
DESIGN AND IMPLEMENTATION OF NLP BASED

CONVERSATIONAL CHATBOT FRAMEWORK IN

HIGHER EDUCATION

by

MICHAEL OPOKU-BROBBEY

http://orcid.org/0000-0002-6688-6807

A thesis submitted in partial fulfilment of the requirements of London South

Bank University for the degree of MRes General Engineering

July 2019

The School of Engineering

London South Bank University

Supervisors

Dr. Oswaldo Cadenas

ABSTRACT

The increasing use of technology is changing the way students learn and

absorb information. Hence, educational institutions also need to accelerate

their student communication process to draw the attention of this fast-paced

generation. The project here aims to harvest better teacher-student

relationships and to prepare students for personalised learning by

developing a convincing chatbot to assist pupils in their queries related to

common operations in numerical base 2 or binary operations with general

information operations. Background research on various web applications

and chatbot systems was discussed and analysed before the development

of the project. Functional and non-functional requirements were assessed

on the priority basis and the respective methodology was devised for the

project. Python Flask and MongoDB are used for the backend whereas

HTML5, CSS3 and jQuery are used for the frontend of the framework.

Deployment is done through Heroku Cloud Platform. Moreover, MongoDB

Atlas, NLTK, AWS Lambda Functions, AWS Lex, Boto3, Pymongo and

Gunicorn are used as Third-Party Tools and Libraries. Various test cases

were verified to check for the functional and non-functional requirements

completion. A Likert-scale questionnaire survey was done from 60

engineering students who have studied Introduction to Digital Electronics

module after the chatbot deployment and the survey responses were

recorded and evaluation of the results were generated. The survey

concludes that majority of the participants find the chatbot to be extremely

useful and the developed framework generates correct responses, and

explanations to the questions. Further to the aforementioned points, future

study for the project has been proposed in the paper. AI approach can be

used to train the chatbot framework and to provide more accurate answers

for students in future. Moreover, the framework can be altered to support

advanced parsing techniques in future along with an added voice

functionality and multi-language support in the chatbot framework.

2

DECLARATION OF ORIGINALITY

I declare that the research described in this thesis is the original work of the

author except where otherwise specified, or where an acknowledgement is

made by reference.

The work was carried out at the School of Engineering, London South Bank

University. Under the supervision of Dr. Oswaldo Cadenas.

This work has not been submitted for any other degree or award at any

other academic or professional institution during the research program.

3

ACKNOWLEDGEMENTS

The author would like to thank Dr. Oswaldo Cadenas for his

encouragement, guidance and support throughout the research programme,

from its original inception through to completion.

The ideas and suggestions contributed by the staff at LSBU, and by other

professionals in the computer science and chatbot framework development

sector are also gratefully acknowledged.

Finally, I would like to thank my mother, father and family for supporting and

encouraging me always. Along with close friends for the much-needed focus

throughout this endeavour.

4

TABLE OF CONTENTS

ABSTRACT..1

DECLARATION OF ORIGINALITY...3

ACKNOWLEDGEMENTS..4

LIST OF FIGURES..8

LIST OF TABLES..9

LIST OF ABBREVIATIONS...9

CHAPTER 1...10

INTRODUCTION..10

Overview...10

Scope of the Project...13

Need of Chatbots in Educational Institutions..13

Research Objectives..15

Qualitative Data...15

Personalised Learning..15

Establishing a stronger teacher-student relationship...15

Anytime assistance..16

Customised Teaching...16

Research Outline...16

CHAPTER 2...17

LITERATURE REVIEW...17

Earlier Chatbots...18

Self-learning Chatbots...20

Existing models in education sector..21

CHAPTER 3...27

METHODOLOGY..27

Technology Stack and Web Applications...28

Backend...28

Frontend...28

Deployment..29

Third Party Tools and Libraries...29

Functional Requirements...31

API Calls..31

Generic Question Construction..31

Generic Answer Construction..31

Query Handling...32

Information Management..33

Non-Functional Requirements..33

5

Accuracy..33

Fast Response..33

Portability..33

Maintainability...34

Ethics...34

Answering Generic Questions/Bot Conversion..34

Binary Module...34

Data Storage..36

CHAPTER 4...37

FINDINGS AND RESULTS..37

Overview..37

Binary Module...37

Test Case 01: Chatbot’s response for Addition of Binary numbers..................37

Test Case 02: Chatbot’s response for Subtraction of Binary numbers..............38

Test Case 03: Chatbot’s response for Addition of Decimal numbers...............39

Test Case 04: Chatbot’s response for Subtraction of Decimal numbers...........40

Test Case 05: Chatbot’s response for decimal to binary conversion.................42

Test Case 06: Chatbot’s response for binary to decimal conversion.................43

Test Case 07: Chatbot’s response for unsigned decimal number’s one’s
complement..44

Test Case 08: Chatbot’s response for signed decimal number’s one’s
complement..45

Test Case 09: Chatbot’s response for unsigned binary number’s one’s
complement..46

Test Case 10: Chatbot’s response for signed binary number’s one’s
complement..47

Test Case 11: Chatbot’s response for unsigned decimal number’s two’s
complement..49

Test Case 12: Chatbot’s response for signed decimal number’s two’s
complement..50

Test Case 13: Chatbot’s response for unsigned binary number’s two’s
complement..52

Test Case 14: Chatbot’s response for signed binary number’s two’s
complement..53

Test Case 15: Chatbot’s response for unsigned decimal’s binary representation
bits requirement...54

Test Case 16: Chatbot’s response for signed decimal’s binary representation
bits requirement...55

Test Case 17: User Input Bits Functionality..56

General information about the university..65

Generic Questions/Answers..67

6

Evaluation of Results...69

Evaluation on the basis of question type...72

Evaluation by comparison with existing models...73

CHAPTER 5...76

DISCUSSION...76

Research Objectives Analysis...76

Pros & Cons of the implementation of Chatbot framework..................................77

Pros..77

Cons...77

Questionnaire Survey and Results...78

Responses Recorded..78

Survey Analysis...80

CHAPTER 6...82

CONCLUSION...82

Summary...82

CHAPTER 7...84

LIMITATIONS & RECOMMENDATIONS...84

Framework Limitations...84

Text-based Input..84

Rule-based approach..84

Single Language Support...84

Framework Testing Limitations..84

Future Work..85

Machine Learning..85

Voice-based...85

Advanced NLP...85

Better Interface..86

Multiple Language Support...86

CHAPTER 8...87

RESEARCH ETHICS...87

APPENDIX A. Anatomy of a self-learning chatbot...88

APPENDIX B. Questionnaire Survey..89

APPENDIX C. NLP..90

Tokenization..90

Function 01: Input String Format Checking..91

Function 02: B2D Conversion...92

Function 03: One’s Complement of a Signed Integer...92

Function 04: Two’s Complement of a Signed Integer..94

Function 05: D2B Conversion...97
7

Function 06: Signed Decimal to Binary Conversion...98

Function 07: One’s Complement of an Unsigned Integer...................................100

Function 08: Two’s Complement of an Unsigned Integer..................................101

Function 09: Bit Representation..105

Function 10: Two’s Complement of a Binary Integer..106

Function 11: Two’s Complement of a Decimal Number....................................107

Function 12: Get Decimal String...108

Function 13: Addition/Subtraction..108

Function 14: Controller...116

APPENDIX D. SERVER..119

APPENDIX E. LEX..121

APPENDIX F. Atlas Database..122

Create Mongo dB Instances...122

Adding data to Mongo database..123

REFERENCES..123

8

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

JSON JavaScript Object Notation

CSS Cascading Style Sheet

9

FAQ Frequently Asked Questions

Q&A Questions and Answers

AIML Artificial Intelligence Markup Language

XML Extensible Markup Language

MSN Microsoft Network

NLP Natural Language Processing

AI Artificial Intelligence

API Application Programming Interface

BSON Binary JavaScript Object Notation

AJAX Asynchronous JavaScript and XML

PaaS Platform as a service

DBaaS Database as a service

NLTK Natural Language Toolkit

AWS Amazon Web Services

HTML Hypertext Markup Language

CHAPTER 1

INTRODUCTION

Overview

A chatbot is a term refers to a computer program, with the ability to

communicate with people via auditory or textual methods. Using different

techniques of Natural Language Processing (NLP) in such a way that it

somehow replicates the human way of conversation and provides a better

way for people to get information from the computer [1]. Chatbots are also

10

called conversational agents in a formal way for literary scientific work.

Natural Language Processing (NLP) is used in chatbots to generate

humans like language, by using different algorithms on natural language

rules to make it understandable for computer [2]. If the user provides voice

input, it is first converted to text and then the text is processed through NLP

algorithms. Which extract information from each sentence, converting it into

a machine-understandable form. NLP doesn’t guarantee 100% results since

it has its own limitations. Because developers are still quite far away in

being able to replicate how humans work and how they communicate. So, in

some cases it may lead to unexpected results.

One of the main techniques used in NLP is Syntactic Analysis. In syntactic

analysis, we analyse the syntax of the sentence [3]. Syntax is the rules of

any language which provides a way of a meaningful conversation by

following these sets of rules. NLP uses the syntax of the language in which

the input is given, parse that language by following those set of rules, and

extract the intended information for the machine to process it. After getting

the required information, chatbot performs the desired task, and in the end

provides a response which is understandable for humans as well [3]. Major

techniques of syntactic analysis include lemmatization i.e. reduction of

adjusted form to single forms. Morphological segmentation i.e. morphemes

are built from individual units. Word segmentation i.e. distinct units are built

from the continuous text. Part-of-speech tagging i.e. identification of parts of

speech. Finally parsing i.e. input string is grammatically analysed [3].

Parsing technique1 is used to achieve the natural language processing in

this project.

1 See Chapter 3

11

NLP tasks can be approached either by Rule-Based or Self Learning2 [4].

There are a fixed set of rules defined for NLP algorithms to parse user input,

which varies in its complexity in Rule-based approach. It focuses on pattern-

matching or parsing of user input centred on the stipulated set of rules,

which fills the gaps between the unstructured sentences to extract its

meaning [4]. They are mostly used to handle a specific task with limited

scope and set of rules, and it can be highly efficient in such scenarios

providing almost 100% accuracy. Whereas, in Self Learning approach, we

use machine learning algorithms for building the bot. For this model, we

need to provide a huge amount of data to the framework. The data is first

provided to the training model, so it can provide answers based on what it

learnt from previous data [5]. There are multiple ways to generate data for

learning, and the best possible approach is to first create a bot on the

established of rule-based approach. Then apply machine learning

algorithms based on the data collected.

There are two basic models for self-learning approach i.e. Retrieval Based

or Generative. In Retrieval Based model predefined responses are

previously stored in the database, and when a specific question is asked it

retrieves the best response to answer the question effectively. The pre-

defined responses can come from various sources, it can be data gathered

from previously asked questions or any other manually saved variables [6].

Though in the generative model, the chatbot parse the user input word by

word and generate the answer based on the closest match. Which makes it

able to generate new replies instead of existing ones. This gives the aura of

intelligence to present unique responses based on the user's input. It is

2 See Appendix A

12

more complex than other models and requires more training data to

increase efficiency [6].

Rule-based NLP approach is used to develop the chatbot framework in this

project.

Scope of the Project

Need of Chatbots in Educational Institutions

An exceptional and well-reputed educational organisation is not only one

with profoundly competent teachers, thoroughly equipped facilities and

internally certified courses. But the one that offers sufficient support to their

students. Thus, it is mandatory for an institution to always guide their

students exceedingly, by giving them up to date and solid knowledge.

However, it is nearly impossible to make sure each student is being taken

care of fully without any failures. A chatbot can become in part a teacher’s

aide rather or a simple lesson tool, and as a result students’ will naturally be

more engaged [7]. With the availability of a chatbot, students would not be

distracted while waiting for the teacher to attend to them.

It is common nowadays that students often put ‘do my assignment requests’

over the internet in the hope that they can find someone to aid them in the

completion of the assignments. Or look for prompt answers for precision

regarding the courses they are taking. Similarly, teachers also require some

time-saving alternatives to their repetitive processes that undergo all

throughout the year. The institution can set-up simple answers for their

chatbot, and there will be no need to manually search for them. As for the

teachers they can also take advantage of a chatbot in several ways, to

facilitate both their lecturing and assessment. Even though any developed

13

framework will be for a specific university or for a specific module only. But

still, it will appeal to a large number of people.

In everyday life, the rising use of modern technology is altering the way

students acquire and grasp information. The way we teach the next

generation has always changed with the addition of technology.

Technological devices are continually flourishing and more getting

advanced, and new generations are getting involved with them like never

before. Therefore, to draw the attention of this fast-paced generation, the

educational institutions also need to enhance their student communication

links [8].

When it comes to promotion of chatbots in educational processes, Shawar

and Atwell state that it is mandatory to remember that the teacher is the

backbone of the teaching process, and the learning technology may act as a

booster but not a restoration [9]. Let’s take an example, when a chatbot is

used to answer the questions of students. The teacher can use set-up log

files of the discourse to see which students are having problems and what

their shortcomings are. Thus, the teacher can use a chatbot to look for

quandaries as the students use it to solve them.

Continuing with the predicament introduced earlier that chatbots are still not

commonly released in the education sector. The aim of this thesis is set this

in context, for the more the advanced evolution of educational chatbots. It is

important to address what has been done, and to summarise this

knowledge in a concise plus relevant manner. Therefore, the research

objectives of this study is to document the instructional uses and aptitudes

of a chatbot, in an educational context by reviewing the literature in the field

14

i.e. looking at what the chatbot can do, and be used for in an educational

context.

Research Objectives

Qualitative Data

Teachers only hear and interpret the questions of the most vocals’ students.

They are not aware of many of the queries and encounters faced by the

majority of their students. Educational Chatbots can change this. Teachers

would be capable to see the chat history and point out the areas that they

may want to intensify more in class. In addition to this, they can view

questions that the chatbot was unable to answer adequately. Thereafter the

teacher can reach out to students individually to provide the proper

approach to solve the questions.

Personalised Learning

Every student has different skills, interests, and capabilities. So personal

tutors such as a chatbot can provide one-on-one lectures to the students.

Unfortunately, even some of the most highly certified and expensive

educational institutes in the world, are not able to provide these kinds of

services [9].

Establishing a stronger teacher-student relationship

In present-day memorising lessons and tests grades, are entirely the main

focal point of most of the teachers. By taking charge of these tasks,

chatbots will help teachers to fixate on cultivating an exclusive relationship

with their students. They will have the favourable circumstances to provide

them with personal guidance and elaborate the curriculum with their own

research perceptions. In this way, teachers can also be able to provide

15

distinctive mentorship. As a consequence, this will be notably beneficial for

students with learning disabilities.

Anytime assistance

With educational chatbots at work students, would not have to wait anymore

to have their queries attend to and acquire the relevant knowledge they are

counting on.

Customised Teaching

Chatbots can grant assistance to teachers who are not able to give

consideration and attention to the needy students individually.

Contemporarily, electronic gadgets such as computers, laptops, and other

devices are becoming more intensely used as learning tools. Chatbots are

being installed that can tag along with students whenever they are in

lectures and doing their assignments. Thus, the chatbots prevent the

students from falling behind their peers.

Research Outline

Chapter 2 covers the background literature research, which provides an

overview of chatbots applied in education sectors worldwide, chatbot

framework developed through the years, existing frameworks, self-learning

chatbots, interactions of bots with humans and tech stack used in the

framework development. Chapter 3 covers Methodology which includes the

functional and non-functional requirements, generic questions/answers

module, binary module and data storage. Chapter 4 details the Findings and

Results. It includes the various test cases for the binary module and generic

questions/answers module. Evaluation summary of the test results is

tabulated in this chapter. Chapter 5 recounts the discussion and analysis of

16

the framework. It includes the questionnaire survey results and the

summary analysis of the survey. Chapter 6 contains the conclusion and

recommendations. It consists of a summary of the research project and

future work.

