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The predictive power of species distribution models (SDMs) varies substantially 
among species depending on their ecological and life-history traits, but which of these 
traits are the most relevant and how they influence species ‘predictability’ remains 
an area of debate. Here, we address these questions in bryophytes. SDMs employing 
macroclimatic, topographic and edaphic predictors were calibrated for 411 species in 
Europe and externally evaluated using an independent dataset. Regression models were 
implemented to determine whether species characteristics, including life-history traits, 
ecological preference and niche breadth, determine the accuracy of SDMs. Variation 
in SDM accuracy among species was significantly explained by species characteris-
tics, supporting the hypothesis that the strength of species–environment correlations 
is affected by characteristics of the species themselves. The percent variance of SDM 
accuracy explained by species traits, however, substantially varied between 9 and 57% 
depending on the evaluation metrics used. The lower correlation observed between 
species traits and MaxKappa and the Boyce index than with area under the curve 
(AUC) and MaxTSS suggests that the former are less suitable than the latter for deter-
mining species ‘predictability’ based on their traits. SDM accuracy decreased from 
species restricted to pristine habitats to species thriving in eutrophic habitats with high 
levels of human disturbance. The widespread distribution of man-made habitats in fact 
opens the door for the spread of now ubiquitous species, even in environments that 
would primarily not be suitable for them. Such species, likely to occur anywhere, reach 
very high to full occupancy rates, thereby decreasing the accuracy of models aiming at 
predicting their distributions. The fact that AUC and MaxTSS were higher for species 
from pristine habitats is important in a conservation context, as ubiquitous species 
from eutrophic, disturbed environments are precisely the ones of lower conservation 
relevance.

Keywords: bryophytes, ecological niche models, GBIF, independent evaluation, life-
history traits, transferability

Ecological and biological indicators of the accuracy of species 
distribution models: lessons from European bryophytes

Flavien Collart ✉1, Olivier Broennimann1,2 , Antoine Guisan 1,2,* and Alain Vanderpoorten3,*

1Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
2Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
3Institute of Botany, University of Liège, Liège, Belgium

Correspondence: Flavien Collart (flavien.collart@unil.ch)

Research article

*Shared last authorship

13

https://doi.org/10.1111/ecog.06721
http://orcid.org/0000-0002-4342-5848
http://orcid.org/0000-0001-9913-3695
http://orcid.org/0000-0002-3998-4815
mailto:flavien.collart@unil.ch


Page 2 of 13

Introduction

Species distribution models (SDMs) have been intensively 
used for assessing species niches, projecting them onto past, 
present or future environmental conditions and making pre-
dictions of suitable environments for species in space and 
time (Guisan et al. 2017, Araújo et al. 2019, Zurell et al. 
2020). Although SDMs have had many successful appli-
cations in ecology, evolutionary biology and conservation 
biology, their accuracy and transferability vary depending 
on species characteristics (Randin et al. 2006, Guisan et al. 
2007, Poyry et al. 2008, Hanspach et al. 2010, Yates et al. 
2018, McCune et al. 2020, Tessarolo et al. 2021). Several 
ecological traits are known to affect SDM results, includ-
ing body size (França and Cabral 2016, Zamorano et al. 
2019), life span (Hanspach et al. 2010, McCune et al. 
2020), growth rate and successional status (Guisan et al. 
2007), habitat specialization (Guisan and Hofer 2003, 
Marshall et al. 2015, Regos et al. 2019) or dispersal abil-
ity (McCune et al. 2020). Whether such traits positively or 
negatively impact model accuracy remains, however, an area 
of debate. For instance, conflicting assessments on the role of 
niche breadth and dispersal capacity on SDM accuracy have 
been reported (Guisan and Hofer 2003, Seoane et al. 2005, 
Hernandez et al. 2006, Guisan et al. 2007, McPherson 
and Jetz 2007, Poyry et al. 2008, Newbold et al. 2009, 
Marshall et al. 2015, Connor et al. 2018, Matutini et al. 
2021, Tessarolo et al. 2021). Although good dispersers 
have the ability to successfully fill their niche, leading to 
a low proportion of false positives, and hence high model 
specificity, poor SDM performance was reported in species 
with higher mobility, broader niche breadth and wide dis-
tribution ranges (Hortal et al. 2008, Newbold et al. 2009, 
Tessarolo et al. 2014, Guo et al. 2015). Altogether, our abil-
ity to accurately capture species niches depends on combina-
tions of traits, which may correlate positively or negatively 
with model accuracy. For example, a species might be a good 
disperser filling its niche, leading potentially to a low propor-
tion of false positives, and hence to high model specificity; 
but it might also be a generalist, whose niche may be more 
difficult to characterize (McCune et al. 2020).

Investigating how trait variation across species impacts our 
capacity to effectively model species distributions involves a 
reliable assessment of SDM accuracy, raising three issues.

