khan MA, Tariq U (2021) An ai-based intelligent system for
healthcare analysis using ridge-adaline stochastic gradient descent
classifier. J Supercomput 77(2):1998–2017

58. Khasanov D, Tojiyev M, Primqulov O (2021) Gradient descent in
machine learning. In: 2021 International Conference on Informa-
tion Science andCommunications Technologies (ICISCT). pp 1–3.
https://doi.org/10.1109/ICISCT52966.2021.9670169

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://learn.microsoft.com/es-es/azure/virtual-machines/nvv4-series
https://learn.microsoft.com/es-es/azure/virtual-machines/nvv4-series
https://main.qcloudimg.com/raw/document/intl/product/pdf/tencent-cloud_560_11625_en.pdf
https://main.qcloudimg.com/raw/document/intl/product/pdf/tencent-cloud_560_11625_en.pdf
https://main.qcloudimg.com/raw/document/intl/product/pdf/tencent-cloud_560_11625_en.pdf
https://doi.org/10.1109/BigData.2014.7004245
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://doi.org/10.1109/RTAS48715.2020.000-5
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://doi.org/10.1109/ICCSEE.2012.193
https://doi.org/10.1016/j.jnca.2016.11.027
https://doi.org/10.1016/j.jnca.2016.11.027
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/21787/14240
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/21787/14240
https://doi.org/10.1016/j.procs.2015.04.192
https://doi.org/10.1016/j.procs.2015.04.192
https://doi.org/10.1109/ICISCT52966.2021.9670169

	Efficient GPU Cloud architectures for outsourcing high-performance processing to the Cloud
	Abstract
	1 Introduction
	2 Current state of research
	2.1 Processing outsourcing
	2.2 GPU usage in Cloud architectures
	2.3 Findings

	3 Technologies involved
	3.1 Computing outsourcing architecture
	3.2 Techniques at the application level

	4 Proposed Cloud architecture
	5 Experiments and results
	6 Conclusions
	References