CHAPTER 2

LITERATURE REVIEW

The core principle of a chatbot, is that it will work with humans perfectly and

follow their commands and needs. A test to check the performance of a bot

was conducted by Alan Turing in 1950 [10] where a human judge would

have to predict if the other communicating entity was a computer machine

or a person. The test was very fruitful and is still notably efficacious today.

The chatbots hold substantial drawbacks, namely they cannot book a table

at the restaurant or order the food on their own. They will do as they were

previously instructed to do, nonetheless they are incapable of thinking on

their own. General conjecture chatbot designers keep in mind, is that users

typically have an intent they want to achieve by the end of the conversation

when they initiate an interaction with a chatbot. This then influences the

conversation’s flow and topics, in order to reach the chosen goal. This can

be exploited by developers since certain patterns of behaviour tend to arise

as a result.
17

Earlier Chatbots

The first conversational framework was a PC program invented in 1966 by

Joseph Weizenbaum named as ELIZA. ELIZA’s framework was comprised

of basic NLP and keyword matching technique [11]. ELIZA matches the

keyword defined in its NLP and gave the answer. In the case where there

was a no keyword match, then ELIZA would continue the conversation by

asking further questions about the user. To illustrate, if a user asked ELIZA

how he/she can contact his/her mother. Then the keyword ’mother’ will be

matched which will be stored in ELIZA’s NLP. It will next generate some

standard replies and will be asking more questions about the user’s family.

The constraint with the framework of ELIZA was intelligence. There was no

intelligent conversation between the user and the ELIZA. The system simply

tried to prolong the conversation, so that user would be encouraged to ask

auxiliary questions. When no keywords were matched, ELIZA would bestow

conventional responses stored in its NLP by its creator e.g. “Very

interesting, please go on” or “Can you think of a special example?”

Figure 2.1: ELIZA’s response

Source: Adapted from [11]

After ELIZA, in 1995, another conversational framework was constructed by

Richard Wallace and he named it as ALICE. ALICE used advanced NLP i.e.

pattern matching technique rather than keyword-matching technique, and
18

stored the information in AIML files [12]. ALICE was able to use any of the

AIML categories from atomic, default and recursive categories.

If ALICE employed atomic categories, it means that the exact pattern of the

input string should be matched. For example, in response to the question

“What is your name?”, the framework will match the exact pattern.

Therewith if the pattern is successfully matched, it will yield an answer to the

asked question. That being said, If ALICE ran default categories that

indicate that a wild character * will be used to match the input string.

Therefore in response to the question, “What is *”, the structure will match

the wild character with the input string. Provided the wild character is

appropriately matched, it will supply an answer to the asked question.

Where ALICE was not able to offer the user with an answer with the first

category. It will jump to the second category and will again check for the

wild character match. Finally in the case where ALICE operates with

recursive categories. Then ALICE will use special tags to recurse, so that

the user can ask questions more specifically. Recursive categories engage

wild character as well but do this to reduce the submitted input string. For

example, if the user asks “Tell me what is the date today”. After recursing of

special tags and using a wild character to reduce the input string. The

question will simply become “What is the time?”.

By the same token, punctuations from the sentences are removed, and the

filtered sentence is passed though the recursive categories to find the

longest match in the sentence. For example, if a user asks, “Tell me the

date using Year, Month and date”. Then it would be filtered out to be, “Tell

me the date using Year Month and date”.

19

Likewise to ELIZA, the shortcoming with the framework of ALICE is also

intelligence. The system is viable as long as the data is stored in the

database. Hence, both the ELIZA and ALICE do not have the faculty to

learn.

Figure 2.2: ALICE’s response

Source: Adapted from [12]

Following this another intelligent framework was built by ActiveBuddy, Inc. in

2001, and was named SmarterChild. The key enhancement was that a

learning database was linked with the framework, to help train the model

and be resourceful for its clients in future [13].

Self-learning Chatbots

Learning chatbots have the forte to learn from what the client tells it, or the

data the client inputs. The guidelines from the operator are very important

and helpful in this regard. There are two rudimentary types of ways to learn.

The first is the chatbot will do what the user will ask it to do. It will record the

saying or the instructions, and follow back accordingly what is inputted. The

database will then store the answer to the question, and will answer back

with the text afterwards. The data whether it be valid or mistaken, will also

20

be stored to respond to other users. The expression or commands told to

the chatbots are extremely pivotal for its better understanding and working

with human beings or the living environment. The other is that all answers

will be saved and the most related answer will be used to be replied back.

Momentous headway was made for the conversational specialist community

by a group at IBM. Through the Watson AI venture that had been fostered

since 2006. The system was conceived with the sole reason of winning the

American TV show Jeopardy [14]. This was intriguing from an NLP

perspective, because the inquiries on the show include a great number of

figures of speech. Plus require quick data recovery from large information

bases. Alas, this AI in its past structure could just respond to joke questions

and was not able to carry on an appropriate discussion with another person

[14].

In the mid-2010s came the rise of remote helpers, for example, Apple's Siri,

Microsoft's Cortana's, Google collaborator, Amazon's Alexa and others.

An additional prominent event in the field of chatbots was the arrival of the

Messenger Platform for Facebook Messenger in 2016, This led to the

formation of conversational operators for non-AI related arrangements.

Existing models in education sector

The application of chatbots has rapidly increased in the educational sector

lately. Academic institutions are more prone to state-of-the-art and

productive ways of putting chatbots into effect as compared to past in their

usual routine practices.

Staffordshire University from the United Kingdom has developed Beacon3,

where thousands of students within the institution can search for the

3 Chatbot Application

21

instructors for their courses. Pupils can also inquire about their lectures

schedule and location using their voice or by typing. They can also attain

the answers to 400 most frequently asked queries, covering topics such as

facilities and support services [15] as shown in Figure 1 below.

Figure 2.3: Beacon by Staffordshire University

Source: Adapted from [15]

Students can also request other general queries e.g. location of specific

lecture halls, library and soon. The opening time of the library or cafeteria,

printing and copying costs for various sizes of papers et cetera. As shown in

Figure 2 below.

22

Figure 2.4: Requesting Location from Beacon by Staffordshire University

Source: Adapted from [15]

Beacon was created in combination with ANS Group a cloud service

provider, and hosted on the forum Microsoft's Azure stage. Staffordshire

University believes that Beacon will improve with time as further students

will use it, and will also help to solve their non-academic issues [15]. For

example, students from the fresh intake can use Beacon to ask for any

nearby outing places e.g. parks, museums, restaurants and so forth.

Compatibility people not belonging to Staffordshire University have to rely

on a search engine to find such information [15] as shown in Figure 3 below.

23

Figure 2.5: Beacon: Requesting non-academic information from Beacon by
Staffordshire University

Source: Adapted from [15]

The Staffordshire university intends to include more features in the

framework in the near future. For instance, if a student needs to set a

reminder for a specific class, or someone needs a recommendation for a

book or journal [15]. Andrew Proctor, who is an executive of advanced

administrations at the Staffordshire University said that, " Over time, we

expect that students will have more daily interactions with Beacon than

anyone else at the university. So it will be one of our most important tools"

[15]. Andrew also added that, "Going to university can be stressful and is

often the first time a teenager will move out of their home to live somewhere

new. Beacon is there to help them; it’s not just a Q&A bot. In Welcome

Week, it can recommend societies that will help them make friends, and it

24

will eventually guide new students toward services. If they need extra

support during the first few months. It will ask them how their lectures are

going to ensure that if they are struggling, we can help them quickly and in

the best way” [15].

The University of Canberra devised various digital assistant frameworks

including Bruce and Lucy to help both students and faculty in 2017 [15].

Bruce was designed to be a faculty-centred chatbot, whilst the purpose of

Lucy was to be a student-centred chatbot. The responsibilities of Bruce

include, going through staff questions and responding to them. Inquiring if

they have received their paycheck, available off-days etc. Whereas, Lucy

handles the queries related to student enrollment, student orientation,

timetables and suchlike [15] as shown in Figure 4 below.

Figure 2.6: Lucy by University of Canberra

Source: Adapted from [15]

Additionally they are planning to commence more chatbot frameworks to

calculate the merit points for the students by analysing their ATAR score.

25

Subsequently ranking the students against the programs offered and

programs they eligible for based on their ATAR merit points [15].

Arizona State University and the University of Memphis deployed AdmitHub.

To achieve advancement in the Artificial Intelligence of the chatbot

framework [15]. The produced framework has been successfully running,

and within the first month after its launch in excess of 70% new students

were engaged by the chatbot [15]. Furthermore the chatbot is so successful

at answering questions accurately, that 99% of the asked queries were

remedied and the university’s administration was saved from the hectic

process [15].

A common problem every university often face that graduates often fail to

register in the fall after successfully gaining admission. Hence to counter

this problem, a chatbot was dispersed by Georgia State University called

Pounce. To engross students and assure they matriculated as planned [15].

In the first summer of running, Pounce delivered more than 200,000

answers to questions asked by incoming freshmen [16]. This translated into

an additional 324 students sitting in their seats for the first day of classes at

Georgia State, rather than sitting out the college experience [16].

Georgia Tech is another college in the Peach State that has been utilising

chatbots. An educator of software engineering has harnessed the innovation

to fill in as one of his nine instructing associates. The TA chatbot responds

to students’ matters by posting important notices and due dates online. The

chatbot is tailored to talk normally, have exclamation points usage and

respond positively with, "That's right." The chatbot can tackle 40% of the

inquiries posted. As a result, this enables different TAs to manage more and

more high-level work [17].

26

Moreover, Universidad Siglo 21 has put into practice a virtual cognitive

assistant named AgentBot, which supports students with day-to-day

conundrums about the university and life on the campus. The service also

aids students with their enquiries about the course content. The solution

uses AIVO's agent bot [18].

Deakin University's Genie App is a smart personal assistant that too

services students during their course study. The ability to connect to various

campus datasets amplifies Genie's aptitude to provide on-demand support

to all students on the campus. The app also bolsters speech-to-text and

text-to-speech interaction [18].

CHAPTER 3

METHODOLOGY

Rule-based NLP approach will be devised to develop the chatbot

framework. The sole responsibility of the developed framework is to deliver

a user-friendly interface. That users can access the online cloud platform

and procure a solution to their enquiries. The prepared framework upholds

27

generic questions about the university, courses information etc. along with

the queries correlated to binary operations.

Technology Stack and Web Applications

Following technology stack and web applications are used to develop the

chatbot framework.

Backend

Flask

Flask is a Python based open source micro-framework foremost designed

for REST APIs (Application Programming Interfaces). It’s licensed under

BSD Unlike other frameworks such as Django or .NET which are considered

batteries includes, Flask remains lightweight by only offering handful yet

core set libraries. These include Werzeug (local server), Jinja (templating

engine for web pages), XML and JSON parsers along with several others.

Because of this, Flask’s learning curve is relatively flat and allows greater

customisation, in terms of what sort of application structure does a

developer want.

MongoDB

An open-source NoSQL database implemented in C++. Unlike traditional

Relational Databases such as MySQL/PostgreSQL, MongoDB doesn’t

require a rigid schema. Its flexible nature allows developers to store data in

documents, nested or sequential both.

Frontend

HTML5

Hyper Text Markup Language for displaying web pages on the browsers.

HTML5 is the latest iteration of the standard which adds new tags including

navigation bars, header, footer, article and audio files.

28

CSS3

Cascadian Style Sheets or CSS is a language that describes the styling of

the content being displayed inside web pages. This includes, font styling,

content alignment, animations, grid and tabular layouts etc. CSS3 is the

latest version which incorporates responsive designs features through

media queries and flex box.

jQuery

Javascript library for developing dynamic frontend for web applications. It

allows the handler to asynchronously exchange data with the server using

AJAX (Asynchronous Javascript and XML).

Deployment

Heroku

Platform as a Service which allows developers to easily deploy, manage

and scale their web applications on cloud. Heroku basically utilizes Dynos

which is the lightweight app-container, virtualised instances of Linux

machines. Heroku supports the application of multiple frameworks including

Flask, Django and Ruby on Rails. Their most basic (and free) model offers

up to the launch of 5 projects, each having PostgreSQL database and single

Dyno.

Third Party Tools and Libraries

MongoDB Atlas

DataBase as a Service offered by Atlas. The reason for choosing this

service was that in the initial stage MongoDB instance was selected to run

on Heroku, but payment was required. The only alternative option which

was indistinguishable in quality, easy and free of cost to use was Atlas.

29

NLTK

Natural Language Toolkit or NLTK is a Python founded library. Centrally

formed for resolving Natural Language Processing concerned problems. Its

chief attributes include string parsing, tokenization, 50 different corpuses,

text classification, sentiment analysis etc.

AWS Lambda Functions

Is a computing platform which is often regarded as server-less, since they

let you run the code without the server management.

AWS Lex

Amazon offers Lex as part of its AWS suite for building conversational

interfaces for all sorts of applications. It purveys a formidable NLP interface

in order to analyse users’ questions and call upon the desired intent. Intents

are used in Lex to generate a specific response. Amazon Lex intent triggers

AWS Lambda function, it takes the question and passes it to a search

engine (Wolfram Alpha), in our case via an API call. Lastly transferring the

JSON response back to our application server. Like Heroku and Atlas, both

Lex and Lambda functions have their respective free tiers for small scale

usage or experimentation.

Boto3

Boto3 is a Python client for using all sorts of AWS (Amazon Web Service)

linked offerings.

Pymongo

MongoDB client for Python.

30

Gunicorn

Application server for backend similar to Werzeug. It was elected given

Heroku Dynos prohibits the support of Werzeug. Accordant with official

documentation only Gunicorn is endorsed.

