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Abstract—Biomedical data generation and collection have become faster and more ubiquitous. Consequently, datasets are
increasingly spread across hospitals, research institutions, or other entities. Exploiting such distributed datasets simultaneously can be
beneficial; in particular, classification using machine learning models such as decision trees is becoming increasingly common and
important. However, given that biomedical data is highly sensitive, sharing data records across entities or centralizing them in one
location are often prohibited due to privacy concerns or regulations. We design PrivaTree, an efficient and privacy-preserving protocol
for collaborative training of decision tree models on distributed, horizontally partitioned, biomedical datasets. Although decision tree
models may not always be as accurate as neural networks, they have better interpretability and are helpful in decision-making
processes, which are crucial for biomedical applications. PrivaTree follows a federated learning approach, where raw data is not
shared, and where every data provider computes updates to a global decision tree model being trained, on their private dataset. This is
followed by privacy-preserving aggregation of these updates using additive secret-sharing, in order to collaboratively update the model.
We implement PrivaTree, and evaluate its computational and communication efficiency on three different biomedical datasets, as well
as the accuracy of the resulting models. Compared to the model centrally trained on all data records, the obtained collaborative model
presents a modest loss of accuracy, while consistently outperforming the accuracy of the local models, trained separately by each data
provider. Moreover, PrivaTree is more efficient than existing solutions, which makes it usable for training decision trees with numerous
nodes, on large complex datasets, with both continuous and categorical attributes, as often found in the biomedical field.
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1 INTRODUCTION

L IKE many others, the biomedical field has witnessed an
important and rapid increase in the volume of gener-

ated data, such as patient data from hospitals, experimental
data from labs, or even data generated by smartphone
applications or wearable devices in the context of the In-
ternet of Medical Things (IoMT). A concrete example of the
latter would be iOS applications developed using Apple’s
ResearchKit1, a framework designed to enable researchers to
easily gather medical data at scale. It is evident that this data
is key to the advancement of the field and to better treatment
of patients. Such data is also one of the pillars on which the
model of personalized medicine relies. Through its analysis,
researchers and practitioners may uncover new findings, or
train predictive machine learning models to assist in critical
decision-making processes such as disease diagnosis.

Building robust predictive machine learning models re-
quires access to large datasets [1]. In many situations, data
is spread across several entities. As examples, one can think
of a medical datasets held by multiple hospitals, or IoMT
devices generating the same types of data, but belonging
to different owners. Whenever the common goal of these
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entities is training predictive machine learning models on
their data, all involved parties could benefit from combining
their datasets and exploiting all available data at once.
Doing so would increase the amount of training data and
its diversity, and as a result, enhance the trained model’s
generalizability.

One straightforward solution to obtaining a model that
benefits from all available data would be to centralize all
data records in one location, and exploit them as one unified
dataset. However, data centralization gives rise to serious
privacy issues when the data in question is of sensitive
nature, as is the case with biomedical data. This is due
to the fact that the storage and use of this data is no
longer controlled by its owner. Another solution would be
to share the data points among the different data providers.
However, often, data sharing is restricted due to strict pri-
vacy concerns and regulations. Additionally, different data
providers could be in different jurisdictions, which further
complicates the data sharing process. To remedy the limi-
tations that arise due to privacy concerns and restrictions,
federated learning (FL) [2, 3, 4, 5], a decentralized machine
learning training approach through the exchange of model
parameters, has emerged as one solution that allows the
collaborative training of machine learning models between
different data providers without them having to disclose
their datasets to third-parties or to each other. Solutions
based on federated learning currently mostly target the
training of neural networks or ensemble decision tree mod-
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els such as gradient-boosted decision trees, as confirmed
by the works surveyed in [5]. There has been some effort
in the biomedical community to design FL-based solutions
to problems such as drug discovery [6], or transciptome-
based single-cell annotation [7]. Other solutions rely on the
use of cryptographic primitives, such as secure multiparty
computation or homomorphic encryption. For example, Ma
et al. [8] use secure multiparty computation for privacy-
preserving drug discovery. However, due to their important
computation and communication overheads, such solutions
can be difficult to scale to large datasets [9].

Given that we are interested in the analysis of biomedical
datasets for decision support, we focus on a particular type
of machine learning algorithm: decision trees. Decision tree
models, although not always as accurate as other types of
machine learning models such as neural networks, have
many advantages. The most notable one is model inter-
pretability and explainability, which is essential in the medi-
cal domains, where decisions must be accompanied by clear
explanations [10, 11]. Such explanations are less straight-
forward with black-box models such as neural networks.
As such, decision trees have been extensively used in the
biomedical community [12, 13, 14, 15]. Another advantage
is the fact that decision trees are relatively fast to train.
Further, such models offer a certain flexibility, as multiple
decision trees may also be combined into ensemble models,
such as random forests [16] or gradient-boosted decision
trees [17], in order to improve model generalizability and
predictive power by reducing over-fitting, at the expense of
interpretability.

We tackle the problem of decision tree training in the
setting where multiple data providers such as hospitals,
research institutions, or IoMT device owners, holding pri-
vate datasets, aim to train a single decision tree model
from the combination of their datasets, without disclosing
their records to each other. We focus on the case where
the dataset is horizontally partitioned across data providers,
meaning that different data providers hold different sets of
data records with the same attributes.

1.1 Contributions

We propose PrivaTree, a practical and scalable privacy-
preserving protocol, tailored for biomedical applications,
with minimal communication and computation overheads,
for collaboratively training decision tree models on horizon-
tally partitioned data with both continuous and categorical
attributes. PrivaTree allows for collaborative learning with-
out centralization of the raw data of all involved parties
in one location, and does not require heavy cryptographic
operations on the data records to guarantee privacy. In-
stead, our approach is similar to that proposed by Shokri
and Shmatikov [2] for neural networks, whereby each data
provider acts as a local learner during the model training
process. During execution of the protocol, each local learner
computes updates for growing the decision tree model that
is being trained, on their private data records, and securely
aggregates these updates with those of other data providers.
Computing these updates is equivalent to finding the best
way to split a decision tree node to further grow the decision
tree model.

