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Abstract

Features extraction has a fundamental value in enhancing the scalability and adaptability n of medical image processing
framework. The outcome of this stage has a tremendous effect on the reliability of the medical application being developed,
particularly disease classification and prediction. The challenging side of features extraction frameworks, in relation to medical
images, is influenced by the anatomical and morphological structure of the image which requires a powerful extraction system
that highlights high- and low- level features. The complementary of both feature types reinforces the medical image content-
based retrieval and allows to access visible structures as well as an in-depth understanding of related deep hidden components.
Several existing techniques have been used towards extracting high- and low-level features separately, including Deep Learning
based approaches. However, the fusion of these features remains a challenging task. Towards tackling the drawback caused
by the lack of features combination and enhancing the reliability of features extraction methods, this paper proposes a new
hybrid features extraction framework that focuses on the fusion and optimal selection of high- and low-level features. The
scalability and reliability of the proposed method is achieved by the automated adjustment of the final optimal features based
on real-time scenarios resulting an accurate and efficient medical images disease classification. The proposed framework
has been tested on two different datasets to include BraTS and Retinal sets achieving an accuracy rate of 97% and 98.9%,
respectively.

Keywords Features extraction - Deep learning - High-level features - Low-level features - Optimal features fusion.

1 Introduction The analysis of medical images has been considered as chal-
lenging and time-consuming task, particularly, for doctors
and specialists. Improving the early diagnosis of a medical
disease presents a serious challenge for them. To cope with
this problem, medical field is being in a massive progress
to improve existing physiological analysis methods as well

as medical machines for early disease detection and predic-

Medical image processing is a challenging step towards the
efficiency enhancement of disease detection and diagnosis.
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tion. This topic has gained a great importance in medical
innovative research, as a result it becomes an inner area for
researchers including different specialities such as doctors,
computer and data scientists to use medical images in several
applications.

One of the interesting stages in image processing is
the medical image content-based retrieval. The compli-
cated composition of medical images makes the information
extraction a challenging step. Features extraction represents
an important stage towards providing relevant image content-
based to result efficient medical application, for example,
disease detection, medical analysis, disease prediction, ...etc.
Each medical application is reflected by a focus area, namely,
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Region of Interest (Rol), which contains most of the needed
features to accurately accomplishing the target task, e.g.,
classification.

In recent years, Artificial Intelligence (Al), approaches
particularly Deep Learning (DL), have evolved significantly
due to the improvement in the processing capacity of com-
puters and the accumulation of big data Arel et al. (2010).
DL proved a strong ability to identify meaningful relation-
ships in raw data, which justifies its application to support
diagnosing, treating, and predicting outcomes in many med-
ical situations. DL approaches, have already proven their
capability that has outperformed human capabilities in med-
ical applications particularly in diagnosing and predicting
diseases development. DL proved a strong ability to iden-
tify meaningful relationships in raw data, which justifies its
application to support diagnosing, treating, and predicting
outcomes in many medical situations. DL is transforming the
practice of medicine; it is helping doctors diagnose patients
more accurately, make predictions about the patient’s future
health, and recommend better treatments Ravi et al. (2016);
Litjens et al. (2017).

DL approaches present key-methods for several medical
applications including decision making, disease stage track-
ing, disease detection, disease diagnosis and analysis, ...etc.
DL networks have shown a high sensitivity and accuracy
for the detection of several diseases including breast cancer
Yala et al. (2019), brain tumour Zhao et al. (2018), Diabetic
Macular Oedema (DMO) Tang et al. (2021), ...etc. Its appli-
cation, particularly for features extraction, has helped into
controlling the progress of these diseases by improving the
early detection. Figure 1 represents a diagram summarising
the impact of DL on medical applications.

Based on the presented diagram, the application of DL
approaches has also increased the scalability and relia-
bility of the features’ extraction methods. Convolutional
Neural Network (CNN) represent one of the most used

architectures in features extraction Razzak et al. (2018),
in addition to Multilayer Perceptron (MLP) Lai and Deng
(2018). The implication of Al at this processing stage has
shown a great improvement in the outcome of the classifica-
tion and prediction tasks which represents a challenging area
in medical imaging.

Despite the integration of DL in medical image process-
ing, traditional features extraction methods have also been
applied alongside it. Particularly, salient and semantic fea-
tures are one of the important extracted features in medical
images Gao et al. (2021); Conghua et al. (2006). These fea-
tures have been used in several applications such as images
fusion, and image content-based retrieval. Yoan et al. pro-
posed a medical images fusion method based on salient
feature extraction using Particle Swarm Optimisation (PSO)
optimized algorithm and the fuzzy logic Gao et al. (2021).
The suggested salient features extraction method is based
on the non-subsampled shealet transform (NSST), where the
latter helps into reducing the computational complexity of
the approach. The image fusion process is based mainly on
the extraction of low- and -high frequency sub-bands fea-
tures through the fuzzy logic and uses the PSO algorithm
for optimization. The proposed method has been tested on
eight pairs of gray scale and five pairs of colour multimodal
medical images.

The amount of the testing set is considered very low in
order to validate the suggested method. Subsequently, this
limits the scalability of its application in real-time scenar-
ios. Semantic features have also been applied by Conghua
et al. (2006). Their method is based on the space density
function, where they enhanced the original method which
used Bayesian Belief network (BNN) Peng and Long (2001);
Conghua et al. (2005). The main idea is to transform the
medical images from gray-scale to density function space.
Their method has been tested on 400 pieces of images cov-
ering head, chest, abdomen and limbs of human bodies. The
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outcome precision of their method reflects a good image
retrieve performance achieving 88.8%. One of the drawbacks
presented by this method is the non-consideration of coloured
dataset and the limited number of validation images. Simi-
larly to Conghua et al. (2006), this leads to the scalability
problem. Add to that, based on Gao et al. (2021); Conghua
et al. (2000), salient features extraction is mainly dependent
on labeled datasets, which decrease its reliability and respon-
siveness in case of unlabeled input samples. That is, these
irregular features are not efficient in such scenarios. There-
fore, in this work, the main focus is on the regular features
categorized as high- and low-level features. Many classical
and recent methods have been proposed to solve the fea-
tures extraction step. Some of these methods consider single
feature usage, such as texture, some others contemplate a
combination of different feature levels.

In this paper, a new features extraction framework is pro-
posed. The first contribution of the method is to select the
optimal features combination according to the input dataset.
The fusion involves two main types of features including
high-level and low-level features. The second contribution of
the proposed extraction tool is the integration of a new auto-
mated hybrid deep network for deep features extraction. The
massive enhancement of the resulted classification is dedi-
cated to the resulted optimal features fusion. The structure
of the paper is as follows:

e The first section covers the related features extraction
works.

e The second section highlights the identified problems.

e The following section details the suggested features
extraction methodology where a deep explanation of the
different types of features considered in this work, add to
the features weighting and fusion stages, and finally the
experimentation and evaluation done.

e The paper ends with a conclusion and further future
directions.

2 Related Works

Medical image features extraction presents an important
step towards resulting highly accurate analysis related, for
instance, to disease detection, classification, and prediction.
Extracting reflective features reinforce the efficiency rate of
these particular applications. Features are categorised as two
main types: High level Features (HF) and Low-level Fea-
tures (LF) Chowdhary and Acharjya (2020). HF features,
in particular, include texture, shape, and colour features.
These features represent the fundamental features that can
be extracted from medical images Mutlag et al. (2020). LF
features, also named Deep Hidden Features (DHF), cover

the low-level characteristics of a medical image. These
include hidden information reflecting important analysis and
leading to enhancing the diagnosis reliability Jeyakumar and
Kanagaraj (2019).

In this context, several proposed features extraction frame-
works have been applied to address both HF and LF
extraction issues. However, these related works still outline
some drawbacks in terms of the deployment of these features
Huergaetal. (2021); Hazarika et al. (2021); Tsai et al. (2017);
Rundo et al. (2019, 2021); Kavya and Padmaja (2017); Xiao
et al. (2013); Zewail and Hag-ElSafi (2017); Liu and Shi
(2011); Minggiang et al. (2008).

HF and LF features, in particular, are considered the main
point of interest in several features extraction methods. Mul-
tiple challenges have been highlighted in the literature to
include: (1) testing models using different dataset sizes and
complexities, (2) using different types of datatset to convey
coloured and gray-scale based images, (3) potential of vali-
dating models using real-case scenarios, (4) testing features
extraction systems responsiveness to multiple cases, and (5)
the lack of sufficient extracted features in some particular
scenarios.

