
The International Journal of Advanced Manufacturing Technology
https://doi.org/10.1007/s00170-023-11255-x

ORIG INAL ART ICLE

Anomaly detection and virtual reality visualisation in supercomputers

David Mulero-Pérez1 ·Manuel Benavent-Lledó1 · Jorge Azorín-López1 · Diego Marcos-Jorquera1 ·
José García-Rodríguez1

Received: 3 October 2022 / Accepted: 10 March 2023
© The Author(s) 2023

Abstract
Anomaly detection is the identification of events or observations that deviate from the expected behaviour of a given set of
data. Its main application is the prediction of possible technical failures. In particular, anomaly detection on supercomputers is
a difficult problem to solve due to the large scale of the systems and the large number of components. Most research works in
this field employ machine learning methods and regression models in a supervised fashion, which implies the need for a large
amount of labelled data to train such systems. This work proposes the use of autoencoder models, allowing the problem to be
approached with semi-supervised learning techniques. Two different model training approaches are compared. The former
is a model trained with data from all the nodes of a supercomputer. In the latter approach, observing significant differences
between nodes, one model is trained for each node. The results are analysed by evaluating the positive and negative aspects of
each approach. On the other hand, a replica of the Marconi 100 supercomputer is developed in a virtual reality environment
that allows the data from each node to be visualised at the same time.

Keywords Anomaly detection · Virtual reality and Machine learning · Supercomputing

1 Introduction

Industry 4.0 is the fourth major industrial stage that has taken
place since the beginning of the Industrial Revolution. It is
characterised by a fusion of technologies currently being
tested or developed. There is a trend towards automation
and data exchange, which is very important in the context of
manufacturing and development technologies. This includes
technologies such as cyber-physical systems, the Internet
of Things (IoT) and High-Performance Computing (HPC).
HPC or Parallel Computing that refers to individual com-
puter systems in a cluster as nodes that can perform complex

B David Mulero-Pérez
dmulero@dtic.ua.es

Manuel Benavent-Lledó
mbenavent@dtic.ua.es

Jorge Azorín-López
jazorin@dtic.ua.es

Diego Marcos-Jorquera
dmarcos@dtic.ua.es

José García-Rodríguez
jgarcia@dtic.ua.es

1 Department of Computer Science and Technology,
University of Alicante, Alicante, Spain

computations on PCs, Microcontroller Units (MCUs) and
Edge devices with multi-core Central Processing Units
(CPUs) and Graphics Processing Units (GPUs).

The use of machine learning and, specifically, deep learn-
ing techniques is becoming increasingly common, both in the
improvement of industrial production processes and in their
preventive maintenance. We find examples such as deep-
learning-based visual control assembly assistant [1]. This
work enables real-time evaluation of the activities in the
assembly process to identify errors. In [2], the optical quality
control process in the printing industry has been improved. To
do this, they design deep learning models that allow them to
classify samples according to their quality. This is also a very
resource-intensive computer vision problem, as it involves
training models with very high-resolution images.

With the advent of Industry 4.0 and the use of more com-
putationally demanding techniques, heterogeneous high-
performance systems are coming to the fore. This technology
is used as a driving force to deploy various industrial applica-
tions. Angelopoulos et al. [3] discuss the emergence of these
methods in different fields. In the manufacturing industry,
HPC is used to support product design, optimisation or test-
ing. This technology is increasingly used in different types
of industries, highlighting the automotive industry that has
become more widespread [4].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-11255-x&domain=pdf
http://orcid.org/0000-0002-1712-7265


The International Journal of Advanced Manufacturing Technology

In some cases, it requires an environment that runs com-
plex codes in real-time and with dynamic adjustment of
resources for workloads. This is known as on-demand HPC
and requires the HPC system to be constantly highly avail-
able, otherwise the processing may not be performed in time.
Another important factor is the power consumption and the
types of HPC architectures to be used. The current trend
in HPC is towards heterogeneous platforms and mixed pro-
gramming models. HPC systems have to cope with different
performance targets that may vary from time to time depend-
ing on the overall system requirements. Supercomputing is
the heart of AI and Big Data, coupled with 5-G Networks
together creates Artificial Intelligence of Things (AIoT) that
forms the backbone of the high-speed, smart, connected net-
works [5]. The use of these technologies together brings an
improvement in economic performance and efficiency for the
industrial sector.

Preventive maintenance and early anomaly detection are
necessary to ensure the proper performance of these systems.
In data science, anomaly detection is normally understood
as the identification of outliers, events or observations which
deviate significantly from themajority of the data. In our case,
analyzing time-series data in real-time, identifying unex-
pected values of node sensors, which differ from the normal
data (no anomalies). One of the problems of working with
this type of data is that it can be an extreme case of an unbal-
anced supervised learning problem, the vast majority of data
generated by real supercomputers is, by definition, normal,
in our case.

Currently, the issues concerning the High Performance
Computing systems maintenance are increasing by rapidly
becoming larger and complex. Anomaly identification can
assist with pinpointingwhere a error happens, upgrading root
cause analysis and rapidly getting technical support prior to
arriving at a critical state.

Anomaly detection within large systems is a problem that
is becoming increasingly important as more and more large-
scale computing centres emerge. It is used to predict possible
incidents or technical failures. In the case of supercomputers,
this is a difficult problem to solve due to the cost of generating
labelled data and classical methods require a large amount
of data to train the models. In this paper, several autoen-
coder neural networkmodels are implemented and evaluated,
which allow the problem to be dealt by using semi-supervised
learning techniques.We focus on theMarconi 100 supercom-
puter at CINECA (a not-for-profit Consortium, made up of
italian universities and institutions).

In addition, a replica of the Marconi 100 supercomputer
has been created in a virtual reality environment that allows
the data from each node to be visualised concurrently. The
ability to visualise in real time all this information, such as
the power consumed, the temperatures of the cores (GPU
and CPU) or the prediction of anomalies of the autoencoder

model, will facilitate the task of detecting possible errors and
will help the maintenance team.