First, although the performance of different evalua-
tion metrics to measure SDM accuracy has been assessed 
(Hirzel et al. 2006, Norberg et al. 2019, Jimenez and Soberón 
2020), the impact of the choice of a given statistic on the 
correlation with species traits has been less investigated. 
McCune et al. (2020) and Tessarolo et al. (2021) reported a 
substantial variation of the correlation coefficient of different 
SDM evaluation metrics and species traits, as well as large dif-
ferences in the best combinations of species traits used to pre-
dict SDM accuracy. How to interpret such differences, and 
which SDM evaluation metrics can be recommended when 
searching for the best combination of species traits to predict 
SDM accuracy remains, however, an open question.

Second, the most common approach of model evaluation 
involves the partitioning of the data, calibrating the model 
with part of it and evaluating it against the remainder (Fielding 
and Bell 1997). A problem with data-partitioning approaches 
is that if the same bias in the species data is present in all 
partitions, then the model may be biased and the estimate of 
model accuracy inflated (Chatfield 1995, Randin et al. 2006, 
Newbold et al. 2010, Petitpierre et al. 2017, Lou et al. 2019, 
Mothes et al. 2019). Based on a review of studies implement-
ing SDM evaluation against independent datapoints, Lee-
Yaw et al. (2022) concluded that cross-validated area under 
the curve (AUC) is an unreliable indicator of model per-
formance, and confirmed previous recommendations about 
external model validation with independent data (James et al. 
2013, Guisan et al. 2017).

Third, while all the ecologically meaningful variables 
should theoretically be integrated in SDMs (Austin and Van 
Niels 2011), what is known about the ecological require-
ments of species is, in practice, not necessarily what is used 
for modelling (Mod et al. 2016, Scherrer and Guisan 2019). 
This bias in variable selection leads to the omission of cru-
cial information that could impact SDM predictions. In fact, 
most SDM studies use only bioclimatic predictors (Araújo 
and Peterson 2012). A review of SDMs in plants at a scale up 
to 1 km2 showed that approximately one-third of the stud-
ies included only climatic variables, a trend that increases at 
coarser resolutions and over recent time (Mod et al. 2016). 
Thus, although many studies have stressed the importance 
of environmental coverage (i.e. covering all dimensions of 
species niches) to obtain accurate models of species distri-
butions (Thuiller et al. 2004, Hortal et al. 2008, Lobo et al. 
2010, Scherrer and Guisan 2019), its effects on SDM perfor-
mance have seldom been evaluated (Chauvier et al. 2021a, 
De Castro Oliveira et al. 2021, Tessarolo et al. 2021).

The main goal of the present study was to assess whether 
the accuracy of SDMs varies depending on species ecologi-
cal and biological traits, taking European bryophytes as a case 
study. We first assessed the accuracy of SDMs calibrated from 
available online bryophyte distribution data in Europe and 
climatic predictors using an independent test set. We further 
determined whether SDM accuracy can be improved using 
additional, easily derived environmental predictors. Finally, we 
assessed whether species characteristics, including life-history 
traits, ecological preference and niche breadth, play a significant 
role in the variation of SDM accuracy, and whether the choice 
of different SDM evaluation metrics affects this relationship.

Material and methods

Species distribution data and environmental predictors

Species selection was based on the independent test set used 
to evaluate the models calibrated at the European scale. This 
test set consists in an atlas of distribution of 662 bryophyte 
species in southern Belgium (Sotiaux and Vanderpoorten 
2015, updated in www.biogeonet.ulg.ac.be). This test set was 
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selected because it was assembled from a systematic survey of 
all of the 1182 4 × 4 km grid-squares in southern Belgium. 
Each grid-square was visited at least twice between 1980 
and 2014, each time during a full day, by the same team of 
recorders. Thus, although further floristic work would (and 
does) yield new records, the systematic survey, on which 
this atlas is based, provides a reliable framework to record 
both species presences and absences. The study was based on 
Jimenez-Valverde (2020), who recommended that at least 15 
occurrence points are needed for model evaluation from pres-
ence–absence data based on AUC, and so we only retained 
species with a total of > 15 occurrences in the independent 
test set, decreasing the number of species to 438.

For each of these 438 species, distribution data in Europe 
(excluding southern Belgium) were automatically downloaded 
from GBIF.org (https://doi.org/10.15468/dl.7tf2jy; https://
doi.org/10.15468/dl.texnhk; https://doi.org/10.15468/
dl.2q5ea4) via the ‘rgbif ’ package (Chamberlain et al. 2021) 
in R ver. 4.0.2 (www.r-project.org). Because of the low accu-
racy that often characterizes old records, only coordinates 
recorded from 1980 onwards were kept. We selected 1980 
as a limit because data from the test set in southern Belgium 
started to accumulate in 1980 and because that date corre-
sponds to the beginning of ‘present time’ in climatic maps. 
Data with a location accuracy > 1 km were also filtered-out. 
To avoid pseudo-replication, species presences were mapped 
on a 30-arc-second-resolution grid, and a single occur-
rence was kept per 30-arc-second pixel using the ‘dismo’ 
package (Hijmans et al. 2021). Finally, only species with ≥ 
100 occurrences for model calibration, as recommended in 
Fernandes et al. (2019), were kept. This resulted in a final 
dataset of 411 species, with the number of occurrences for 
model calibration ranging between 100 and 40 332.