The size of datasets applied for features extraction experi-
mentation has an impact on the complexity of the framework
outcomes. Hence, considering different dataset sizes is of
great importance in experiments validation. In fact, Tahira
et al. evaluated their DL-based method over challenging
datasets, namely, APTOS-2019 and IDRiD Nazir et al.
(2021). Both datasets have different sizes and complexi-
ties, hence the difference in the validation performances of
the same model. Similar impact has been highlighted in the
content-based image retrieval system proposed by Lin et al.
(2009). The use of different sets of data, covering multiple
aspects, proved the importance of such consideration in fea-
tures extraction based models to achieve 99.2% accuracy
(Acc), 72.7% average precision, and 50% average recall.
That said, this factor has not been considered in several
proposed features extraction frameworks. Despite the use
of complex datasets, these methods lack the dataset exper-
iments validation which, as a result, impact the reliability
of such methods. For instance, a supervised Support Vec-
tor Machine (SVM) based features extraction model has
been suggested by Xiao et al. (2017), providing a good
model performance validation. Similar approach has also
been proposed by Janakasudha and Jayashree (2020), how-
ever, different dataset has been used. Considering the same
extraction method,both works proved different validation
performances which, as a result, stresses the importance of
considering size and complexity of datasets when it comes to
building a reliable model Janakasudha and Jayashree (2020);
Xiaoetal. (2017). Moreover, considering the aforementioned
factor will potentially add a scalablility factor to the resulted
model.
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Medical images can be presented in different morpho-
logical manners. These multiple representations could also
impact the final outcome of the features extraction frame-
work. Considering the latter, medical images types to convey
coloured and gray-scale based images, have tremendous
effect on the processing stage. Features, to include HF and
LF, vary from one medical image type to another. In fact,
coloured based images are a source of colour features which
gray-scale based images lack of. Texture and shape features,
on the other hand, can be extracted from both image types,
however, some of these researches ignore the importance of
coloured based datasets, instead focusing mainly on gray-
scale medical images Huerga et al. (2021); Tsai et al. (2017);
Rundo et al. (2019, 2021); Xiao et al. (2013); Zewail and
Hag-FElSafi (2017); Janakasudha and Jayashree (2020); Xiao
et al. (2017); Altaf et al. (2017); Howarth and Riiger (2004);
Dara et al. (2018); Madusanka et al. (2019). This can be jus-
tified by the cost of considering coloured medical images,
however, this has a drop impact on the reliability and scal-
ability of these methods. In fact, as proposed by Liu et al.
(2020). the consideration of two types of datasets gives the
model a free-spcae to interpret HF and LF features; thus,
removing the interpretability as a major challenge. This, how-
ever, was not the case for exiting features extraction models
that focused mainly on texture and shape features extraction
Madusanka et al. (2019); Janakasudha and Jayashree (2020);
Xiao et al. (2017). Despite achieving interesting results in
terms of accuracy, sensitivity, and specificity, these methods
lack of the consideration of coloured based medical images
dataset, hence, the non-scalability of their proposed model.
DHF based features extraction frameworks also have been, in
multiple instances, part of the above challenges particularly
when it comes to processing medical images such as Comput-
erised Tomography (CT) and Magnetic Resonance Imaging
(MRI) scans proposed respectively by Dara et al. (2018), Liu
et al. (2020), and Janakasudha and Jayashree (2020). How-
ever, despite the consideration of coloured based medical
images dataset, DHF extraction can also lack the importance
of features that can be extracted through gray-scale based
datasets Nazir et al. (2021). Hence, its lack of reliability and
scalability as per the above.

The potential use of features extraction frameworks on
real-case scenarios also make several proposed methods
under the question of their responsiveness, reliability and
scalability towards particular testing experiments Altaf et al.
(2017); Howarth and Riiger (2004); Liu et al. (2020). The
consideration of multiple inquires helps in evaluating the
consistency of the proposed model. Altaf et al. (2017),
for instance, considered multiple techniques combinations.
However, no experimental setup has been in place to cover
multiple scenarios, hence, the lack of sufficient features
extraction. Similar experimentation approach has been con-
sidered by Howarth and Riiger (2004), which limited their
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evaluation mechanism leading to a drwaback in considering
multiple features combinations, to include HF and LF, hence
the importance of features fusion.

Texture features have been the interest point of several
features extraction frameworks proposed in the literature.
In particular, several methods have been applied for tex-
ture features extraction. Gray-Level Co-occurrence Matrix
(GLCM), has been widely used for texture features extrac-
tion Hazarika et al. (2021). GLCM has demonstrated high
efficiency in extracting discriminative features. Tsai et al.
(2017) proposed a Graphical Processing Unit (GPU) based
features extraction from MRI images (gray-scale). Towards
accelerating processing time metric and reducing processing
complexity. Based-on Region of Interests (Rols) localised in
the medical image, a set of Haralick features are derived from
GLCM including: auto-correlation, dissimilarities, variance,
entropy, ...etc. Despite the high-level of efficiency obtained
by the suggested method, the work lacks in identifying the
complexity of the used dataset which limits the potential of
benchmarking their proposed method.

In the same context, Leonardo et al. proposed a new
GPU-powered texture features extraction method based on
the full dynamics of gray-scale levels Rundo et al. (2019).
The tested dataset is composed of MRI and CT scans with
no specification of related dataset size. This leads to ques-
tioning the scalability of these methods and their reliability
in real-case scenarios. Recently, a CUDA-powered method
for texture features extraction method has been proposed
to cover unsupervised analysis of medical images, partic-
ularly CT scans Rundo et al. (2021). The suggested method
relies on the mixture between GLCM and Self-organizing
Map (SOM), namely CHASM. The proposed method showed
high performances in terms of responsiveness over-passing
the pre-suggested methods Tsai et al. (2017); Rundo et al.
(2019). In addition, the proposed approach is based mainly on
unsupervised extraction which covers the case of unlabeled
dataset. A drawback presented by CHASM of the non-
consideration of coloured dataset which can be a challenging
problem when it comes to its possible application as a first
or second clinical line tool. Texture features have also been
extracted for medical disease detection, for instance, Glau-
coma. Kavya et al. proposed a new framework for Glaucoma
detection using texture features extraction Kavya and Pad-
maja(2017) in addition to GLCM, Gaussian Markov Random
Field (GMRF) has been applied for texture extraction. The
combination GLCM-GMREF reinforced the output result of
the final classification task to reach 86% Acc. Despite the
high accuracy of the proposed model, it did not cover the
colour features of the used OCT dataset, which in turn makes
the method less generalisable to cover real-case scenario. In
addition, the limitation of the number of images used (50
images) is considered as not sufficient to validate the pro-
posed method.
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Shape features are also one of the most useful HF fea-
tures to extract relevant information from medical images,
for instance, tumour shape in case of MRI images, Optic
Nerve Head (ONH) in case of OCT images,...etc Kavya and
Padmaja (2017); Xiao et al. (2013); Zewail and Hag-ElSafi
(2017); Liu and Shi (2011); Mingqgiang et al. (2008). Kai
et al. considered deformation-based features to construct a
more accurate anatomical meaning from the images to rep-
resent the brain tumor Xiao et al. (2013). Their work is based
on the use of MRI image, particularly the lateral ventricular
part of the brain towards extracting the deformation of the
shape features. The method consists of retrieving the lat-
eral ventricular shape, then the estimation of its deformation
and finally transforming it into an actual representative fea-
ture. One of the advantages of this method is the use of the
supervised and unsupervised methods including K-nearest
neighbors (K-nn) and conventional FCM, respectively. Their
classification results shown a high sensitivity of 95.3 %
in case of supervised method (K-nn), and 81.9 % in case
of unsupervised method (FCM). However, the drawback
of their method is that: (1) the non consideration of other
features (e.g., texture) in order to improve the classifica-
tion outcome, (2) the lack of covering coloured dataset, and
(3) the lack of scalability due to a limitation in validating
the suggested method with very few cases (i.e., 15 cases).
Shape features have been also considered as key-feature in
Rami et al. proposed method Zewail and Hag-ElSafi (2017).
This sparse contourlet-based extraction approach is com-
posed of mainly two methods including Second Moment
Matrix (SMM), and non-subsampled Contourlet representa-
tion (NSCT). The combination NSCT-SMM is based mainly
on non-maximum suppression and thresholding after the
generation of shape features strength. The outcome of the
proposed method showed a high Acc of 78.91% and a low
Mean Average Error (MAE) to achieve 21.43%.

Combining HF features presents a supporting factor for
medical applications by providing extra relevant informa-
tion about the target Rols Mutlag et al. (2020); Hazarika
etal. (2021). Texture and shape features fusion has been con-
sidered in several works, particularly in Nazir et al. (2021).
Bhaveneet et al. proposed a new implementation of features
extraction from medical images consisting of the extraction
of three features levels: (1) key-points, (2) contours, and
(3) textures, storing them into a feature vector and high-
lighting them on the original medical image. The suggested
implementation has been tested on three different datasets
including MRI, Iris and Bones achieving as a classification
Acc of 90% which is higher than the previous mentioned
proposed approaches. That is, features fusion represents a
key-stage towards enhancing images content-based retrieval.
One of the disadvantages of the method is, again, the scal-
ability and reliability by the non consideration of different
datasets and lack of validation experiments, as well as the

lack of extraction of colour features. The latter represents a
key-element in several medical applications that are colour-
based. Colour feature-based retrieve is of interest to many
recent researches following the advanced engineering tech-
nologies in enhancing the medical image scans quality as
well as integrating coloured options in image analysis and
diagnosis, particularly in case of Optical Coherence Tomog-
raphy (OCT) images Lin et al. (2009).

Traditional features extraction methods, including those
to extract HF features, are still facing challenges extract-
ing deep hidden features due to their classical composition.
Al techniques, particularly DL, have shown an interesting
enhancement of classification and prediction applications.
Dara et al. (2018), proposed a DL-based deep features
extraction method using CNN. The latter has been tested
along with Deep Belief Network (DBN) and Multiple Layer
Perceptron (MLP) on an MRI dataset composed of 69 sub-
jects. CNN presented the most accurate network with 99%
Acc. Despite considering the high accuracy, the suggested
framework lacks of the reliability factor because of the a
small number of input sample which might risk causing
a thrashing problem, and suffers from achieving scalable
factor due to the non-consideration of unlabeled data. Simi-
lar approach has been adopted by Nazir et al. (2021). The
proposed method is based on CNN architecture, particu-
larly Densely Connected Network-100 (DenseNet-100). The
model accurately extracts hidden features and results an out-
standing classification performance applied on OCT dataset
for DMO detection. Despite the existence of colour features,
the method eliminated the latter and focused mainly on DHF
features. Subsequently, integrating colour features might of
increase the final classification outcome.