In this paper we have two main purposes. The first one
is to develop a robust anomaly detection system for super-
computers. We have to take into account that most of the
supercomputer error data is not labelled. The second pur-
pose is to create a virtual replica that allows us to visualise
the data as a whole and in a simple way with an intuitive and
highly usable interface. Furthermore, this should be possible
without the need for technical knowledge of databases and
command line.

To validate the proposal, the accuracy of the anomaly pre-
dictions as well as the usability and understanding of the
virtual replica environment will be evaluated with different
metrics. In addition, a set of modifications will be required,
following the interaction guidelines of virtual reality devices,
to run this system with virtual reality devices. Ideally, once
this process is finished, the system should be tested by pro-
fessionals working with HPC systems.

The rest of the paper is organized as follows. Section2
reviews the state of the art of anomaly detection. Section3
covers the implementation of autoencoder models and the
creation of the supercomputer’s virtual replica. The results
are explained in Section4. Finally, some conclusions are
drawn in the last Section5.

2 Anomaly detection: concepts and
literature review

Anomaly detection is present in the industry as it saves time
and money [6]. This was clearly demonstrated in a study
carried outwithWhirlpoolmicrowave ovens [7]. In the paper,
a real-time anomaly detection systemusingmachine learning
algorithms was created and evaluated, with good results.

In other works about anomaly detection, machine learning
autoencoder have been used, with layers called Long Short-
Term Memory (LSTM). This type of network arises as an
improvement on recurrent neural networks, which have what
is known as short-term memory. But as the sequence of data
passes, the information vanishes and is of little importance
for decision-making. This means that problems appear when
you want to have a more long-term memory. It is at this
point when LSTMs come up as a solution to the problem
of long-term memory. LSTMs were first defined in 1997 [8]
and are characterised by the fact that they are able to select
the most important information to “remember” and preserve
it for several instants of time. They can therefore have both
short-term memory (like recurrent networks) and long-term
memory.

On the other hand, the autoencoder networks [9] are a type
of neural network that presents a bottleneck architecture from
which the dimensionality of the input data can be reduced

123



The International Journal of Advanced Manufacturing Technology

while maintaining the information. The latent space is the
low-dimensional representation of the data that the network
learns. Therefore, this network is divided into two parts: an
encoder that reduces the dimensionality of the input data and
a decoder that is able to reconstruct the input data from the
latent space information.

Autoencoder networks are widely used to deal with
complex data that cannot be labelled in a simple way. Clas-
sification tasks can be solved from the latent space or by
reconstruction error. The use of autoencoders has become a
standard for solving some types of problems. One example
of use is in image analysis tasks. Chen et al. [10] pro-
posed a system that could extract information from medical
images to detect anomalies and possible pathologies. By
using autoencoders, they achieved good results and, in addi-
tion, unsupervised training is carried out, which is a great
advance as all the images do not need to be labelled by
expert healthcare personnel, which was very costly. Con-
tinuing in this field, Chicco et al. [11] used these networks
for the annotation of genome information. This was a break-
through as existing databases of known gene functions are
incomplete and prone to errors. Through experiments with
gene annotation data, it could be shown that deep autoen-
coder networks achieve better performance than other data
reduction techniques, including the popular truncated singu-
lar value decomposition.

The use of these techniques is also very important in the
field of IoT. For example, wireless sensor networks (WSN)
are fundamental to the IoT by providing a bridge between
the physical and cyber worlds. Anomaly detection is a crit-
ical task in this context, as it is responsible for identifying
various events of interest, such as equipment failures and
undiscovered phenomena. In the work of Singapore Uni-
versity of Technology and Design [12], autoencoder neural
networks are introduced for the first time in WSNs to solve
the anomaly detection problem and demonstrated through
experiments to achieve high detection accuracy and low false
alarm rate. Our work will focus on these lines of research and
will be discussed in more detail in the next section.

Real-time monitoring of cloud resources is crucial for
many tasks, such as performance analysis, workload man-
agement, capacity planning and fault detection. Progress has
been made in monitoring and tracking systems in the cloud.
The challenges of Big Data in industry and the complex
working conditions of machines are raised and cloud-based
solutions are proposed. To limit computational costs and
ensure high reliability in capturing relevant load changes, an
adaptive algorithm for monitoring Big Data applications that
adapts the sampling intervals and frequency of updates to the
characteristics of the data and the needs of the administrator,
is presented by the work mentioned above.

We find cases in which the monitoring task becomes very
difficult due to very high sampling frequencies and high

computational cost, which leads to high economic and infor-
mationmanagement costs. A study has presented an adaptive
algorithm for monitoring Big Data applications that adapts
the sampling intervals and frequency of updates to the char-
acteristics of the data and the needs of the given applications
[13]. The adaptivity thus allows limiting computational and
communication costs; and ensures high reliability in captur-
ing relevant load changes. According to the researchers, this
algorithm improves the state of the art.

This real-time adaptive control algorithm consists of two
phases: a training phase for the evaluation of the best param-
eters for monitoring and an adaptive monitoring phase, the
central part of the algorithm. In the first phase, the monitored
data is analysed and a distinction is made between periods
of relative stability and periods of high variability. The idea
is to reduce the amount of monitored data when a resource
is relatively stable, and increase it during the phase of high
variability. In this way, the computational load is limited, and
at the same time we ensure that important changes in the sys-
tem are not lost. This algorithm works by dynamically fixing
two variables: the sampling interval and the variability. The
sampling interval determines the time that elapses from the
collection of two consecutive samples. The smaller the sam-
pling interval, the greater the number of data to be collected
and transmitted. Variability represents the deviation between
consecutive samples and is used to discriminate steady states
from variables.When it is low, themonitored resource is con-
sidered to be in a stable state.