We downloaded 19 bioclimatic variables, as well as rela-
tive humidity, solar radiation, evapotranspiration (whose 
annual maximum, minimum, mean and range were com-
puted using the ‘raster’ package (Hijmans et al. 2022)) and 
13 bioclim+ variables from CHELSA ver. 1.2 (Karger et al. 
2017, 2018) at 30-arc-second resolution. We considered 
another 30 environmental variables based on previous anal-
yses of the factors driving bryophyte species distributions 
at regional scales, emphasizing the primary role of topog-
raphy (Vanderpoorten et al. 2005, Åström et al. 2007, 

Hespanhol et al. 2010 and references therein), soil pH and 
nitrogen content (Bates 2000). Fifteen topographic vari-
ables, which were derived from 250-m resolution digital 
elevation maps of the GMTED2010 (Danielson and Gesch 
2011), were downloaded at 30-arc-second resolution from 
Amatulli et al. (2018). pH and nitrogen content of the upper 
soil layer (0–5 cm) were downloaded from SoilGrids.org at a 
resolution of ~ 250 m and averaged over 30-arc-second pixels 
with the ‘raster’ package (Hijmans et al. 2022). Thirteen other 
soil variables were also downloaded at 1 km resolution from 
the European Soil Data Centre (ESDAC, esdac.jrc.ec.europa.
eu) (Panagos et al. 2012, Hiederer 2013a,b). See Supporting 
information for all preselected variables.

To select the variables used for modelling, and to avoid 
multicollinearity, we assessed the correlation among each 
pair of variables. We randomly selected 250 000 background 
points across Europe (extent: xmin = −25°, xmax = 45°, 
ymin: 32°, ymax = 84°; in the projection system EPSG: 
4326), extracted environmental values at those locations, and 
computed Pearson’s correlation coefficients among all vari-
ables. To avoid multicollinearity, we kept only one variable in 
a pair with a correlation coefficient > 0.65 (a little more strin-
gent than the value of 0.7 recommended by Dormann et al. 
2013), leaving five climatic, two topographic and four soil 
variables (Table 1). We focused on variables expected to play 
a major role in bryophyte species distributions, based on our 
knowledge of their ecophysiology. For example, slope and 
northness were selected, as bryophytes tend to exhibit higher 
species richness on north-facing slopes owing to their poiki-
lohydric condition (Åström et al. 2007). Although a specific 
variable selection could have been performed for each spe-
cies individually (Austin and Van Niel 2011), the same set 
of predictors was employed here to enable the comparison of 
model performance among species.

Species distribution models

SDMs were calibrated for each species using two different sets 
of predictors: climate-only, which contains the five selected 
climatic variables (hereafter called ‘climate-only models’); and 
all types of variables, including the 11 selected variables (here-
after ‘all-variable models’; Table 1). They were generated from 
the occurrence data at the European scale in order to capture 

Table 1. Variables selected for modelling the distribution of bryophyte species in Europe

Name Category Description Data source

Bio1 Climatic Annual mean temperature (°C) Chelsa ver. 1.2
Bio7 Climatic Annual range of temperature (°C) Chelsa ver. 1.2
Bio12 Climatic Annual amount of precipitation (kg m−2) Chelsa ver. 1.2
Minrh Climatic Mean relative humidity of the driest month (%) Modified from Chelsa ver. 1.2
RangeSrad Climatic Annual range of solar radiation (Max–Min) Modified from Chelsa ver. 1.2
Nitrogen Soil Nitrogen content in the soil comprised between 0 and 5 cm (cg/kg) SoilGrids
pH Soil pH in the soil comprised between 0 and 5 cm SoilGrids
Gravel Soil Coarse fragment content between 0 and 30 cm (%) ESDAC; European soil database-derived data
TAWC Soil Total available water content from pedotransfer between 0 and 