The complementarity of DHF and HF features represents
the main contribution of this work. In the following section,
a highlight of the identified problems is presented.

3 Problems Identified

The main drawbacks identified in existing features extrac-
tion methods include responsiveness, scalability, and reli-
ability. Several approaches achieved high accuracy as an
initial evaluation of the proposed framework, however many
requirements have not been met so far. An efficient fea-
tures extraction method consists of the consideration of every
aspect that can be retrieved from the medical image in order
to reflect a certain Rol. This includes texture, shape, and
colour (in case of coloured dataset). In addition, hidden fea-
tures that can be extracted through DL approaches represent
additional important features towards having a complimen-
tary feature set. The elimination of one of these features is
affecting the final efficiency of the medical application. The
use of small set of medical images represents an inefficient
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way to validate a proposed framework. In fact, features pro-
vided by a small set of images limits the evaluated method to
be generic. Add to that, several problems can occur includ-
ing the over-fitting where the DL model cannot successfully
classify the data when it becomes higher than what it has
been trained on (small dataset), and under-fitting where the
DL network cannot find the accurate relationship between the
dataset used and the input samples hence the non-scalability
of the designed feature extraction model. In turn, this effects
its reliability and initial efficient functionality.
In this paper, the addressed problems are as follows:

e Unautomated methods for medical images based features
extraction

e Non-scalability of existing approaches

e The lack of the use of HF and LF features in a unique
framework

4 Methodology of the Proposed Features
Extraction Model

Feature extraction from image data is a crucial step for
content-based retrieval. Particularly, its significant applica-
tion in case of medical images is considered challenging.
The variety and deepness of extracted features represent the
key-points in achieving high classification and prediction
performances.

The methodology presented in this research focuses
mainly on the extraction and fusion of HF and LF features.
HF features extraction is based on segmented images whereas
LF features are derived from associated parameters provided
along with the input dataset. The proposed features extraction
framework is summarized in Fig. 2.

The following subsections outline the features extraction
and fusion model. The first stage is to pre-process the data,
second is to define the images segmentation method and

associated parameters, third is to design the HF features
extraction block, then is to introduce the LF features extrac-
tion stage, afterwards the features weighting method and
optimal features fusion strategy.

4.1 Image Pre-Processing

Image pre-processing represents a major and essential
step towards improving features extraction by eliminating
unwanted noise and irrelevant regions located in the medical
image. The proposed image pre-processing model consists
of the following principles:

e Ground truth extraction for data training and testing stage

e Images denoising using block matching and three dimen-
sions filtering (BM3D) method.

e Bias field correction using N4 bias field correction
method.

These steps are pivotal in order to enhance the quality
of the image considered, from algorithmic perspective, as
a matrix of pixels/intensities. It leads into the elimination
of non-essential areas that contain unwanted signals which
results image quality degradation. In fact, the medical image
ground truth is important for the validation of the Rols seg-
mentation. Denoising of medical scanned images such as
OCT, MRI, CT, ...etc is also an important stage towards
enhancing the outcome of medical applications including,
detection, analysis, and prediction. Subsequently, denois-
ing stage generates clean images with high “signal-to-noise
ratio” as well as high spatial resolution. In this denois-
ing model, block-matiching and BM3D method are used to
denoise the input samples Zhao et al. (2019). Main steps
used in BM3D are grouping, 3-dimensional discrete wavelet
transformation and wavelet shrinkage. BM3D can remove
the noise easily by eliminating it from the group of similar
patches. The principle of denoising is to remove the additive
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noise and invert the blurring at the same time Kaur et al.
(2018). This method is called Wiener filter. The latter deter-
mines the optimal tradeoff between the inverse filtering and
the noise smoothing.

The N4 bias field correction algorithm is a popular method
for correcting low frequency intensity and the non-uniformity
present in the medical image data, known as a bias or gain
field. The main purpose of this stage is to ensure that the
mask image and the main input image occupy the same
physical space to ensure pixel to pixel correspondence.
All these steps are complementary towards producing a

high-quality input sample that can be effectively processed
and analysed.

Figure 3 presents an example of image pre-processing
applied on MRI image provided by RSNA-ASNR-MICCAI
Brain Tumor Segmentation (BraTS) dataset contacting sub-
jects with O6-methylguanine-DNA  methyltransferase
(MGMT) Altaf et al. (2017); Kavya and Padmaja (2017); Liu
etal. (2020). The figure illustrates the results of a Flair modal-
ity for two different subjects. The top image is related to a
subject with negative MGMT and the below image belongs
to a subject with positive MGMT.

Fig.3 Pre-processing Steps
Applied on FLAIR Modality:
(TOP) Subject with Negative
MGMT, (BOTTOM) Subject
with Positive MGMT

Pre-processing Steps of a FLAIR modality, MGMT1=0

Pre-processing Steps of a FLAIR modality, MGMT=1
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4.2 Image Segmentation and Associated Parameters

Image segmentation characteristics represent the lower level
of image characteristics including pixel intensities, Rol,
bounding, edges, ...etc. It is defined by semantic image seg-
mentation through extraction of Rols of the input samples.
Medical image segmentation represents a challenging step
due to its deformable characteristics. The aim of semantic
segmentation is to partition the image into multiple segments
in order to simplify the representation of which makes it more
significant and easier to process.

The focus of this work is mainly on unsupervised seg-
mentation algorithms. For instance, Markov Random Field
(MRF) presents one of the well-used unsupervised segmen-
tation algorithms, in addition to Expectation-Maximization
(EPM) algorithm. The combination MRF-EPM iterates the
posteriori probabilities and distributions of labeling in case
there are no possibilities of the construction of an estimate
segmentation model, i.e., no predefined classes. The seg-
mentation process starts with randomly estimating the model
parameters, then computing the conditional probabilities of
a label given a random image region using naive Bayes tech-
nique. The conditional probabilities are defined as follows

(Eq. 1):

P(&>: POHPG)
i)Y PGHP()

rel

ey

where L represents the set of possible labels, A is the given
label, and 7; is the region of features. Finally, MRF-EPM
iterative algorithm uses the output of proceeding step in order
to calculate the priori estimate of a given label, A € L. The
computation involves a hidden estimate of the number of
labels (B), knowing that the actual number of total labels
is unknown. The priori estimate is defined as the following

(Eq. 2):
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Figure 4 shows the result of MRF-EPM algorithm applied
on the MRI image presented in Fig. 2.

The method successfully segments the Rols in the original
image. Resulted segmented images will be used as the input
data for the feature extraction model. In the following, an
overview and banchmarking of HF features extraction stage
of the proposed framework is presented.
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Fig. 4 MRF-EPM Segmentation: Test Done on a Sample Scan from
the BraTS Dataset

4.3 High-Level Features Extraction

HF features are mainly defined by the features that can be
interpreted by human brain. This is presented in the form of
spectral features including texture, shape, and colour.

4.3.1 Texture Features Extraction

Texture features are based on the collection of image regions.
It generally refers to a specific region within the image.
Referred Rols provide other important features such as
shape and colour which will be discussed in the subsequent
sections. Texture features extraction methods are gener-
ally divided into two main categories based on: (1) spatial
relationship between regions, and (2) primitive attributes.
The former includes (i) primitive region types presented as
numbers and (ii) spatial organisation covering functional,
structural, and statistical features. Primitive attributes tex-
ture features category focuses mainly on (i) gray-level and
(i1) geometrical attributes. The latter covers the shape, area,
...etc, whereas, grAy-level attributes enclose average and
extremum. Texture features generally highlight discrimina-
tive features that represent key-features in disease detection
and prediction applications. The focus of the proposed tex-
ture features extraction method is based on statistical features
as the following:

e First- and second- order features including: contrast,
entropy, angular second moment, and homogeneity.
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e Additional features to include Coarseness and direction-
ality.

Texture features reflect changes that might happen in
the medical image due to disease detection and progression
which in turn affects the pixels intensities. Several methods
can be applied to extract texture features, for instance, GMRF
Kavya and Padmaja (2017), SOM Rundo et al. (2021),
GLCM Rundo et al. (2019); Kavya and Padmaja (2017);
Altaf et al. (2017), and tamura Mutlag et al. (2020); Umama-
heswari et al. (2018) approaches. As per Table 1, multiple
performance parameters of the aforementioned methods have
been reported in the literature to include classification accu-
racy, processing speed-up and other parameters.

Despite of demonstrating a valuable speed-up perfor-
mance of 0.3 times, SOM method requires additional parallel
computing platform that allows it to use certain types of
GPUs which represents a limitation in case of the non-
existence of such resource. GLCM, at the other hand, showed
an independent processing speed-up to reach 19.5 times
due to its processing optimisation and image handling. It
also overpassed the classification accuracy of GMRF to
acheive 86%. By considering the optimal pixel direction
and orientation, tamura’s features application showed quite
an interesting classification accuracy to reach 96% and
3.43% of the mean average precision retrieval. As per the
above, in this study a combination of GLCM and tamura is
proposed.

