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a b s t r a c t

Fingermark patterns are one of the oldest means of biometric identification. During this last decade, the 
molecules that constitute the fingermark residue have gained interest among the forensic research com-
munity to gain additional intelligence regarding its donor profile including its gender, age, lifestyle or even 
its pathological state. In this work, the molecular composition of fingermarks have been studied to monitor 
the variability between donors and to explore its capacity to differentiate individuals using supervised 
multi-class classification models. Over one year, fingermarks from thirteen donors have been analysed by 
Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (n = 716) and mined by different 
machine learning approaches. We demonstrate the potential of the fingermark chemical composition to 
help differentiating individuals with an accuracy between 80% and 96% depending on the period of sample 
collection for each donor and size of the pool of donors. It would be premature at this stage to transpose the 
results of this research to real cases, however the conclusions of this study can provide a better under-
standing of the variations of the chemical composition of the fingermark residue in between individuals 
over long periods and help clarifying the notion of donorship.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// 

creativecommons.org/licenses/by/4.0/).

1. Introduction

Fingermarks are one of the most commonly used forensic traces 
bearing biometric information. Their exploitation requires the vi-
sualization of the ridge pattern through optical means, combined 
with the application of physico-chemical techniques [1]. Since 2009, 
the interest for the additional knowledge that can be extracted from 
a fingermark, beside the ridge pattern, has significantly in-
creased [2].

The molecular content of the fingermark residue has proven to be 
a useful source of information to meet both profiling and ridge 
pattern reconstruction goals [3–6]. To reach these objectives, spec-
troscopic and spectrometric techniques have been applied to the 
detection of various (semi-)exogenous molecules and contaminants 
(e.g., explosives, drugs, pharmaceuticals, condom lubricants, blood) 
as well as endogenous molecules naturally produced by the body 
and excreted through sweat (e.g., triglycerides, amino acids, free 
fatty acids, peptides and proteins) [3,4,7–17].

Among these methods, Matrix-Assisted Laser Desorption/ 
Ionisation Mass Spectrometry Imaging (MALDI-MSI) appears to be 
one of the most promising ones [3,18]. MALDI-MSI was already 
successfully applied on various types of substrates and put in se-
quence with other fingermark detection techniques to either re-
construct the ridge pattern [2,11,14,19–30] or obtain information 
about the molecular composition of fingermarks [3,15,17,19,31]. Also 
classified as a class B by the Home Office in fingermark recovery [32], 
MALDI-MSI is becoming, over the years, an asset for the chemical 
analysis of fingermark residue. As stated above, this technology of-
fers many possibilities regarding the profiling of individuals, as well 
as their differentiation [31].

The introduction was completed with the following paragraph: 
“The idea of profiling donors based on the composition of their 
fingermarks has already been explored for purposes like sex de-
termination, age estimation or health condition documentation [4, 
15–17, 33, 34]. All these scientific developments have shown pro-
mising results. For example, the analysis of fingertip smears has 
recently been successfully applied to the classification of donors 
according to their breast cancer development stage [34]. Another 
proof-of-concept study also demonstrated the underlying potential 
of fingermark composition to determine the sex of an individual 
with accuracy level ranging from 67.5% to 74.4% [17]. All these 
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studies were focused on specific compounds and also raised more 
fundamental questions regarding the degrees of variability and 
consistency of the fingermark composition over time and between 
donors. In this context, a lack of data has been identified with re-
gards to the characterization of donors with regards to their do-
norship, a characteristic often used during the experimental design 
step. In 2014, Girod et al. investigated how the lipid composition of 
fingermarks could help categorizing donors between ”rich” and 
“poor” ones [35]. For forensic research purposes, donorship is a 
crucial parameter that must be set in the early stages of the research. 
Indeed, it is often asked to select a range of donors based on their 
capacity to provide fingermarks reacting more or less with a specific 
detection technique and classify them according to their donorship. 
This selection is often performed in an empirical manner, asking 
several people to deposit fingermarks that are then processed with 
the investigated technique, or through habits, such as “this person is 
usually a good donor”. Pre-profiling donors from the composition of 
their fingermarks could help selecting donors with various donor-
ship profiles, or narrowing down the number of donors required. 
Gaining knowledge about the intervariability of the fingermark 
composition could also be useful to help refining the concept of 
donorship, and its stability over time, but also to better assess the 
potential of the fingermark composition to differentiate individuals 
among others.