We evaluate our protocol for different numbers of data
providers, on three publicly available biomedical datasets.
Our results show that the decision tree models obtained
using PrivaTree present a modest loss in accuracy com-
pared to models trained directly on the entire set of data
records, centralized at one location, without any privacy
considerations. Moreover, the accuracy of our model con-
sistently outperforms the non-collaborative local models,
independently trained by each data provider, exclusively on
their private dataset, without any collaboration. Compared
to prior work, PrivaTree is substantially more efficient in
terms of computation and communication costs, which can
be essential for time-sensitive applications. When training
a decision tree on data from 4 data providers, on the first
dataset with 1688 records and 16 attributes, PrivaTree runs
in 145 seconds and its total communication cost is 317 kB.
On the second dataset with 11 984 records and 14 attributes,
it runs in 130 seconds and the total communication cost is
287 kB. Finally, on the largest dataset with 56 553 records
and 21 attributes, PrivaTree runs in 1.56 hours, and requires
12.1 MB in communication.

The results show that PrivaTree is suitable for training
decision trees with numerous nodes, on large complex
datasets, with both continuous and categorical attributes.

2 RELATED WORK

Much of the existing work in privacy-preserving machine
learning relates to the inference (prediction) step, rather than
to the training step, as the cryptographic primitives typically
used to achieve privacy do not scale well with the large
number of operations required for training models. Some
of the existing work in privacy-preserving inference specif-
ically targets decision tree models [18, 19, 20, 21, 22, 23].
Bai et al. [22] rely on a secret sharing-based scheme to
achieve privacy-preserving decision tree inference in sublin-
ear communication complexity. Similarly, Zheng et al. [23]
utilizes additive secret sharing to achieve the same task,
outperforming prior work by 4 orders of magnitude in terms
of computation, and 163 times in terms of communication.

In this work, we are interested in privacy-preserving
training, rather than inference. Shokri and Shmatikov [2]
and McMahan et al. [3] propose practical solutions for
private collaborative deep learning. The approach in [2]
consists of each data provider training a local model, and
periodically uploading subsets of their parameter updates
to a server, which aggregates them. Data providers can then
incorporate them into their local models. The approach in [3]
is similar, but the aggregation consists of model averaging.
Such approaches, surveyed in [5, 24], are termed Federated
Learning (FL). They are substantially more efficient than
solutions based on cryptographic techniques. The survey
by Nguyen et al. [25] confirms that FL is gaining traction
in the healthcare domain.

Our work falls under the federated learning umbrella,
as the training data is split across multiple sources, who
never disclose their data records. We take interest in de-
cision trees rather than deep learning models, as the high
interpretability of decision trees is key for many biomed-
ical applications, where data privacy is also of utmost
importance. Recent works on privacy-preserving training
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of decision trees are surveyed in [26, 27]. Some focus on
privacy-preserving training of tree ensembles, such as ran-
dom forests [28, 29, 30, 31, 32] and gradient-boosted decision
trees [33, 34, 35]. Feng et al. [34] rely on homomorphic
encryption to ensure security, while Li et al. [35] relax some
privacy constraints and adopt an approach solely based on
federated learning, in order to gain in efficiency. Many of
the aforementioned works [29, 30, 31] do not target a setting
where data is held by different parties, but rather aim at
centrally training differentially private random forests.

In this work, we are interested in training single decision
trees, rather than ensemble models, in the setting where the
data is held by multiple data providers. Such models have
the advantage of being more interpretable than ensembles.

Some solutions exist for privacy-preserving training of
single decision trees. Several of them aim at privately build-
ing decision trees from distributed data which is vertically
partitioned (by attributes), by relying on either homomor-
phic encryption [36, 37] or secure-multiparty computation
techniques such as arithmetic secret sharing [38]. Our so-
lution is targeted towards the setting where the data is
horizontally partitioned (by records). The works we describe
next consider a similar configuration.

Truex et al. [39] propose a hybrid approach based on
both differential privacy and homomorphic encryption for
training decision trees in the multiparty setting. Different
data providers compute counts summarizing their private
datasets, add noise to these counts to satisfy ϵ-differential
privacy, encrypt the noisy results and send them to a central
coordinator, who computes the best split to grow the tree
on the encrypted noisy responses from all data providers.
Although this approach provides good privacy guarantees,
it only allows for categorical attributes in the datasets. More-
over, the addition of noise greatly affects the collaborative
model’s F1-score.

Another solution proposed by de Hoogh et al. [40]
is based on Shamir secret-sharing [41]. Similar to [39], it
only considers categorical attributes in the training dataset.
Abspoel et al. [42] describe a protocol for securely training
decision trees on both categorical and continuous attributes
when the training data is secret-shared across multiple
parties. They propose a method for obliviously sorting the
data which reduces the number of operations needed when
building the decision tree, thus reducing the overheads of
computation on secret-shared data. However the overheads
remain substantial for computing a single split in the tree,
which becomes problematic when building trees of large
depths. We propose a more efficient solution so that training
deeper trees becomes accessible.

In summary, our contribution allows for scalable dis-
tributed training of decision trees, using both categorical
and continuous attributes, when data is horizontally par-
titioned across data providers, while ensuring data privacy.
We propose a federated learning technique targeted towards
decision tree models, rather than deep learning models.
Compared to existing solutions, it achieves an attractive
balance between data privacy, model accuracy, and prac-
tical applicability relating to the required computation and
communication resources.

3 BACKGROUND

We provide some background on decision trees, the machine
learning model of interest in this work, as well as on
federated learning and additive secret-sharing, techniques
that we utilize as part of our proposed solution.

3.1 Decision Trees

Decision trees are predictive models, widely used for both
regression and classification problems. As their name indi-
cates, the models are structured as trees, composed of nodes
and edges. The root node and internal nodes represent
a predicate test on a dataset attribute. For categorical at-
tributes, the test corresponds to the equality of the attribute
to one of the possible values (categories) that the attribute
can take, while for continuous attributes, it corresponds to
whether or not the attribute value is larger than a threshold
t. The leaf nodes represent a class label for the target variable
of the dataset. We refer to the former as decision nodes, and
to the latter as classification nodes. The edges represent the
outcome of the predicate test of decision nodes. Figure 1
shows a generic example of a decision tree.

During training, every node encompasses the subset of
training records that satisfy the predicates of all decision
nodes on the path that starts at the root node, and leads
to the node of interest. Several algorithms exist for decision
tree training, including ID3 [43], and its widely used suc-
cessor, C4.5 [44], by Quinlan. CART [45] is another popular
algorithm, similar to C4.5, but geared towards regression
problems. As our solution is targeted towards classification
problems, we choose the C4.5 decision tree training algo-
rithm as the base for our privacy-preserving decision tree
training protocol.
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Fig. 1. Example of the structure of a decision tree. A, B and C are dataset
attributes. A and B are categorical, and respectively take values in {a1
... al} and {b1 ... bm}, while C is continuous.