According to a study presented in [14], conventional
detection approaches are based on statistical and time-
invariant methods, which do not allow addressing the com-
plex and dynamic nature of anomalies. With advances in
artificial intelligence and the growing importance of anomaly
detection and prevention in various domains, artificial neu-
ral network approaches are allowing the detection of more
complex types of anomalies, taking into account temporal
and contextual characteristics. Approaches using short-term
memory appear to be the most successful.

Along these lines, the Computer Science and Engineer-
ing Department of the University of Bologna and CINECA
have been researching for years to find solutions to anomaly
detection in large distributed systems such as supercomputers
or warehouse-scale computing. In their research work [15],
they proposed the use of autoencoders to detect anomalies.
In the training phase, both normal and anomalous examples
must be provided to ensure the success of the learning task.
The network must learn to correctly encode normal data
and this allows anomalies to be detected since an abnor-
mal data will not be encoded correctly and will produce a
high reconstruction error. This problem manage Big data
because to perform the task, data is handledusing theExamon
database in windows between 5s and 10s. In the case of this
work they used the data from the nodes of the D.A.V.I.D.E.

123



The International Journal of Advanced Manufacturing Technology

Fig. 1 Anomaly detection architecture used by the University of Bologna in the work [16]

(Development of an Added Value Infrastructure Designed
in Europe) supercomputer, extracting around 170 features,
i.e., the loads of the cores, temperatures, fan speed, power
consumption of complete nodes, consumption of individual
subcomponents, etc.

Once the autoencoder is trained, it can be used to process
the data in real time and detect anomalies using the recon-
struction error (input - output). This reconstruction error can
be calculated in different ways. The reconstruction error is
the difference between the output and the input. This differ-
ence is usually calculated per feature and then averaged (also
called normalised). Alternatively, the maximum error can be
used and in this work, interestingly, they chose that error,
after a preliminary exploration. If the corresponding error
is greater than a certain threshold, the data is classified as
anomalous, normal otherwise. To decide the threshold they
did a preliminary analysis in which they came to the con-
clusion that it was better to use a certain percentile of the
error distribution of the normal data set and by means of the
F-score determine the threshold.

They comment that the limitations of this system must be
taken into account, as it clearly limits the type of anomalies
that can be detected: events that last for periods shorter than
the aggregation timewindow (5min) and that donot leave any
trace or permanent damage will not be taken into account. In
addition, questions may arise, such as whether it is better to
have a model for each node in the cluster, where each model
is a particular neural network with its own hyperparameters,
or rather to have a single model that applies to each node.

The same research group later came up with another
broader study continuing with this [16] concept. The paper
discusses the possibility of extracting tags from a ser-
vice monitoring tool (Nagios), currently used by system
administrators managing supercomputers, to mark nodes

undergoing maintenance operations. This makes it possible
to automatically annotate the data collected by a monitoring
infrastructure and to use this tagged data to train and validate
a model for anomaly detection. In this case they have per-
formed the experimental evaluation on the level 0 production
supercomputer, Marconi-100, hosted at CINECA, Italy.

From this progresswe canhighlight that a newarchitecture
has been used, formed by two autoencoder neural networks,
using one to calculate the reconstruction error and the other
uses the latent layer (with the 430 input parameters) with a
classifier to determine whether or not it is anomalous. By
adding these two predictions, they say that the hit rate has
been greatly improved and, in addition, the insurgence of
anomalies can be predicted, with an average lead time calcu-
lated on historical traces of about 45min. A diagram of the
architecture used is shown in Fig. 1. This proposed technol-
ogy [17] can be easily scaled up to other types of systems and
thus be easily maintained. Regarding the use of a model for
each independent node or a general one for all nodes, they
point out that the difference obtained in hit rate has beenmin-
imal and although it is true that training a network exclusively
with data from a single node improves the hits, the compu-
tational load is much greater than training a single network
for all nodes. Therefore, they recommend using one model
for each node only in critical cases where there is sufficient
computational capacity.

3 Supercomputer virtual replica

Because of the number of components, the monitoring and
maintaining of the status of supercomputers is not a triv-
ial task. Along these lines, answers for this issue are being
looked for, figuring out how to control the states and to

123



The International Journal of Advanced Manufacturing Technology

Fig. 2 Marconi 100 architecture

anticipate potential errors. Moreover, supercomputers do not
have a similar architecture, despite the fact that they are fre-
quently comparable, and a specific solutionmust be designed
sometimes.

We are working with data from the nodes of the Marconi
100 supercomputer, provided directly by CINECA. We are
dealing with thousands of features stored in very short peri-
ods of time, less than a minute. These data will have to be
analysed and preprocessed before creating and training the
anomaly prediction model.

3.1 Marconi 100 supercomputer

Marconi 100 is comprised of 55 racks. Each rackhas 20nodes
inside it, as shown in the Fig. 2. Each node is composed of
2 x 16-core processors and 4 GPUs. As less relevant facts,
with a performance of 32 Pflop/s, it was the ninth largest
supercomputer in the world in 2020 and uses the Red Hat
Linux distribution as its operating system.

The data used in our study is extracted from an Exam-
onDB database. This is a CINECA database in which all the
supercomputer information is stored. Examples of this data
are temperatures of both the CPU cores and the GPUs of the
nodes, power, voltage and memory consumed by each CPU.
And one of the most important data for us is the status, which
indicates whether the node is working properly or has a prob-
lem. A value of 0 means that there are no problems and any
other value means that there is a problem. We can get this
kind of information thanks to the Nagios monitoring system
that is integrated in the supercomputer, and from which all
the data is logged.

Since it is a very large amount of data and we want to
facilitate its management, it is stored in a different file for
each node, that means 980 files. Apache Parquet file format
has been used because of its benefits. It is an open-source,
column-oriented data file format designed for providing effi-
cient data compression and performance. Each file is named
by the node name.