30 cm (mm)
ESDAC; European soil database-derived data

Slope Topography Slope (°) Amatulli et al. (2018)
Northness Topography sin(Slope) × cosin(Aspect) Amatulli et al. (2018)
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the entire species niche and avoid issues of niche truncation 
encountered in local models (Chevalier et al. 2021, 2022, 
Scherrer et al. 2021). We randomly sampled, for each species, 
10 000 background points across Europe via the ‘sp’ package 
(Pebesma and Bivand 2005, Bivand et al. 2013). We gener-
ated SDMs with the R package ‘biomod2’ (www.r-project.
org, Thuiller et al. 2021) using four algorithms: generalised 
linear models (GLM; Nelder and Wedderburn 1972), gener-
alized additive models (GAM; Hastie and Tibshirani 1987), 
gradient boosting machine (GBM; Friedman 2001) and 
MaxEnt (Phillips et al. 2022) using the default parameters. 
Prevalence in the models was set to 0.5, so that background 
and occurrence points were equally weighted. To evaluate the 
models internally, ten replicates were run using 70% of the 
data to calibrate the models and 30% to evaluate them using 
the AUC, specificity, sensitivity, maximum of the true skill 
statistic (MaxTSS), maximum of kappa (MaxKappa) and the 
Boyce index (Guisan et al. 2017). We computed ensemble 
models (Araújo and New 2007), wherein all individual mod-
els with a MaxTSS ≤ 0 were removed, and wherein the other 
models contributed proportionally to their MaxTSS.

To evaluate the models externally, we first assessed whether 
the training and test sets experienced analogous climates 
using a multivariate analysis based on Mahalanobis distances 
(Mesgaran et al. 2014) with the function ecospat.climan 
from the ‘ecospat’ package (Broennimann et al. 2022). This 
method estimates the similarity between the European (ref-
erence area) and southern Belgian (projected area) domains 
by considering the deviation from the mean and the correla-
tion between environmental variables, giving for each pixel 
at 30-arc-second resolution in southern Belgium a value 
between ± infinite. A value ranging from 0 to 1 corresponds 
to an analogous climate, while values below 0 correspond to 
novel conditions at the univariate level, and above 1 to novel 
conditions at the multivariate level (Mesgaran et al. 2014). 
The analysis revealed totally analogous conditions between 
Europe and southern Belgium, with pixel values ranging 
from 0.01 to 0.28 (Fig. 1). The ensemble models were then 
projected in southern Belgium at 30-arc-second resolution. 
To determine whether a species is likely to occur within a 4 
× 4 km pixel, we took the maximum suitability value across 
its 30-arc-second constitutive pixels. A weighted mean of the 
suitability values across its constituting 30-arc-second pixels 
was also applied, with weights corresponding to the frac-
tion of each 30-arc-second pixel inside the 4 × 4 km pixel. 
Specificity and sensitivity were computed using the threshold 
that maximises the TSS in the southern Belgian dataset using 
the ‘ecospat’ package (Broennimann et al. 2022). AUC was 
computed via the ‘dismo’ package (Hijmans et al. 2021) and 
the Boyce index, MaxTSS and MaxKappa via the ‘ecospat’ 
package (Broennimann et al. 2022).

Variation in model accuracy depending on species 
traits

A series of ecological traits describing ecological prefer-
ences, niche breadth and life-history traits, derived from van 

Zuijlen et al. (2023), were tested to determine whether they 
could help in interpreting variation in model accuracy among 
species. Ecological preference variables included Ellenberg’s 
values for light (L = 1 deep shade to 9 full light), moisture 
(F = 1 extreme dryness to 9 wet-site indicator), pH (R = 1 
extreme acidity to 9 high pH) and nitrogen (N = 1 extremely 
oligotrophic to 9 extremely eutrophic). Although species eco-
logical preferences may vary from one area to another due 
to, for instance, ecotypic differentiation or competition, 
Ellenberg’s indicator values have been generally proven to be 
robust (Diekmann 2003, Carpenter and Goodenough 2014, 
Scherrer and Guisan 2019, Descombes et al. 2020). They 
remain widely used to characterize the habitat requirements 
of bryophyte species (Pakeman et al. 2022) which, in contrast 
to the vast majority of seed plants, do not tend to develop 
ecotypes but rather display an inherent broad ability to cope 
with environmental variation (reviewed by Patiño et al. 
2014), and wherein the role of competition has been ques-
tioned (Rydin 2009). We also added an index of ‘hemeroby’ 
(Hill et al. 2002), which characterizes whether species occur 
in pristine habitats or in habitats with high levels of human 
disturbance (nine classes ranging between human impact 
absent to very strong).

Niche breadth included the number of habitats occu-
pied among six habitats: 1) terrestrial; 2) forest; 3) grass-
land; 4) rocky area; 5) shrubland; and 6) wetland; and the 
number of substrates occupied among six substrates: 1) 
dead animal carcass or dung; 2) living bark; 3) epiphytic 
on non-woody living substrate (e.g. epiphylls); 4) rock; 5) 
soil; and 6) dead wood.