3.1.1 C4.5 Algorithm
The C4.5 training algorithm adopts a greedy top-down
approach for building the tree. Beginning at the root node
and ending at the leaves, nodes are split with the goal of
maximizing “purity” of the resulting child nodes, which
refers to the homogeneity of the classes of data records
encompassed by that node. C4.5 takes as input a dataset D
with M attributes, a1 to aM , one target categorical variable
Y which take value in {c1 ... ck} and R data records.
These attributes may be either categorical or continuous. A
common hyper-parameter, provided as input to the decision
tree training algorithm, is a maximum tree depth value,
which we denote by max depth. It ensures that the trained
tree does not grow beyond a certain depth and thus helps
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mitigate over-fitting of the decision tree model. The algo-
rithm outputs a decision tree. Starting from the root node of
the decision tree, which encompasses the entire set of data
records, the algorithm selects the attribute that either max-
imizes the information gain criterion [44], or minimizes the
Gini index criterion [45]. The selected attribute is then used
for splitting the root node and the associated dataset. This
process is recursively repeated on the child nodes created
by the splitting process, until one of the stopping criteria
described below is reached. In order to select the threshold
t to split continuous attributes on, the typical approach is to
test the different values taken by the continuous attribute,
and select the one that maximizes information gain (resp.
minimizes the Gini index). For simplicity, in the remainder
of this paper, we choose information gain as the splitting
criterion, and provide some notes on how the protocol that
we describe in Section 5 would be simply adapted if the Gini
index were to be chosen.

The algorithm stops the splitting process if either of the
following conditions apply to a node: (1) all data records
corresponding to the node belong to the same class, none of
the attributes result in a positive information gain criterion
value, the depth of the node is equal to the pre-defined
max depth.

3.2 Federated Learning
The term “federated learning” was introduced by McMahan
et al. [3], in reference to the training of a common machine
learning model across multiple data providers, without data
leaving the providers’ devices or servers. This is achieved
through the sharing of training parameters across partici-
pants during the training process, rather than sharing data
records. One major challenge with the federated learning
paradigm is the leakage of information about the underlying
data from the exchange of training parameters [46]. In this
work, we adopt the federated learning paradigm for its
efficiency, while minimizing information leakage through
parameters with the use of additive secret sharing.

3.3 Additive Secret Sharing
Additive secret sharing [47, 48] allows multiple parties, each
holding a secret input, to perform arithmetic operations on
their joint inputs, without revealing them to each other nor
centralizing them in one location, which makes it suitable
for protecting data providers’ parameters in the federated
learning setting considered in this work. It does not require
the existence of a trusted third party, which is often a strong
assumption in practice. As our protocol is geared towards
the training task, which typically involves a large number
of operations, we choose additive secret sharing over multi-
party homomorphic encryption [49] for protecting the data
providers’ inputs, as the computational and communica-
tion overheads of homomorphic encryption schemes remain
impractical [9]. Moreover, compared to secure aggregation
based on trusted execution environments (TEEs), additive
secret sharing does not rely on strong trust assumptions [50],
which may not always hold true in practice. Finally, another
alternative to additive secret sharing would be Shamir’s
secret sharing [41], which enables the reconstruction of in-
termediate results by only a subset of data providers rather

than requiring all of their inputs. Even though this provides
the protocol with fault-tolerance, the added computational
cost is not justified in the setting that we consider for this
work, as we deal with a small number of data providers
rather than millions of IoT devices, and assume that all par-
ticipants remain online during the protocol. Further details
are provided in Section 5.3.2.4.

We provide details on performing addition using addi-
tive secret sharing, as it is the only operation that we carry
out using this technique.

Every party splits their secret input s ∈ Zq , into N ran-
dom shares, s1 to sN , where N is the number of participants
in the protocol. N − 1 of these shares are chosen uniformly
at random in Zq , while the last share is computed as:

sN = s−
N−1∑
i=1

si mod q (1)

This guarantees that:

N∑
i=1

si = s mod q (2)

As each share is selected uniformly at random in Zq ,
access to less than N shares does not reveal information
about the secret. Moreover, in order to reconstruct the secret,
an adversary must get access to all N shares, and thus must
control all involved parties.

Each party then sends one of their shares to every other
party, and retains the remaining share.

Let’s consider two secret-shared inputs s and t. Assum-
ing N parties are involved in the computation, s is split into
shares s1 to sN , and t is split into t1 to tN . The ith share of
each input is distributed to party i. In order for the parties
to jointly compute the sum of s and t, every party i locally
computes the sum ui of their shares as follows:

ui = si + ti mod q (3)

Every party shares their locally computed sum with the
others. The sum u of s and t can then be computed by every
party as:

u =
N∑
i=1

ui mod q (4)

4 SYSTEM AND THREAT MODEL

In this section, we first define the different entities of our
system model, as well as their roles and the relationships
between them. We then describe the threat model consid-
ered in this work.

4.1 System Model
We consider N ≥ 2 data providers, who aim to collabora-
tively train a decision tree model that benefits from their
joint data records, without disclosing the latter to each
other. We do not consider large-scale federated learning
with thousands of edge devices, but rather a few institutions
(e.g. hospitals, research centers, etc.) who wish to collaborate
while maintaining data privacy.

We consider horizontally partitioned data across data
providers, which means that the latter hold different data
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records for the same set of attributes and target variable.
Our training protocol also calls for the assistance of a cen-
tral coordinator, which we refer to as “coordinator” in the
remainder of this paper. The coordinator does not contribute
any data to the training. Its role is to orchestrate the training
process by instructing the data providers which tree node is
to be split at every step.

We note that the role of the coordinator could be taken
by either one of the data providers. For the sake of clarity,
we portray it as a separate entity. Figure 2 depicts the
considered system, as well as the different communication
channels between them.

We assume that the attributes list in the data providers’
datasets, the possible values (categories) that may be taken
by categorical attributes, an upper and lower bound on the
values that continuous attributes can take, and the different
classes of the target variable are known to data providers
and to the coordinator.