First- and Second- Order Texture Features: GLCM Tech-
nique GLCM technique is based mainly on pixels inten-
sity and related changes. The major advantage of GLCM
is that the co-occurring groups of pixels are spatially linked
in multiple directions by referencing to two different factors
including distance and angular second moment relationships.
GLCM also highlights the busy texture regions defined by a
very rapid changes of one-pixel intensity compared to its
neighbours. Thus, it results a high intensity alteration of
the related special frequencies. The GLCM algorithm first

Table 1 Existing Texture Features Extraction Methods Benchmarking

quantises the segmented input by specifying the value of
each pixel intensity. The quantisation is specified based on
arange of gray-levels included in the range of [2:256]. Sec-
ond, it creates the co-occurrence matrix sized (n*n), where
n presents the number of levels used in the quantisation step.
The creation of co-occurrence matrix (GLC M ) is based on
the calculation of the number of occurrences of a pixel (p),
located at (i,j) coordinates, in a pre-defined iterative window
that covers the surrounding pixels. The steps are detailed as
follows:

e Set p the sample considered for calculation.

e Set S the group of neighbour pixels surrounding p. The
selected group is done under a centered window having
as length, and height values in [3:999] interval.

e Eachelement (i,j) of GLCM matrix, based on S, is defined
as (Eq. 3):

GLCM(i. j) =Y _occ(i. j) (3)
k

where (i,j) are the i'" and j'” pixels intensities € [0:n-1],
and occ() is the function representing the time of occur-
rence of (i,j) in S based on multiple direction and distance
relationships, and k is the total occurrence of (i,j) in the
centered window.

e Construct the symmetrical matrix of GLCM and add it
to the co-occurrence matrix itself (Eq. 4):

GLCMy =GLCM + GLCM;
= Zocc(i, J)+oce(j,i) = 2ZOCC(i, J)
k k
4)

where G LC Mj is the symmetric matrix and GLCM 7 is
the final co-occurrence matrix.

Methods Performance Parameters

Classification Accuracy

Processing Speed-up Mean Average Precision Retrieval

SOM Rundo et al. (2021)
GLCM Rundo et al. (2019)

GLCM Kavya and Padmaja (2017) 86%
GLCM Altaf et al. (2017) 79.8%
MRF Kavya and Padmaja (2017) 84%
Tamura Mutlag et al. (2020) 96%

Tamura Zhao et al. (2019)

10.03 times -
19.5 times -
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e Normalisation of GLCM ¢ (Eq. 5):

> oce(i, j)
.o k
GLCM+({, )= —— 5
G0 " 5
where M is the number of total elements, M > 0.
e Calculate first- and second-order texture features as the
following:

— Angular Second Moment (ASM): ASM is known
also as Energy feature, denoted f4sy, it is defined
as the squared elements of GLCMy, as follows

(Eq. 6):

fasm=)_Y GLCMy(i, j)* (6)

jen jen

— Entropy (E): It is defined as the measurement of hap-
hazardly to be utilized in order to differentiate the
texture of the segmented input sample, as follows (Eq.

7):
=YY GLCM(i. j) *log(GLCM (i, j))
ien jen
(N
— Contrast (C):

Contrast is defined as the value of density contrast ref-
erence pixels and surrounding pixels, as follows (Eq. 8):

fe =) G, )’GLCM;(, ) ®)
JjEen jen
where GLCM ¢ (i,j) equals to pixel at the (i,j) location.
e Homogeneity (H): H is defined by approximately mea-
sure the GLCM elements distribution to GLCM
diagonal (Eq. 9):

GLCMy(i, j)
R 2y ©

jen jen

Additional Texture Features Tamura is also one of the
well-used quantitative texture features extraction methods.
It is based mainly on human visual perception and it repre-
sents an immense potential in image representation. Tamura
provides a set of texture features including: roundness, direc-
tionality, line-likeness, regularity, coarseness, as well as
contrast texture features. Ideally, tamura’s texture features
present complementary features to those extracted through
GLCM approach. The main drawback let to combining
GLCM and tamura are as follows:

@ Springer

e GLCM is a sparse matrix, containing many zero ele-

ments, which causes an increase in computational time
and resource Kaur et al. (2018); Baid et al. (2021).

e Tamura performs inefficiently in case of generic (non-

homogeneous) images.

The proposed feature extraction approach includes coarse-
ness (Coa) and directionality (Dir) as additional features.
Tamura’s discriminative features are defined in the following.

e Coarseness: Coa is defined by iteratively find the largest

size in which the tissue is present through different pat-
terns at multiple scales. The granularity measurement is
done by calculating, for each pixel (i,j), six averages for
a window of size 2% % 2%, where Z €[0:5], surrounding
the pixel defined as follows (Eq. 10):

i+277! j+2%1

Con= Yy PEED (10)

k=i—2Z-1_1¢=j—272-1_]

where pix(k,t) is the pixel intensity at location (k,t).
Iteratively, at each pixel, calculation of non-overlapping
neighbours defined by the absolute difference Az (i, j)
in both relationships: Vertically (V) and Horizontally (H)
as follows (Egs. 11a and 11b):

Az (i, j) =] Coa(Z, V)i, j+2*" ") =Coa(Z, V)i, j—2%7") |

(11a)

Apv(i, j)=| Coan v (+2%~", j))—Coaz y(i—2%71,j) |

(11b)

Finally, considering either direction (V or H), calcula-
tion of the value of Z is processed in order to maximise
Az vy(i, j)or Az u(i, j), respectively. The function is
defined as follows (Eq. 12):

Sz.BEsT(, j) = 2% (12)

resulting the final coarseness feature equation (Eq. 13):

Coal(i, j)
Jeoa Sz BEsT(, J)

Directionality: Dir is defined by devolving the existence
of any directional pattern in an image by measuring the
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overall degree of directivity (vertically, horizontally, or
diagonally). This feature reflects the consistency of the
region being processed. Dir consists in calculating the
edge histogram (Hp;,). Dir texture feature is defined as
follows (Eq 14):

m
foir =1=N*NxmxY_ > (0—6)"Hpi(0) (14)
k=1 0€eyy

where:

N: normalisation factor

— 6: quantisation angular position constructed by counting
the edges of pixels with associated angles directions.

m: number of peaks

¥y angles window associated to the k" peak.

The remaining tamura texture features are of importance
but not considered in this method. The texture features extrac-
tion is implemented in Algorithm 1 and comprise two main
steps:

e Step 1: Calculation of GLCM; matrix based on the
occurrences (occ()) of pixels at a location (i,j) in the sur-
rounding window S.

e Step 2: Calculation of Tamura texture features based on
the best pixel direction and orientation at location (i,j) in
the surrounding window S.

The hybrid composition of the proposed texture features
extraction involves multiple interpretation levels of the input
image which gives the system a better understanding of the
image composition at different Rols. GLCM-Tamura com-
bination is considered as a booster to the whole feature
extraction framework by: (1) speeding-up the processing
time, (2) optimising the use of resources, and (3) increasing
the efficiency of the final classification, as per the perfor-
mance benchmarking shown in Table 1.

4.3.2 Shape Features Extraction

Based on the aforementioned related works, shape features
extraction is mainly based-on geometry features including:
area, slope, perimeter, centroid, irregularity index, equivalent
diameter, convex area, and solidity, ...etc. Table 2 summarises
the benchmarking of existing methods.

Towards efficiently using shape features, selected
approaches need to meet essential key-points including: (1)
identifiability, (2) transition, rotation, and scale invariance,
(3) affine invariance, (4) noise resistance, (5) occultation
invariance, (6) statistically independent, and (7) importantly

Algorithm 1 Texture Features Extraction

Data: Rols (Region of Interests)
Result: fasy, fE. fc. fH. fcoay spsrs JDir
Step 1: Calculation of GLCM matrix
n < number of levels
M<<n?>0
fori €{0,...,n}do
for j €{0,...,n}do
fork € {0,..., M} do
GLCMy(i, j) & & Y occi, j);
fasm <
> Y GLCM(, D= log(GLCMy(i, j))
fE &=
—Y > GLCMy(i, j) xlog(GLCM (i, j))
fe € XX, j)? * GLCM (i, j)
fu =Yy SLD
end for
end for
end for
Step 2: Calculation of Tamura features
pix(i, j) < intensity value of the pixel at location (i, ;)
Sz < 22Z where Z € [0 : 5]
N <= normalisation factor
0 < quantisation angular position
m <= number of peaks
Y1 < angles window associated to the k' peak.
Hpi, < edge histogram
M, < measurement window
fori, j €{0,...,n}do
fork=i—27"!'—11t0i+2?""do
fork=j—2%"1—11j+2%"do
‘ Coaz <Y Lﬁl’])

w

end for

end for
end for
Azv(i, j) | Coaz v (i, j+2771) = Coaz v (i, j —277") |
Any(, j) <| Coany(i+277", j) = Coaz u(i =271, j) |
if Az‘v(l’, ]) > AHﬁv(l’,]’) then
Sz.BEsT(, ) &= Sz v
feoury € 55
else

Sz.BesT(, J) < Sz.H

fewrn = 5505
end if
end if
for k =110 mdo
for each angle 6 € {;, do

| p <26 —6% x Hpir(6)

end for
end for
fDir<:1_N*m*p

reliable. Shape features extraction approaches can be cate-
gorised as the following:

e Counter-based methods
e Region-based methods
e Space and transform domain-based methods

@ Springer



Information Systems Frontiers

Table 2 Existing Shape

- Methods Performance Parameters

Features Extraction Methods

Benchmarking Accuracy Sen Spec MAE
Fourrier 80% - - -
Descriptor Liu and Shi (2011)
Region Focus (RF) Xiao et al. (2013) 95.3% 88.9% 99.2% -
Convolutional FCM Xiao et al. (2013) 81.9% 38.9% 99.7% -
SMM-NSCT Zewail and Hag-ElSafi (2017) 78.9% - - 21.43%
VBM Xiao et al. (2017) 91.18% 99% 83.33% -
VBM Madusanka et al. (2019) 76.31% 75% 77.78% -
VBM Janakasudha and Jayashree (2020) 93.8% - - -

e Information preserving and non-information preserving-
based methods :
= > Y (16b)
Relevant shape features are characterised by their unique- x.y)eRol
ness, abstraction, integrity, and agility. Table 3 outlines the ] )
existing valuable shape features extraction methods from where A is the region area: A = > 1

mainly counter and region-based methods.