Life-history traits included average shoot length, sexual 
condition (monoicous, dioicous, both), sporophyte fre-
quency (four classes from absent in Europe to frequent), 
mean spore diameter, capacity of producing gemmae (absent 
and present); capacity of producing rhizoidal tubers (absent 
and present) and life strategy. The latter describes the extent 
to which species are characterized by traits involved in effi-
cient dispersal capacities versus traits promoting long per-
sistence and local adaptation, from species characterized by 
early reproduction, short life expectancy and high dispersal 
capacities to late reproduction, long life expectancy and poor 
dispersal capacities. Ten life-history categories were consid-
ered: 1) annual shuttle; 2) colonist; 3) ephemeral colonist; 4) 
pioneer colonist; 5) fugitive; 6) long-lived shuttle; 7) peren-
nial; 8) competitive perennial; 9) stress-tolerant perennial; 
and 10) short-lived shuttle (During 1992). We also included 
the factor ‘taxon’ (moss versus liverwort) to determine 
whether moss- and liverwort-specific traits could impact 
model accuracy.

To determine whether such traits determine the accuracy 
of SDMs, linear models were performed for each evaluation 
metric using all the above predictors and testing polynomial 
effects for all numerical variables. Variable selection was 
implemented using the lasso procedure (alpha = 1; Tibshirani 
1996, Tibshirani et al. 2012) for each model to select the best 
structure via the ‘glmnet’ package (Friedman et al. 2010). 
To measure the importance of each of the selected variables 
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in the model, each variable was successively randomized 
100 times, generating 100 shuffled datasets with biomod2 
(Thuiller et al. 2021). Evaluation metrics were computed for 
each shuffled dataset and correlated with the evaluation met-
rics obtained from the initial model. The importance of a 
variable in a model was computed as the average of 1 minus 
the correlation coefficient across the 100 replicates. To make 
comparisons among variables of a same model, importance 
values were rescaled between 0 and 1, dividing the impor-
tance values by the maximal value.

Results

Based on the internal evaluation of the dataset used to calibrate 
the models (European data), climate-only ensemble models 
exhibited high median AUC, MaxKappa, MaxTSS, Boyce 
index, sensitivity and specificity across species of 0.98, 0.80, 
0.87, 0.98, 0.95 and 0.93, respectively (Fig. 2). The same 

trends were observed with individual models (Supporting 
information). These statistics dropped significantly and sub-
stantially (median AUC, MaxKappa, MaxTSS, Boyce index, 
sensitivity and specificity across species of 0.62, 0.11, 0.27, 
0.38, 0.79 and 0.60, respectively) when the models were 
evaluated externally with the independent test set (southern 
Belgium), taking the maximum habitat suitability value of the 
30-arc-second pixels that compose the 4 × 4 km pixels used 
for floristic recording in southern Belgium (Fig. 2). While 
all-variable models performed similarly to climate-only mod-
els when they were internally evaluated, the performances of 
all-variable models were significantly better using external 
evaluation, with median AUC, MaxKappa, MaxTSS, Boyce 
index, sensitivity and specificity of the ensemble models 
across species reaching 0.71, 0.18, 0.37 and 0.75, 0.83 and 
0.65, respectively (Fig. 2, see Supporting information for the 
accuracy of individual models). Similar results were obtained 
when the suitability of the 4 × 4 km pixels was derived from 
a weighted mean of suitability values across their constitutive 

Figure 1. Environmental analogy between the area used to calibrate (Europe, in black) and to evaluate (southern Belgium, in red) species 
distribution models in bryophytes. Bio1: Annual mean temperature. Bio7: Annual range of temperature. Bio12: Annual amount of precipi-
tation. RH: Mean relative humidity of the driest month. Nitrogen: Soil nitrogen content at 0–5 cm depth. pH: Soil pH at 0–5 cm depth. 
srad: Annual range of solar radiation. Gravel: Coarse fragment content in the topsoil (0–30 cm). TAWC: Total available water content from 
pedotransfer rules in the topsoil (0–30 cm).
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30-arc-second pixels instead of the maximum (Supporting 
information).

SDM accuracy, as measured externally, varied substantially 
among species. AUC, MaxKappa, MaxTSS, Boyce index, sen-
sitivity and specificity ranged between 0.30–0.97, 0.00–0.71, 
0.00–0.91, −1.00–0.99, 0.00–1.00 and 0.00–1.00, respec-
tively, for climate-only models. For all-variable models, the 
range of these metrics was 0.30–0.98, 0.00–0.74, 0.00–0.94, 
−1.00–1.00, 0.00–1.00 and 0.00–1.00, respectively.

The ‘predictability’ of SDM accuracy as a function of spe-
cies traits was globally higher for all-variable models than for 
climate-only models, and substantially varied among accu-
racy metrics. Thus, adjusted R2 values were 0.56, 0.56, 0.43, 
0.23, 0.00 and 0.28 for all-variable models, but dropped 
to 0.41, 0.42, 0.46, 0.20, 0.00, and 0.23 for climate-only 
models for MaxTSS, AUC, MaxKappa, Boyce index, sensi-
tivity, and specificity, respectively (Supporting information). 
The slope of the selected species traits and their importance 
in the models are presented in Fig. 3 (see Supporting infor-
mation for values). In climate-only models, only the pH 
index was selected for all the accuracy metrics. The N index, 
and the index of ‘hemeroby’, which characterizes whether 

species occur in pristine habitats or in habitats with high lev-
els of human disturbance, were also included in the case of 
MaxTSS.