DP1 DP2 DP3

CC

Fig. 2. Overview of the system’s entities and communication channels.
DP stands for “Data Provider” and CC for “Central Coordinator.” The
arrows represent secure communication channels. We portray the CC
as a separate entity for the sake of clarity.

4.2 Threat Model

We consider all entities to be honest-but-curious, meaning
that they will not deviate from the agreed-upon protocol,
but could still attempt to infer information about other
entities’ private data from messages received during the
correct execution of the protocol. We discuss the implica-
tions of having malicious and colluding actors in Section 8.5.
We do not focus on privacy leakage from the resulting
model through attacks such as model inversion [51] or
membership inference [52]. These may be addressed within
the framework of differential privacy [53], at the expense of
an important drop in model accuracy. Further, frameworks
such as the one proposed by Zhu and Du [54] may be
used to quantify the leakage resulting from the fact that the
resulting trained model is available to all data providers at
the end of the protocol. Finally, we assume that secure point
to point communication channels exist between all system
entities.

5 PROTOCOL

The goal of PrivaTree is to enable multiple data providers
to train a decision tree, up to its optimal depth, while
keeping the underlying training records private. We provide
an overview of PrivaTree, and detail its two phases.

5.1 Protocol: Overview

PrivaTree falls under the umbrella of federated learning,
whereby multiple parties hold subsets of the training data,
and train a common model without exchanging data points.
Computations that directly touch a data provider’s private
dataset are carried out only by that data provider. The
results are securely aggregated across data providers, to
reduce information leakage through intermediate results,
using additive secret-sharing. The aggregated results are
used to update the collaborative model. The two phases of
PrivaTree are described in sections 5.2 and 5.3. Algorithms 2
and 3 summarize the steps taken by the coordinator and the
data providers, respectively.

5.2 Protocol: Max-Depth Determination Phase

The goal of the max-depth determination phase is to col-
laboratively compute a maximum depth value for the de-
cision tree. When training a decision tree on a centralized
dataset, this value is typically determined by using ran-
domized grid-search k-fold cross-validation on the training
dataset [55]. Since our training set is split across different
data providers who cannot access each other’s data records,
we approximate the optimal value of this hyper-parameter.
We include this hyper-parameter selection step as an inte-
gral part of the PrivaTree protocol to avoid the tree depth
to be chosen arbitrarily prior to training. In fact, choosing a
tree depth that is too small for the data at hand would lead
to a model that underfits the data and thus results in less
accurate predictions on both the training and test sets, while
choosing a tree depth that is too large would overfit the
training data, and lead to inaccurate predictions on unseen
data.

Our approach is as follows: each data provider com-
putes the optimal tree depth on their local dataset, using
randomized grid search k-fold cross-validation. This step
can be performed separately by every data provider, prior
to the online phase of the protocol, as it does not requires
any communication between them. The data providers then
securely compute the average maximum tree depth value,
using additive secret sharing. Every data provider’s input to
the additive secret sharing protocol is the locally computed
optimal maximum tree depth. Each data provider splits
this input into secret shares, and distributes them to other
data providers. Then, each computes the local sum of their
received shares, and sends this locally computed sum to the
other data providers. Finally, the sum of optimal maximum
tree depth values can be computed by each data provider,
by summing the received local sums. This sum can then
locally be divided by the total number of data providers to
obtain the average maximum depth value, which is shared
by one of the data providers with the coordinator, who uses
it as parameter for the training phase.

5.3 Protocol: Training Phase

During the training phase, the different data providers,
assisted by the coordinator, collaboratively train a decision
tree. We first describe a lightweight sub-protocol that use
during this phase, before detailing the training protocol.
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5.3.1 Secret Selection Sub-Protocol (SSSP)
PrivaTree relies on a sub-protocol that enables data
providers to securely find the most voted for element in
a list. In this case, this list is composed of either the different
attributes in the datasets, or the different class values that
the target variable can take. We note that this sub-procotol
has the same goal as the protocol proposed by Bonawitz
et al. [56]. However, the SSSP that we propose allows us to
forego the need for a central coordinator, as well as work in
groups of small size, thus reducing overheads.

We assume N parties would each like to select one
element out of a list of M elements, without revealing
their selections, and find the element selected by a major-
ity of parties. Every party pi locally creates a mask vi, a
vector of length M representing the different elements to
choose from, where all elements vi,j , are set to 0 except the
one selected by pi, which is set to 1. For every value of
j ∈ {1, . . . ,M}, the parties compute, using additive secret
sharing, the sum

∑N
i=1 vi,j . The element with the largest

sum is the most selected one. We note that the modulus
for the additive secret sharing step of this sub-protocol can
be as small as N + 1, since the only possible values of
the input to the addition operation are 0 or 1. Therefore
the maximum value of their sum is N . We favor smaller
modulus values to reduce the size of exchanged messages.
The SSSP is summarized in Algorithm 1.

Algorithm 1 Secret Selection Sub-protocol (SSSP)
Input: List L of M elements to select from.
Output: Element m of L selected by majority of voters.

1: for all voters pi do
2: Select preferred element mi from L
3: Create a mask vi of length |M |
4: Set the entry in vi corresponding to mi to 1, and all

other entries to 0
5: for all vi,j in vi do
6: Create secret shares of vi,j and distribute them

across voters
7: S ← V ector(size : |vi|)
8: for all mask entries j do
9: Receive vector of secret shares sj of j from other

voters
10: S[j]← sum(sj)
11: k ← argmax

s∈S
S

12: m←M [k]
13: Output m

5.3.2 Training Protocol
Every data provider starts with a local decision tree model,
and the coordinator starts with a global model, each with
only a root node.

5.3.2.1 Node Splitting: At every iteration of the
protocol, the coordinator selects an unprocessed tree node
at random, and instructs the data providers that it should
be split. Each data provider then computes, on their private
dataset, for the chosen node, the information gain values
(resp. Gini index) of all attributes, and selects the attribute
with maximal information gain (resp. minimal Gini index).
If a certain data provider cannot split the node (See stopping

criteria 1-2 in Section 3.1.1), it selects the special value
no_split instead. The data providers then engage in the
SSSP to find the attribute selected by the majority. The list to
make a selection from contains all attributes of the dataset,
as well as the no_split special value. In case of ties,
a second round of voting takes place, including only the
most voted for attributes of the first round. If a tie occurs
again, an attribute is chosen at random. The most voted for
attribute is then shared by one of the data providers with the
coordinator. If most data providers choose the no_split
special value, the coordinator instructs the data providers
to skip splitting the node in question and to collaboratively
select a class label for it. Otherwise, if the most selected
attribute is categorical, the coordinator provides information
about how to split the node into child nodes depending on
the category values that the selected attribute can take. This
is to ensure that all data providers and the coordinator have
the same tree structure and node indexing for the rest of
the training process. The data providers then update their
local decision tree models accordingly, by splitting the data
records of the selected node, based on the collaboratively
obtained predicate. The coordinator also splits the selected
node in the global model. Finally, if the chosen attribute is
continuous, the coordinator instructs the data providers to
select an appropriate threshold for splitting the tree node.
The coordinator splits this node into two child nodes, one
corresponding to values above a threshold, and another to
values below it. We note that the value of this threshold is
irrelevant and unknown to the coordinator. It is only known
by the data providers.