For each node we have 116 different metrics that are
updated at different time intervals ranging from several sec-
onds to minutes. Data from sensors, such as temperatures,
voltages or memory, are stored in the Examon database. On
the other hand, we have the log data provided by the Nagios
monitoring system. These features have been processed in
such a way that they have all been binned into time inter-
vals of about 15min. For each 15-minute interval, 4 features
have been extracted for each characteristic: the minimum,
the maximum, its mean and its variance. This allows us to
reduce the amount of data while maintaining the variability
and information produced by the data.

Wemust take into account the nature of the data andwhere
it comes from. In our case, we know that it comes from the
supercomputer and that it is sensor data at 15-minute intervals
between July 2020 and April 2021. After preprocessing, it
makes a total of 12,409 rows and 463 columns (features) for
each node. A basic and very necessary analysis when dealing
withmany similar variables is the search for linear correlation
between them, generating a correlation matrix. This results
in a graph in the form of a heat map where values close to 1
indicate a positive correlation between the pair, an increase
in the values of one variable is reflected in an increase in the
other variable. In case of having values close to -1 we can say
the opposite, when the value of a variable increases, the value
of its analysed pair decreases. Finally, if the correlation value
is close to 0 it means that there is no clear linear relationship
between these variables.

Looking at the heat map in Fig. 3 we can see some rela-
tionship between the variables. There is a clear positive
relationship between different system temperatures (both
CPUs and GPUs), which is logical, given that when the com-
putational load increases or decreases, it is distributed among
all the cores, as they are usually parallelizable processes. We
also observe that there is a correlation between the power sup-
ply and theGPU load, as these are power-hungry devices. The
power supply is also correlated with the speed of the fans, as
the more power the node consumes, the hotter it gets and the
faster the fans should be. Finally, we can see how CPU load

123



The International Journal of Advanced Manufacturing Technology

Fig. 3 Feature correlation
heatmap of one node

is positively correlated with frequencies and temperatures,
as these are controlled according to their needs.

After analysing the linear correlation between pairs of
variables we can say that there are many variables that con-
tain the same information. This can be clearly observed and
is to be expected in variables representing DIMM temper-
atures or fan speed. The main reason why this happens is
because each node is formed by many identical cores (with
the same devices, fans,memory, computational capacity) and
since most of the tasks performed in the supercomputer are
parallelized in several processes, we have a homogeneous
distribution of computational needs among the cores of the
node. This causes the sensor readings of the cores to be very
similar and therefore there is a high positive linear corre-
lation. Moreover, in metrics such as temperatures and fan
speed, it is easier to find this equality because they are vari-
ables that vary very slowlyover time aswell aswith variations
in the execution of CPU processes.

3.2 Anomaly predictionmodels

As we have seen before, supervised learning techniques
are often used to train anomaly detection models. But this
requires having a labelled and balanced dataset, as well as
being unbiased. This is not an easy task since it is not always
possible to generate labelled data from supercomputers and
a need emerges to force the occurrence of errors in order

to have more samples of anomalies. This approach is being
carried out but it cannot be our case as we can only use our
dataset.

Then, the possibility of using unsupervised learning
comes up, which only requires the data with its character-
istics but without labelling. During the training process the
model must use the data to classify in a way that allows us
to separate normal data from anomalous data. This is theo-
retically feasible but in practice does not give the expected
results as there are many other ways in which data can be
classified and can produce noise when classifying. Finally,
there is another hybrid method known as semi-supervised
learning, which uses labelled data to improve training but
does not require all data to be labelled. Using this technique
we can take advantage of the labels we have of normal and
anomalous data to select only the part we are interested in,
in our case the normal data. Next, a model can be trained
with all the data to learn which are the normal values of the
nodes. Using autoencoders, the reconstruction error of the
data will be used to decide whether a sample belongs to nor-
mal or anomalous data. Therefore, it has been decided to take
advantage of the latter approach to develop a system capable
of detecting future errors in the operation of the supercom-
puter nodes.

An autoencoder can be viewed as a set of constraints
that force the network to learn new ways of representing
the data, other than simply copying the output. A typical

123



The International Journal of Advanced Manufacturing Technology

Autoencoder

Samples

Reconstruc�on 
Error

Fig. 4 Data flow and reconstruction error using autoencoder

autoencoder is defined with an input, an internal represen-
tation (latent layer) and an output (an approximation of the
input). Learning takes place in the layers linked to the internal
representation. In fact, there are two main blocks of layers
that resemble a traditional neural network, the encoder and
the decoder. The slight difference is that the layer containing
the output must be equal to the input. The idea is to pass the
data as input and have it learn to reconstruct it from com-
pressed data that retains maximum data variability. Passing
as input only the node data at an instant in time would make
it very difficult to detect an anomaly from the reconstruction
error since anomalies tend to occur progressively over time,
meaning that one of the most important factors to take into
account is the difference between the data at one instant in
time and the previous ones, not just the absolute value.

Therefore, a variation of the classical autoencoder is pro-
posed in which instead of passing only the node data at one
time instant, the input is the data from several consecutive
time instants. The data collected from the old D.A.V.I.D.E.
supercomputer [15] and the current Marconi 100 supercom-
puter suggest that symptoms of a possible error may appear
up to two hours before it occurs. So considering that each
sample is collected in a 15-minute time interval, it has been
decided to introduce 10 samples as input, which represents
a window of 2.5h. In this way, the network can take into
account data from a larger time region and detect patterns to

predict the current time instant. The error between this pre-
diction and the actual data, known as reconstruction error,
will allow us to discriminate between normal and anomalous
values, as shown in the Fig. 4.