As per the results presented in Liu and Shi (2011), Fourier
descriptor overpassed statistical descriptors by achieving
over 80% accuracy. In fact, Fourier descriptors are highly
insensitive to translation, rotation, scale changes as well as
the starting processing point. It has shown high performances
in case of identified objects (human face, vehicles ...etc),
however, in case of medical imaging the shape of different
Rols in the input sample changes through time progression,
age and gender factors as well. Therefore, this study consid-
ers the region focus (RF) as the main shape feature extraction
approach by calculating the coordinates of all points belong-
ing to a particular Rols. It is defined as the following (Eq.
17, 18.a and 18.b):

frE = (X,) (15)

where:

_ 1

¥=o > o« (16a)
(x,y)eRol

Table 3 Shape Features Extraction Methods

(x,y)€eRol

4.3.3 Colour Features Extraction

This feature is based on coloured medical images. Several
features extraction methods have been used in the literature.
Table 4 summarises colour feature extraction approaches
based on two different categories. This includes global
descriptors defined when the whole image is considered, and
local descriptors when separated portions of the image are
considered.

Colour histogram of K-mean (CHKM), and Zernike chro-
maticity derived from chromaticity approach are considered
highly robust colour features extraction methods. However,
itis not the case of colour histogram method. Four main spec-
ifications are essential to consider a method as efficient and
accurate:

Storage space

Scalability

Rotation invariance
Computational time required

Shape Features
Boundary-Based Features

Region-Based Features

Simple Statistical

Descriptor Descriptor
Perimeter of the boundary Mean moment
Diameter boundary Variance moment

Eccentricity Curvature Higher-order moment

Fourier Simple

Descriptor Descriptor

Translation Regional area

Rotation Roundness (Compactness)
Scale Regional focus

@ Springer
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Table 4 Existing Colour Features Approaches: Global and Local

Colour Features

Global Features Local Features

Global Colour Histogram Local Colour Histogram

Histogram Intersection Colour Correlogram

Image Bitmap Colour Difference Histogram

Based on the aforementioned criteria, CHKM has been
applied for colour features extraction. CHKM considers 2%
different colours possibilities. The main process conveyed by
CHKM s to selecta colour, denoted ¢, from 224 possibilities
thatreassemble the best to a particular pixel colour and update
the latter with c,,. This step is applied on each pixel towards
classifying all the pixels of an image into k clusters. The
outcome of it is defined by the mean of all pixels in each
cluster. The final output of CHKM feature is (Eq 17):

Nk

fenkm = N (17)

Where N is the total number of pixels localized in the image,
and Nk is the total number of pixels belonging to cluster
K. This method efficiently shortens image retrieval time and
improves its performance. Moreover, CHKM demonstrates
a less computational time factor, a high robustness to noise
and displacement invariance. Algorithm 2 demonstrates the
proposed shape and colour features extraction model.

Algorithm 2 Shape and Colour Features Extraction

Data: Rols (Region of Interests)
Result: frr, fcugm
Step1: Calculation of Region focus shape features based on
the region are A
(x, y) < coordinates of the pixel € A
for (x, y) € Rols do
| A1
end for
for (x, y) € Rols do
Fe
jet
end for
frE &= (X, )
Step2: Calculation of colour histogram of K-mean where K
represents the number of clusters
N <= total number of pixels
Ny <= total number of pixels in cluster k
¢p € 2%* colours possibilities
Cpixel <= current pixel colour
for cpixer € cluter k € K do
if cpives € 2% then
| Cpixer <= best matching colour (cp)
end if
end for

N
fcakm = F

4.4 Low-Level Features Extraction

The idea of this paper is to extract, in addition to HF features,
LF features. DHF features are uninterpretable by human
brain and visually unidentifiable. Hence, it can meet the com-
puter understanding and can be extracted by deep networks,
particularly DL approaches. Recently, DL has been used in
several applications, including detection, classification, pre-
diction, ...etc. Moreover, DL is being used for deep features
extraction, particularly, CNN frameworks. The working prin-
ciple of CNN is to extract features maps (FMs) of each input
layer, for instance, the input of n'” layer if the FMs extracted
from the (n — 1) layer. The shape of the input layer in CNN
is defined as N*N*M, where N is the size of the FMs, and M
represents the total number of channels considered. Figure 5
illustrates image size reduction using convolutional layers.
Several CNN networks operate on reducing image rep-
resentation while going deeper into the network layers to
include, Residual Neural Network (ResNet), Inception-V4,
and DenseNet. The former is characterised of the use of
multi-filters and auto image size reduction, however, features
extraction applications using ResNet suffer from time con-
sumption and complicated implementation. Inception-V4
applies inception blocks to avoid vanishing-gradient training
problem. However, time consuming still define a problematic
metric causing a high risk of information loss through reduc-
tion blocks. DenseNet, on the other hand, presents a high
accurate and efficient architecture overpassing Inception-
V4 and ResNet, with a low error detection due to dense
connections. The architecture of DenseNet is considered as
complicated processing and its efficiency decreases in case
of complex datasets. For LF features extraction, an auto-
mated hybrid deep learning model has been proposed in

Fig. 5 Image Dimensionality Reduction Through the Convolutional
Layer where (a): Feature width, (b): Feature height, (c): Number of
Channels
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Loukil and Salah (2020), namely, DenCeption. The idea is
to construct a new dense block (DB) composed of convolu-
tional and inception modules. This will show the effect of
the concatenation operation of each convolution on the out-
put of inception modules. The new densely connections will
be translated by the dense connectivity between all incep-
tion modules within the DBs by conserving the initial dense
connections between convolutional blocks (CBs). Toward
minimising the size of the medical images while being pro-
cessed, an integration of reduction A (Rc4) and reduction B
(Rcp) blocks into the transition block (TB) takes place. As a
result, reduction modules (Rc4) and (Rcp) will be densely
linked to inception modules A (I/n4) and B (Inp), respec-
tively. A single inception C (/n¢) module will be part of TBs
as well. It will link the resulted output of (Rcp) modules to
the average pooling operation block. Figure 6 manifests the
proposed hybrid network.

DenCeption efficiently shows a high DHF extraction per-
formance compared to DenseNet-100 proposed in Nazir et al.
(2021) for features extraction. Each hybrid DB produces
a set of features resulted from highly dense connections

linking different internal components including Batch Nor-
malization (BN) layer, Convolutional layer, Rectified Lin-
ear Unit (ReLU) activation function, Inception modules to
include In4 and Inp. Figure 7 illustrates the hybrid DB
composition.

Iny and Inp increase the dense connections opting to
minimize the total channels by that it means reducing the
sample representation and used for key-points rearrange-
ments along with 3*3 convolutional layer. The final outcome
of (n 4+ 1) hybrid DB is N*N*(M + a x M'), where 2.
By increasing the dense connections composing the hybrid
DB, the FMs extracted at each n'" layer shows an increase
as well. Therefore, the hybrid TB is taking over the outcome
and reduces the extracted DHF dimension from the (n — 1)!"
DB as discussed in Mutlag et al. (2020). Figure 8 presents
the composition of the hybrid TB block.

The presence of reduction blocks, inherited from Incep-
tion architecture, including Rc4 and Rcp had a fundamental
value in: (1) improving the FMs representation, (2) reduc-
ing the FMs dimension, and (3) emphasizing on keeping
the Rols’s DHF features (loss rate is very low). This is

n-Tg-

Medical image

Hybrid Dense
Block

-T-

TB,

l

q_l

-

. Deep Hidden Features

Hybrid Transition
Block

DenCeption: Hybrid DenseNet-Inception Architecture

Fig.6 Hybrid DenseNet-Inception Architecture for LF Extraction

@ Springer



Information Systems Frontiers

-~

. Input to DB

Convolutional Block

.Inception A (Iny) and Inception B (Ing) Blocks
[ Output of DB
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Hybrid Dense Block Architectuy

Fig.7 Hybrid Dense Block Architecture

another advantage of DenCeption in comparison to classi-
cal DenseNet architecture.

4.5 Features Weighting
4.5.1 Features Initialization and Normalization

Towards determining the approximate optimal degree of
influence of each extracted feature, weighting presents a cru-
cial step for relevant features selection. The weighting tech-
nique used in this work is to assign random initial weights. Let
F = [fasm. fE.fc.fu. fcoa, [Dir, [RF, fcHK M, fDHF]
is the matrix of extracted features and W = [Wasy, WE,
We, W, Weoa, Woirs Wrr, Wernkmy, Wprr] is  the
associated weights vector. After randomly assigning weights
to each particular feature, a feature normalization is applied
which produces, subsequently, a normalized features weights
having as values in the range of [0,1]. This conveys the fol-
lowing relationships (Eq 18):

where w; is the weight associated to x;; feature € k , and k
is the number of features.