Functional Requirements

API Calls

1. Parsing of the input string will be done from the flask server Priority

1

2. JSON response documents will receive api data from the flask

server. Priority 1

Generic Question Construction

1. URL will send text string to the module. Priority 1

2. Keywords defined in the NLP will be identified from the input string

and replace them with generic representations. Priority 1

3. An output string will be generated. Priority 1

4. Keywords defined in the NLP will be stored in the module e.g.

complement, bits, convert etc. Priority 1

5. An error message will be generated in case of null parsing, “Sorry,

can you please repeat that?” Priority 1

Generic Answer Construction

1. Parsed output string will be sent as an input to this module. Priority 1

2. An appropriate answer will be generated from this module after

keyword matching from the NLP e.g. “Who are you?” becomes “Hi

I'm Serina.” Priority 1

3. An error message will be generated in case of null keyword

matching, “Sorry I don’t know that?” Priority 1

31

Query Handling

1. Students should be permitted to ask for information about the

university by the framework. Priority 1

2. Students should be permitted to ask for queries related to binary

addition by the framework. Priority 1

3. Students should be permitted to ask for queries related to binary

subtraction by the framework. Priority 1

4. Students should be permitted to ask for queries related to decimal

addition by the framework. Priority 1

5. Students should be permitted to ask for queries related to decimal

subtraction by the framework. Priority 1

6. Students should be permitted to ask for the solution of unsigned

decimal number’s one’s complement by the framework. Priority 1

7. Students should be permitted to ask for the solution of signed

decimal number’s one’s complement by the framework. Priority 1

8. Students should be permitted to ask for the solution of unsigned

binary number’s one’s complement by the framework. Priority 1

9. Students should be permitted to ask for the solution of signed binary

number’s one’s complement by the framework. Priority 1

10. Students should be permitted to ask for the solution of unsigned

decimal number’s two’s complement by the framework. Priority 1

11. Students should be permitted to ask for the solution of signed

decimal number’s two’s complement by the framework. Priority 1

12. Students should be permitted to ask for the solution of unsigned

binary number’s two’s complement by the framework. Priority 1

32

13. Students should be permitted to ask for the solution of signed binary

number’s two’s complement by the framework. Priority 1

14. Students should be permitted to ask for queries related to related to

binary to decimal conversion by the framework. Priority 1

15. Students should be permitted to ask for queries related to decimal to

binary conversion by the framework. Priority 1

16. Students should be permitted to ask for queries related to number of

bits required for an unsigned decimal for its binary representation by

the framework. Priority 1

17. Students should be permitted to ask for queries related to number of

bits required for a signed decimal for its binary representation by the

framework. Priority 1

18. Students should be permitted to ask for the solution of binary

operations in their desired entered number of bits if valid by the

framework. Priority 1

Information Management

Instructor should be permitted to make changes in NLP. Priority 1

Non-Functional Requirements

Accuracy

1. More than 80% of the framework responses should be accurate.

Priority 1

Fast Response

The server should respond timely over an asked question. Priority 2

Portability

1. The bot server should be OS friendly and should support multiple

operating systems. Priority 2

33

2. The bot server should be hardware friendly and should support

multiple hardware. Priority 2

Maintainability

The server should be easily maintainable for the developer. Priority 1

Ethics

The framework should follow code of ethics and should be GDPR compliant

i.e. any kind of information about the user using the chatbot should not be

stored or processed by any means. Priority 1

Answering Generic Questions/Bot Conversion

This module is based on Amazon Lex. It can answer university related

questions as well as generic questions. Amazon Lex receives the user’s

question via API call from the Flask server. It then calls the specific intent of

Lex on basis of keywords by parsing the user’s question. An intent

represents an action that the user wants to perform. It then either returns

the response to server, or call the Amazon Lambda function for further

processing. The lambda function calls an external API of Wolfram Alpha for

providing answers of generic questions. It confers answers relevant to

general discussion, just like any other search engine. The JSON response

from api is then converted in to readable format for flask server. Lex also

answers the questions related to the university. For that we need to create

additional intents for the types of questions user may ask, specific to this

university.

Binary Module

While the generic module will concentrate on basic queries of the user. The

binary module will specifically answer questions related to Mathematics

involving Boolean Algebra, Decimal and Binary number systems. This
34

binary module is capable of answering questions on simple Boolean algebra

in both decimal and binary formats.

However, before performing any of the functions, the query string is first

preprocessed using three operations. At the outset, the string is tokenized

using NLTK’s built-in word_tokenize()4 method. Tokenization separates

individual words and dumps them into a list. Punctuation, prepositions and

other such grammatical features get ignored during this process. Once the

list of tokenize words gets filled, it is further filtered down by comparing with

another fixed list of keywords. These keywords are synonyms of each other

and relevant to the context of Boolean calculations.

The following are the few keywords that are used to distinguish the query’s

context:

Write, One/One’s, Two/Two’s, Binary, Decimal, Convert, Difference, Bits,

Complement, Represent, Sum etc

After narrowing down the query’s context, arguments get parsed next. The

binary module at this point can only parse up to 2 arguments. In order to

distinguish whether arguments are of binary or decimal nature,

check_binary_format() method is called which checks if only 1s and 0s are

present in the argument. For example, if an argument is 101101 then

check_binary_format()5 will return true. Contrary If the argument is let’s say

10012 then it will return false.

Depending on arguments’ format and keywords present in the string, the

applicable Boolean operations gets called. On the occasion that the string

contains:

4 Check Appendix C

5 Check Appendix C

35

 “One/ones/one’s” and “complement” then one_complement() method

is called which returns 1’s complement.

 “Two/Twos/Two’s” and “complement” then two_complement()

method is called which returns 2’s complement of the given

argument.

 “Bits” then the binary representation of the string is returned via

bit_representation() function.

 “Sum” or “+” symbol, then binary_addition() function is applied.

 “Difference” or “-” symbol, then binary_subtraction() function is

applied.

 “Convert” and “to decimal”/ “binary to decimal” then

binary_to_decimal() function is called.

 “Convert” and “to binary”/ “decimal to binary” then

decimal_to_binary() function is called.

Data Storage
6

All the questions and their answers given by the chatbot is stored in a

database on Atlas Instance. It can be used in future to put into effect

machine learning and AI approach, for the bot to render highly meticulous

answers for students.

6 Check Appendix F

36

CHAPTER 4

FINDINGS AND RESULTS

Overview

In this chapter, the test cases have been applied to each module of the

chatbot singly. Alongside this the framework responses have been collected

to check whether the preliminary established functional and non-functional

requirements were met or not.

Binary Module

Test Case 01: Chatbot’s response for Addition of Binary numbers

Test Example String 1: 1010

Test Example String 2: 1001

Question: What is the result of 1010 + 1001?

Response:

Figure 4.1: Test Case 01: Chatbot’s response for Binary Addition

Chatbot’s response for binary addition is displayed on the main screen as

shown above. Withal, by clicking on the ‘Click Here for Explanation’ link, an

explanation box is generated with the step-by-step solution and explanation
37

of the respective question along with a YouTube video link for further

assistance as shown below.

Figure 4.2: Test Case 01: Explanation box for Binary Addition

Test Case 02: Chatbot’s response for Subtraction of Binary numbers

Test Example String 1: 1010

Test Example String 2: 1001

Question: What is the result of 1010 – 1001?

Response:

Figure 4.3: Test Case 02: Chatbot’s response for Binary Subtraction

38

Chatbot’s response for binary subtraction is displayed on the main screen

as shown above. Moreover, by clicking on the ‘Click Here for Explanation’

link, an explanation box is generated with the step-by-step solution and

explanation of the respective question along with a YouTube video link for

further assistance as shown below.

Figure 4.4: Test Case 02: Explanation box for Binary Subtraction

Test Case 03: Chatbot’s response for Addition of Decimal numbers

Test Example String 1: 69

Test Example String 2: 34

Question: What is the result of 69 + 34?

Response:

39

Figure 4.5: Test Case 03: Chatbot’s response for Decimal Addition

Chatbot’s response for decimal addition is displayed on the main screen as

shown above. Additionally, by clicking on the ‘Click Here for Explanation’

link, an explanation box is generated with the step-by-step solution and

explanation of the respective question along with a YouTube video link for

further assistance as shown below.

Figure 4.6: Test Case 03: Explanation box for Decimal Addition

Test Case 04: Chatbot’s response for Subtraction of Decimal numbers

Test Example String 1: 69

40

Test Example String 2: 34

Question: What is the result of 69 – 34?

Response:

Figure 4.7: Test Case 04: Chatbot’s response for Decimal Subtraction

Chatbot’s response for decimal subtraction is displayed on the main screen

as shown above. Also, by clicking on the ‘Click Here for Explanation’ link, an

explanation box is generated with the step-by-step solution and explanation

of the respective question along with a YouTube video link for further

assistance as shown below.

41

Figure 4.8: Test Case 04: Explanation box for Decimal Subtraction

Test Case 05: Chatbot’s response for decimal to binary conversion

Test Example String: 33

Question: Convert 33 to binary

Response:

Figure 4.9: Test Case 05: Chatbot’s response for decimal to binary

conversion

Chatbot’s response for decimal to binary conversion is displayed on the

main screen as shown above. equally, by clicking on the ‘Click Here for

Explanation’ link, an explanation box is generated with the step-by-step

solution and explanation of the respective question as shown below.

42

Figure 4.10: Test Case 05: Explanation box for Decimal to binary

conversion

Test Case 06: Chatbot’s response for binary to decimal conversion

Test Example String: 10010010

Question: Convert 10010010 to decimal

Response:

Figure 4.11: Test Case 06: Chatbot’s response for binary number to decimal

number conversion

Chatbot’s response for binary number to decimal number conversion is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question as shown below.

43

Figure 4.12: Test Case 06: Explanation box for Binary number to decimal

number conversion

Test Case 07: Chatbot’s response for unsigned decimal number’s

one’s complement

Test Example String: 33

Question: What is the one’s complement of 33?

Response:

Figure 4.13: Test Case 07: Chatbot’s response for unsigned decimal

number’s one’s complement

Chatbot’s response for unsigned decimal number’s one’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question as shown below.

44

Figure 4.14: Test Case 07: Explanation box for unsigned decimal number’s

one’s complement

Test Case 08: Chatbot’s response for signed decimal number’s one’s

complement

Test Example String: -33

Question: What is the one’s complement of -33?

Response:

Figure 4.15: Test Case 08: Chatbot’s response for signed decimal number’s

one’s complement

45

Chatbot’s response for signed decimal number’s one’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question along with a

YouTube video link for further assistance as shown below.

Figure 4.16: Test Case 08: Explanation box for signed decimal number’s

one’s complement

Test Case 09: Chatbot’s response for unsigned binary number’s one’s

complement

Test Example String: 10011100

Question: What is the one’s complement of 10011100?

Response:
46

Figure 4.17: Test Case 09: Chatbot’s response for unsigned binary

number’s one’s complement

Chatbot’s response for unsigned binary number’s one’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question as shown below.

Figure 4.18: Test Case 09: Explanation box for unsigned binary number’s

one’s complement

Test Case 10: Chatbot’s response for signed binary number’s one’s

complement

Test Example String: -1001110

Question: What is the one’s complement of -1001110?

Response:

47

Figure 4.19: Test Case 10: Chatbot’s response for signed binary number’s

one’s complement

Chatbot’s response for signed binary number’s one’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question along with a

YouTube video link for further assistance as shown below.

Figure 4.20: Test Case 10: Explanation box for signed binary number’s

one’s complement

48

Test Case 11: Chatbot’s response for unsigned decimal number’s

two’s complement

Test Example String: 33

Question: What is the two’s complement of 33?

Response:

Figure 4.21: Test Case 11: Chatbot’s response for unsigned decimal

number’s two’s complement

Chatbot’s response for unsigned decimal number’s two’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question along with a

YouTube video link for further assistance as shown below.

49

Figure 4.22: Test Case 11: Explanation box for unsigned decimal number’s

two’s complement

Test Case 12: Chatbot’s response for signed decimal number’s two’s

complement

Test Example String: -33

Question: What is the two’s complement of -33?

Response:

Figure 4.23: Test Case 12: Chatbot’s response for signed decimal number’s

two’s complement

Chatbot’s response for signed decimal number’s two’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question along with a

YouTube video link for further assistance as shown below.

50

Figure 4.24: Test Case 12: Explanation box for signed decimal number’s

two’s complement

51

Test Case 13: Chatbot’s response for unsigned binary number’s two’s

complement

Test Example String: 10011100

Question: What is the two’s complement of 10011100?

Response:

Figure 4.25: Test Case 13: Chatbot’s response for unsigned binary

number’s two’s complement

Chatbot’s response for unsigned binary number’s two’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question along with a

YouTube video link for further assistance as shown below.

52

Figure 4.26: Test Case 13: Explanation box for unsigned binary number’s

two’s complement

Test Case 14: Chatbot’s response for signed binary number’s two’s

complement

Test Example String: -1001110

Question: What is the two’s complement of -1001110?

Response:

Figure 4.27: Test Case 14: Chatbot’s response for signed binary number’s

two’s complement

Chatbot’s response for signed binary number’s two’s complement is

displayed on the main screen as shown above. By clicking on the ‘Click

53

Here for Explanation’ link, an explanation box is generated with the step-by-

step solution and explanation of the respective question along with a

YouTube video link for further assistance as shown below.

Figure 4.28: Test Case 14: Explanation box for signed binary number’s

two’s complement

Test Case 15: Chatbot’s response for unsigned decimal’s binary

representation bits requirement

Test Example String: 44

Question: How many bits are required for 44 for its binary representation?

Response:
54

Figure 4.29: Test Case 15: Chatbot’s response for unsigned decimal’s

binary representation bits requirement

Chatbot’s response for unsigned decimal’s binary representation bits

requirement is displayed on the main screen as shown above. By clicking

on the ‘Click Here for Explanation’ link, an explanation box is generated with

the step-by-step solution and explanation of the respective question as

shown below.

Figure 4.30: Test Case 15: Explanation box response for unsigned

decimal’s binary representation bits requirement

Test Case 16: Chatbot’s response for signed decimal’s binary

representation bits requirement

Test Example String: -44

Question: How many bits are required for -44 for its binary representation?

Response:

55

Figure 4.31: Test Case 16: Chatbot’s response for signed decimal’s binary

representation bits requirement

Chatbot’s response for signed decimal’s binary representation bits

requirement is displayed on the main screen as shown above. By clicking

on the ‘Click Here for Explanation’ link, an explanation box is generated with

the step-by-step solution and explanation of the respective question as

shown below.

Figure 4.32: Test Case 16: Explanation box for signed decimal’s binary

representation bits requirement

Test Case 17: User Input Bits Functionality

Subcase 1: Chatbot’s response for unsigned decimal number’s two’s

complement in user-specified bits

Test Example String: 33

Question: What is the two’s complement of 33 in 10bit?

Response:

56

Figure 4.33: Test Case 17 Subcase 1: Chatbot’s response for unsigned

decimal number’s two’s complement in user-specified bits

Chatbot’s response for unsigned decimal number’s two’s complement in

user-specified bits is displayed on the main screen as shown above. By

clicking on the ‘Click Here for Explanation’ link, an explanation box is

generated with the step-by-step solution and explanation of the respective

question along with a YouTube video link for further assistance as shown

below.

57

Figure 4.34: Test Case 17 Subcase 1: Explanation box for unsigned decimal

number’s two’s complement in user-specified bits

Subcase 2: Chatbot’s response for signed decimal number’s two’s

complement in user-specified bits

Test Example String: -33

Question: What is the two’s complement of -33 in 10bit?

Response:

58

Figure 4.35: Test Case 17 Subcase 2: Chatbot’s response for signed

decimal number’s two’s complement in user-specified bits

Chatbot’s response for signed decimal number’s two’s complement in user-

specified bits is displayed on the main screen as shown above. By clicking

on the ‘Click Here for Explanation’ link, an explanation box is generated with

the step-by-step solution and explanation of the respective question along

with a YouTube video link for further assistance as shown below.

59

Figure 4.36: Test Case 17 Subcase 2: Explanation box for unsigned decimal

number’s two’s complement in user-specified bits

Subcase 3: Chatbot’s response for Binary Addition in user-specified

bits

Test Example String 1: 1010

Test Example String 2: 1001

Question: What is the result of 1010 + 1001 in 10bit?

Response:

Figure 4.37: Test Case 17 Subcase 3: Chatbot’s response for Binary

Addition in user-specified bits

Chatbot’s response for Binary Addition in user-specified bits is displayed on

the main screen as shown above. By clicking on the ‘Click Here for

Explanation’ link, an explanation box is generated with the step-by-step

60

solution and explanation of the respective question along with a YouTube

video link for further assistance as shown below.

Figure 4.38: Test Case 17 Subcase 3: Explanation box for Binary Addition in

user-specified bits

Subcase 4: Chatbot’s response for Binary Subtraction in user-

specified bits

Test Example String 1: 1010

Test Example String 2: 1001

Question: What is the result of 1010 - 1001 in 10bit?

Response:

Figure 4.39: Test Case 17 Subcase 4: Chatbot’s response for Binary

Subtraction in user-specified bits

61

Chatbot’s response for Binary Subtraction in user-specified bits is displayed

on the main screen as shown above. By clicking on the ‘Click Here for

Explanation’ link, an explanation box is generated with the step-by-step

solution and explanation of the respective question along with a YouTube

video link for further assistance as shown below.