To train this network correctly, we have to work exclu-
sively with data in the form of time series, not being able
to shuffle the data in any way to separate the training and
validation set. This forces us to maintain the temperate order
of the samples and to detect possible time jumps between
data (when a node stops due to an error, we no longer have
information about it). In fact, we have preprocessed the data
looking for those temporary spaces without data, sectioning
them and generating a list with dataframes of consecutive
samples. This produces one more dimension but allows to
generate inputs of blocks of 10 consecutive samples without
errors.

Therefore, the data have been separated into three sets.
Onewith the sequence to be used for trainingwhichwill have
the first 80% of the data. Another one with the next 10% that
will be used as validation to take the best cut-off threshold
for the reconstruction error of each model. And finally, the
last 10% of the data set will be used to evaluate the best
selected model with the validation data. Once the model and
the parameters to be used have been defined, we move on
to the training phase, which can be done in different ways.
We will test the two approaches described in the University
of Bologna article [15] on anomaly detection: a first one,
in which we train a single model with all the data. And a
second one that will train a model for each of the nodes. In
this particular case we have to take into account that we are
dealing with time series and forecasting events. This makes
it even more difficult to evaluate the predictions. We know
that an anomaly can be predicted minutes before it occurs,
so we have to evaluate the predictions by analysing future
samples in a given time window to know with more certainty
whether an early anomaly prediction is a false positive or an
anomaly detected well in advance. It is difficult to define a
methodology to address this issue, but knowing that system
failures have been predicted up to 50min in advance [16]. It

Fig. 5 Autoencoder with LSTM
encode layers

Input 10 x 462 LSTM 10 x 32 LSTM 16 Dense 32 Dense 462

Encoder DecoderLatent space

123



The International Journal of Advanced Manufacturing Technology

Input 10 x 462 Dense 10 x 32 Dense 16 Dense 32 Dense 462

Encoder DecoderLatent space

Fla�en 320

Fig. 6 Autoencoder with Dense encode layers

was decided to use a window of 45min (3 samples after the
prediction) to check whether or not there is an error detected
and therefore the anomaly is a true positive.

In this case, we will train a single autoencoder with data
from many nodes. Taking into account that each node has
about 12,000 samples and that our computational and mem-
ory capacity is limited, it has been decided to use data from
75 randomly chosen nodes. This makes a total of almost 1
million samples, 80% of which were used for training and
20% of which were used for testing. This is enough data so
that this is not a problem and we do not have to look for a
more powerful machine to train the model. The encoder is
made up of LSTM layers as shown in the Fig. 5.

As a second approach, we propose to use the same autoen-
coder but with dense layers instead of LSTM. Dense layers
are those inwhich all the neurons are connected to all the neu-
rons of the next layer. This type is more effective and generic
in terms of information processing because each neuron has
more data to process, but at the same time it takes more time
in processing the data. Figure6 represents this model with
dense layers.

3.3 3D virtual replica

Data visualisation and the way in which data is displayed
is a very important part of analysis and decision-making,
especially when dealing with complex systems and many
variables,whichoften haveno trivialmeaning. In this respect,
a correct way of visualising data can greatly improve the task
of working with this information. There are already cases
where augmented reality applications are used to visualise
data from industrial systems [18], making it easier for main-
tenance personnel to perform their tasks.

In this case, real data from a supercomputer has been used
to create a virtual replica of it fromwhich important data from

all the nodes can be observed, something that would greatly
facilitate the work of maintaining the system, given that the
supercomputer nodes barely show any information through
their physical interface (they only have a couple of lights
that indicate the state of the current, data transfer). A virtual
replica gives us the great advantage of being able to represent
any type of data and graphics for each node, maintaining the
3D spatial structure of the nodes and racks of the system.
This visual similarity between the real system and the virtual
replica will greatly facilitate the task of reading data and
contextualising it.

For this purpose, the visualisation and 3D graphics cre-
ation library VTK (Visualization Toolkit) for Python has
been used. This library allows the import and visualisa-
tion of three-dimensional meshes, as well as the creation of
3D graphics from data and primitives (planes, cubes, texts).
Therefore, a pipeline can be created that processes the data
chosen from each core and processes them to display them
in a 3D environment very similar to the real one.

The library is organised in such a way that each class
implements a very specific functionality within the pipeline.
In addition, everything can be structured in a few object cat-
egories. So the VTK visualisation pipeline consists of the
following parts:

• Sources, used to read raw data.
• Filters can then be used tomodify, transform and simplify
that data.

• Mappers are responsible for creating tangible objects
with the data.

• Actors, which are responsible for encapsulating these
objects in a common interface that has many freely
modifiable properties. These Actors are the ones that are
passed to our renderer to show them in the scene.

123



The International Journal of Advanced Manufacturing Technology

Source Filters Mapper Actors Renderer
Window

Fig. 7 VTK pipeline of the virtual replica

A diagram is shown in Fig. 7. In addition to all this, other
much more specialised classes can be created that allow
us to develop a more interactive environment, among other
things. In this case, we used this to create keyboard shortcuts
that we use to move around the time axis when displaying
data.

The reading of data, used to create source objects, requires
a lot of computing time, so it is interesting to parallelize the
process. And in this case it is very easy to do so, as the data
for each node is in a separate file and inside Python we store
it in an individual table. So we have used an instance of Pro-
cessPoolExecutor from Python’s concurrent.futuresmodule,
which creates as many threads as nodes we have to read and
handles them automatically depending on the capacity of our
CPU. Doing this, it was managed to triple the loading speed,
using my PC that only has 6 cores.