4.5.2 Weights Regularisation

Several weighting techniques are introduced in the litera-
ture including, logistic regression, random forest classifier,
Bayesian linear model, ...etc. Each feature’s importance
training model aims to update the assigned weights while
training the network. The efficiency of each aforementioned
technique is mainly linked to the size of the dataset being
trained which most likely can cause overfitting, underfitting
and vanishing problems, as mentioned earlier. Pre-defined
dataset classes is also an essential requirement for most of
these techniques. Therefore, the aim of this step is to use
an unsupervised machine learning approach, namely, SOM.
Initially, in the learning phase, SOM associates W as the ran-
dom input weights vector with the artificial neurons, namely,
units of the network. Then, each input feature vector f € F is
presented to all units in the SOM. The unit with most sim-
ilar weights to the input vector becomes the best matching
unit, namely BMU. Based on the Euclidian distance, BMU

k
Fi,w)= Y wjx; (18)
j=lw;ew
Fig.8 Hybrid Transition Block
Architecture f
R, CB

J

\ Hybrid Transition Block Architecture

. Inputto TB \
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(
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Rp
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.Average Pooling
¥ output of TB

/
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is defined as follows (Eq 19):
BMU = argimin| f — w;|| (19)

Once the BMU is calculated, the weight vector is updated
following the following equation (Eq 20):

wi(k +1) = w;(k) + (k) A (BMU, k)(f — w;(k))  (20)

The SOM training iterations ends when all features have been
assigned updated weights. The feature vector with higher
weight represents the feature with higher importance and
vice-versa. The closer w; is to zero, the more irrelevant the
related feature is.

4.6 Features Fusion

Towards constructing a more robust features extraction out-
come, capable of efficiently using multiple types of medical
image and can lead to a high classification and prediction
performances, the purpose of the proposed framework is
to combine the HF features including those part of texture,
shape, and colour, as well as fusing HF and DHF features as
a following step. A set of experiments will be held to iden-
tify the optimal features combination that will feed into the
disease classification stage.

4.6.1 High-Level Features Fusion

The first combination is presented by fusing texture and
shape features considering their obtained weights from SOM.
Therefore, there is no need to design a linear model with a
fixed proportion and iteratively determining its value in order
to update the fused features. Avoiding that, the features fusion
is presented as the following (Eq 21):

k m
Ftexturefshape = max (07 Z Wi frexture + Z w; fs'hupe + bl)

i J

21

where k is the number of texture features, m is the num-

ber of shape features, and b; is the bias. Same operation
is applied for other considered combinations including:
(i) shape-colour, (ii) texture-colour, and (iii) texture-shape-
colour, defined as the following (Eq 22, 23, 24):

m n
Fshupe—colour = max (05 Z wj fshape + Z w; Seolour + bZ)

t J

(22)
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k n
Fiexture—colour = max (07 Z Wi frexture + Z w; Seolour + b3)
i

(23)

k m

Ftexturefshapefcolour = max (07 Z Wi frexture + E w; frhape
; -

J

+ Z Wy feolour + b4) (24)
t

where n is the number of colour features and (b7,b3,
bs) are thebias considered for shape-colour, texture-colour,
and texture-shape-colour fusion operation, respectively. The
updated weights are obtained by using feedforward Artificial
Neural Network (ANN). The resulted updated weights are
defined as W' / / /

=[W., . .
[ ftexturefslmpe ’ tha]mfz‘olour > frexture—colour’

’
ﬂexmre—:hape—culuur] and I’ = [ftexturefshapev fshapefcalouh
Srexture—colour ftexturefshapefcolour] is the combinations
vector.

’

4.6.2 High- and Low-Level Features Fusion

At this stage the optimal HF features combination is con-
sidered. Let F,ptimal = f;_; where i,j are the optimal
selected HF features fusion € F . Following the fusion strat-
egy applied for HF features, Fpsimq and DHF combination
is defined as the following (Eq 25):

t s
’
FFyppima—DHF = Max (0, Z w; Foptimal + Z w; fDHF + bs)

4 J

(25)

where t is the number of optimal features fusion, having as
possible values k+m,m+n,or k+n, s is the number of DHF
features, b4 is the bias and w' is the optimal features fusion
weight vector. Updated weights are obtained using ANN.

4.7 Experiments and Results Discussion
4.7.1 Dataset
In this work, two datasets have been used to test and validate

the proposed features extraction framework including BraTS
data obtained as part of the RSNA-ASNR-MICCAI Brain
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Tumor Segmentation challenge 2021 Altaf et al. (2017);
Kavya and Padmaja (2017); Liu et al. (2020), as well as an
OCT dataset from Kaggle datasets, namely Retinal dataset.

BraTS dataset is considered as a simple and unlabeled set
of images composed of gray-scale scans containing patients
with MGMT. It is composed of 2,000 cases equivalent 8,000
MRI scans. All BraTS MRI scans are available as NIfTii files
(.nii.gz). These scans are presented as four different modal-
ities acquired with different clinical protocols and various
scanners from multiple institutions Altaf et al. (2017); Kavya
and Padmaja (2017); Liu et al. (2020), as follows:

Native (T1)

Post-contrast T1-weighted (T1Gd)

T2-weighted (T2) and

T2 Fluid Attenuated Inversion Recovery (T2-FLAIR)
volumes, and

Additional parameters have been considered along side with
these modalities, are as follows:

e Patient age

e Survival days

e Resection status to include: GTR (Gross Total Resec-
tion), STR (Subtotal Resection), and N/A values.

These parameters will be considered in the evaluation the
efficiency of the proposed features extraction framework as
a validation stage.

The Retinal dataset is considered as a labeled and complex
dataset composed of more than 10000 OCT coloured scans
available as .jpeg files. The dataset contains two different
medical scan types, to include:

e Normal OCT scans, where there is absence of any retinal
odema.

e Abnormal OCT scans, with the presence of Diabetic
Macular Odema (DMO) with retinal thickening associ-
ated intra-retinal fluid.

All medical scans have been through a grading and labelling
system consisting of multiple layers, done by experts in the
field. The Retinal dataset also indicates a set of additional
parameters that have been considered in the features extrac-
tion process, are as follows:

e Patient age
e Scanning history
e Actual stage to include Early and Advanced.

The contribution of the aforementioned parameters in the
proposed features extraction framework is to validate the
results of the classification stage. This would reinforce the

confirmation of the efficiency of the proposed method, as
well as its consistency.

The consideration of different medical scan types is an
important criterion in the proposed framework as it gives the
whole model the opportunity to learn from different modali-
ties and image types. Hence, gaining the ability to be scalable
towards covering different existing medical scan types.

4.7.2 The Testbed

To process and evaluate the proposed framework, GHNHSFS
DR Research Al Server is used. The operating system setup is
based on the Ubuntu Linux distribution with its latest Long-
Term Support release. NVIDIA and CUDA drivers have been
installed to utilise the GPUs available in the system. The lat-
est versions available for the RTX 2080Ti series cards have
been used. The software environment considered is Python
and MATLAB, in addition to the servers’ tools. The pro-
gramming environment used to build the models consists of
Python programming language with TensorFlow as the CNN
modelling framework. The latest release of Anaconda distri-
bution of Python with all its supporting packages have been
used. The only updates to the base Anaconda distribution
consist of the TensorFlow and the OpenCV image process-
ing libraries. MATLAB installation is required to provide a
runtime environment for some of the tools in development. In
addition to the tools required to build the models, two pack-
ages have been provided that are required in order to serve
the models as tools for the use by GHNHSFS. Docker and
K8S allow for containerisation of software, allowing tools
and applications to run without a view or access to any com-
ponents of the system. Table 5 summarises the considered
testbed.

4.7.3 Research Evaluation Mechanism

The proposed experiments evaluate the capability of the
proposed framework in handling different dataset cases
including labeled and unlabeled. In fact, these experiments
present challenging scenarios in order to obtain an efficient
features extraction outcome. Add to that, each scenario cov-
ers a different dataset representation to include: gray-level
coloured medical images as input samples.

To evaluate the effectiveness of the proposed features
extraction method in comparison with existing works, an
evaluation scheme of various measurement parameters is
considered essential. Therefore, a set of experiments have
been applied to: (1) evaluate whether the proposed method
has compiled all the outlined requirements for HF and LF
features extraction and fusion and (2) validate its accu-
rate functionality compared to existing features extraction
methods. Existing HF features extraction methods have high-
lighted important drawbacks such as redundant features
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Table 5 Detailed Testbed

Specifications

Operating System Drivers

- 1x ASUS ESC8000

- 2x Intel Xeon Gold 5218

- 16x 32GB DDR4 2666Mhz

ECC RDIMM (512GB Total)

- 8x GPU RTX 2080TI 11GB Blower
- 1x 2TB Intel 760p M.2 PCle NVME
- 8x 2TB Seagate Exos

7E2000 ST2000NX0433

- 10GbE SFP+ Network Adapter

- 1x PIKE II 3108-8i-16PD/1G
Python environment

Software - Anaconda 2019.03

- Conda 4.7.10

- Python 3.7.4

- Tensorflow 2.0.0

- Opencv 4.1.1.26

- keras (version 2.31)

Hardware

- tensorflow-gpu (v1.2.1)
- matplotlib (v3.1.1)

- opencv (v4.1.2)

- flask (v1.2.1)

- scikit-learn (v0.21.3)

- scipy (v1.3.1)

- numpy (v1.17.3)

- h5py (v.2.10.0)
- pytorch (v1.3.0)

Ubuntu 18.04.3 LTS Nvidia Graphics
(kernel: 5.0.0-32-generic Drivers 430.50
x86_64) CuDa 10.1

MATLAB 2019b

Deep learning toolbox

Servers tools
Docker 19.03.2
Microk8s v1.16.2

Parallel computation toolbox

Computer Vision toolbox

Signal Processing toolbox

Statistics and Machine

Learning toolbox

extraction, processing issues due to complex datasets, par-
ticularly unlabeled datasets. Recent LF features extraction,
particularly Deep Learning methods, also have shown com-
plicated processing especially when it comes to thrashing,
underfitting, and overfitting problems. The latter, particu-
larly, is considered as a major problem occurring in case the
number of layers composing the deep network is higher than
the amount of data being processed. In fact, the deeper the
DL network is, the higher the computational power is, which
makes these methods not applicable in real-case scenarios.
In fact, existing CNN architectures lack in considering the
depth of the features set at this stage, alongside with how
it can be scalable over time. The evaluation mechanism of
related works in the literature considered in this study con-
veys to four main stages defined as follows:

e Responsiveness: it is defined as the processing time
required to accurately extract relevant features when the

@ Springer

dataset changes. In another word, it is the performance
of the proposed features extraction model to execute any
type of medical images within a given time interval con-
sidering the parallel mechanism of the proposed features
extraction framework.