Figure 4.40: Test Case 17 Subcase 4: Explanation box for Binary

Subtraction in user-specified bits

Subcase 5: Chatbot’s response for unsigned binary number’s two’s

complement in user-specified bits

Test Example String: 10011100

Question: What is the two’s complement of 10011100 in 10bit?

Response:

62

Figure 4.41: Test Case 17 Subcase 5: Chatbot’s response for unsigned

binary number’s two’s complement in user-specified bits

Chatbot’s response for unsigned binary number’s two’s complement in user-

specified bits is displayed on the main screen as shown above. By clicking

on the ‘Click Here for Explanation’ link, an explanation box is generated with

the step-by-step solution and explanation of the respective question along

with a YouTube video link for further assistance as shown below.

Figure 4.42: Test Case 17 Subcase 5: Explanation box for unsigned binary

number’s two’s complement in user-specified bits

63

Subcase 6: Chatbot’s response for signed binary number’s two’s

complement in user-specified bits

Test Example String: -1001110

Question: What is the two’s complement of -1001110 in 10bit?

Response:

Figure 4.43: Test Case 17 Subcase 6: Chatbot’s response for signed binary

number’s two’s complement in user-specified bits

Chatbot’s response for signed binary number’s two’s complement in user-

specified bits is displayed on the main screen as shown above. By clicking

on the ‘Click Here for Explanation’ link, an explanation box is generated with

the step-by-step solution and explanation of the respective question along

with a YouTube video link for further assistance as shown below.

64

Figure 4.44: Test Case 17 Subcase 6: Explanation box for signed binary

number’s two’s complement in user-specified bits

General information about the university

Question: Who are you?

Response:

Figure 4.45: General information about the university Case 1

65

Question: Who do you work for?

Response:

Figure 4.46: General information about the university Case 2

Question: In which modules you can help me with?

Response:

Figure 4.47: General information about the university Case 3

Question: Is it possible that I register at LSB for distance learning?

Response:

Figure 4.48: General information about the university Case 4

66

Question: Can you let me know the duration of the General Engineering

course?

Response:

Figure 4.49: General information about the university Case 5

Question: Kindly let me know the time commitment for MRes.

Response:

Figure 4.50: General information about the university Case 6

Generic Questions/Answers

Question: What is the time?

Response:

Figure 4.51: Generic Questions/Answers Testing Case 1

Question: What is the date?

67

Response:

Figure 4.52: Generic Questions/Answers Testing Case 2

Question: What is the capital of England?

Response:

Figure 4.53: Generic Questions/Answers Testing Case 3

Question: What is the population of England?

Response:

Figure 4.54: Generic Questions/Answers Testing Case 4

Question: What is the population of London?

Response:

68

Figure 4.55: Generic Questions/Answers Testing Case 5

Question: Who won the 2019 cricket world cup?

Response:

Figure 4.56: Generic Questions/Answers Testing Case 6

Evaluation of Results

After testing the developed framework for all possible use cases, we have

anaysed that the expected response and the obtained response are same.

All the outcomes from the test cases lies under pass category.

The table below summarizes the outcomes of test cases of developed

framework.

Test
Case #

Description Response
Expected

Response
Obtained

Outcome

1 Binary Addition Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

69

2 Binary Subtraction Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

3 Binary to Decimal
Conversion

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

4 Decimal to Binary
Conversion

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

5 One’s complement of
unsigned decimal

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

6 One’s complement of
signed decimal

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

7 One’s complement of
unsigned binary

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

8 One’s complement of
signed binary

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

9 Two’s complement of
unsigned decimal

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

70

10 Two’s complement of
signed decimal

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

11 Two’s complement of
unsigned binary

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

12 Two’s complement of
signed binary

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

13 Decimal Addition Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

14 Decimal Subtraction Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

15 Number of bits for
Binary Representation of

unsigned decimal

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

16 Number of bits for
Binary Representation of

signed decimal

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

17 Binary operations in
user-specified bits

Provide
accurate

response and
explanation

Accurate
response and
explanation

provided

PASS

18 General Information
about the university

Provide
accurate
response

Accurate
response
provided

PASS

71

19 Generic
Questions/Answers

Provide
accurate
response

Accurate
response
provided

PASS

Table 4.1: Evaluation of Results

We can analyse from the table above that the developed framework have

met all the functional requirements and all the test cases have provided

accurate responses and explanation. Moreover, the explanation from the

chatbot includes a YouTube video tutorial link where required. All the test

cases outcomes fell under PASS category.

Evaluation on the basis of question type

There are broadly two categories in which the questions asked by the user

is divided, and responses is collected and analysed. It is either a relevant

question or an irrelevant question. The chatbot framework answers these

questions on the basis of developed NLP. When the chatbot answer a

user’s question correctly, it implies that it was a valid question and the

designed algorithm retrieved the answer from the framework. Conversely, if

the chatbot is not able to answer a user’s question justly, it indicates that it

was an irrelevant question although valid i.e. outside the domain of the

developed functional and non-functional requirements. Forward that the

created algorithm was competent in retrieving the answer from the

framework.

A suited question could be the user asking information about the MRes

course for Engineering from the chatbot.

Response:

72

Figure 4.57: Chatbot Evaluation: Relevant Question

The reply was correct: “The MRes is a one-year programme and details of

the programme can be found attached, to be accepted on to this

programme and for us to fully evaluate your qualifications you must apply

online.”

An unrelated type question asked, might be the user asking for the national

sport of England from the chatbot.

Response:

Figure 4.58: Chatbot Evaluation: Irrelevant Question

The reply was not useful: “Sorry I don't know that!”

Evaluation by comparison with existing models

We will compare the developed framework with exisiting available models

on two parameters i.e. classification according to educational intentionality

vs classification according to tasks.

73

Classification according to Educational Intentionality

Depending on their nature, chatbots in education sector can be classified

into two categories i.e. chatbots that do not have an educational

intentionality and others that do. Chatbots that are incorporated into

teaching tasks of an administrative nature including student guidance and

personal assistance and of a support nature i.e. FAQs do not have

educational intentionality.

Chatbots designed to foster teaching and learning directly have eduational

intentionality. They can be further classified into two categories.

1. Chatbots that provide scaffolding for the learning process can adapt,

select and sequence contents according to the student’s needs and

pace, aid reflection and metacognition processes and provide

learning motivation.

2. Chatbots that provide exercise and practice programs for skills

acquisition. These chatbots present a stimulus in the form of a

question or problem, and the student gives an answer. This is

automatically assessed by the chatbot, which gives immediate

feedback to the student.

Classification according to tasks

Chatbots can be classified on the basis of tasks which includes

administrative and management tasks to foster personal productivity, taking

care of FAQs, student mentoring, motivation, practice of specific skills and

abilities, simulations, reflection and metacognitive strategies and student

learning assessment.

74

The table below summarizes the comparison between the developed

framework and the other existing models according to the tasks they carry

out and their educational intentionality.

According to intentionality
Without Educational Intentionality With Educational

Intentionality
Academic
guidance and
personal agent

Support (FAQs) Tutor-
support

Exercise
and
Practice

According
to tasks

Administrativ
e and
management
tasks to foster
personal
productivity

Genie
Hubert
Ivy
Pounce
CourseQ
Differ
MOOCBuddy

Genie
Ivy
Pounce
Otto

Genie

Answering
administrative
queries
(FAQs)

Genie
Ivy
Pounce
CourseQ
Bot CEU Cardenal
Herrera
Serina

Genie
Pounce
Jill Watson
Bot CEU
Cardenal
Herrera
Serina

Serina

Mentoring Serina Jill Watson
Serina

Pounce
Jill
Watson
Differ
Ani
Botter
Serina

Duolingo
Pepper
NAO

Motivation Differ
Ani
Botter

Duolingo

Conversation
for language
learning

Ani Duolingo

Reflection and
metacognitive
strategies

The
Guardian
of History
Replika

Student
learning
assessment

Serina The
Guardian
of History
Ani
Serina

Pepper
NAO

Table 4.2: Evaluation by comparison with existing models

75

CHAPTER 5

DISCUSSION

This chapter comprises of the analysis of the research objectives after the

development of the chatbot framework to analyse whether the research

objectives have been met or not, pros and cons of the implementation of the

chatbot framework along with the discussion of the questionnaire survey7

results.

Research Objectives Analysis

In Chapter 1, the research objectives were discussed including qualitative

data, personalized learning, to establish a stronger teacher-student

relationship, anytime assistance and customized teaching. We discussed

earlier that it is very difficult for academic teachers to be aware of queries of

the non-vocal students. So, teachers would be able to access the database

of the developed chatbot framework and chat history and can point out the

areas they may want to intensify more in class for specific students.

Moreover, since the teachers would be capable of accessing the chat

history and can know if the framework is answering the queries correctly, so

the teacher can reach out to students individually to provide the proper

approach to solve the questions, in case there is some ongoing error in the

framework. Furthermore, we discussed under personalized learning that

since students have different skills, interests, and capabilities when

compared to one another, so the need for one-on-one lectures to the

students can be fulfilled by the developed chatbot framework, since the

teachers would have access to add separate learning modules to the

7 Check Appendix A

76

framework as an administrator. Moreover, the developed framework will

certainly establish a better teacher-student relationship since the framework

will allow them to provide students with personal guidance and elaborate the

curriculum with their own research perceptions. Furthermore, since the

chatbot will be available on cloud 24/7, so the students would not have to

wait anymore to have their queries attend to and can acquire the relevant

knowledge they are counting on anytime. Finally, the developed chatbot

framework will be able to transform the traditional teaching into customized

teaching since the workload on the teachers will become less and the

students will just have to access the specific module in the framework they

are looking for. So, the students will be prevented from falling behind their

peers in terms of learning and their grades.

Pros & Cons of the implementation of Chatbot framework

The pros and cons of the implementation of chatbot framework are listed

below.

Pros

1. It will create a personalised learning environment for students

2. It will establish a better teacher-student relationship

3. It will provide 24/7 assistance to the students

4. It will promote the use of technology in academic institutions

5. It will improve query handling system for academic institutions

6. It can be used as a tool for Online Reputation Management.

7. It will promote innovative and customized teaching culture.

Cons

1. Since the developed framework is built using rule-based NLP

approach, so it has a limited scope.

77

2. The chatbot responses can be delayed if there’s an issue in the

server side, so the students can be frustrated.

Questionnaire Survey and Results

The questionnaire survey results are collected from the period when the

chatbot was operational and deployed. The responses were gathered from

both undergraduate and postgraduate students of general engineering with

a total of 60 students. The participats were approached and recruited

through the business network of S.B. Pharma Group. Feedback returns

were compiled from the students in a 14 days period of time. The

questionnaire was designed in a Likert-scale manner where the participants

can record their responses from a scale of Extremely Useful/Accurate to Not

Useful/Accurate at all. The tables and pie charts of the persons surveyed

recorded reactions, are included below.

Responses Recorded

Was the chatbot useful?

No. of
Students

Extremely Mostly Moderately Slightly No

60 32 8 10 6 4

Table 5.1: Questionnaire Survey Results: Was the chatbot useful?

Figure 5.1: Pie Chart of Questionnaire Survey Results: Was the chatbot

useful?

Were the responses accurate?

No. of
Students

Extremely Mostly Moderately Slightly No

60 44 8 4 3 1

Table 5.2: Questionnaire Survey Results: Were the responses accurate?
78

Figure 5.2: Pie Chart of Questionnaire Survey Results: Were the responses

accurate?

Were the explanations accurate?

No. of
Students

Extremely Mostly Moderately Slightly No

60 38 12 7 1 2

Table 5.3: Questionnaire Survey Results: Were the explanations accurate?

Figure 5.3: Pie Chart of Questionnaire Survey Results: Were the

explanations accurate?

Would you like this to be the standard?

No. of
Students

Strongly
Agree

Somewhat
Agree

Neutral Somewhat
Disagree

Strongly
Disagree

60 42 7 2 3 6

Table 5.4: Questionnaire Survey Results: Would you like this to be the

standard?

Figure 5.4: Pie Chart of Questionnaire Survey Results: Would you like this

to be the standard?

Would you prefer to interact with the Chatbot via voice rather than text?

No. of
Students

Strongly
Agree

Somewhat
Agree

Neutral Somewhat
Disagree

Strongly
Disagree

60 28 15 5 6 6

Table 5.5: Questionnaire Survey Results: Would you prefer to interact with

the Chatbot via voice rather than text?

79

Figure 5.5: Pie Chart of Questionnaire Survey Results: Would you prefer to

interact with the Chatbot via voice rather than text?

Survey Analysis

The responses from the questionnaire survey were amassed from both

undergraduate and postgraduate students with a total of 60 students. In

response to the question regarding the usefulness of the bot, 53% of the

participants found the chatbot to be extremely useful. 13% found it to be

mostly useful, 17% were of the opinion that it is moderately useful. 10%

disclosed the chatbot to be slightly useful, whilst 7% of the participants said

that the bot is not useful at all. 75% of the participants regarded the bot’s

responses as extremely accurate when they were asked whether the

chatbot responses were accurate, 12% claimed the responses to be mostly

accurate, 6% said that the responses are moderately accurate. In contrast

only 5% and 2% of the participants stated the responses to be slightly

accurate or not accurate at all respectively. Further to this, 63% of the

participants regarded the bot’s explanations towards asked questions as

extremely accurate, when they were asked if the chatbot explanations were

accurate. 20% remarked the explanations to be mostly accurate, 12%

proclaimed that the explanations are moderately accurate. But 2% and 3%

of the participants voiced that the explanations were slightly accurate or not

accurate at all respectively. In reply to the question if the participants would

like the chatbot to be the standard. 70% of the participants strongly agreed,

12% said that they are somewhat agreed, 3% remained neutral, 5%

somewhat disagreed, and 10% of the participants strongly disagreed with

the concept that the instituted chatbot should be the standard. Finally, the

80

participants were asked if they would prefer to interact with the chatbot via

voice rather than text. 47% of them strongly agreed that bot should be voice

based as well, 25% somewhat agreed, 8% stayed neutral, 10% somewhat

disagreed and 10% strongly disagreed as well.

The survey results summary is listed in the tables below.

Was the chatbot useful?

Sample Size Extremely Mostly Moderately Slightly No

60 53% 13% 17% 10% 7

Table 5.6: Questionnaire Survey Results Summary: Was the chatbot

useful?

Were the responses accurate?

Sample Size Extremely Mostly Moderately Slightly No

60 75% 12% 6% 5% 2%

Table 5.7: Questionnaire Survey Results Summary: Were the responses

accurate?

Were the explanations accurate?

Sample Size Extremely Mostly Moderately Slightly Not

60 63% 20% 12% 2% 3%

Table 5.8: Questionnaire Survey Results Summary: Were the explanations

accurate?

Would you like this to be the standard?

Sample Size Strongly
Agree

Somewhat
Agree

Neutral Somewhat
Disagree

Strongly
Disagree

81

60 70% 12% 3% 5% 10%

Table 5.9: Questionnaire Survey Results Summary: Would you like this to

be the standard?

Would you prefer to interact with the Chatbot via voice rather than text?

Sample Size Strongly
Agree

Somewhat
Agree

Neutral Somewhat
Disagree

Strongly
Disagree

60 47% 25% 8% 10% 10%

Table 5.10: Questionnaire Survey Results Summary: Would you prefer to

interact with the Chatbot via voice rather than text?