This study aims at investigating the molecular composition of the 
fingermarks provided by 13 donors of both genders and varying ages, 
over a year, using MALDI-MSI and supervised multi-class classifica-
tion models. The presented dataset was already used in a previous 
work to assess the intravariability of the 13 donors [36] and is now 
used in R environment [37,38], which is a virtual space that contains 
all the objects used (i.e., datasets, variables, functions, etc.), to ex-
plore the intervariability in-between the 13 donors and to determine 
the most performing model to differentiate individuals. It is believed 
that this research will provide new and relevant information about 
fingermark composition over a long period of time, as well as about 
the possibility to limit the pool of individuals at the source of a given 
fingermark using molecular information.

2. Materials and methods

The whole materials, methodology and instrumentation in-
cluding MALDI-MSI instrument and parameters, matrix preparation 
and deposition as well the fingermark sampling process are similar 
and can be consulted in a previously published paper, available in 
open-source [36]. In brief, all the analyses were conducted on a 
hybrid mass spectrometer MALDI Linear Trap Quadrupole (LTQ) 
Orbitrap XL from Thermo Fisher Scientific with a linear trap and 
coupled to an Orbitrap, equipped with an azote laser of 337 nm. The 
mass range was set from 100 to 2000 m/z, the spatial resolution to 
100 µm and the spectral resolution to 60’000. The instrument was 
used in imaging mode and acquired square areas of several mm2 
corresponding to 150–200 pixels. α-CHCA was chosen as the matrix 
as it has already demonstrated its performance on fingermark ana-
lysis and was prepared with 5 mg/mL of α-CHCA in 70:30 ACN:H2O 
and 0.1% TFA. It was deposited on the fingermarks using an auto-
matic sprayer from SunChrom as follows: first layer at 10 μL/min, 
second at 20 μL/min, third at 30 μL/min, and from the fourth to the 
tenth at 40 μL/min with a spray height of 25.32 mm.

A total of 22–30 fingermarks, depending on donor availability 
due to COVID-19-related restrictions, were collected per individual 
on glass slides over January to December 2020. After each collection, 
the fingermarks were aged for 24 h before being analyzed by MALDI- 
MSI. Two analyses (replicates) were performed on each fingermark, 
for a total of 44–60 analyses per donor and 716 analyses overall. In 
this study, only one replicate was used to avoid overfitting the 
models. The second replicate was considered as a back-up.

Regarding the data preprocessing, the exportation and pre- 
treatments of the data are also identical to Gorka et al., (https://gi-
thub.com/mgrk-94/ShinyApp_MALDI) [36]. In this research, the 
chemometric analysis were performed using median normalization 
followed by logarithm base 10 transformation. For predicting the 
class of the analysed fingermarks, several supervised classification 
methods were tested: linear support vector machine (SVMLINEAR), 
radial support vector machine (SVMRADIAL), random forest (RF), 
logistic model tree (LMT) and linear discriminant analysis (LDA). 
These models were encoded through R with the caret package [37]. 
Correlated variables were deleted with a cut-off of 0.9 [38,39]. The 
data were then split with a proportion of 65% for training and 35% 
for testing. Given that the sample size remains small compared to 
other types of data, the choice was made to use a repeated 10-fold 
cross validation based on the recommendations of Kuhn et al., 2016 
[38] for the “traincontrol” function in R.

3. Results

3.1. Peaks detected and consistency

Subsequent to the analyses of all the fingermarks from the 13 
donors, statistics have been carried out to provide insights about the 
number of m/z that are qualitatively consistent between all the fin-
germarks collected, or a subset of them, for two time periods: one 
month and one year (Table 1).