Creating the 3D model within VTK is easy thanks to the
vtkSTLReader class, which allows us to import 3D files in
STL format. In this way, Marconi 100 3D models provided
by the CINECA visualisation team have been used. VTK
library offers different classes that are responsible for carry-
ing out different parts of the process. VTK objects has been
created and the information has been injected from Pandas
Data Frames. These source objects are in charge of trans-
forming the data introduced as input (integers, floats, vectors)
into a format understood by the rest of the objects in the VTK
pipeline. Once this is done, we proceed to create themappers.
Each mapper is different for each type of representation we
want to make, for example, there is a spatial mapper for text,
heat maps, three-dimensional primitives or images. These
mappers are given a reference to the source object with the
data to be used, so if the source object is modified, the map-
per will also modify the visualisation as it updates the input
data. Finally, an actor has been created for each of thesemap-
pers. This actor encapsulates that visualisation or object and
gives us the possibility to apply transformations to it in the
environment. For example, we place the actor with the infor-
mation of each node in the corresponding location taking into
account the 3D model of the supercomputer. We also scale
each one since, for example, we want to have larger texts
(such as those indicating the name of the rack) and smaller
ones.

An environment was created with the 3D model of the
supercomputer at a scale of 1:1, with a square-shaped label to
indicate the status of each node, using a colour (green if there
are no errors, red if there is an error and grey if there is no data
at that instant of time). To locate and position the elements in
the three-dimensional space, it is necessary to know the loca-
tion of each node of the supercomputer. A function has been
created to calculate the position in space of a given node. This
function uses the distances between racks and nodes, as well
as taking into account the number of rows and the distribu-
tion of the racks in the room, returning the 3 coordinates of
the particular node. It started to develop this first simple but
functional version of the replica during my stay at CINECA.

An actor2D has also been created in which the day and
time of the information being displayed is shown. An object
of class vtkTextMapper is connected to this actor, which
allows us to enter and modify the date in text format. In addi-
tion, all actors allow us to modify their size and colour. This
functionality has been used to make the informative white
text at the top of the screen, so that it stands out against the
dark background. The 3D version of the textMapper has also
been used to place three-dimensional labels on top of each
rack indicating its name, as well as a text showing the con-
sumption, in watts, of each of the nodes. The colour of this
text varies according to its value. The next funcionality that
has been added is the temperatures of the CPUs and GPUs.
This visualisation is not trivial and we need to be very aware

Fig. 8 Visualisation of the parts of one node

123



The International Journal of Advanced Manufacturing Technology

Fig. 9 VR view of the scene

of the nature of this data to be able to represent it. On the
one hand, we have two processors with 16 cores each. This
makes a total of 32 temperature values at each time instant
since we have one value per core. On the other hand, at each
node there are four graphics cards of which we have one
temperature value per graphics card. Missing data is painted
with a translucent grey colour.

As one of the purposes of this virtual replica is to be used
as an industrial tool to detect possible failures in high perfor-
mance systems, one of themost interesting things we can add
to the visualisation is the real-time prediction of our anomaly
detection models. For this reason, a red exclamation mark
has been created using the vtkVectorText and vtkTextMapper
classes. In the mapper object we have stored the polygo-
nal information of the symbol. To optimise the loading of the
scene, we will use the same object for each of the nodes. This
is done by creating an actor (vtkActor) every time we need to
put the symbol in a node, but always passing the reference of
the same mapper as a parameter. This way, we save memory
and computation as the scene is very cluttered with all kinds
of objects in large quantities. Therefore, we have created a
function that we call at each time instant asking for anoma-
lies in the nodes. This function queries the predictions made
for that time instant and if an anomaly has been predicted
we will add the exclamation mark to the node in question.
In our case, the function queries the predictions previously
made because we do not have access to the data in real time
and we have had to make a simulation of the performance. In
a real case, we would call the prediction model with the data
from that time period and the previous ones and wait for its
prediction. Figure8 shows the parts that make up a node.

3.3.1 Virtual reality integration

The VTK library enables the creation of virtual and aug-
mented reality environments. The developers themselves

explain in the paper [19] which are the guidelines to fol-
low in order to avoid problems in development. It is also a
library widely used by the scientific community to visualise
virtual reality simulations [20].

In order to create a virtual reality environment with this
library the OpenVRmodule is needed, which adds new Ren-
der VTK classes that inherit from the default ones and adds
the connection with the OpenVR library. This module is dis-
abled by default because it uses the OpenVR library which in
turn can use other libraries such as the Oculus SDK, and this
can cause problems. It is convenient to know that in order
to run the virtual replica it is necessary to have SteamVR
installed, which is the software that manages OpenVR. The
easiest way to activate the VTK virtual reality module is to
install the Para View program, which apart from bringing
a Python interpreter installed with the Pandas, NumPy and
VTK libraries, allows us to modify the last one, thus easily
activating the modules we require.

Based on the version of the virtual replica seen above, it
has been modified to allow it to run in a virtual reality envi-
ronment. Aswewant to be able to visualise it both on a screen
and with a virtual reality device, it has been developed with
an architecture that allows to modify only the code related
to the visualisation and interaction of the environment, keep-
ing the logic and data representation part intact. We have a
parameter that indicates whether we want to run the environ-
ment with the default render classes (OpenGL for screens)
or the render classes of the OpenVRmodule (virtual reality).
In addition to changing the render objects, there are a cou-
ple of things to change that are related to the interaction you
have in VR. Now, to move around the scene, the jostick of
the VR device controller can be used. Instead of the day and
time label being displayed in two dimensions at the top of
the screen, when you are in the virtual environment it is dis-
played as three-dimensional text on the ceiling of the room.
These are little things that make the user experience greater
when viewing in virtual reality.

123



The International Journal of Advanced Manufacturing Technology

The movement around the scene as implemented in VTK
for OpenVR, you can move around in two different ways:
with the jostick as mentioned before or by physically mov-
ing yourself around the environment, using the motion data
captured by the headset to update your position within the
virtual environment. If you have a large space it can be very
useful to move around to check the nodes.

In Fig. 9 we can see a frame of the view of the environment
using the virtual reality headset. The VTK library detects the
controllers and shows them in the scene, this is very useful
because in order to performactions, it is sometimes necessary
to know where the controller is located. In our case we only
need it to navigate through the VTK menu. In this menu we
are allowed to close and open the environment, and decide
how we want the interaction to be: it can be a first person
movement using the jostick (the default setting) or moving
the 3D models by grabbing and dragging them (in third per-
son). In this kind of environment, the first option is definitely
the best. The second option ismore suitable for environments
with small objects that we can manipulate in a limited space.