CHAPTER 6

CONCLUSION

Summary

This project aimed to reduce the burden on teachers and stressed-out

faculty, along with the notion of gaining an impeccable teacher-student

relationship. The project also aspired to prepare students for the

personalised learning, by creating a convincing chatbot which will assist

students in their queries related to binary operations. The composed chatbot

system is capable of handling vast binary operations and can help students

in their day-to-day lessons. With this bot at work, students would not have to

wait to get their queries addressed and obtain the information they are

seeking. Thus, pupils can achieve personalised learning. Beyond that, it will

help in building a strong teacher-student relationship, as the teachers will

have the favourable circumstances to provide students with personal

guidance and expand the curriculum with their own research insights. In this

way, teachers can dispense impactful mentorship. Complementary to this,

expending time on lengthy and complex binary calculations such as taking

82

two’s complement. Or minor calculations for example base 2 and base 10

conversions, can be avoided employing the designed binary chatbot. As a

consequence students can truly think creatively, and learn material without

having to hunt for the calculations. As the time for this is now available.

Python Flask and MongoDB were used for the backend and HTML5, CSS3

and jQuery were used for the frontend of the framework. Deployment was

exercised through Heroku, which allows developers to easily deploy,

manage and scale their web applications on cloud. Not only that, MongoDB

Atlas, NLTK, AWS Lambda Functions, AWS Lex, Boto3, Pymongo and

Gunicorn were used as Third-Party Tools and Libraries. The chatbot’s

functional and non-functional requirements were analysed and a relevant

methodology was devised. The questionnaire survey was conducted after

the chatbot was operational, and their responses were recorded and the

evaluation of results was generated. 53% of the participants remarked the

chatbot to be extremely useful, 75% of the participants regarded the

chatbot’s responses as extremely accurate, 63% of the participants noted

the chatbot’s explanation towards asked questions as extremely accurate.

70% of the participants strongly agreed that the launched chatbot should be

the standard, and 47% of them strongly agreed that chatbot should be

voice-based as an extra characteristic.

83

CHAPTER 7

LIMITATIONS & RECOMMENDATIONS

Framework Limitations

The developed framework limitations are as follows.

Text-based Input

The developed framework supports only text-based input from the students

or users.

Rule-based approach

The chatbot framework is developed using the rule-based approach in

which fixed set of rules are defined for NLP algorithm to parse user input.

So the developed framework has a limited scope.

Single Language Support

The developed framework supports English language only. So the

framework would not be able to assist the user’s input in any other

language.

Framework Testing Limitations

There were no specific limitations in the testing of the framework. MongodB

and AWS Lex supports thousands of queries in their free version. So no

84

limitations were recorded in the testing phase. Moreover, the questionnaire

survey participants also did not record any limitations during their survey.

Future Work

Based on the framework limitations listed above and the responses

recorded from the survey participants, the recommendations for future work

are listed below.

Machine Learning

All the questions and their answers given by the chatbot, are stored in a

database on Atlas Instance. It can be used in future to implement machine

learning and AI approach for the chatbot to provide more accurate answers

for students.

Voice-based

In the questionnaire survey, it was asked to the participants if they wanted

the bot to be voice-based rather than text-based. 47%8 of those questioned

strongly agreed that the chatbot should be voice-based as well. Hence the

bot framework can be altered in future to support voice functionality

additionally.

Advanced NLP

The framework can be altered to support advanced parsing techniques to

achieve a better natural language processing in future.

8 See Survey Analysis in Chapter 5

85

Better Interface

Chatbot user interface can be further upgraded and boosted to reduce the

development time of the framework. Moreover, android and iOS applications

can be introduced for the students in the future. In addition to this, we can

also add frequently asked questions (FAQS) related to the functionality of

the modules.

Multiple Language Support

If the chatbot has the capability to support multiple languages, it will be

deemed significantly more user-friendly and cooperative.

86

CHAPTER 8

RESEARCH ETHICS

In Chapter 3, it was indicated in the non-functional requirements that the

research will follow the research ethics including that any kind of information

about the user, questionnaire survey participants and teachers using the

chatbot will not be stored or processed by any means.

The following research ethics have been followed during this research.

1. Informed consent have been obtained from potential research

participants

2. The risk of harm to participants is minimized.

3. The anonymity and confidentiality of the research participants have

been protected.

4. Deceptive research practices have been avoided at all costs.

5. The participants were given the right to withdraw from the reaearch.

Moreover, to ensure that the developed chatbot framework is GDPR

compliant, the following practices have been used.

1. Since the chatbot is considered to be a data collecting and

processing tool, so it falls under GDPR legislation and we are

intended not to use the user’s personal data for any use.

2. In case the university offers to extend the framework domain and the

need for use of personal data comes up, then we will need to ask for

explicit consent from users to use their personal data.

3. The users will be provided access and ability to download their saved

information using a query and response format.

4. No personal data will be stored without any legitimate reason and

only if the users have provided their explicit consent to do so.

87

5. The users will be allowed to delete and retrieve their data.

6. A privacy policy will be created and update for the users.

APPENDIX A. Anatomy of a self-learning chatbot

88

APPENDIX B. Questionnaire Survey

89

APPENDIX C. NLP

Tokenization

import nltk
import re, math, json
#nltk.download('punkt')
required_bits= 4

90

default_bits = 0
isSignednumber = False
userbits = 0
keyword_list = [
 'write', 'one', 'two','ones',
 'twos', 'binary',
 "one's", "two's", 'compliment',
 'convert', 'complement', 'represent',
 'number', 'bits', 'value',
 'decimal', '+', '-',
 'sum', 'difference', 'required'
]
retrieve common keywords.
def compare(query):
 tokenize = nltk.word_tokenize(query)
 return [x for x in tokenize if x in keyword_list]

Function 01: Input String Format Checking

def check_binary_format(string) :
 p = set(string)
 s = {'0', '1'} # declare set of '0', '1' .

 # case 1: string has both 1s and 0s
 # case 2: string only has 1s
 # case 3: string only has 0s
 if s == p or p == {'0'} or p == {'1'}:
 return "yes"
 else:
 return "no"

91

Function 02: B2D Conversion

 if len(binary_numbers) == 1:
 steps = 'Starting from LSB, take sum of (2*i)^x where i = bit value and
x = bit position.

'
 steps = steps + ' For this, follow the following steps:
' +
binary_numbers[0] + ' = '
 sum = 0
 position = len(binary_numbers[0])
 sum = sum + (2 * int(binary_numbers[0][i], base = 2) ** position)
 position = position - 1
 steps = steps + '(2*' + binary_numbers[0][i] + ')^' + str(position) + '
+ '

 steps = steps[0: len(steps) - 2]
 steps = steps + ' = ' + str(int(binary_numbers[0], base = 2))
 steps = steps + '
'
 return [str(int(binary_numbers[0], base = 2)), steps[:len(steps) - 4]]

 elif len(decimal_numbers) == 1:
 return decimal_to_binary(decimal_numbers)

 else:
 return ['Error! 1 argument required, given 0 or more than 1', ""]

Function 03: One’s Complement of a Signed Integer

def signed_ones_complement(decimal_numbers, all_numbers):
 global required_bits
 i = all_numbers[0]
 result = []
 answer = ""
 steps = ""
 if len(all_numbers) == 1:
 if(all_numbers[0][1] == "int"):

92

 steps = steps + 'First we convert the positive version of decimal
number to its binary form:
 For this Example,
'
 num = all_numbers[0][0]
 if(num > 0):
 count = 0
 carry = 0
 bits = math.ceil(math.log(int(num), 2))
 while (count < bits):
 steps = steps + "Iteration # " + str(count) + ": " + "remainder =
" + str(int(num/2))
 carry = num % 2
 num = num / 2
 steps = steps + ', carry = ' + str(int(carry)) + '
'
 count = count + 1
 answer = str(bin(all_numbers[0][0]).replace("0b", ""))
 else:
 answer = str(all_numbers[0][0])
 anslen = len(answer) + 1
 steps = steps + "
Invert every bit of the given bit string i.e change
0 to 1 and 1 to 0 :
"
 r_bit = anslen
 one_comp = one_complement([answer])
 steps = steps + answer + " ==> " + one_comp[0] + "

Then,
add one to it:
"
 add_one = "1"
 if(anslen < required_bits):
 r_bit = required_bits
 answer = answer.zfill(required_bits)
 else:
 answer = answer.zfill(anslen)
 result.append(getBinTwosComplement(answer,r_bit))
 steps = steps + result[0][1]
 answer = answer.zfill(len(result[0][0]))
 add_one = add_one.zfill(len(result[0][0]))

 steps = steps + answer + "
" + add_one + "
" + result[0][0]
 steps = steps + "

Recap of the rules for adding binary
numbers, all you have to remember is that:

"\
 steps = steps + "

Invert every bit of the given bit string i.e
change 0 to 1 and 1 to 0 :
"
 steps = steps + answer + " ==> " + temp
 if(all_numbers[0][1] == "int"):
 steps = steps + "
Lastly convert the answer to its decimal value
using, take sum of (2*i)^x where i = bit value and x = bit position:
"
 answer = temp
 ans = answer
 answer=0
 steps = steps + ""
 next_step = "= "
 if(ans[0]=='1'):
 answer = int(math.pow(2, len(ans)-1)) * -1

93

 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 next_step = next_step + "- " + str(int(math.pow(2, len(ans)-1)))
 else:
 steps = steps + "- (2^" + str(len(ans)-1) + " * " + ans[0]+") "
 next_step = next_step + "- 0"
 index= len(ans) - 1
 index1= 1
 while (index > 1):
 steps = steps + "+ (2^" + str(index-1) + " * " + ans[index1]+") "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " + 0"
 index1 = index1 + 1
 index = index - 1
 steps = steps + "+ (2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " + 1
"
 else:
 next_step = next_step + " + 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step
 final_ans = "Base 2 (" + ans + "), Base 10 (" + str(answer) + ")"
 else:
 final_ans = temp
 else:
 return ["Error! 1 argument required, given 0 or more than 1", ""]
 return [final_ans, steps]

Function 04: Two’s Complement of a Signed Integer

def signed_twos_complement(decimal_numbers, all_numbers):
 global required_bits
 i = all_numbers[0]
 result = []
 answer = ""
 if len(all_numbers) == 1:
 if(all_numbers[0][1] == "int"):

94

 steps = steps + '
 For this example,
'
 num = all_numbers[0][0]
 if(num > 0):
 count = 0
 carry = 0
 bits = math.ceil(math.log(int(num), 2))
 while (count < bits):
 steps = steps + "Iteration # " + str(count) + ": " + "qoutient = "
+ str(int(num/2))
 carry = num % 2
 num = num / 2
 steps = steps + ', remainder = ' + str(int(carry)) + '
'
 count = count + 1
 steps = steps + "
"
 answer = str(bin(all_numbers[0][0]).replace("0b", ""))
 anslen = len(answer) + 1
 r_bit = anslen
 if(anslen < required_bits):
 r_bit = required_bits
 answer = answer.zfill(required_bits)
 else:
 answer = answer.zfill(anslen)
 else:
 answer = all_numbers[0][0]
 anslen = len(answer) + 1

 r_bit = anslen
 if(anslen < required_bits):
 r_bit = required_bits
 answer = answer.zfill(required_bits)
 else:
 answer = answer.zfill(anslen)
 steps = steps + str(all_numbers[0][0]) + " ==> " + answer +"
(The
extra 0 (zero) is always added at the MSB (Most Significant Bit) of the
string whenever we are dealing with the two's complement. So we have
stuffed an extra 0 (zero) at the MSB of the string.)

"
 one_comp = one_complement([answer])

 result.append(getBinTwosComplement(answer,r_bit))
 steps = steps + "Then, apply one's complement to binary string. So to
get one's complement, invert every bit of the given bit string i.e. change 0
to 1 and 1 to 0:
"
 steps = steps + answer + " ==> " + one_comp[0] +"

And then
add 1 to LSB (Least Significant Bit):
"
 r_bit = len(result[0][0])
 add_one = "1"
 add_one = add_one.zfill(len(answer))
 steps = steps + one_comp[0] + "
 " + add_one + "
" +
result[0][0] + "
"\
 steps = steps + "

Now, again for the second time apply one's
complement to binary string. So to get one's complement, invert every bit
of the given bit string i.e. change 0 to 1 and 1 to 0:
"

95

 one_comp = one_complement([result[0][0]])
 steps = steps + result[0][0] + " ==> " + one_comp[0] + "
"
 steps = steps + "
And then add 1 to LSB (Least Significant
Bit):
"
 new_ans = str(bin(int(one_comp[0], base = 2) + 1).replace('0b',
'')).zfill(r_bit)
 add_one = add_one.zfill(len(new_ans))
 steps = steps + one_comp[0] + "
 " + add_one + "
" +
new_ans + "
"\
 "
*Recap of the rules for adding binary numbers, all you have
to remember is that:"\
 if all_numbers[0][1] == "int":
 steps = steps + "

Now, convert the result back to decimal
format. Starting from LSB, take sum of (2*i)^x where i = bit value and x =
bit position

For this, follow the following steps:
"
 a = result[0][0]
 reqBit = len(a)
 temp = ""
 answer = str(bin(int(temp, base = 2) + 1).replace('0b', '')).zfill(r_bit)
 if(len(answer) > reqBit):
 answer = answer[1:]
 if(all_numbers[0][1] == "int"):
 ans = answer
 steps = steps + ans + " = "
 next_step = "= "
 answer = 0
 if(ans[0]=='1'):
 answer = int(math.pow(2, len(ans)-1)) * -1
 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 next_step = next_step + "- " + str(int(math.pow(2, len(ans)-1)))
 else:
 steps = steps + "- (2^" + str(len(ans)-1) + " * " + ans[0]+") "
 next_step = next_step + "- 0"
 index= len(ans) - 1
 index1= 1
 while (index > 1):
 steps = steps + "+ (2^" + str(index-1) + " * " + ans[index1]+") "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " + 0"
 index1 = index1 + 1
 index = index - 1
 steps = steps + "+ (2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " + 1
"
 else:
 next_step = next_step + " + 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step
 final_ans = "Base 2 (" + ans + "), Base 10 (" + str(answer) + ")"

96

 else:
 final_ans = answer
 else:
 return ["Error! 1 argument required, given 0 or more than 1", ""]
 return [final_ans, steps]

Function 05: D2B Conversion

 if len(decimal_numbers) == 1:
 steps = steps + 'remainder becomes smaller than 2. Then read all the
carry in backward (bottom to top) direction.
'
 steps = steps + ' For this example:
'
 num = decimal_numbers[0]
 if(num > 0):
 count = 0
 carry = 0
 bits = math.ceil(math.log(int(num), 2))
 while (count < bits):
 steps = steps + "Iteration # " + str(count) + ": " + "quotient = " +
str(int(num/2))
 carry = num % 2
 num = num / 2
 steps = steps + ', remainder = ' + str(int(carry)) + '
'
 count = count + 1
 steps = steps + "
" + str(decimal_numbers[0]) + " ==> " +
str(bin(decimal_numbers[0]).replace("0b", ""))
 print("till mod ", int(decimal_numbers[0])%2, " " ,
decimal_numbers[0])
 x= 2

97

 num1 = int(decimal_numbers[0])
 temp = False
 while(x < num1):
 if x*2 == num1:
 temp = True
 x = x * 2
 if(num1 == 2):
 temp = True
 if(temp):
 print("is mod")
 steps = steps + "

(*Note: the 1 is used in the answer
because the final iteration is 2 divided by 2 which equals 1)"
 else:
 steps = " its a signed number."
 print(steps)
 answer = str(bin(decimal_numbers[0]).replace("0b", ""))
 return [answer, steps]
 else:
 return ["Error! 1 argument required, given 0 or more than 1", ""]

Function 06: Signed Decimal to Binary Conversion

def signed_decimal_to_binary(decimal_numbers, all_numbers):

98

 global required_bits
 result = []
 steps = ""
 if len(decimal_numbers) == 1:
 steps = steps + 'For a negative number: The first step is to convert
the positive version of the given negative number into binary. To perform
this, divide the number by 2 repeatedly until remainder becomes smaller
than 2. Then read all the carry in backward (from bottom to top)
direction.