Adaptability: the proposed features extraction method is
an adaptive tool. The implemented model is able to pick
relevant features without external supervision (unsuper-
vised case).

Scalability: a features extraction method is considered
scalable if it can be applied on any type of medical
images. The proposed model is independent of the type,
size, and complexity of the input dataset. The flow of the
framework makes the features extraction tool scalable to
any size of dataset (covering overfitting and underfitting),
which in turn, results a high advantage of its applica-
tion in real-time scenarios (1-5) where it does not require
any external intervention (adaptive). The low-level fea-
tures DenCeption network is a key-block in the proposed
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framework. In fact, it makes the process faster even in
case of complex datasets due to its composition in terms
of transition and reductions integrated block. Real-time
scenarios evaluation method is a valuable way to mak-
ing sure that the proposed model performs in the same
accurate way with each scenario. Subsequently, scala-
bility is defined as the measurement of the capability of
the features extraction model to handle increase/decrease
in load by scaling up/scaling out without impact on
the performance responsiveness, thus, without effect on
the available resources’ costs including CPU, memory,
disk, bandwidth, throughput, ...etc. The proposed fea-
tures extraction system has the ability to meet the growing
needs based on the input datasets keeping the stability of
the extraction model.

Reliability: it is defined when the system keeps pro-
cessing correctly even when faults occur. The parallel
structure of the proposed method keeps the blocks

Table 6 Proposed Experimentation Mechanism Applied on Related Works

independently processing the data. In case there will be
any bug at any stage, none of the other interfaces will get
affected.

Despite the high classification results achieved by the
aforementioned methods, as illustrated in Fig. 9, these
approaches present serious drawbacks when it comes to our
suggested evaluation experiments which shows their limita-
tions in generalisable scenarios.

Table 6 summarises the set of comparative works consid-
ered for the evaluation mechanism of the proposed features
extraction method.

Based on the aforementioned comparison table, the pro-
posed features extraction successfully covers all the applied
experiments with high level of accuracy compared with other
methods. The evaluation mechanism highlighted the key-
elements that a features extraction model needs to include.

Features Authors Method Experiment 1 Experiment 2
HF / HF-fusion Altaf et al. (2017) GLCM X
Kavya and Padmaja (2017) GLCM-MRF X v
Liu et al. (2020) REVENS map v X
Xiao et al. (2017) GLCM-VBM v X
Janakasudha and Jayashree (2020) GLCM-VBM v X
Madusanka et al. (2019) SVM-RFE v X
Lin et al. (2009) CHKM-CCM X v
LF Nazir et al. (2021) DenseNet-100 v X
Dara et al. (2018) CNN-MLP v X
HF-LF Features Fusions Proposed Method v v
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Table 7 Compliance of Related Works with the Proposed Research Evaluation Mechanism

Method Responsiveness Adaptability Scalability Reliability
GLCM Altaf et al. (2017) N - - -
GLCM-MRF Kavya and Padmaja (2017) v - - v
REVENS map Liu et al. (2020) v - - -
GLCM-VBM Janakasudha and Jayashree (2020); Xiao et al. (2017) v v - v

SVM-RFE Madusanka et al. (2019)
CHKM-CCM Lin et al. (2009)
DenseNet-100 Nazir et al. (2021)
CNN-MLP Dara et al. (2018)

NN
o
NN

Missing one of these aforementioned characteristics leads
to the inability of the method to be applicable in real-case
scenarios. The responsiveness that the adaptive proposed
approach demonstrated, has been complimented by its scala-
bility and reliability. In fact, the proposed features extraction
model, particularly, DenCeption, is designed specifically to
handle generalizable scenarios by integrating algorithms that
are compatible with most of the medical dataset being tested
(e.g. MRI, OCT, ...etc.). Table 7 presents the compliance of
each method to the suggested evaluation mechanism.

4.7.4 Individual Block Testing and Integration

Towards validating the accurate functionality of the proposed
features extraction framework, a testing mechanism is con-
sidered to include the following two stages: Individual blocks
testing Blocks integration testing Therefore, two main exper-
iments have been considered based on real-case scenarios
defined as: the first experiment (Exp 1) includes greyscale
and unlabelled dataset, whether the second experiment (Exp
2) involves coloured and labelled dataset.

Individual blocks testing: In order to efficiently eval-
uate each block composing the proposed model, a unit
testing assessment is applied based on the functionality of
each block. The individual testing is composed of two main
blocks to include: HF features fusion extraction block testing
(Blocky), and LF features extraction block testing (Block?).
Table 8 summarises the block testing experiments done.

Based on processing time and resources usage, the appli-
cation of the aforementioned experiments to test the proposed
features extraction framework confirmed the optimal fea-
tures fusion based on each case. In fact, HF features fusion

Table 8 Individual Block Testing Experimentation

Block Unit Testing Exp 1 Exp 2
HF features extraction v v
2 LF features extraction v v
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has three different propositions including: (1) texture-shape,
(2) shape-colour, (3) texture-colour, and (4) texture-shape-
colour as shown in Fig. 10.

Integration testing: Once every unit is successfully
tested, integrating them is a crucial step in order to assure
the efficiency of running all blocks at once. Particularly,
each unit in the proposed features extraction framework is
strongly dependent on previous units’ outcomes. Therefore,
the proposed integration testing mechanism results features
fusion testing blocks to include HF-LF features fusion block
(Blocks).

Following the independent testing of Blocki, the pro-
posed experimentation mechanism is applied on the resulted
features combinations of Blockz. Table 9 summarises the
HF-LF features fusion cases to be tested and validated
accordingly.

All results of the aforementioned unit testing and integra-
tion will be presented and discussed in the following section.

NLS  Texture-Colour
i fusion

Shape-Colour
fusion

Colour

Shape-Colour
fusion

Fig. 10 Proposed Integration Testing Mechanism for HF Fusion
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Table9 Integration Testing: HF-LF Cases

HF LF
Case Texture Shape Colour DHF
1 v v - v
2 v - v v
3 v v v v
4 - v v v

4.7.5 Analysis and Evaluation

Following the integration testing process, the resulted opti-
mal features are used for classification task using SVM. The
first classification task is done using BraTS dataset which
covers the case of unlabeled gray-scale dataset. The second is
applied using OCT dataset which conveys the case of labeled
and coloured dataset. To evaluate the classification outcomes
of each case a set of quantitative performance metrics is con-
sidered including: Sen, Specificity (Spe), Prevalence (Prev),
Acc, and MAE, defined as follows (Eq 26, 27, 28, 29,
and 30):

di
Sen = Probability(+ | disease) = M

tqc
TP
= (26)
(TP + FN) %100
where 7. is the total number of disease cases.
— [
Spe = Probability(— | normal) = m
nc
TN
= 27
(TN + FP) %100
where 1, is the total number of normal cases.
Prev = Probability(disease) (28)
Acc = Sen x Prev + Spe x (1 — Prev)
TP+TN
( ) (29)

T (TP+TN+FP+ FN)*100

0
1 .
MAE:@E | yi — il (30)
j=1

where disease € MGMT,DMO, (+ | disease) is the number
of classified positive cases knowing that these cases actually
have the disease, (- | normal) is the number of classified
negative cases knowing that these cases are actually normal,
TP is the true positives, FN is the false negatives, TN is the
true negatives, FP is the false positives, Q is the total number
of input samples, y; is the expected classification output, and
(y; ) is the actual classification output.

the experimentation process applied on both available
datasets showed a clear difference in terms of responsive-
ness to image processing, system scalability, and reliability
to reflect the parallel processing where possible.

e BraTsS Dataset:

The specifications of the BraTS dataset have impacted the
evaluation mechanism of the proposed optimal features
extraction method. In fact, its responsiveness to block testing
scheme has not been successful where it comes to individual
block testing, except Texture-Shape fusion (see Table 10).

Moving forward into the integration testing scheme
(Table 11) BraTS dataset showed a successful responsive-
ness, particularly in case of Texture-Shape-DHF, Texture-
Colour-DHF, and Texture-Colour-Shape-DHF fusions. The
lack of responsiveness presented by Shape-Colour fusion
could be interpreted by the absence of Texture feature which
represents a key feature in tumor disease detection and clas-
sification, which, as a result, impacted the responsiveness of
the system processing.

The responsiveness gained by Texture-Coulour-Shape-
DHF fusion compared to Texture-Coulour-Shape fusion is
linked mainly to the increase of the sensitivity and specificity
of the optimal features selection system. The gain of a deeper
understanding of the input medical images impacted the
performance of the system. As per this case, Texture-Colour-
DHF also showed an evolutionary impact o the overall
classification accuracy which helped into optimising the sys-
tem processing which highlights its accuracy. Despite that,
the overall system is not considered as scalable as it does not

Table 10 Compliance of Block

| & 2 Testing with the Research Testing Block Responsiveness Adaptibility Scalable Reliable
Evaluation Mechanism - BraTS LF based B v _ _
Dataset
Texture-Shape based v v v -
Shape-Colour based - v - -
Texture-Colour based - v - v
Texture-Shape-Colour based - v v v
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Table 11 Compliance of Block
3 Testing with the Research

Evaluation Mechanism - BraTS
Dataset

Testing Block Responsiveness Adaptability Scalable Reliable
LF based

Texture-Shape based v v v v

Shape-Colour based - v - v

Texture-Colour based v v - v

Texture-Shape-Colour based v v v v

involve the shape features, which represents, in this partic-
ular dataset, a critical parameter that reflects the evolution
of the tumor and helps in optimising its detection and clas-
sification. Texture-Colour-DHF, on the other hand, is also
classified as a non scalable solution for the latter reason. That
said, Texture-Shape, Texture-Shape-Colour, Texture-Shape-
DHE, and Texture-Shape-Colour-DHF have demonstrated a
scalable solution by including a key factors that has an impact
on the overall classification.