Regarding the performance of the virtual reality environ-
ment, it consumes more resources than the desktop version.
Having to render somany objects andmake calculations such
as heatmap gradients can really overload the CPU and GPU.
In our case we have a relatively powerful desktop computer
and even without displaying data from all the nodes it has a
less than optimal performance. On average we get 30 FPS,
when the recommended performance for any virtual reality
system is at least 50 FPS. If we wanted to take this tool to a
industrial use, we would need a very powerful computer or
make some simplifications and improvements in terms of the
visualisations of some data such as temperatures.

4 Results and discussions

Once the different models have been trained and tested on the
same data, we can compare their results.Wewill test 3 differ-
ent reconstruction errors: (1) the total reconstruction error,
the sum of all the differences of the variables, (2) the maxi-
mum reconstruction error, maximum difference between the
prediction of a variable and the actual value and (3) the mean
squared error, which is the average of the squared differences
of each variable. We use these errors to define a threshold
from which to predict normal and outliers. To assess the per-
formance of thresholds and errors we use the F-score metric.
There are different ways to calculate the F-score, we can look
at the F-score of a specific class, the average F-score of all
classes or theweighted F-score, where classeswithmore data
are more important. To establish this threshold, different val-
ues have been tested and evaluated with these metrics until
the best one is found, testing error thresholds ranging from
the 70th percentile of the normal data to the 100th percentile.

Fig. 10 Comparison of the average F-score values obtained using total
absolute error, maximum error and mean squared error as thresholds
to make anomaly predictions. It was evaluated with test error thresh-
olds ranging from the 70th percentile of the normal data to the 100th
percentile

In Fig. 10 we can see the different average F-scores
obtained when separating the data with different thresholds
and reconstruction errors. We can see that we have very sim-
ilar values for the different errors when using low percentile
thresholds, below 90. On the other hand, the best F-scores are
obtained when taking the 99th percentile as the threshold for
the total error, and the 95th percentile approximately, for the
maximum error and the mean square error. Is worth noting
that the results obtained with the LSTM layer model and the
dense layer model are very similar, so we cannot draw any
conclusion about which of the two models is better with this
metric alone.

Figure11 shows the F-scores obtained using different
errors as thresholds for the models trained on single-node
data. We see how the mean square error, together with the
total error, obtain on average higher F-scores. We can say

123



The International Journal of Advanced Manufacturing Technology

Fig. 11 Anomaly class F-score, average and weighted F-score box plot
of all the node models with test data. Each point represents the score
obtained by one node model

that, as detailed in previous studies, the use of one model
per node gives better results. This means that there are dif-
ferences in the anomalous behaviour of the nodes that single
autoencoders for all nodes have not been able to interpret
with the available data and this results in very low accuracy.

Moreover, comparing the performance of autoencoders
with LSTM layer and dense layer encoders gives us an idea
that the data at different time instants have a relationship that
improves the prediction of anomalies.We realise this because
the LSTM layer models have performed better when using
their new features, such as feedback connections.

5 Conclusions

In this paper we proposed and tested some techniques to
forecast anomalies in supercomputers by using deep learn-
ing techniques that permit a preventive maintenance. For
this purpose, a sequence of data from the Marconi 100
supercomputer was analysed and processed, and different
autoencoder models were trained to encode and decode the
samples with the expected values from the supercomputer
nodes. Among all the tests performed, the best result has
been to train an autoencoder model with LSTM layers for
each supercomputer node and to use the reconstruction MSE
as a threshold to decide whether to classify the sample as nor-
mal or anomalous. After having entered and evaluated 240
models with their corresponding node data, the obtained

weighted average F1 score is 0.98 for all the different recon-
struction errors. Thesemodels can be used by supercomputer
workers to perform preventive maintenance work, thus facil-
itating the detection of errors in the nodes.

In the second part of the paper, we have created a vir-
tual replica of the supercomputer in which we can see the
most important information of each node for an instant of
time. This environment has been modelled as an industrial
tool for professionals working on these high-performance
systems. Among the features of the environment, it is worth
mentioning that it allows the use of virtual reality devices,
something that has not been integrated into CINECA’s main-
tenance tools to date. This improvement will help to visualise
the data remotely by simulating the real appearance of the
supercomputer.

The parameterised creation of the entire pipeline makes
it perfectly compatible to work with other high-performance
systems. Only some modifications and improvements would
be needed to make it fit the form and data of another type of
system.

Acknowledgements Wewould like to thank “AwayofmakingEurope”
European Regional Development Fund (ERDF) andMCIN/AEI/10.130
39/501100011033 for supporting this work under theMoDeaAS project
(grant PID2019-104818RB-I00). Furthermore, we would like to thank
the University of Skövde and to ASSAR Innovation Arena for their
support to develop this work.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Data Availability Not applicable.

Code Availability Not applicable.

Declarations

Ethics approval Authors agree with paper publication and consent to
it. There are not ethical issues with the work.