'
 steps = steps + ' For this example,
'
 num = decimal_numbers[0]
 if(num > 0):
 count = 0
 carry = 0
 bits = math.ceil(math.log(int(num), 2))
 while (count < bits):
 steps = steps + "Iteration # " + str(count) + ": " + "quotient = " +
str(int(num/2))
 carry = num % 2
 num = num / 2
 steps = steps + ', remainder = ' + str(int(carry)) + '
'
 count = count + 1
 steps = steps + "
"
 answer = str(bin(decimal_numbers[0]).replace("0b", ""))
 anslen = len(answer) + 1
 r_bit = anslen
 if(anslen < required_bits):
 r_bit = required_bits
 answer = answer.zfill(required_bits)
 else:
 answer = answer.zfill(anslen)
 steps = steps + str(decimal_numbers[0]) + " ==> " + answer
 x= 2
 num1 = int(decimal_numbers[0])
 temp = False
 while(x < num1):
 if (x*2 * 1) == num1:
 temp = True
 x = x * 2
 if(num1 == 2):
 temp = True
 if(temp):
 steps = steps + "

(*Note: the 1 is used in the answer
because the final iteration is 2 divided by 2 which equals 1)
"
 steps = steps + "
(The extra 0 (zero) is always added at the MSB
(Most Significant Bit) of the string whenever we are dealing with the two's
complement. So we have stuffed an extra 0 (zero) at the MSB of the
string.
"
 result.append(getBinTwosComplement(answer,r_bit))
 ones_complement = one_complement([answer])
 steps = steps + answer + " ==> " + ones_complement[0]
 add_one="1"

99

 add_one = add_one.zfill(len(result[0][0]))
 ones_complement[0] = ones_complement[0].zfill(len(result[0][0]))
 steps = steps + "
Then add 1 to it:
" + ones_complement[0] +
"
" + add_one + "
"+ result[0][0] + "
"
 steps = steps + "
*Recap of the rules for adding binary numbers,
all you have to remember is that:

"\
 answer = result[0][0]
 else:
 return ["Error! 1 argument required, given 0 or more than 1", ""]
 return [answer, steps]

Function 07: One’s Complement of an Unsigned Integer

def one_complement(x, y = None):
 global required_bits
 if len(x) == 1:
 a = x[0]
 a = a.zfill(required_bits)
 temp = ""
 result = "Invert every bit of the given bit string i.e change 0 to 1 and 1
to 0 :
" + a + " ==> " + temp
 return [temp,result]
 elif len(y) == 1:
 temp = bin(int(y[0])).replace("0b", "")
 temp = temp.zfill(required_bits)
 temp2 = ""

 result = decimal_to_binary(y)
 steps = "First, convert decimal number into binary number.

"

 steps = steps + result[1]
 steps = steps + "

 Then, invert every bit of the given bit string
i.e change 0 to 1 and 1 to 0.
" + temp + " ==> " + temp2
 steps = steps + "

Finally, convert the result back to decimal
format."

 steps = steps + binary_to_decimal([temp2])[1]
 return ["Base 2: (" + temp2 + ") , Base 10: (" + str(int("0b" + temp2,
base = 2)) + ')', steps]

 else:
 return ["Error! 1 argumnent required, given 0.", ""]

100

Function 08: Two’s Complement of an Unsigned Integer

def twos_complement(binary_numbers, decimal_numbers = None):
 if len(binary_numbers) == 1:
 complement = one_complement(binary_numbers)
 steps = steps + binary_numbers[0] + " ==> " + complement[0]
 bitlen = complement[0].__len__()
 answer = str(bin(int(complement[0], base = 2) + 1).replace('0b', ''))
 answer = answer.zfill(bitlen)
 answer = answer.zfill(required_bits)
 add_one = "1"
 add_one = add_one.zfill(len(answer))
 complement[0] = complement[0].zfill(len(answer))
 steps = steps + "

Then add 1 to it:
" + complement[0] + "

" + add_one + "
" + answer
 steps = steps + "

Recap of the rules for adding binary
numbers, all you have to remember is that:

"\
 return [answer , steps]

 elif len(decimal_numbers) == 1:
 temp = [bin(decimal_numbers[0]).replace("0b", "")]
 temp[0] = '0' + temp[0]
 complement = one_complement(temp)
 sum = int("0b" + complement[0], base = 2) + 1

 result = decimal_to_binary([decimal_numbers[0]])
 result1 = decimal_to_binary([sum])
 steps = "First, convert decimal number into binary number.
"
 steps = steps + result[1]
 steps = steps + " ~ " + result[0] + "
(The extra 0 (zero) is always
added at the MSB (Most Significant Bit) of the string whenever we are
dealing with the two's complement. So we have stuffed an extra 0 (zero) at
the MSB of the string.)

"
 ones_complement = one_complement([result[0]])
 steps = steps + result[0] + " ==> " + ones_complement[0]
 add_one="1"
 add_one = add_one.zfill(len(result[0]))
 steps = steps + "

Then add 1 to it:
" + result[0] + "
" +
add_one + "
"+ result1[0] + "
"
 steps = steps + "
*Recap of the rules for adding binary numbers,
all you have to remember is that:

"\
 "Finally, convert the result back to decimal format. Starting from
LSB, take sum of (2*i)^x where i = bit value and x = bit position.

For this,"\
 " follow the following steps:
"
 ans = result1[0]
 next_step = "= "
 answer = 0
 if(ans[0]=='1'):
 answer = int(math.pow(2, len(ans)-1)) * -1

101

 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 next_step = next_step + "- " + str(int(math.pow(2, len(ans)-1)))
 else:
 if(all_numbers[1][1]=="int"):
 if(all_numbers[1][2] == "-"):
 steps = steps + "Operand 2 : Convert to binary: -" +
str(all_numbers[1][0])
 steps = steps + "

To convert a negative number into
binary: The first step is to convert the positive version of the given
negative number into binary. To perform this, divide the number by 2
repeatedly until remainder becomes smaller than 2. Then read all the carry
in backward (from bottom to top) direction.
-" + str(all_numbers[1][0]) +
" ==> " + str(binaries[1]) + "

"
 steps = steps + str(binaries[1]).zfill(len(result[1][0])) + " ==> " +
result[1][0] + "
"
 else:
 steps = steps + "Operand 2 : Convert to binary: " +
str(all_numbers[1][0]) + " ==> " + str(binaries[1]) + "
"
 if(all_numbers[1][2] =="-"):
 steps = steps + "
Recap of the rules for taking two’s
complement, all you have to remember is that:
"\
 "*Add the extra 0 (zero) at the MSB (Most Significant Bit) of
the string because we are dealing with the two's complement."\

 else:
 if(all_numbers[1][2] == "-"):
 both_neg = both_neg + 1
 steps = steps + "Operand 2 : Base 2(-" + str(all_numbers[1][0]) + "
)
"
 #if (two_comp == 1):
 # steps = steps + "
*For a negative number two's complement
of the positive version of the negative number was taken. (Two's
complement is one's complement plus one.)

"
 else:
 steps = steps + "Operand 2 : Base 2(" + str(all_numbers[1][0]) +
")
"
 #if (two_comp == 2):
 steps = steps + "Adding numbers:
"
 explain = ""
 if(isSignednumber):
 steps = steps + "0" + str(op0) + "
"
 steps = steps + "0" + str(op1) + "
"
 steps = steps + str(ans).zfill(len(op0)+1) + "
"
 explain = "
*Recap of the rules for adding binary numbers, all you
have to remember is that:
"\
 ans = str(ans).zfill(len(op0)+1)
 temp_ans = ans[1:]
 carry = ans[0]
 if (two_comp == 1):

102

 steps = steps + "
As there was only one negative operand, we
are discarding the carry.
" + ans + " ~ " + temp_ans.zfill(len(op0)+1) +
"
"
 ans = temp_ans.zfill(len(op0)+1)
 steps = steps + explain
 answer = 0
 steps = steps + explanation
 prev_steps = steps
 steps = "
Lastly convert the answer to its decimal value using,
take sum of (2*i)^x where i = bit value and x = bit position:

For
this, follow the following steps:
"
 next_step = "= "
 if(ans[0]=='1'):
 if (two_comp == 1):
 if(carry == '0'):
 steps = steps +" "+ ans + "= (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps + ans + " = "+"- (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 next_step = next_step + "- 0"
 index= len(ans) - 1
 index1= 1
 while (index > 1):
 steps = steps + "+ (2^" + str(index-1) + " * " + ans[index1]+") "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " + 0"
 index1 = index1 + 1
 index = index - 1
 steps = steps + "+ (2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " + 1
"
 else:
 next_step = next_step + " + 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step

 else:
 op0len = len(op0)
 op1len = len(op1)
 anslen = len(ans)
 maxlen = op0len
 if(maxlen<op1len):
 maxlen = op0len

103

 elif(maxlen<anslen):
 maxlen = anslen
 op0=op0.zfill(maxlen)
 op1=op1.zfill(maxlen)
 ans=ans.zfill(maxlen)
 steps = steps + str(op0) + "
"
 steps = steps + str(op1) + "
"
 steps = steps + str(ans) + "
"
 "
*Recap of the rules for adding binary numbers, all you have
to remember is that:

"\
 answer = 0
 steps = steps + explanation
 prev_steps = steps
 steps = "
Lastly convert the answer to its decimal value using,
take sum of (2*i)^x where i = bit value and x = bit position:

For
this, follow the following steps:
"
 next_step = "= "
 index= len(ans)
 index1= 0
 steps = steps + ans + " ="
 while (index > 1):
 steps = steps + " (2^" + str(index-1) + " * " + ans[index1]+") + "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " 0 + "
 index1 = index1 + 1
 index = index - 1
 steps = steps + "(2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " 1
"
 else:
 next_step = next_step + " 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step
 steps = steps + "- (2^" + str(len(ans)-1) + " * " + ans[0]+") "
 next_step = next_step + "- 0"
 index= len(ans) - 1
 index1= 1
 while (index > 1):
 steps = steps + "+ (2^" + str(index-1) + " * " + ans[index1]+") "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " + 0"
 index1 = index1 + 1
 index = index - 1
 steps = steps + "+ (2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " + 1
"
 else:
 next_step = next_step + " + 0
"

104

 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step
 final_ans = "Base 2 (" + ans + "), Base 10 (" + str(answer) + ")"

 #steps = steps + binary_to_decimal([result[0]])[1]
 #result[0] = result[0].zfill(required_bits)
 #dec_answer = "Base 2 (" + result[0] + ") , Base 10 (" +str(sum) +
')'
 return [final_ans, steps]

 else:
 return ["Error! 1 argumnent required, given 0.", ""]

Function 09: Bit Representation

def bit_representation(decimal_numbers,all_numbers):
 if len(decimal_numbers) == 1:
 steps = "Take log base 2 of the given binary string i.e
log₂(" + str(decimal_numbers[0]) + " + 1) = " +
str(math.log(decimal_numbers[0]+1, 2))

105

 steps = steps + "
take ceiling of the previous result like this:
⌈" + str(math.log(decimal_numbers[0] + 1, 2)) + "⌉ = " +
str(math.ceil(math.log(decimal_numbers[0] + 1, 2)))
 answer = str(math.ceil(math.log(decimal_numbers[0] + 1, 2)))
 if(all_numbers[0][2] == "-"):
 steps = steps + "
Since its a negative number: there is atleast
1 extra bit needed to represent it. So answer: " +
str(math.ceil(math.log(decimal_numbers[0] + 1, 2)) + 1)
 answer = str(int(answer) + 1)
 steps = steps + "
 Note: The answer has to be a integer, so
we round up to the nearest biggest integer."
 return [answer, steps]

 else:
 return ['Error! 1 arg required, given 0', ""]

Function 10: Two’s Complement of a Binary Integer

def getBinTwosComplement(num, reqBit):
 steps = "apply one's complement to binary string first and then add 1 to
LSB (Least Significant Bit)
"
 num = num.zfill(reqBit)
 if(userbits > num.__len__()+1):
 num = num.zfill(userbits)
 else:
 num = num.zfill(num.__len__()+1)
 a = num
 temp = ""
 bitlen = temp.__len__()
 answer = str(bin(int(temp, base = 2) + 1).replace('0b', ''))
 if(len(answer) > reqBit):
 answer = answer[1:]
 return [answer , steps ,"bin"]

106

Function 11: Two’s Complement of a Decimal Number

def getIntTwosComplement(num, reqBit):
 global userbits
 temp = bin(num).replace("0b", "")
 temp=temp.zfill(reqBit)
 a = temp
 temp = ""

 sum = int("0b" + temp, base = 2) + 1

 result = decimal_to_binary([sum])
 binary_res = result[0]

 if(userbits > binary_res.__len__()+1):
 binary_res = binary_res.zfill(userbits)
 steps = steps + result[1]
 steps = steps + "
 Then, apply one's complement to binary string
and then add 1 to LSB (Least Significant Bit) to get its negative
representation i.e. " + binary_res
 steps = steps + binary_to_decimal([binary_res])[1]
 return [binary_res, steps,"int", str(sum)]

107

Function 12: Get Decimal String

def getDecimal(num,isSigned):
 numLen = num.__len__()
 decimal_rep=""
 if(isSigned):
 if(num[0] == "0"):
 decimal_rep = str(int(num, base = 2))
 else:
 num1 = ""
 num1 = num1.zfill(numLen)
 num1 = '1' + num1[1:]
 dec1 = int(num1, base = 2) * -1
 num = '0' + num[1:]
 dec = int(num, base = 2)
 decimal_rep = str(dec1 + dec)
 else:
 decimal_rep = str(int(num, base = 2))
else:
 num1 = ""
 num1 = num1.zfill(numLen)
 num1 = '1' + num1[1:]
 dec1 = int(num1, base = 2) * -1
 num = '0' + num[1:]
 dec = int(num, base = 2)
 decimal_rep = str(dec1 + dec)

 return decimal_rep

Function 13: Addition/Subtraction

def
binary_add_sub(op_type,all_numbers,binary_numbers,decimal_numbers
= None):
 if(all_numbers.__len__() < 2):
 return ["Error: Not enough operands" ,""]
 isDoubleNeg = False
 global userbits
 global isSignednumber
 two_comp = 0
 isSignednumber = False
 result = []
 explanation= "
"
 if(op_type == "subtraction"):
 if(all_numbers.__len__() > 1):
 if(all_numbers[1][2]=="-"):
 isDoubleNeg = True