5.3.2.2 Threshold Selection for Continuous At-
tributes: When the attribute selected is continuous, a thresh-
old must be specified for splitting the decision tree node.
Given the node to split and the collaboratively chosen
attribute, each data provider finds the best threshold for
splitting the node using that attribute, on their local dataset.
Then, the data providers use additive secret-sharing, to
compute the sum of their thresholds, and in turn their
average value by locally dividing the obliviously computed
sum by N . The use of additive-secret sharing ensures that
the threshold value of every data provider remains private,
as it could leak information about the data distribution. As
the thresholds computed by the data providers may not
always be discrete, we quantize them before using them as
secret input to additive secret sharing. If a data provider
cannot compute a value for the threshold due to the fact
that, on their private dataset, no data records correspond to
the node being split, the data provider’s input to additive
secret sharing is the mid-range of the attribute chosen by
most data providers to split that node. In most cases, this
value would minimally affect the result of the computation
of the average threshold. This obfuscates the fact that the
data provider cannot compute the threshold on their private
dataset. Figure 3 describes the messages exchanged between
data providers and the coordinator for splitting one decision
tree node.

5.3.2.3 Leaf Node Labeling: When most data
providers choose not to split a node, it must be assigned
a class label. Every data provider computes the best class
label locally, for their dataset. The data providers engage
in the secret-selection sub-protocol to determine the class
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Fig. 3. High-level representation of PrivaTree when splitting one node.
We represent only 2 data providers for clarity.

chosen by the majority. Each data provider assigns this class
label to the node in their local model.

5.3.2.4 Participants Going Offline and Message
Loss: As our protocol is designed to be used by a small
number of willing participants rather than millions of mo-
bile devices, we assume that disconnection of a participant
and message losses are rare events. If any of the latter
occurs, online participants can detect it when they do not
receive all expected messages at the on-going step of the
protocol, within a pre-defined time interval. We consider
that during training, all data providers and the central
coordinator keep a copy of the current tree structure, as well
as the index of the current node of the tree that is being
processed, which persist after disconnection. When one or
more participants drop out, the first participant that detects
the anomaly instructs all others to exit. The participants then
reconnect to each other, and resume the training starting
from the saved node index and tree.

5.3.2.5 Termination: PrivaTree terminates when all
nodes have been processed. We consider a node to be pro-
cessed when either of the following applies: (1) the node was
split using a collaboratively chosen attribute, (2) the node

was labeled with a class after a majority of data providers
chose not to split it, (3) the depth of the node has reached
the max depth value.

In such a case, the coordinator instructs the data
providers to terminate. Each data provider’s local tree
model is complete (and equivalent to that of other data
providers). The coordinator’s global model is a minimal
version of the data providers’ models. The tree has the same
structure, but lacks the threshold values of decision nodes
relative to continuous attributes, as well as the class labels
of classification nodes. These values are directly assigned
by each data provider to their model, and not shared with
the coordinator. This minimizes the number of exchanged
messages, and does not change the outcome of the training
as this information is not needed by the coordinator, since
the global model held by the coordinator is only used for co-
ordination, and not for classification. Following termination,
each data provider can use their trained local tree model to
classify new data points.

Algorithm 2 Coordinator
Input: max_depth computed in max-depth determination

phase
1: Send randomly selected node to data providers
2: Receive top_attribute selected by majority of data

providers
3: if majority of data providers vote no_split then
4: Send skip to all data providers and label it {tells data

providers not to split node}
5: Go to step 12
6: if top_attribute is continuous then
7: Add 2 children to node for above and below thresh-

old
8: Instruct data providers to compute threshold
9: else if top_attribute is categorical then

10: Split node of global tree using top_attribute
11: Instruct data providers how to split the node {order

of children}
12: Mark node as processed
13: if no more unprocessed nodes exist then
14: Send stop to all data providers and exit
15: Randomly select unprocessed node
16: Repeat steps 1 to 16 on new node

6 EVALUATION

In this section, we provide the details of our implementation
and experimental setup, and describe the datasets used for
evaluation.

6.1 Implementation

We implement PrivaTree in Python, and evaluate its com-
putation and communication costs, as well as the accuracy
of the collaboratively trained decision trees. We model the
coordinator and data providers as peer-to-peer (P2P) nodes
in a P2P network. We rely on the p2pnetwork [57] pack-
age (v1.1) for the implementation of the P2P functionali-
ties. We take advantage of the computational efficiency of
the scikit-learn [58] machine learning library (v1.0.1),
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Algorithm 3 Data provider
Input: Local dataset

1: Set local_node = root of local tree
2: Receive node from coordinator
3: Set local_node = node
4: if stopping criteria (1) or (2) is locally satisfied then
5: attr_selected = no_split
6: else
7: attr_selected = max_gain(local_node)
8: global_best_attr← SSSP with other data providers
9: Send global_best_attr to coordinator

10: if global_best_attr is continuous then
11: Locally compute threshold local_th
12: avg_threshold ← additive SS with other data

providers
13: Split local node on global_best_attr and

avg_threshold
14: else if global_best_attr is categorical then
15: Receive splitting instructions from coordinator {order

of children}
16: Split local_node according to instructions
17: else if global_best_attr is no_split then
18: node_label← SSSP with other data providers
19: Label local_node with node_label
20: if stop is received from coordinator then
21: Return local tree and exit
22: Repeat steps 2 to 22

specifically for the selection of the optimal maximum tree
depth by the data providers (Section 5.2), which can be
computationally expensive with large datasets. We also
make use of the scikit-learn library for the top attribute
selection step taken locally by each data provider.