In all-variable models, the predictors of the variation in 
MaxTSS, AUC, MaxKappa, Boyce index, specificity and sen-
sitivity, and their contribution to the model, substantially var-
ied among the six metrics used to assess SDM accuracy. The 
pH index was the trait that had the highest importance for all 
accuracy metrics (except for sensitivity, which was explained 
by no trait), and had a negative slope. The second-best predic-
tor, also with a negative slope, was the index of ‘hemeroby’. 
It was selected in models for AUC, MaxTSS, MaxKappa and 
the Boyce index, but was more important in models for the 
two former than the two latter metrics. MaxKappa was the 
metric correlated with the highest number of species traits, 
but each trait individually (except the pH index) had a rela-
tively low importance in the model. MaxKappa was also the 
only metric correlated with the number of occurrences used 
to calibrate the model, with a slope initially increasing with 
the number of occurrences but decreasing when prevalence 
was higher than 0.68. Traits associated with dispersal capaci-
ties were selected for only two accuracy metrics, namely 

Figure 2. Comparison of the accuracy (AUC, Boyce index, MaxKappa, MaxTSS, specificity and sensitivity) of species distribution models 
using only climatic predictors (Only climate) and using all types of predictors (All variables) for 411 bryophyte species calibrated from 
GBIF data in Europe internally evaluated using the same data after partitioning (70% for calibration and 30% for evaluation) and externally 
evaluated using an independent test set (southern Belgium), taking the maximum habitat suitability value of the 30-arc-second pixels inside 
the 4 km pixel. AUC, area under the curve.
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tuber production for specificity and sexual condition for 
MaxKappa, with a low importance in the models in both 
cases. Life strategy was also selected only for MaxKappa, but 
with a low importance in that model. Traits associated with 
niche breadth were only selected for one accuracy metric, 
namely the number of substrates for MaxKappa, but with a 
very low importance.

Discussion

Internal versus external model validation

A substantial drop in predictive power was observed when 
validating the models using external instead of internal test 
data (from a median of 0.98 to 0.62, 0.80 to 0.11, 0.87 to 
0.27, 0.98 to 0.38, 0.95 to 0.79 and 0.93 to 0.60 for AUC, 
MaxKappa, MaxTSS, Boyce index, sensitivity and specific-
ity, respectively). This drop is consistent with recent studies 
raising concerns about the use of internal model cross-vali-
dation (Yates et al. 2018, Lee-Yaw et al. 2022 and references 

therein) and is even globally higher than the average drop 
of 22 and 13% between internally and externally validated 
models, respectively, reported by Newbold et al. (2010) and 
computed from McCune (2016). In a review of studies using 
external model validation, 64% of studies reported AUC > 
0.70 for at least 75% of species considered after external vali-
dation (Lee-Yaw et al. 2022).

External model validation using independent data pro-
vides a less biased assessment of model accuracy (Randin et al. 
2006), except if the link between species and the environ-
ment changes across space (Roberts et al. 2017, Santini et al. 
2021), which can happen if the independent evaluation data-
set comes from a region with a non-analogous environment 
(Bahn and McGill 2013, Petitpierre et al. 2017). In the pres-
ent study, the test set was geographically deeply nested within 
the training set, and a multivariate environmental similarity 
surface analysis (Elith et al. 2010) confirmed the complete 
analogy between the environments of the two sets.

We suggest that the extent of the drop of model accu-
racy between internal and external validation depends on 
the presence of a bias in the data (Yates et al. 2018). Studies 