108

 op_type = "addition"
 all_numbers[1][2] = "+"
 else:
 op_type = "addition"
 all_numbers[1][2] = "-"
 if(all_numbers[1][2]=="-" or all_numbers[0][2]=="-"):
 isSignednumber = True

 binaries=[]
 for i in all_numbers:
 if(i[2] == "-"):
 if(i[1] == "int"):
 bin_rep = decimal_to_binary([i[0]])
 r_bit=bin_rep[0].__len__()+1
 if(userbits > r_bit):
 r_bit = userbits
 i.append(r_bit)
 binaries.append(bin_rep[0])
 else:
 r_bit=i[0].__len__()+1
 if(userbits > r_bit):
 r_bit = userbits
 i.append(r_bit)
 binaries.append(i[0])
 else:
 if(i[1] == "int"):
 bin_rep = decimal_to_binary([i[0]])
 r_bit=bin_rep[0].__len__()
 if(userbits > r_bit):
 r_bit = userbits
 i.append(r_bit)
 binaries.append(bin_rep[0])
 else:
 r_bit=i[0].__len__()
 if(userbits > r_bit):
 r_bit = userbits
 i.append(r_bit)
 binaries.append(i[0])
 if(all_numbers[0][3] < all_numbers[1][3]):
 if(i[2] == "-"):
 two_comp = two_comp + 1
 if(i[1] == "int"):
 result.append(getIntTwosComplement(i[0],i[3]))
 else:
 result.append(getBinTwosComplement(i[0],i[3]))
 else:
 if(i[1] == "int"):
 bin_rep = decimal_to_binary([i[0]])
 bin_rep[0] = bin_rep[0].zfill(i[3])
 result.append([i[0] , "" ,"bin"])

 op0 = result[0][0]

109

 op1 = result[1][0]
 op0len = op0.__len__()
 op1len = op1.__len__()
 if(op0len > op1len):
 op1 = op1.zfill(op0len)
 else:
 op0 = op0.zfill(op1len)
 ans = bin(int(op0, 2) + int(op1, 2)).replace("0b", '')
 op0len = op0.__len__()
 op1len = op1.__len__()
 anslen = ans.__len__()
 ans = ans.zfill(op1len)
 isCarry = False
 isDecimal = False
 dec_value = ""
 if(isSignednumber):
 if(anslen > op1len):
 isCarry = True
 final_ans= ""
 if(all_numbers[0][1] =="int" or all_numbers[1][1]=="int"):
 isDecimal = True
 steps=""
 if(all_numbers[0][1]=="int"):
 if(all_numbers[0][2] == "-"):
 steps = steps + "Operand 1 : Convert to binary: -" +
str(all_numbers[0][0])
 steps = steps + "

To convert a negative number into
binary: The first step is to convert the positive version of the given
negative number into binary. To perform this, divide the number by 2
repeatedly until remainder becomes smaller than 2. Then read all the carry
in backward (from bottom to top) direction.
" + str(all_numbers[0][0]) +
" ==> " + str(binaries[0]) + "

"
 steps = steps + str(binaries[0]).zfill(len(result[0][0])) + " ==> " +
result[0][0] + "
"

 else:
 steps = steps + "Operand 1 : Convert to binary: " +
str(all_numbers[0][0]) + " ==> " + str(binaries[0]) + "
"
 if(all_numbers[0][2] =="-"):
 steps = steps + "
Recap of the rules for taking two’s
complement, all you have to remember is that:
"\
 "*Add the extra 0 (zero) at the MSB (Most Significant Bit) of
the string because we are dealing with the two's complement."\
 else:
 both_neg = 0
 if(all_numbers[0][2] == "-"):
 steps = steps + "Operand 1 : Base 2(-" + str(all_numbers[0][0]) + "
)
"
 both_neg = 1
 else:
 steps = steps + "Operand 1 : Base 2(" + str(all_numbers[0][0]) +
")
"

110

 if(isDoubleNeg):
 steps = steps + "Double negation results in addition i.e. - (-" +
str(all_numbers[1][0]) + ") ==> + " + str(all_numbers[1][0]) + "
"
 if(all_numbers[1][2] == "-"):
 steps = steps + "so it is: " + str(all_numbers[0][2]) +
str(all_numbers[0][0]) + " + " + str(all_numbers[1][0]) + "

"
 else:
 steps = steps + "so it is: " + str(all_numbers[0][0]) + " + " +
str(all_numbers[1][0]) + "

"
 if(all_numbers[1][1]=="int"):
 if(all_numbers[1][2] == "-"):
 steps = steps + "Operand 2 : Convert to binary: -" +
str(all_numbers[1][0])
 steps = steps + "

To convert a negative number into
binary: The first step is to convert the positive version of the given
negative number into binary. To perform this, divide the number by 2
repeatedly until remainder becomes smaller than 2. Then read all the carry
in backward (from bottom to top) direction.
-" + str(all_numbers[1][0]) +
" ==> " + str(binaries[1]) + "

"
 steps = steps + str(binaries[1]).zfill(len(result[1][0])) + " ==> " +
result[1][0] + "
"
 else:
 steps = steps + "Operand 2 : Convert to binary: " +
str(all_numbers[1][0]) + " ==> " + str(binaries[1]) + "
"
 if(all_numbers[1][2] =="-"):
 steps = steps + "
Recap of the rules for taking two’s
complement, all you have to remember is that:
"\
 "*Add the extra 0 (zero) at the MSB (Most Significant Bit) of
the string because we are dealing with the two's complement."\

 else:
 if(all_numbers[1][2] == "-"):
 both_neg = both_neg + 1
 steps = steps + "Operand 2 : Base 2(-" + str(all_numbers[1][0]) + "
)
"
 #if (two_comp == 1):
 # steps = steps + "
*For a negative number two's complement
of the positive version of the negative number was taken. (Two's
complement is one's complement plus one.)

"
 else:
 steps = steps + "Operand 2 : Base 2(" + str(all_numbers[1][0]) +
")
"
 #if (two_comp == 2):
 steps = steps + "Adding numbers:
"
 explain = ""
 if(isSignednumber):
 steps = steps + "0" + str(op0) + "
"
 steps = steps + "0" + str(op1) + "
"
 steps = steps + str(ans).zfill(len(op0)+1) + "
"
 explain = "
*Recap of the rules for adding binary numbers, all you
have to remember is that:
"\
 ans = str(ans).zfill(len(op0)+1)

111

 temp_ans = ans[1:]
 carry = ans[0]
 if (two_comp == 1):
 steps = steps + "
As there was only one negative operand, we
are discarding the carry.
" + ans + " ~ " + temp_ans.zfill(len(op0)+1) +
"
"
 ans = temp_ans.zfill(len(op0)+1)
 steps = steps + explain
 answer = 0
 steps = steps + explanation
 prev_steps = steps
 steps = "
Lastly convert the answer to its decimal value using,
take sum of (2*i)^x where i = bit value and x = bit position:

For
this, follow the following steps:
"
 next_step = "= "
 if(ans[0]=='1'):
 if (two_comp == 1):
 if(carry == '0'):
 steps = steps +" "+ ans + "= (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps + ans + " = "+"- (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 next_step = next_step + "- 0"
 index= len(ans) - 1
 index1= 1
 while (index > 1):
 steps = steps + "+ (2^" + str(index-1) + " * " + ans[index1]+") "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " + 0"
 index1 = index1 + 1
 index = index - 1
 steps = steps + "+ (2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " + 1
"
 else:
 next_step = next_step + " + 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step

 else:
 op0len = len(op0)
 op1len = len(op1)
 anslen = len(ans)

112

 maxlen = op0len
 if(maxlen<op1len):
 maxlen = op0len
 elif(maxlen<anslen):
 maxlen = anslen
 op0=op0.zfill(maxlen)
 op1=op1.zfill(maxlen)
 ans=ans.zfill(maxlen)
 steps = steps + str(op0) + "
"
 steps = steps + str(op1) + "
"
 steps = steps + str(ans) + "
"
 "
*Recap of the rules for adding binary numbers, all you have
to remember is that:

"\
 answer = 0
 steps = steps + explanation
 prev_steps = steps
 steps = "
Lastly convert the answer to its decimal value using,
take sum of (2*i)^x where i = bit value and x = bit position:

For
this, follow the following steps:
"
 next_step = "= "
 index= len(ans)
 index1= 0
 steps = steps + ans + " ="
 while (index > 1):
 steps = steps + " (2^" + str(index-1) + " * " + ans[index1]+") + "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " 0 + "
 index1 = index1 + 1
 index = index - 1
 steps = steps + "(2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " 1
"
 else:
 next_step = next_step + " 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step

 if(isDecimal):
 #dec_value = getDecimal(ans,isSignednumber)
 prev_steps = prev_steps + steps
 steps = prev_steps
 final_ans = "Base 2 (" + ans + "), Base 10 (" + str(answer) + ")"
 if(all_numbers[1][1]=="int"):
 if(all_numbers[1][2] == "-"):
 steps = steps + "Operand 2 : Convert to binary: -" +
str(all_numbers[1][0])
 steps = steps + "

To convert a negative number into
binary: The first step is to convert the positive version of the given
negative number into binary. To perform this, divide the number by 2

113

repeatedly until remainder becomes smaller than 2. Then read all the carry
in backward (from bottom to top) direction.
-" + str(all_numbers[1][0]) +
" ==> " + str(binaries[1]) + "

"
 steps = steps + str(binaries[1]).zfill(len(result[1][0])) + " ==> " +
result[1][0] + "
"
 else:
 steps = steps + "Operand 2 : Convert to binary: " +
str(all_numbers[1][0]) + " ==> " + str(binaries[1]) + "
"
 if(all_numbers[1][2] =="-"):
 steps = steps + "
Recap of the rules for taking two’s
complement, all you have to remember is that:
"\
 "*Add the extra 0 (zero) at the MSB (Most Significant Bit) of
the string because we are dealing with the two's complement."\

 else:
 if(all_numbers[1][2] == "-"):
 both_neg = both_neg + 1
 steps = steps + "Operand 2 : Base 2(-" + str(all_numbers[1][0]) + "
)
"
 #if (two_comp == 1):
 # steps = steps + "
*For a negative number two's complement
of the positive version of the negative number was taken. (Two's
complement is one's complement plus one.)

"
 else:
 steps = steps + "Operand 2 : Base 2(" + str(all_numbers[1][0]) +
")
"
 #if (two_comp == 2):
 steps = steps + "Adding numbers:
"
 explain = ""
 if(isSignednumber):
 steps = steps + "0" + str(op0) + "
"
 steps = steps + "0" + str(op1) + "
"
 steps = steps + str(ans).zfill(len(op0)+1) + "
"
 explain = "
*Recap of the rules for adding binary numbers, all you
have to remember is that:
"\
 ans = str(ans).zfill(len(op0)+1)
 temp_ans = ans[1:]
 carry = ans[0]
 if (two_comp == 1):
 steps = steps + "
As there was only one negative operand, we
are discarding the carry.
" + ans + " ~ " + temp_ans.zfill(len(op0)+1) +
"
"
 ans = temp_ans.zfill(len(op0)+1)
 steps = steps + explain
 answer = 0
 steps = steps + explanation
 prev_steps = steps
 steps = "
Lastly convert the answer to its decimal value using,
take sum of (2*i)^x where i = bit value and x = bit position:

For
this, follow the following steps:
"
 next_step = "= "
 if(ans[0]=='1'):

114

 if (two_comp == 1):
 if(carry == '0'):
 steps = steps +" "+ ans + "= (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps +" "+ ans + "= - (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 else:
 steps = steps + ans + " = "+"- (2^" + str(len(ans)-1) + " * " +
ans[0]+") "
 next_step = next_step + "- 0"
 index= len(ans) - 1
 index1= 1
 while (index > 1):
 steps = steps + "+ (2^" + str(index-1) + " * " + ans[index1]+") "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " + 0"
 index1 = index1 + 1
 index = index - 1
 steps = steps + "+ (2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " + 1
"
 else:
 next_step = next_step + " + 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step

 else:
 op0len = len(op0)
 op1len = len(op1)
 anslen = len(ans)
 maxlen = op0len
 if(maxlen<op1len):
 maxlen = op0len
 elif(maxlen<anslen):
 maxlen = anslen
 op0=op0.zfill(maxlen)
 op1=op1.zfill(maxlen)
 ans=ans.zfill(maxlen)
 steps = steps + str(op0) + "
"
 steps = steps + str(op1) + "
"
 steps = steps + str(ans) + "
"
 "
*Recap of the rules for adding binary numbers, all you have
to remember is that:

"\
 answer = 0
 steps = steps + explanation
 prev_steps = steps

115

 steps = "
Lastly convert the answer to its decimal value using,
take sum of (2*i)^x where i = bit value and x = bit position:

For
this, follow the following steps:
"
 next_step = "= "
 index= len(ans)
 index1= 0
 steps = steps + ans + " ="
 while (index > 1):
 steps = steps + " (2^" + str(index-1) + " * " + ans[index1]+") + "
 if(ans[index1]=="1"):
 else:
 next_step = next_step + " 0 + "
 index1 = index1 + 1
 index = index - 1
 steps = steps + "(2^0" + " * " + ans[len(ans)-1]+")
"
 if(ans[len(ans)-1] == "1"):
 answer = answer + 1
 next_step = next_step + " 1
"
 else:
 next_step = next_step + " 0
"
 next_step = next_step + " = " + str(answer) + "
"
 steps = steps + next_step
 else:
 steps = prev_steps
 final_ans = ans

 return [final_ans, steps]

Function 14: Controller

def binary_module(query):
 global required_bits
 global userbits
 global default_bits
 global isSignednumber
 required_bits= 4
 default_bits = 0
 isSignednumber = False
 userbits = 0
 isuserbit = False
 tokenize = nltk.word_tokenize(query)

116

 for word in tokenize:
 bitindex = word.find("bit")
 bitindex1 = word.find("bits")
 if(bitindex > -1 and bitindex1 < 0):
 if(bitindex > 0):
 isuserbit = True
 user_bit= int(word[:bitindex])
 userbits= user_bit
 if(user_bit > required_bits):
 required_bits = user_bit
 if(isuserbit == False):
 required_bits=0
 kwd = [x for x in tokenize if x in keyword_list] # get common keywords

 binar_numbers = []
 binar_signed =[]
 decimal_numbers = []
 decimal_signed =[]
 all_numbers=[]
 # isolate decimal and binary number arguments.
 for i in tokenize:
 x = i
 isSigned = False
 if i[0]== '-':
 isSigned = True
 if re.match(r'[0-9]', i):
 if check_binary_format(i) == "yes" and "base10" not in query and
"base ten" not in query:
 if(i.find("bit") < 0):
 if ((len(i) < required_bits) and ('sum' not in kwd and '+' not in
kwd and "difference" not in kwd and "-" not in kwd)):
 i.zfill(required_bits)
 binar_numbers.append(i)
 binar_signed.append(isSigned)
 if(isSigned):
 all_numbers.append([i,"bin","-"])
 else:
 all_numbers.append([i,"bin","+"])

 else:
 if(i.find("bit") < 0):
 decimal_numbers.append(int(i))
 decimal_signed.append(isSigned)
 if(isSigned):
 all_numbers.append([int(i),"int","-"])
 else:
 all_numbers.append([int(i),"int","+"])

 # print(binar_numbers, decimal_numbers)

 try:

117

 if (('one' in kwd or 'ones' in kwd or "one's" in kwd) or ('two' not in kwd
and 'twos' not in kwd and "two's" not in kwd)) and ('compliment' in kwd or
'complement' in kwd):
 if(all_numbers[0][2] == "-"):
 return signed_ones_complement(decimal_numbers,
all_numbers)
 else:
 return one_complement(binar_numbers, decimal_numbers)

 elif ('two' in kwd or 'twos' in kwd or "two's" in kwd) and ('compliment'
in kwd or 'complement' in kwd):
 if(all_numbers[0][2] == "-"):
 return signed_twos_complement(decimal_numbers,
all_numbers)
 else:
 return twos_complement(binar_numbers, decimal_numbers)

 elif 'bits' in kwd:
 return bit_representation(decimal_numbers,all_numbers)

 elif 'sum' in kwd or '+' in kwd:
 return
binary_add_sub("addition",all_numbers,binar_numbers,decimal_numbers)
 elif 'difference' in kwd or '-' in kwd:
 return
binary_add_sub("subtraction",all_numbers,binar_numbers,decimal_numb
ers)

 elif 'convert' in kwd or 'write' in kwd or 'represent':
 if "to decimal" in query or "binary to decimal" in query or 'decimal'
in query:
 return binary_to_decimal(binar_numbers, decimal_numbers)
 elif "to binary" in query or "decimal to binary" in query or 'binary' in
query:
 if(all_numbers[0][2] == "-"):
 return
signed_decimal_to_binary(decimal_numbers,all_numbers)
 else:
 return decimal_to_binary(decimal_numbers)
 else:
 return ["query format not correct, please repeat the question
again.", ""]

 except:
 # raise Exception
 return ["Sorry, can you repeat your question", ""]

118

APPENDIX D. SERVER

 if len(compare(kwd)) > 0:
 result = binary_module(kwd)
 result1 = ""
 response = ""
 if(len(result) > 1):
 result1 = result[1]
 response = '{"result" : "' + result[0] + '", "steps": "
STEPS:
' + result1 + '"}'
 else:
 response = '{"result" : "' + result[0] + '"}'
 resp = make_response(response)
 print(addDataToMongo(kwd, result[0], db))
 elif kwd == 'help':
 guide = "User Help
Guide

Hi! My name is <i>Serina</i>, and welcome to
the Help Guide.It can also perform signed binary calculation where we are
using the two’s complement of the number to represent its negative
number. User can also specify the number of bits in which the answer is
required. If the user specified bits are less than minimum bits required for
answer, the answer will be shown in minimum required bits.