6.2 Experimental Setup

For our experiments, we fix the following parameters. Dur-
ing the max-depth determination phase (Section 5.2) of the
protocol, the data providers use randomized grid-search k-
fold cross-validation to determine the optimal maximum
depth on their private datasets. We set k = 5. During the
training phase, when collaboratively computing the best
threshold to split a continuous attribute with, using additive
secret sharing, the data providers must quantize their in-
puts. We quantize the values to 16-bit integers. Based on the
assumption that upper and lower bounds on continuous at-
tribute values are known to all data providers (Section 4.1),
we execute the additive secret sharing protocols in Zq with q
being the first integer larger than w = N×u, where N is the
number of data providers, and u is the largest upper bound
on a continuous attribute in the dataset, since the sum of
threshold values cannot be larger than w.

We evaluate the accuracy of the collaboratively trained
model for N ∈ {5, 10, 15, 20, 25}. We split the training
instances into random partitions, where each represents the
private dataset of one data provider. To account for biases
in the generated splits, we create 20 different random splits,
and run our experiments for each of them. We report the
mean and standard deviation (SD) of the accuracy of the
models over the 20 runs. We perform three different types

of experiments, which differ in the size rdp of each data
providers’ partition. For the first type of experiments, all
data providers have an equal number of records rdp = r

N ,
where r is the total number of records. For the second type
of experiments, all data providers have an equal number of
records rdp = r

25 . This ensure a fixed number of records per
data provider regardless of the value of N . For the third
type of experiments, rdp differs per data provider. For each
value of N , N

5 data providers hold 10%, 15%, 20%, 25% and
30% of the data. For each experiment, we run PrivaTree,
and compare the model accuracy to that of the central
model, trained on the data records of all data providers,
and to those of the local model, where single data providers
train models separately on their local records. We evaluate
the communication and computation costs of PrivaTree, by
running it for N = 4, across 5 machines, connected over a
local area network. One of the machines, with an Intel i7-
6700 CPU at 3.4 GHz and using 32 GB of RAM, acts as the
coordinator, while the others, each with an AMD 2950X CPU
at 3.5 GHz and using 128 GB of RAM, act as data providers.

6.3 Datasets
We select three publicly available biomedical datasets, to
evaluate our protocol with. The first one is the “Estima-
tion of obesity levels based on eating habits and physical
condition” dataset [59], from the UCI Machine Learning
Repository [60]. It is aimed at the prediction of individuals’
obesity levels based on their physical condition and eating
habits. The second one, also from the UCI Machine Learning
Repository, is the “EEG Eye State” dataset. The classification
task associated with it is the detection of whether an eye
is open or closed based on features extracted from EEG
measurements. The third dataset is the “Diabetes Health
Indicators Dataset” from Kaggle.2 It is a cleaned and consol-
idated version of the “Behavioral Risk Factor Sureveillance
System” dataset released by the CDC in 2015.3 The classi-
fication task associated with it is the prediction of diabetes
based on survey responses to questions concerning health
conditions and behaviours. Table 1 summarizes the sizes
and specifications of the three datasets. For simplicity, we re-
fer to the aforementioned datasets as the “Obesity”, “Eyes”,
and “Diabetes” datasets respectively. In our experiments, we
use 80% of the records from each dataset for training, and
20% for testing. We clean the datasets prior to using them,
by removing features with more than 70% missing values,
as well as any remaining records containing missing values.

TABLE 1
Datasets used for evaluation

Dataset Train Test Categorical Continuous Classes

Obesity 1688 423 8 8 7
Eyes 11 984 2996 0 14 2

Diabetes 56 553 14 139 14 7 2

As some operations take place in Zq , we transform at-
tribute values into positive ones, prior to running PrivaTree.
data providers add an offset to all values of the attribute,

2. https://www.kaggle.com/
3. https://www.cdc.gov/brfss/annual data/annual 2015.html
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equal to the absolute value of the minimum (< 0) possible
value that this attribute can take. This has no effect on
information gain computation as the order of values is un-
changed. We note that this minimum value is not necessarily
the minimum of that attribute across data providers. It is
a lower bound on the values that the attribute may take,
assumed to be known by all data providers.

7 RESULTS

We report the results of our experiments. We rely on model
accuracy to assess the predictive performance of the collab-
orative model. The provided results are obtained with in-
formation gain as the splitting criterion. We observe similar
trends when using the Gini index. To assess the efficiency of
PrivaTree, we report the total bandwidth, as well as the total
run time of PrivaTree. The results are discussed in Section 8.

7.1 Model Accuracy

The average accuracy over 20 runs of the collaborative, cen-
tral, and local models for different values of N is reported
in Figure 4, for the experiments described in Section 6.2.
Additional results showing the models’ F1 score, precision,
and recall can be found in Section 2 of the supplemental
material. We discuss the model’s performance in Section 8.1.
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25
, and (c) rdp variable per data provider. Shaded

areas and error bars show one SD above and below the mean. Baseline
accuracy of the majority class classifier is 18%, 55%, and 49%, for the
Obesity, Eyes, Diabetes datasets

7.2 Protocol Efficiency
We execute our protocol in a distributed fashion with 4
data providers and the coordinator. We report the total run
time of the online phase of PrivaTree. This includes CPU
time of the data providers and coordinator, as well as the
communication time between the different participants in
the protocol. Additionally, we report the total bandwidth,
corresponding to the total size of exchanged messages. The
results are summarized in Table 2. As a baseline, we report
the CPU time for centralized training (not distributed nor
privacy-preserving).

TABLE 2
Protocol run time and total communication costs.

Dataset Records Attributes Tree
Nodes

Central
CPU
Time

PrivaTree
Run Time Bandwidth

Obesity 1688 16 147 0.063 s 145.3 s 317 kB
Eyes 11 984 14 2065 0.609 s 130.4 s 287 kB
Diabetes 56 553 21 32 139 1.078 s 1.56 h 12.1 MB

8 DISCUSSION

We discuss the accuracy, ability to assist in decision-making,
efficiency, and privacy guarantees of PrivaTree, and com-
pare our results to related work.