As emphasized in Tables 1, 14.3% of the m/z detected (i.e. 50 out 
of 349) are present – on a qualitative aspect – in all the fingermarks 
that were deposited over one month and 10.5% (36 out of 344) over 
one year. Most likely, these compounds are part of the endogenous 
substances common to humans, without encompassing any semi- 
exogenous substances that are influenced by the health and lifestyle 
of the individuals. However, 100% of appearance is too a restrictive 
value to rely on since it does not allow an m/z not to be detected once 
in all the fingermarks. Indeed, for various reasons, a specific m/z 
might not be detected (e.g., intensity below the limit of detection of 
the instrument, inhomogeneity of repartition on the fingertip sur-
face, internal instrumentation issue). Therefore, taking into con-
sideration the compounds present in 90% of the collected 
fingermarks, the percentages of m/z constantly detected during one 
month and one year raise to 38.7% (135 out of 349) and 29.1% (100 
over 344), respectively. Qualitatively, it is reasonable to assume that 
mainly (semi-)endogenous substances, produced naturally by the 
human metabolism, are included in this selection.

Interestingly on another hand, the percentage of m/z present in 
50% of the fingermarks is almost identical to the after peak-picking 
selection. This observation is partly explained by the fact that the 
selected pool of donors all live in the same societal and geographical 
environment and therefore share many of the same daily habits (e.g., 
work environment, food, frequented shops, colleagues, etc…). The 
observed differences stem from their individual behaviour. However, 
these differences are disparately distributed among the 13 donors 
(as shown by the 75% and 90% values), which opens the door to the 
possibility of distinguishing individuals by the investigating the 
composition of their fingermarks.

Table 1 
Number of m/z consistently detected in all (100%) or a subset (other % values) of the 
fingermarks collected during one month and one year. The reference 100% is based by 
default on the number of m/z remaining after the peak-picking process. 

After peak-picking 50% 75% 90% 100%

1st month 349 342 252 135 50
1 year 344 329 169 100 36
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3.2. Multi-class classification of fingermarks

3.2.1. Differentiation of the donors
To investigate the possibility to use the chemical composition of 

fingermarks to differentiate individuals, five supervised multi-class 
classification models were selected and applied to the 358 finger-
marks collected during this study. The objective was to evaluate the 
percentage of correct classifications that could be achieved by the 
five models and hence help selecting the most efficient one. The 
accuracies of the five models after training and resampling are il-
lustrated in Fig. 1.

It can be observed that logistic model tree (LMT) has the best 
overall performance with more than 90% of correct classification, 
which means that for 90% of the considered samples, a given fin-
germark is correctly associated to its actual donor, solely through its 
molecular composition. Random Forest (RF), another model based 
on decision trees, is close in terms of performance with 85% of 
correct attributions. Lower performances were observed with the 
other models, with accuracy values oscillating between 80% and 85%.

To validate these results, receiver operating characteristic curves 
(ROC) were generated for the two most performant models (i.e. LMT 
and RF) and are presented in Fig. 2.

The micro AUC metric showed in Fig. 2 is useful in multi-class 
classification problems as it can highlight class imbalances to the 
contrary of the macro AUC which considers all classes equally. 
Overall, the closer the AUC is to 1, the more efficient is the model.

Fig. 2 depicts a micro AUC of 0.993 for LMT and 0.979 for RF. This 
means that in 99.3% (LMT) and 97.9% (RF) of the cases, a given fin-
germark is correctly assigned to its originated donor, and that the 
capacity of the model to distinguish between donors is almost at its 
best (100%).

Both models are powerful, but LMT remains superior, confirming 
the performances in terms of accuracy illustrated in Fig. 1. Moreover, 
these results emphasize that the modifications of composition over 
time, for a given donor, encompass some consistency. Indeed, if in-
consistent variations of compositions occurred throughout the year 
for a given donor, subsequent misclassifications would have been 
expected, impacting both the accuracy and AUC values. These results 
are also in line with those obtained when monitoring the evolution 
of the fingermark composition throughout the year [36].

In both models, fingermarks of donors 8 and 9 account for the 
majority of the false positives or misclassifications. These results 
suggest that their composition – quantitatively speaking – may be 
quite similar.

Considering the LMT model, the five most discriminant variables 
(m/z) have been selected and plotted in a stripchart (Fig. 3) dis-
playing their median and their associated interquartile range. This 
representation allows to visualise the quantitative differences be-
tween the 13 donors along one year.

Fig. 3 emphasizes the quantitative differences between donors 
for five given variables (m/z) over a one-year collection timeframe. 
These results highlight that the chemical composition of the fin-
germark residue quantitatively varies in between the 13 donors in-
vestigated and that this information can be useful to differentiate 
individuals.