The
following are the sample questions. You can follow any of these formats to
get the results:

How many bits
how many bits are
required to represent 37 in binary?
how many bits are required to
represent -37 in binary?"\

119

 "
how many bits are required to represent 111 in binary in
base10?
how many bits are required to represent -111?
How
many bits in -16?
How many bits in 32?
 "

One's complement of binary and decimal
numbers
what's the one's complement of 1010?
what's the
one's complement of 1010 in base10?
what's the one's complement
of 12?
what's the one's complement of -12? "\
 "

Two's complement of binary and decimal
numbers
what's the two's complement of -1010?
what's the
two's complement of -1010 in base ten?
what's the two's complement
of 24?
what's the two's complement of -24?"\
 "

Addition and subtraction questions in two's
complement
What will be the answer for -1001 - 01011?

What will be the answer for -1010 + 0110?
What will be the
answer for 1001 + -0110?
What will be the answer for 1001 - -0110?

what's the sum of 10101 and 11?
what will be the answer for
11010 - 001?
what will be the answer for -2 + 5?
what will be the
answer for 2 - 5?
what will be the answer for 2 - -5?
what will be
the answer for -2 - -5?"\
 "

Shortened forms of the questions will also be
functional and provide correct results
1001 - 01011
-1010 +
0110
1001 + -0110
1001 -0110
-29
 Also you can speccify how many bits (Note: There is no
maximum and minimum. It depends on the question. If a question should
be done in 5 bits you can specify any number of bits. If the specified bits
are less than 5 it will give the answer in the most accurate bits i.e. 5. If the
specified bits are greater than 5 lets say 10, then it will give answer in 10
bits.)
what's the one's complement of 12 in 13bit?"\
 "
what's the one's complement of -14 in 13bit?
what's the
two's complement of 9 in 16bit?
what will be the answer for -2 + 5 in
10bit?
-2 + 5 in 10bit?
7- -3 in 8bit "\
 "

Spacing requirements needed for addition and
subraction

Spaces are required between operator and
operands. If the space is not provided for example 100-10 or 100+10, it
will be considered as a magnitude of the respective operand. Thus a error
message will appear."\
 "

By Default, it takes numbers as binary if it only consists
on 1’s and 0’s, e.g. 1, 11, 101.If you want them to be considered decimal,
add keyword ‘base10’ or ‘base ten’ along, e.g. '24 - 10 in
base10'

Common error messages sources and their
solutions"\
 "

Below are questions that will result in a error messsage:
Sorry, can you please repeat that? You can type 'help' for assistance.
With the reasons for these errors, and solutions to them

1.
Typing: convert 101 to binary?"\
 "

Will give you an error message because 101 is a binary
number by default and that question calculates the bits required to store a
decimal number in binary."\
 "

Solution:
In order to get the correct answer
you must type
Convert 101 base10 to binary? Or Convert 101 base
ten to binary?

2. Typing: how many bits in 100?"\

120

 "

Will give you an error message because 100 is a binary
number by default and that question calculates the bits required to store a
decimal number in binary.

Solution:
In order to get
the correct answer you must type
How many bits in 100 base10? Or
How many bits in 100 base ten?"\
 "

3. Typing 1’s, 1s, 2’s and 2s as keywords for one’s
and two’s complement. Will result in a error message, because the two
sets of numbers in the question will confuse the chatbot as what operation
will need to be done.

Soltuion:
Use the text
(one's, ones or one) for one's complement and (two's, twos or two) for
two's complement."
 result = '{"result" : "' + guide + '"}'
 resp = make_response(result)
 else:
 lex = boto3.client(
 'lex-runtime',
)
 response = lex.post_text (
 botName='UniChatBot',
 botAlias='aliasTwo',
 userId='655701873205',
 sessionAttributes={
 'string': 'string'
 },
 requestAttributes={
 'string': 'string'
 },
 inputText= request.form['keyword']

 lexResponse = response['message'].replace('"', ""
 print('response', type(response), response.__str__())
 #if '|' in lexResponse or 'noun' in lexResponse or 'verb' in
lexResponse:
 # result = '{"result" : ' + lexResponse + '}'
 #else:
 lexResponse = lexResponse.replace("\\n", "
")
 result = '{"result" : "' + lexResponse + '"}'
 print ("result " + result)
 resp = make_response(result)
 print(addDataToMongo(kwd, lexResponse, db))
 print ('resp', resp)
 resp.status_code = 200

APPENDIX E. LEX

#------------------------ for lex bot 'TestBot' ----------------------#
lex = boto3.client('lex-runtime')
response = lex.post_text(
botName='TestBot',

121

botAlias='aliasOne',
userId='655701873205',
sessionAttributes={
'string': 'string'
},
requestAttributes={
'string': 'string'
},
inputText='hi'
)
print(response['message'])
-------------------- for lex bot 'UniChatBot' -----------------------#
lex = boto3.client(
 'lex-runtime',
)
response = lex.post_text(
 botName='UniChatBot',
 botAlias='aliasTwo',
 userId='655701873205',
 sessionAttributes={
 'string': 'string'
 },
 requestAttributes={
 'string': 'string'
 },
 inputText='can you tell'
)
print(response['message'])

APPENDIX F. Atlas Database

Create Mongo dB Instances

122

Adding data to Mongo database

REFERENCES

[1] P. H. S. B. Alice Kerlyl, "Bringing Chatbots into education: Towards

Natural Language Negotiation of Open Learner Models," in

Applications and Innovations in Intelligent Systems XIV, London,

Springer, London, 2007, pp. 179-192.
[2] A. Gelbukh, "Natural language processing," in Fifth International

Conference on Hybrid Intelligent Systems (HIS'05), Rio de Janeiro,

Brazil, 2005.
[3] V. N. Gudivada, "Natural Language Core Tasks and Applications," in

123

Computational Analysis and Understanding of Natural Languages:

Principles, Methods and Applications, Elsevier B.V., 2018, pp. 403-428.
[4] C. B. L. H. N. Lo, "Chatbots and conversational agents: A bibliometric

analysis," in 2017 IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM), Singapore, 2017.
[5] N. Haristiani, "Artificial Intelligence (AI) Chatbot as Language Learning

Medium: An inquiry," in Journal of Physics: Conference Series, Volume

1387, International Conference on Education, Science and Technology,

Padang, Indonesia, 2019.
[6] C.-T. L. J.-Y. N. M. Z. D. Z. R. Y. Yiping Song, "An Ensemble of

Retrieval-Based and Generation-Based Human-Computer

Conversation Systems," in Twenty-Seventh International Joint

Conference on Artificial Intelligence (IJCAI-18), 2018.
[7] R. Winkler, "Unleashing the Potential of Chatbots in Education: A

State-Of-The-Art Analysis," in 78th annual meeting of the academy of

management, Chicago, Illinois, 2018.
[8] L. W. &. K. D. R. Anderson, A taxonomy for learning, teaching and

assessing: A revision of Bloom’s taxonomy of educational objectives,

NewYork, 2001.
[9] E. A. Bayan Abu Shawar, "Chatbots: Are they Really Useful?," in LDV

Forum 2007, 2007.
[10] A. C. I. &. A. V. Pinar Saygin, "Turing Test: 50 Years Later," Minds and

Machines, vol. 10, p. 463–518, 2000.
[11] J. Weizenbaum, "ELIZA—A computer program for the study of natural

language communication between man and machine,"

Communications of the ACM, vol. 9, no. 1, pp. 36-45, 1966.
[12] R. S. Wallace, " The Anatomy of A.L.I.C.E," in Parsing the Turing Test,

Dordrecht, Springer, Dordrecht, 2009, pp. 181-210.
[13] G. &. Z. S. Molnár, "The Role of Chatbots in Formal Education," in

IEEE 16th International Symposium on Intelligent Systems and

Informatics, Subotica, Serbia, 2018.

124

[14] A. L. S. B. D. G. E. T. M. David Ferrucci, "Watson: Beyond Jeopardy!,"

Artificial Intelligence, vol. 199–200, pp. 93-105, 2013.
[15] VENTUREBEAT, "Universities deploy digital assistants to enroll and

support students," TECHNOLOGY BREAKING NEWS, 30 January

2019. [Online]. Available:

https://www.technologybreakingnews.com/2019/01/universities-deploy-

digital-assistants-to-enroll-and-support-students/. [Accessed 12 5

2019].
[16] L. P. a. B. Castleman, "Summer Melt," Harvard Education Press, 2014.

[Online]. Available: https://success.gsu.edu/initiatives/reduction-of-

summer-melt/. [Accessed 6 7 2019].
[17] S. Z. György Molnár, "The Role of Chatbots in Formal Education," in

IEEE 16th International Symposium on Intelligent Systems and

Informatics, 2018.
[18] A. Hussain, "5 use cases for a campus chatbot," 19 August 2018.

[Online]. Available: http://www.aftabhussain.com/chatbot_uses.html.

[Accessed 2 5 2019].

125

	ABSTRACT
	DECLARATION OF ORIGINALITY
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION
	Overview
	Scope of the Project
	Need of Chatbots in Educational Institutions

	Research Objectives
	Qualitative Data
	Personalised Learning
	Establishing a stronger teacher-student relationship
	Anytime assistance
	Customised Teaching

	Research Outline

	CHAPTER 2
	LITERATURE REVIEW
	Earlier Chatbots
	Self-learning Chatbots
	Existing models in education sector

	CHAPTER 3
	METHODOLOGY
	Technology Stack and Web Applications
	Backend
	Flask
	MongoDB

	Frontend
	HTML5
	CSS3
	jQuery

	Deployment
	Heroku

	Third Party Tools and Libraries
	MongoDB Atlas
	NLTK
	AWS Lambda Functions
	AWS Lex
	Boto3
	Pymongo
	Gunicorn

	Functional Requirements
	API Calls
	Generic Question Construction
	Generic Answer Construction
	Query Handling
	Information Management

	Non-Functional Requirements
	Accuracy
	Fast Response
	Portability
	Maintainability
	Ethics

	Answering Generic Questions/Bot Conversion
	Binary Module
	Data Storage6

	CHAPTER 4
	FINDINGS AND RESULTS
	Overview
	Binary Module
	Test Case 01: Chatbot’s response for Addition of Binary numbers
	Test Case 02: Chatbot’s response for Subtraction of Binary numbers
	Test Case 03: Chatbot’s response for Addition of Decimal numbers
	Test Case 04: Chatbot’s response for Subtraction of Decimal numbers
	Test Case 05: Chatbot’s response for decimal to binary conversion
	Test Case 06: Chatbot’s response for binary to decimal conversion
	Test Case 07: Chatbot’s response for unsigned decimal number’s one’s complement
	Test Case 08: Chatbot’s response for signed decimal number’s one’s complement
	Test Case 09: Chatbot’s response for unsigned binary number’s one’s complement
	Test Case 10: Chatbot’s response for signed binary number’s one’s complement
	Test Case 11: Chatbot’s response for unsigned decimal number’s two’s complement
	Test Case 12: Chatbot’s response for signed decimal number’s two’s complement
	Test Case 13: Chatbot’s response for unsigned binary number’s two’s complement
	Test Case 14: Chatbot’s response for signed binary number’s two’s complement
	Test Case 15: Chatbot’s response for unsigned decimal’s binary representation bits requirement
	Test Case 16: Chatbot’s response for signed decimal’s binary representation bits requirement
	Test Case 17: User Input Bits Functionality
	Subcase 1: Chatbot’s response for unsigned decimal number’s two’s complement in user-specified bits
	Subcase 2: Chatbot’s response for signed decimal number’s two’s complement in user-specified bits
	Subcase 3: Chatbot’s response for Binary Addition in user-specified bits
	Subcase 4: Chatbot’s response for Binary Subtraction in user-specified bits
	Subcase 5: Chatbot’s response for unsigned binary number’s two’s complement in user-specified bits
	Subcase 6: Chatbot’s response for signed binary number’s two’s complement in user-specified bits

	General information about the university
	Generic Questions/Answers
	Evaluation of Results
	Evaluation on the basis of question type
	Evaluation by comparison with existing models
	Classification according to Educational Intentionality
	Classification according to tasks

	CHAPTER 5
	DISCUSSION
	Research Objectives Analysis
	Pros & Cons of the implementation of Chatbot framework
	Pros
	Cons

	Questionnaire Survey and Results
	Responses Recorded
	Was the chatbot useful?
	Were the responses accurate?
	Were the explanations accurate?
	Would you like this to be the standard?
	Would you prefer to interact with the Chatbot via voice rather than text?

	Survey Analysis
	Was the chatbot useful?
	Were the responses accurate?
	Were the explanations accurate?
	Would you like this to be the standard?
	Would you prefer to interact with the Chatbot via voice rather than text?

	CHAPTER 6
	CONCLUSION
	Summary

	CHAPTER 7
	LIMITATIONS & RECOMMENDATIONS
	Framework Limitations
	Text-based Input
	Rule-based approach
	Single Language Support

	Framework Testing Limitations
	Future Work
	Machine Learning
	Voice-based
	Advanced NLP
	Better Interface
	Multiple Language Support

	CHAPTER 8
	RESEARCH ETHICS
	APPENDIX A. Anatomy of a self-learning chatbot
	APPENDIX B. Questionnaire Survey
	APPENDIX C. NLP
	Tokenization
	Function 01: Input String Format Checking
	Function 02: B2D Conversion
	Function 03: One’s Complement of a Signed Integer
	Function 04: Two’s Complement of a Signed Integer
	Function 05: D2B Conversion
	Function 06: Signed Decimal to Binary Conversion
	Function 07: One’s Complement of an Unsigned Integer
	Function 08: Two’s Complement of an Unsigned Integer
	Function 09: Bit Representation
	Function 10: Two’s Complement of a Binary Integer
	Function 11: Two’s Complement of a Decimal Number
	Function 12: Get Decimal String
	Function 13: Addition/Subtraction
	Function 14: Controller

	APPENDIX D. SERVER
	APPENDIX E. LEX
	APPENDIX F. Atlas Database
	Create Mongo dB Instances
	Adding data to Mongo database

	REFERENCES