Figure 3. Importance of species traits selected in the models predicting the accuracy (AUC, Boyce index, MaxKappa, MaxTSS, sensitivity 
and specificity) of bryophyte species distribution models in southern Belgium using macroclimatic predictors only (‘Only climate’) and 
using macroclimatic, soil and topographic predictors (‘All variables’). Colour gradient ranges from black, the most important variable, to 
light yellow, the least important variable. ‘+’, ‘−’ and ‘±’ in the boxes represent positive, negative and hump-shaped relationships, respec-
tively, between traits and accuracy metrics. Tubers: ability to produce rhizoidal tubers; Gem: ability to produce gemmae; Taxon: Liverworts 
versus mosses; N substrate: number of substrates occupied; Spore diameter: average spore diameter; Size: average shoot length; Sex: sexual 
condition; NOcc: Number of occurrences; Life strategy: species life strategy; L, F, R, N: Ellenberg index for light, humidity, pH and nitro-
gen; Hemeroby: level of human disturbance; N habitat: number of habitats occupied; AUC, area under the curve.
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involving data evenly sampled for both model training and 
evaluation within the same area reported robust evaluation 
metrics (West et al. 2016) or even no significant difference 
between internal and external validation (Lou et al. 2019). 
Nevertheless, substantial drops in model accuracy, compa-
rable to those reported here, were reported when models are 
calibrated from data sampled from databases and evaluated 
using other independent data (Randin et al. 2006, Beck et al. 
2014). In fact, all distributional databases are spatially biased 
due to uneven effort of sampling, data storage and mobiliza-
tion (Graham et al. 2004, Meyer et al. 2015, Anderson et al. 
2016). Such bias is particularly pronounced in GBIF, where 
nationwide differences in funding and data sharing lead to 
huge differences in contribution to GBIF (Brown et al. 2020, 
Boyd et al. 2021, Zizka et al. 2021). Methods, such as spa-
tial or environmental disaggregation of the data by subsam-
pling (Araújo and Guisan 2006, Chauvier et al. 2021b) as 
implemented here, or the use of a target-group background 
sampling that targets the probability of background envi-
ronmental samples to regions that have actually been well-
sampled (Phillips et al. 2009, Barber et al. 2022), have been 
developed to address the issue of biased sampling. In the 
presence of a strong bias, however, these methods do not 
prevent misleading internal model evaluation as compared 
to external validation, so that large differences in model accu-
racy occur when models are evaluated internally and exter-
nally (Randin et al. 2006, Beck et al. 2014). In this case, a 
robust external validation by spatially independent samples is 
required (Santini et al. 2021).

Contribution of non-climatic abiotic predictors to 
species distribution models

The use of additional variables of soil and topographic con-
ditions complementing climatic predictors allowed for an 
increase of median model accuracy of 15, 64, 37 and 97% 
for AUC, MaxKappa, MaxTSS and Boyce index, respec-
tively. Bryophyte species distributions are in fact primarily 
driven at the landscape scale by gradients of pH reflect-
ing major geological variations of bedrock types (Bates 
2000). Northness also appears as a key factor in poikilo-
hydric organisms like bryophytes, whose preference for 
constantly humid habitats explains their preference for 
northern exposures; while topography, which reflects habi-
tat heterogeneity, is among the main drivers of species rich-
ness (Vanderpoorten et al. 2005). Inclusion of such factors 
therefore increased model accuracy, as suggested in previ-
ous studies (Lassueur et al. 2006). However, the increase in 
accuracy reported here is substantially larger than the mar-
ginal increase of Kappa from 0.74 to 0.75 reported by De 
Castro Oliveira et al. (2021) and of AUC and MaxTSS from 
0.82 to 0.85 and 0.55 to 0.58, respectively, by Hageer et al. 
(2017) after the inclusion of soil data in vascular plant stud-
ies at a similar resolution (about 5 km) to the present study. 
The accuracy increase reported here is more similar to that 
reported at much finer resolution (25 m), for example a 
MaxTSS increase ranging from 45 to 56% among vascular 

plant species, thanks to the addition of soil water-holding 
capacity (Cianfrani et al. 2019) or a median MaxKappa 
increase of 11% after the addition of a combination of soil 
features (Buri et al. 2020).

Recent studies evidenced the crucial role of additional 
variables to climatic data for modelling bryophyte species dis-
tribution and richness at a similar resolution to the present 
study. For instance, in models of bryophyte species richness, 
vegetation (as derived from remote sensing) and climatic vari-
ables appeared among the most important predictors, with a 
similar contribution (Cerrejón et al. 2020). Climatic varia-
tion had a two- to threefold lower contribution than land-use 
variables in models predicting the distribution of two invasive 
moss species (Dyderski et al. 2022). Altogether, these results 
emphasize the crucial role that variables other than climatic 
ones may play in bryophyte species distribution models at 
regional scales. In the context of increasing availability of 
environmental databases (Tóth et al. 2017, Amatulli et al. 
2018, Poggio et al. 2021), we therefore suggest, together with 
Mod et al. (2016) and Scherrer et al. (2019), that a choice 
of environmental predictors beyond commonly used climatic 
variables can be easily tested and likely result in substantial 
improvements in model accuracy.

Variation of the accuracy of species distribution 
models as a function of species traits

SDM accuracy varied substantially among species. In all-vari-
able models, AUC, MaxTSS, MaxKappa, Boyce index, sensi-
tivity and specificity ranged between 0.30–0.98, 0.00–0.74, 
0.00–0.94, −1.00–1.00, 0.00–1.00 and 0.00–1.00, respec-
tively. This variation was significantly explained by species 
traits, supporting the hypothesis that the strength of species–
environment correlations is affected by the characteristics of 
the species themselves (Guisan et al. 2007, McCune et al. 
2020). In this context, we interpret the lack of relationship 
between model accuracy and rare bryophyte species traits 
previously reported (Cerrejón et al. 2022) in terms of the low 
number of occurrences available to accurately assess model 
performance as well as the small number of traits scored. In 
particular, key traits such as Ellenberg values for species eco-
logical preferences, which were among the best predictors of 
model accuracy in the present study (below), are currently 
available for European species only and should be developed 
elsewhere.