Indeed, some m/z (e.g., m/z 369.4284) appear to be highly variable 
from one individual to another, while others vary only for a small 
part of the donors (e.g., m/z 294.2407). Even though two donors can 
be quantitatively close for some variables (e.g., m/z 369.4284, 
312.3626, and 294.2407 for IND7 and IND8), they may also sig-
nificantly differ through other m/z (e.g., m/z 283.2632 and 654.0686 
for the same individuals) which allows to differentiate them suc-
cessfully. For instance: 

• IND1 and IND6 are well distinguished by all of the 5 m/z.

• IND7 and IND8 are close for m/z 369.4284, m/z 312.3626, and m/z 
294.2407 but are clearly different for m/z 283.2632 and m/z 
654.0686.

• IND8 and IND9 – as emphasized in Fig. 2 – are always extremely 
close for the 5 displayed m/z, which makes their differentiation 
difficult and explains the classification errors observed pre-
viously.

Overall, these results highlight that the chemical composition of 
fingermarks can be a powerful tool to differentiate up to 13 donors 
when using an adapted classification model.

3.2.2. Differentiation of a restricted pool of donors
In casework, one of the most important objectives is to narrow 

down the pool of suspects. In this context, the same supervised 

Fig. 1. Accuracy of the five supervised classification models that were considered in this study. Each dark spot represents the average percentage of correct attribution of a given 
fingermark to its actual donor. The lines on the edges stand for the 0.95 confidence level. Accuracy is a metric that informs on the fraction of correct predictions associated with 
the investigated model.
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multi-class classification models were applied on 6 restricted 
random groups of 6 donors (arbitrary value). This way of doing aims 
at determining if the performances of the models are influenced by 
the individuals composing a pool of donors.

For a one year timeframe, the accuracy values of the 6 groups for 
the LMT model are illustrated in Table 2. The graphics for the 6 
groups and the 5 tested models are available in supplementary data.

The results presented in Table 2 highlight the performance of the 
LMT model over the other ones, with an accuracy varying between 
88% and 96% depending on the pool of donors selected. Also, five 
groups out of the six considered are associated with an average ac-
curacy higher than 90%. These numbers also depict the influence of 
the donors contained in a pool on the classification results. Indeed, 
when randomising the donors, the percentage of accuracy varies 
slightly from one group to another. This emphasizes that some in-
dividuals tend to be closer in terms of fingermark chemical com-
position than others as it was already shown in Fig. 3. Indeed, for 
example, IND8 and IND9, whom were proved to be quantitatively 
close in terms of composition, were both part of the random group 

#2, which have the lowest accuracy. It can also be noted that this 
closeness is not specifically attributed to the sex of the donors nei-
ther their age (results not shown).

Regarding the ROC curves for the LMT model, the micro AUC 
values are close to one (0.987) for both random groups. These results 
are similar for all the four other random pools of donors that were 
generated (data not shown).

Overall these results emphasize that with a reduced number of 
individuals in a group, the false positive rate remains extremely low, 
which is of first importance when it comes to forensic evidence. 
Indeed, higher performance was expected for smaller groups of 
donors rather than with the original 13 donors’ batch due to the 
greater chance of having different individuals with a restricted pool. 
Moreover, reducing the number of donors highlighted that some 
donors can be closer to others in terms of fingermark composition 
(e.g., IND8 and IND9), therefore influencing the accuracy of the 
models. However, the global accuracy remains extremely high for all 
the six groups with an average accuracy for the LMT model 
of 92.25%.

Fig. 2. ROC curves of LMT (upper image) and RF (lower image) models and their macro and micro area under the curve (AUC) value. Macro AUC computes the contributions of 
each class independently and then takes the average. Micro AUC aggregates the contributions of all classes to compute the average metric.
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For a one month timeframe, the models were also tested for the 
same six pools of six donors (Supplementary data). Due to the re-
stricted time-frame, only six fingermarks per donor were used to 
generate these results. Subsequently, the models are less trained and 
the confidence intervals tend to be wider. To avoid the influence of 
the size of the pool of data, the number of fingermarks collected in a 
timeframe of one month should be equal to the ones collected over 
one year. Nevertheless, due to the fingermark collection calendar for 
the 13 donors of this research, it was impossible to meet this con-
dition.