Consent to publish The publisher has the permission of the authors to
publish the given article.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


The International Journal of Advanced Manufacturing Technology

References

1. Zamora-Hernández M-A, Castro-Vargas JA, Azorin-Lopez J,
Garcia-Rodriguez J (2021) Deep learning-based visual control
assistant for assembly in industry 40. Comput Ind 131:103485.
https://doi.org/10.1016/j.compind.2021.103485

2. Villalba-Diez J, Schmidt D, Gevers R, Ordieres-Meré J,
Buchwitz M, Wellbrock W (2019) Deep learning for industrial
computer vision quality control in the printing industry 4.0. Sen-
sors 19(18):3987

3. Angelopoulos A, Michailidis ET, Nomikos N, Trakadas P,
Hatziefremidis A, Voliotis S, Zahariadis T (2020) Tackling faults in
the industry 40 ERA-A survey of machine-learning solutions and
key aspects. Sensors 20(1). https://doi.org/10.3390/s20010109

4. Sakellariou R, Buenabad-Chávez J, Kavakli E, Spais I,
Tountopoulos V (2018) High performance computing and industry
4.0: Experiences from the disrupt project. pp 218–219. https://doi.
org/10.1145/3229631.3264660

5. Hoe M, Dargham J (2020) High Performance Computing
(HPC) applications in industry 4.0 (i4.0) for the betterment
of humanity. In: 2020 IEEE 8th R10 Humanitarian Technol-
ogy Conference (R10-HTC). pp 1–6. https://doi.org/10.1109/R10-
HTC49770.2020.9356990

6. Kamat P, Sugandhi R (2020) Anomaly detection for predictive
maintenance in industry 4.0-a survey. In: E3SWeb of Conferences,
vol 170. EDP Sciences, p 02007

7. Stojanovic L, Dinic M, Stojanovic N, Stojadinovic A (2016) Big-
data-driven anomaly detection in industry (4.0): An approach and
a case study. In: 2016 IEEE International Conference on Big Data
(Big Data). pp 1647–1652. https://doi.org/10.1109/BigData.2016.
7840777

8. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9:1735–80. https://doi.org/10.1162/neco.1997.9.
8.1735

9. HintonGE, SalakhutdinovRR (2006) Reducing the dimensionality
of data with neural networks. Science 313(5786):504–507

10. Chen M, Shi X, Zhang Y, Wu D, Guizani M (2021) Deep feature
learning for medical image analysis with convolutional autoen-
coder neural network. IEEE Trans Big Data 7(4):750–758. https://
doi.org/10.1109/TBDATA.2017.2717439

11. ChiccoD, Sadowski P,Baldi P (2014)Deep autoencoder neural net-
works for gene ontology annotation predictions. In: Proceedings of

the 5th ACM Conference on Bioinformatics, Computational Biol-
ogy, and Health Informatics. pp 533–540

12. Luo T, Nagarajan SG (2018) Distributed anomaly detection using
autoencoder neural networks inWSN for IoT. In: 2018 IEEE Inter-
national Conference on Communications (ICC). pp 1–6. https://
doi.org/10.1109/ICC.2018.8422402

13. Andreolini M, Colajanni M, Pietri M, Tosi S (2015) Adaptive,
scalable and reliable monitoring of big data on clouds. J Parallel
Distrib Comput 79:67–79

14. Lindemann B, Maschler B, Sahlab N, Weyrich M (2021) A survey
on anomaly detection for technical systems using LSTM networks.
Comput Ind 131:103498. https://doi.org/10.1016/j.compind.2021.
103498

15. Borghesi A, Bartolini A, Lombardi M, Milano M, Benini L (2019)
A semisupervised autoencoder-based approach for anomaly detec-
tion in high performance computing systems. Eng Appl Artif Intell
85:634–644. https://doi.org/10.1016/j.engappai.2019.07.008

16. Borghesi A, Molan M, Milano M, Bartolini A (2022) Anomaly
detection and anticipation in high performance computing systems.
IEEETrans ParallelDistrib Syst 33(4):739–750. https://doi.org/10.
1109/TPDS.2021.3082802

17. Borghesi A, Bartolini A, Lombardi M, Milano M, Benini L (2019)
Anomaly detection using autoencoders in high performance com-
puting systems. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol 33. pp 9428–9433

18. Subakti H, Jiang J-R (2018) Indoor augmented reality using deep
learning for industry 4.0 smart factories. In: 2018 IEEE 42nd
Annual Computer Software and Applications Conference (COMP-
SAC), vol 02. pp 63–68. https://doi.org/10.1109/COMPSAC.2018.
10204

19. O’Leary P, Jhaveri S, Chaudhary A, Sherman W, Martin K, Lonie
D,Whiting E,Money J,McKenzie S (2017) Enhancements toVTK
enabling scientific visualization in immersive environments. In:
2017 IEEE Virtual Reality (VR). IEEE, pp 186–194

20. Kok AJ, Van Liere R (2007) A multimodal virtual reality inter-
face for 3D interaction with VTK. Knowl Inf Syst 13(2):197-
219

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.compind.2021.103485
https://doi.org/10.3390/s20010109
https://doi.org/10.1145/3229631.3264660
https://doi.org/10.1145/3229631.3264660
https://doi.org/10.1109/R10-HTC49770.2020.9356990
https://doi.org/10.1109/R10-HTC49770.2020.9356990
https://doi.org/10.1109/BigData.2016.7840777
https://doi.org/10.1109/BigData.2016.7840777
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TBDATA.2017.2717439
https://doi.org/10.1109/TBDATA.2017.2717439
https://doi.org/10.1109/ICC.2018.8422402
https://doi.org/10.1109/ICC.2018.8422402
https://doi.org/10.1016/j.compind.2021.103498
https://doi.org/10.1016/j.compind.2021.103498
https://doi.org/10.1016/j.engappai.2019.07.008
https://doi.org/10.1109/TPDS.2021.3082802
https://doi.org/10.1109/TPDS.2021.3082802
https://doi.org/10.1109/COMPSAC.2018.10204
https://doi.org/10.1109/COMPSAC.2018.10204

	Anomaly detection and virtual reality visualisation in supercomputers
	Abstract
	1 Introduction
	2 Anomaly detection: concepts and literature review
	3 Supercomputer virtual replica
	3.1 Marconi 100 supercomputer
	3.2 Anomaly prediction models
	3.3 3D virtual replica
	3.3.1 Virtual reality integration


	4 Results and discussions
	5 Conclusions
	Acknowledgements
	References