Despite being responsive, adaptive, scalable, and reliable,
Texture-Shape-Colour-DHF has demonstrated aless optimal
features selection system, as compared to Texture-Shape-
DHEF fusion (Table 12).

Subsequently, the former resulted a lower classification
performance to achieve 80% Sen, 78% Spe, 79.6% Acc, and
0.21 MAE. Texture-Shape-DHF, on the other hand, presented
98% Sen, 96% Spe, 97.3% Acc, and 0.02 MAE. This con-
firms the high importance of Texture-Shape fusion in the
case of BraTS dataset, and particularly for tumor detection.
Towards validating the training stage of the proposed method,
an example of testing MRI image is presented in Fig. 11.
The latter shows the testing result of the tumour detection
and classification alongside the indication of the resection
status and the estimated survival days. The sample image
belongs to a patient with GTR and 131 survival days. As per
the results, Texture-Shape-DHF, and Texture-Shape-Colour-
DHF based proposed systems have successfully identified
the tumour with the correct specifications: GTR as resec-
tion status and an approximate survival days of 128 which
is strongly comparable with the original number. However,
remaining experiments have not successfully identified the
validation parameters as shown in Fig. 11. Therefore, this
validates the presented results in Table 13.

The high processing time presented by most of the exper-
iments impacted by two main factors. In fact, the unlabelled
input images increased the processing time of the overall
system as it affects the particular processing time of the
overall system as it affects the particular processing time
of DHF extraction. The DenCeption model took around
four hours to proceed the deep LF extraction o its own.
Subsequently, this impacted remaining fusion experiments
requiring parallel resources processing. In addition, the type
of the processed MRI image (NifTii) is considered as a com-
plicated input image, which has a drawback on its processing
time. This, therefore, justifies the lower processing time of
the experiments done on the Retinal dataset, where the latter
is composed of mainly .jpeg images.

e Retinal Dataset:

Similar experimentation approach has been applied on Reti-
nal dataset, As per its specificastion, the dataset include
labelled and coloured OCT images. The individual block
testing experiments have shown a great responsiveness of
the LF as well as Texture-Colour extraction (Tables 14
and 15).

Despite the abcense of colour features in the Texture-
Shape fusion, the latter showed a scalable system that has a
potential ton improve the DMO classification results. How-
ever, it did not show any responsiveness or system reliability.
That said, by combining it with DHF, Texture-Shape-DHF
has overcomed the scalability problem but remaining non
reliable, as per Shape-Colour-DHF fusion. This was not the
case for Texture-Colour-DHF and Texture-Colour-Shape-
DHF that showed a complete system by covering all the
evaluation mechanism criteria. These results are confirmed

Table 12 Performance Results

for Individual Block Testing - Testing Block Processing Time (h:mn:sec) Sen Spe Acc MAE

BraTS Dataset LF based 3:40:00 672% 3%  6436% 037
Texture-Shape based 8:15:00 73% 70% 72.4% 0.28
Shape-Colour based 6:44:00 68% 67% 67.8% 0.33
Texture-Colour based 7:33:00 70% 68% 69.6% 0.31
Texture-Shape-Colour based 11:20:00 75% 71% 74.2% 0.26
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Fig. 11 Critical Sample Testing
on Block 3 Methods - BraTS
Dataset

Table 13 Performance Results
for Integration Block Testing -
BraTS Dataset

Table 14 Compliance of Block
1 & 2 Testing with The
Research Evaluation
Mechanism - Retinal Dataset

Table 15 Compliance of Block
3 Testing with The Research
Evaluation Mechanism - Retinal
Dataset

Texture-Colour-DHF

Resection: STR
Survival Days: 10

Texture-Shape-DHF

0

Shape-Colour-DHF

Resection: N/A
Survival Days: 500

Resection: GTR
Survival Days: 128

Testing Block Processing Time (h:mn:sec) Sen Spe Acc MAE
LF based
Texture-Shape based 10:30:00 98% 96% 97% 0.02
Shape-Colour based 8:35:00 73% 70% 72.4% 0.28
Texture-Colour based 9:43:00 77% 76% 76.2% 0.24
Texture-Shape-Colour based 14:10:00 80% 78% 79.6% 0.21
Testing Block Responsiveness Adaptability Scalable Reliable
LF based v v - -
Texture-Shape based - v v -
Shape-Colour based v v - -
Texture-Colour based v v v -
Texture-Shape-Colour based - v v v
Testing Block Responsiveness Adaptability Scalable Reliable
LF based
Texture-Shape based v v v -
Shape-Colour based v v v -
Texture-Colour based v v v v
Texture-Shape-Colour based v v v v
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Table 16 Performance Results
for Individual Block Testing -
Retinal Dataset

Table 17 Performance Results
for Integration Block Testing -
Retinal Dataset

Sensitivity

Testing Block Processing Time (h:mn:sec) Sen Spe Acc MAE
LF based 1:30:00 68% 60% 66.4% 0.34
Texture-Shape based 5:30:00 1% 69% 70.6% 0.3
Shape-Colour based 2:50:00 69% 65% 68% 0.32
Texture-Colour based 3:00:00 77% 73% 76.2% 0.24
Texture-Shape-Colour based 4:20:00 81% 80% 80.8% 0.19
Testing Block Processing Time (h:mn:sec)  Sen Spe Acc MAE
LF based
Texture-Shape based 3:30:00 84% 81%  83.4%  0.17
Shape-Colour based 2:55:00 78% 1%  76.6%  0.24
Texture-Colour based 4:45:00 91% 8%  90.4%  0.03
Texture-Shape-Colour based ~ 5:13:00 99% 98% 98.9% 0.01
&
—— Texture-Shape-Colour-DHF
20 1 — Texture-Colour-DHF
~—— Texture-Colour-DHF — Texture-Shape-DHF
Shape-Colour-DHF Shape-Colour-DHF
0 ' P © ® w0 ® P! ® ®
1 - Specificity 1 - Specificity

(a)

Fig. 12 ROC Graph of Block 3 Testing and Validation: (a) BraTS Dataset, (b) Retinal Dataset

(b)

Presence of DMO
Advanced Stage

Texture-Shape-DHF

Texture-Shape-Colour-DHF

Early Stage

Shape-Colour-DHF

Presence DMO

Presence of DMO
Advanced Stage

Fig. 13 Critical Sample Testing on Block 3 Methods - Retinal Dataset
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by the training and testing process done on each of the
aforementioned experiments (Tables 16 and 17), where
Texture-Colour-DHF acheived 91% Sen, 88% Spe, 90.4%
Acc, and 0.03 MAE. On the other hand, Texture-Shape-
Colour-DHF demonstrated outstanding results to reach 99%
Sen, 98% Spe, 98.0% Acc and 0.01 MAE. These results could
be reflected by the receiver operating characteristic curve
(ROC) Graph shown in Fig. 12 along with a comparison to
the results obtain fron BraTS dataset.

Towards validating the obtained results in relation to the
Retinal dataset, a critical sample of OCT scans is shown in
Fig. 13 The latter shows the DMO detection and stage esti-
mation of the disease (in this case Advanced stage). As per
the Figure, Texture-Shape-Colour-DHF and Texture-Colour-
DHF have successully identified and detected the stage of
the DMO present in the scan, which was not the case for
remaining experiments. This proves the importance of the
extraction of key features that can support the system in
the identification of critical samples and decreases the FN
rates.

5 Conclusion

Disease classification requires specialist’s expertise in locat-
ing inner areas of interest from medical images, particularly,
gray-scale images (MRI) and coloured fundus images OCT.
That is, manual features extraction can be time consuming
which might have side effects on the diagnosis and anal-
ysis process. To cope with this challenge, an automated
features extraction and selection method is proposed. The
framework is based on combining HF and DHF features
towards achieving a high quality of medical analysis with less
time consumption. A new hybrid deep learning framework,
namely DenCeption, has been applied for DHF extraction
alongside with high-level features extraction techniques. The
optimal combination of texture, shape, colour, and DHF has
been used as an input to the classification model. The main
aim of the proposed method is to create a generic framework
that can pick the best features combination based on the char-
acteristics of the input dataset. Multiple experimentation have
been considered to test each possible features combination
and reflect that on the proposed evaluation mechanism to con-
vey responsiveness, adaptability, scalability and reliability.
The latter mechanism has also been tested on related works to
validate the available bench-marking.The proposed features
extraction framework achieved outstanding results on both
coloured-labelled and gray-scale-unlabelled based datasets,
to reach 98.9% for texture-shape-colour-DHF combination
and 97% for texture-shape-DHF combination, respectively.
Despite the use of other features combinations, the high
impact the aforementioned combinations provided helped
in intensifying the responsiveness and reliability of the pro-

posed framework by minimising the false positives and false
negatives that can occur.

Considering the above results, the proposed framework
can be scaled to be applied in real-time experiments. Hence,
the potential application of its use in second and/or first
clinical line. Moreover, a disease prediction model will be
designed towards testing the proposed features extraction
model on scenarios other than classification. The prediction
model will be mainly focused on DMO disease using OCT
images.
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