However, the results still confirm that LMT remains the most 
powerful model for fingermarks classification of this dataset even 
though the average percentage of correct classification tends to be 
on average 5–8% lower, compared to the one obtained over one year 
(Fig. 3). These results might seem counter-intuitive with regards to 
the variation of composition. Indeed, the percentage of correct 
classification would have been expected to be lower over one year 
than over one month. However it is believed that the reason for such 
trends lies rather in the size of the pool of data than in the actual 
influence of the composition.

The ROC curves (data not shown) are also less defined but con-
firm that the LMT model offers a low false positive rate with micro 
AUC higher than 0.93.

These results are encouraging and confirm that the composition of 
fingermarks may help differentiating individuals when using the ap-
propriate multi-class classification model. The reported results could 
be of an interest in research or, ultimately, for casework purposes.

4. Discussion

This study aimed to explore the possibility of distinguishing in-
dividuals through the chemical composition of their fingermarks, 

considering a large period of collection time (i.e. one year). Keeping 
in mind the methodological limitations, the obtained results showed 
the potential of using the composition of the fingermark residue to 
associate a given fingermark with its actual donor over a timeframe 
up to one year.

Indeed, we highlighted that the chemical composition of the 
fingermark residue varies qualitatively and quantitatively in-be-
tween donors, while keeping some inner consistency. When com-
bining the chemical composition of fingermarks with an LMT 
classification algorithm, it was possible to associate 24-hours aged 
fingermarks with their actual donors, with an accuracy of up to 96%. 
Without undermining the observations that were made above, it is 
crucial to discuss the limitations of the methodology, to get a full 
picture of the frame in which this study places itself.

Indeed, if such study brings fundamental knowledge about the 
composition of fingermarks, it is also worth eventually considering a 
transition to the operational field, in which the composition of fin-
germarks would be used to prioritise suspects to investigate.

In this context, as this study only considered 24-hours aged fin-
germarks left on glass, it is first mandatory to evaluate the perfor-
mance of this approach on fingermarks of varying ages to in order to 
realistically determine the level of applicability of this technique on 
aged fingermarks. In a second step, more research needs to be 
conducted on the type of substrate on which the fingermarks are 
deposited. It would allow assessing whether this detection method 
is applicable to porous substrates, only, or to other types of substrate 
as well. Finally, sequencing with other detection techniques should 
be evaluated to investigate the impact of chemical and non-chemical 
detection methods on the composition of fingermarks prior to 
MALDI analysis. Such results would determine whether or not this 
detection technique can be inserted in a fingermark detection 
workflow. Overall, these three additional research steps would help 
consolidating the results presented in this study and bring MALDI- 
MSI closer to a reliable operational implementation.

Indeed, when it comes to the operational implementation, it is 
mandatory to prove that the composition of fingermarks helps 
providing relevant and robust information to the investigators. 
Although this study is preliminary and further research is required, 
as stated above, the following elements of discussion are worth to be 

Fig. 3. Stripcharts of the 5 most discriminant variables (m/z) according to the LMT model. Dots represent the median of the variables and the lines the interquartile range (IQR). 
Each color stands for a specific individual (INDx).

Table 2 
Accuracy of the LMT model for the 6 random groups, expressed in percentage. All the 
fingermarks collected over one year were considered. 

Random group #1 #2 #3 #4 #5 #6

LMT Accuracy 95.5 87.7 94.2 92.7 91.8 91.6
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raised. Two topics are to be considered: the fingermarks retrieved on 
site, and the reference fingerprints taken from a suspect. 
Additionally, questions related to the MALDI-MSI analysis feasibility 
are relevant to discuss.

First, as mentioned above, if the proof of concept is demon-
strated, the methodology presented in this study could be applied in 
an investigative forensic strategy to prioritise the suspect to in-
vestigate and is implementable in laboratory equipped with a MALDI 
MSI instrumentation (e.g., legal medicine laboratories) which could 
lead to new inter-laboratory collaborations. For now, this detection 
process can only be applied on latent, unprocessed fingermarks or 
after a touch-DNA sampling if the whole fingermark residue was not 
swabbed. Indeed, DNA recovery and profiling remain possible after 
the application of MALDI MSI as the matrix applied in the sample 
preparation protects the biomolecules and may still allow a suc-
cessful recovery and profiling of DNA [6]. When it comes to on-site 
fingermark collection, several studies have already demonstrated 
that the matrix powder can be used as a detection powder, which 
already offers an alternative to the traditional detection powders 
used on crime scenes [11,26,28] allowing the subsequent analysis of 
the collected fingermarks with MALDI. These findings corroborate 
that MALDI fingermark analysis could be implemented in forensic 
laboratories in the near future.