8.1 Model Utility
To ensure both privacy and scalability, our method presents
a modest loss in accuracy. When rdp = r

N (Fig. 4 (a)), the
accuracy of both the local and collaborative models de-
creases as N increases, since a larger N means fewer records
per data providers. Therefore, accuracy of our collaborative
model depends on the number of records per data provider.
This is a limitation, as the quality of the collaborative model
is bounded by that of the data subsets held by individual
data providers. The results in Fig. 4 (b) further confirm this,
as the accuracy of the collaborative model grows slower
than that of the central model as N increases. The results
in Fig. 4 (c) show that when data records are unevenly dis-
tributed across data providers, accuracy is similar to when
they are equally distributed. The collaborative model sys-
tematically outperforms the local one for all three datasets,
which means that collaboration using PrivaTree always re-
sults in a better model than non-collaboration. Moreover,
the SD values for the local model are consistently larger
than those for the collaborative model, which suggests more
variability in the accuracy of local models depending on
the way that data records are distributed. The collaborative
model is therefore more stable than the local model. Similar
trends are observed for the F1 score, precision, and recall
(Section 2 of the supplemental material).

8.2 Assistance in Decision-Making
The ability of tree-based models to help in decision-making
is one of the main motivations behind their use in the
biomedical field. Hence, it is important for the collaborative
model, trained using PrivaTree, to have a structure similar
to the privacy-violating central model. We assess the latter
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by showing that the collaborative model is able to learn the
most discriminative features learnt by the central model.
Using the Jaccard index, which ranges from 0 to 1 and
represents the similarity between two sets, we compare
the unique set of 15 features associated with the top-most
tree nodes of the central, collaborative, and local models.
The results, summarized in Table 3, show good agreement
between the top-most features learnt by the collaborative
model and the central model, for all considered datasets and
values of N . The results also show that the local model does
not perform as well as the collaborative one when it comes
to learning the most important features.

TABLE 3
Jaccard index representing the similarity between the top-most features
of the central model and the local model (L), and the similarity between
the top-most features of the central model and the collaborative model

(C), for the Obesity, Eyes, and Diabetes datasets and for different
numbers of data providers N . The Jaccard index ranges from 0 to 1.
The higher its value, the more similar the top features between two

models are. We note that the setting considered is the one where all
data providers have an equal number of records rdp = r

N
.

Dataset Model N=5 N=10 N=15 N=20 N=25

Obesity L 0.449 0.495 0.450 0.481 0.478
C 0.833 0.833 0.833 0.833 0.666

Eyes L 0.653 0.531 0.488 0.479 0.391
C 0.857 0.75 0.75 0.729 0.65

Diabetes L 0.853 0.727 0.729 0.695 0.665
C 1 1 1 1 0.8

8.3 Computational and Communication Efficiency

The efficiency of PrivaTree comes from the fact that it
makes minimal use of secret-sharing, which is only used
for aggregating intermediate training results, rather than for
making computations on data records. The bottleneck comes
from the rounds of communication required for securely
aggregating intermediate results, the number of which is
linear in the number of tree nodes, as can be seen in Figure 3.
The computation time is thus not directly influenced by the
number of records, but rather by the number of nodes in the
trained decision tree.

The only operation carried out securely is the addition,
which is cheap compared to others on secret-shared data.
All other operations are carried out locally, in parallel, by the
different data providers. Additionally, since we can compute
upper bounds on secret-shared values, we operate in groups
of bounded sizes, reducing the size of exchanged messages.
For secure aggregation of numeric values (max depth, split-
ting thresholds), one secure addition is required. For secure
computation of the most selected splitting attribute or the
most selected class label, the secret selection sub-protocol
is used. It requires F or C secure additions respectively,
where F is the number of attributes in the dataset, and C
the number of classes. The results in Table 2 confirm that the
run time and bandwidth of our protocol depend primarily
on the number of tree nodes.

Formally, PrivaTree’s complexity can be expressed as
(2d − 1)(O(F rdp log(rdp)) + O(FN)), where d is the tree
depth, F the number of attributes, rdp the number of records
per data provider, and N the number of data providers.
The (2d − 1) term represents the number of nodes for a

full binary tree. Typically in practice, the number of nodes
is lower. The (O(F rdp log(rdp)) term corresponds to each
data provider’s attribute and threshold selection, done in
parallel with other data providers. It is obtained from the
scikit-learn documentation, which we make use of to
carry out these computations. The complexity of secret-
sharing is O(N), since each data provider must compute
and send N − 1 shares [61]. O(FN) represents the secret-
sharing step, multiplied by the number of attributes F ,
since secret-sharing is required F times to select the most
voted for attribute (See Algorithm 1). If most data providers
choose not to split a node, C secure additions would be
needed to label it with the most voted for class label (where
C is the number of possible classes). Assuming that F > C ,
we retain the O(FN) in the expression of the algorithm’s
complexity.

On all three datasets, the run time of PrivaTree is well
within practical reach, even when the number of records,
features, and nodes in the constructed decision tree are very
large, as is the case for the Diabetes dataset.

8.4 Comparison with Prior Work
We compare our solution to that of Abspoel et al. [42],
which tackles the same problem of privacy-preserving de-
cision tree training, on horizontally partitioned data, with
both continuous and categorical attributes. The authors
of [42] propose a method based on secret-sharing data
records to 3 or more non-colluding servers, and training
the model on the secret-shared records, providing both
passive and active security. A key limitation of their work
is that trees are grown up to an arbitrary pre-defined depth,
limiting the size of the trained decision tree, which leads to
underfitting. This is remedied by the authors by combining
multiple trees into an ensemble, to approach the accuracy of
the central model. However, using ensemble models limits
interpretability, which is a key motivation behind choosing
tree models for modeling biomedical data. Moreover, the
solution is computationally heavy as operations are per-
formed on secret-shared records. Extrapolating from the
benchmarks reported in [42] and the function provided
for approximating training time, we estimate the run time
for training a decision tree with passive security, up to its
respective optimal depth d = 23, on the Diabetes dataset,
using the approach in [42]. We detail this estimation in
Section 1 of the supplemental material. We estimate a lower
bound of 441 hours (∼ 18 days) for training a single decision
tree on the Diabetes dataset using the method in [42],
while PrivaTree requires only 1.56 hours for the same task.
Furthermore, PrivaTree provides a privacy-preserving way
to select an appropriate depth, foregoing the need to resort
to ensemble models for ensuring good accuracy. This helps
maintain interpretability. Moreover, PrivaTree scales well,
and is practically usable for training decision tree models
with a large number of nodes, on large datasets with both
continuous and categorical attributes.