Regarding the collection of the reference fingerprints: when 
suspects are apprehended, their fingerprints are usually auto-
matically recorded. Therefore, if required, it seems plausible that a 
suspect is asked to deposit a set of fingermarks on glass slides using 
the same protocol presented in this study, making the collection of 
references easy to implement. With further research assessing the 
impact of other detection methods on the fingermark residue com-
position and corroborating the obtained results of this study, a so- 
called “molecular signature” could be extracted from any individual 
using the same reproducible method that was implemented in this 
study.

The simplicity of extraction of the .imzML files with the dedi-
cated R Shiny App makes such a concept handy to implement. In this 
regard, concerning the technical aspect of MALDI-MSI technology 
and data treatment, several aspects need to be considered. First, the 
time of analysis of fingermarks by MALDI depends on the required 
resolution, on the size of the analysed area, and if a visual re-
construction of the ridge pattern is required. For an area of a few 
mm2 corresponding to the centre of a fingermark, the analysis takes 
a few minutes, but no exploitable image can be extracted. Bigger 
area, such as a whole fingermark, requires one to several hours with 
the instrument used in this study. But, with the rapid evolution of 
the MALDI technique, the latest instruments now allow to reduce 
the analysis time to a few minutes even at high resolutions. In this 
study, only a square of several mm2 was considered, and up to 7 
fingermarks could be analysed per day. However, the size of analysis 
was too small to retrieve the ridge pattern. Therefore, choices about 
size and resolution parameters that will impact the time of analysis 
have to be made depending on the needs for the investigation: 
imaging, profiling, or both.

Second, from a practical point of view, the .imzML files and their 
associated .ibd files from the MALDI analysis of the fingermarks of a 
pool of suspects can be stored in one computer folder, like a “case 
database”. Once stored, the files have to be selected either in a 
dedicated software or in the open source R Shiny App used in this 
research. Each step is detailed in the instructions of the Shiny App 
panel and only two processing buttons have to be clicked to extract 
the intensities and obtain a ready-to-use .csv file.

Finally, regarding the LMT model implementation in R, the Caret 
package was used as mentioned in “2.3.4 Data processing”. This is 
the most common way of performing machine learning in R. Once 
the code is created, you can always use the same one and only up-
date the data path and the file name. The data treatment process is 

user-friendly and accessible to anyone with minimum training. The 
overall computer data treatment took on average no more than 
30 min for 13 donors, which remains quick and efficient. Overall, 
depending on the chosen resolution and size of analysis, the whole 
processing can be time consuming regarding other techniques. 
However, it would provide a new discriminant method to exploit the 
fingermark residue evidence that could also be useful when other 
detection techniques might not be successful (e.g., when the friction 
ridge pattern and/or the contact DNA are not of sufficient quality or 
cannot be exploited).

5. Conclusion

The aim of this study was to investigate the capacity to differ-
entiate 13 donors, men and women of varying ages, based on the 
chemical composition of their fingermarks, collected during over 
one year. MALDI-MSI combined with machine learning models led to 
highly promising results.

Within the methodological frame of this study, the most per-
formant multi-class classification model was determined to be LMT. 
Correct fingermark classification was determined for up to 90% of 
the fingermarks, with an AUC of 0.993.

These findings are encouraging in the perspective of the ex-
ploitation of the composition of fingermarks, when the ridge pattern 
is of insufficient quality and touch DNA unlikely to be collected. 
Using dedicated R tools, the data treatment after analysis do not 
exceed 30 min and is relatively user-friendly.

This study having been conducted on ideal fingermarks (i.e. 1-day- 
old marks left on glass), further research is required to investigate the 
impact of the substrates, of the aging time, or of the fingermark de-
tection techniques on the fingermark chemical composition, and ul-
timately on the machine learning model performances.
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