8.5 Privacy
PrivaTree aims at protecting the privacy of the datasets
of the different data providers during the collaborative
training process. The protocol is private by design, since
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at no point does it call for data providers to share their data
points with other entities. This is because any computation
that must be made on the data records is carried out
solely by the data provider who holds the data records in
question. PrivaTree does however call for the aggregation of
intermediate results of training by the data providers, such
as the maximum tree depth, best attribute and threshold
to split a specific decision tree node with, or the best
class label for a leaf node. These intermediate results can
indirectly leak information about the records in a dataset.
In order to reduce leakage from these results, we use ad-
ditive secret-sharing for aggregating numerical results, and
the secret selection sub-protocol described in Section 5.3.1
for aggregating qualitative results, also based on additive
secret-sharing. Therefore, the privacy guarantees on the
exchanged intermediate results is derived from those of
additive secret-sharing under the semi-honest threat model,
meaning that no data provider can learn anything about
other data providers’ inputs except what can be inferred
from the output of computation on secret-shared values [61].
Further, for every tree node that requires splitting, both
the coordinator and data providers only get access to the
most voted for attribute, and not to individual votes by
data providers. Similarly, the data providers only get access
to the average threshold across all data providers, and
not to the individually computed best thresholds, while
the coordinator receives neither the individual values, nor
the aggregated ones. Below, we provide a more detailed
analysis of PrivaTree, its privacy guarantees, as well as its
limitations.

8.5.1 Exchanged Messages and Intermediate Results
We start by enumerating messages exchanged during ex-
ecution of PrivaTree, as well as the intermediate results
computed by data providers, and describe the privacy guar-
antees related to them under the non-collusion assumption.
In Section 8.5.2, we extend the analysis to the scenario where
collusions are possible.

Max-depth Determination and Threshold Selection:
The messages sent for these tasks are the shares of locally
computed maximum depths (resp. thresholds) by the data
providers and the local sums of these shares computed by
each data provider. Shares are generated uniformly at ran-
dom, and thus do not leak information about the maximum
depth (resp. thresholds) of each data provider. Local sums
are obtained by summing the random shares, thus they do
not leak information either. At the end of this step, each
data provider learns the sum of depths (resp. thresholds).
Given the guarantees of additive secret sharing, the only
information that can be inferred is what can be inferred from
the sum.

Training Coordination The coordinator sends messages
to ensure synchronization between data providers. Such
messages are independent from the data providers’ records,
and thus do not leak sensitive information.

Attribute Selection and Leaf Node Labeling The mes-
sages sent for these steps are the secret shares of the attribute
(resp. label) selection mask entries and the local sums of
the shares. They do not leak information about the mask,
as the former are generated uniformly at random, and the
latter derived from them. At the end of this step, data

providers learn the total number of votes per attribute (resp.
label). The individual votes of different data providers are
indistinguishable from each other, therefore the information
leaked by the aggregated vote cannot be linked to the data
records of a specific data provider. Individual data provider
votes may only be recovered with certainty if they are all
similar. Even in this worst case, the underlying data records
remain hidden.

8.5.2 Collusions

Under the no collusion assumption, each data provider
may compute the sum of secret inputs of all other data
providers, by subtracting their own input from the resulting
sum. When a subset of data providers collude, inferring
information about the inputs of other data providers from
the output becomes easier, as the colluding set can com-
pute the sum of inputs of non-colluding data providers.
To illustrate this, we assume the worst case scenario where
N − 1 data providers collude. In such a case, the leakage
is deterministic as the colluding set can compute the local
maximum depth value of the remaining data provider, by
subtracting the sum of their inputs from the total sum
computed securely. Similarly, they can know the attribute
or node label that the remaining data provider votes for.
With a colluding set of size < N − 1, the leakage becomes
probabilistic, and decreases as the size of the colluding
set decreases. Even in the worst case, the underlying data
records are not directly revealed. To quantify this leakage,
the framework proposed by Zhu and Du [54] may be used.
It enables the quantification of privacy risks from disclosing
decision tree models. This is done by converting the model
into a set of constraints, based on the rules in the decision
tree. Then, non-linear programming is used to estimate
maximum entropy, which is then used to quantify privacy.
This can be applied to the trees trained by PrivaTree. De-
pending on the dataset and the structure of the tree, one
can consider each vote by a data provider to be one rule
in the tree, assume that this vote is leaked to the other
protocol participants, and quantify the leakage associated
with it using the framework in [54].

We note that assuming non-collusion is not unreason-
able, as all data providers contribute data to the training
protocol, and colluding with others would imply having
to share their own secret input values. Non-collusion is
assumed in similar works [38, 40], including [42] which
deals with the most similar setting.

8.5.3 Malicious Adversaries

The privacy guarantees satisfied under the semi-honest
threat model apply even when one or more participants are
malicious. However, under the malicious threat model, cor-
rectness of the output of additive secret-sharing cannot be
guaranteed, and as a result, the training of a correct decision
tree model is not guaranteed either. Ensuring correctness
under the malicious model is beyond the scope of this work.

9 CONCLUSION

We have designed, implemented and evaluated a protocol
for collaboratively training decision trees, in a setting where
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the training dataset is horizontally partitioned across multi-
ple data providers, while ensuring data privacy. Our proto-
col works on datasets with both continuous and categorical
attributes, scales well on large training sets, and allows for
practical training of complex decision tree models. It also of-
fers a privacy-preserving solution for collaborative selection
of the optimal decision tree depth. We achieve privacy and
scalability at the cost of a modest loss in model accuracy
compared to the central model, while still ensuring that
our collaborative protocol outputs a model that outperforms
non-collaborative ones. The aforementioned characteristics
of PrivaTree make it suitable for biomedical applications.
One of many such applications could be the collaborative
training of an interpretable decision tree model on patient
health records, scattered across a number of medical institu-
tions, for assistance in disease diagnosis. In such a setting,
the dataset size is typically large, and the data itself is
extremely sensitive. Therefore, scalability and data privacy
are both of utmost importance. When it comes to medical
decision-making, model interpretability is key, thus decision
tree models are an appropriate choice. Since our protocol
yields better accuracy than local training, the trained model
would be better at correctly predicting diagnosis of new
patients based on their health records, and would thus
benefit all medical institutions involved. As future work,
it would be interesting to design and evaluate extensions of
our protocol to decision tree ensembles (e.g., random forests,
boosted trees), which would be useful for improving the
trained model’s accuracy, at the expense of interpretability.
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