However, and as McCune et al. (2020) and Tessarolo et al. 
(2021) already noticed, the correlation between SDM 
accuracy and species traits, and the combinations of traits 
involved, vary substantially depending on the evaluation 
metrics used. Higher explained variance between SDM accu-
racy and species traits were obtained with AUC and MaxTSS 
than with MaxKappa, followed by the Boyce index, specific-
ity and sensitivity.

The utmost importance of the number of occurrences used 
for SDM calibration in the models for MaxKappa reported 
here is in line with the high dependency of this statistic on 
prevalence (Allouche et al. 2006). In agreement with Meynard 
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and Quinn (2007) and Sor et al. (2017), but in contrast with 
Syfert et al. (2013) and van Proosdij et al. (2016), MaxKappa 
increased with the number of occurrences used to calibrate 
models, but decreased when prevalence was higher than 0.68. 
Although variation in MaxKappa was correlated with many 
traits, this correlation was substantially lower than with AUC 
and MaxTSS, suggesting that the former is less suitable than 
AUC and MaxTSS for determining species ‘predictability’ 
based on their traits.

The Boyce index, which was specifically designed for 
presence-only data (Hirzel et al. 2006), also returned a lower 
correlation with variation in species traits than AUC and 
MaxTSS. We tentatively interpret this in terms of the infor-
mation carried by absence data and their correlation with 
species traits. Our observations thus suggest that establish-
ing the relationship between species ‘predictability’ and traits 
requires presence–absence data, undermining the utility of 
the Boyce index in this context and pointing to the use of 
statistics taking advantage of true absence data, such as AUC 
and MaxTSS.

Species ecological preferences, and in particular the pH 
and ‘hemeroby’ indices, as well as – to a lesser extent – the N 
index, were the variables contributing most to the model link-
ing SDM accuracy and species traits. SDM accuracy decreased 
from species characteristic for acidic and oligotrophic sub-
strates to species preferring basic and eutrophic substrates, 
pointing at first sight to the role of edaphic specialization for 
species ‘predictability’. This would contrast with the findings 
of McCune et al. (2020), who found no impact of edaphic 
specialization on SDM accuracy in spermatophytes. In fact, in 
a relatively densely populated area such as southern Belgium, 
exposed to fast-increasing eutrophication due to atmospheric 
deposition of nitrogen and direct inputs for agriculture, the 
distribution of species of acidic and oligotrophic habitats tends 
to be more restricted than that of a more widespread species 
thriving in eutrophic environments such as Brachythecium 
rutabulum. Similarly, the widespread distribution of man-
made, basic habitats (e.g. concrete) opens the door for the 
spread of now ubiquitous calcicolous species such as Tortula 
muralis, even in environments that would primarily not be 
suitable for them. Such species, likely to occur anywhere, 
reach very high to full occupancy rates, thereby decreasing the 
accuracy of models aiming at predicting their distributions. 
This is why, in line with previous reports for species with 
wide distribution ranges (Hortal et al. 2008, Newbold et al. 
2009, Tessarolo et al. 2014, Guo et al. 2015), SDM accuracy 
decreased from species restricted to pristine habitats to species 
thriving in habitats with high levels of human disturbance. 
The fact that AUC and MaxTSS values were higher for species 
from pristine habitats is important in a conservation context, 
as ubiquitous species from eutrophic, disturbed environments 
are precisely those of lower conservation relevance.

Dispersal traits were selected as predictors of MaxKappa 
only. The results suggested that MaxKappa was higher in 
monoicous than in dioicous species, and in species with a 
short life-span and a high investment in sexual reproduc-
tion than in long-lived, often sterile species, thus pointing 

to better SDMs in species with high dispersal capacities. 
This matches predictions, confirmed in spermatophytes 
(McEuen and Curran 2004, McCune et al. 2020), accord-
ing to which species with high dispersal capacities should be 
able to quickly colonize suitable habitats. In this way they 
exhibit distributions that more closely match environmen-
tal conditions, and decrease the commission rates, as com-
pared to species with more limited dispersal capacities that 
fail to occupy all potentially suitable habitats (McCune et al. 
2020). Nevertheless, dispersal traits globally played a mini-
mal role in explaining SDM accuracy in bryophytes. We sug-
gest that two mechanisms may explain why this is the case. 
First, most bryophyte species intrinsically exhibit high dis-
persal capacities, enabling them to colonize habitats as soon 
as they become available. Within a few decades, newly avail-
able substrates such as slag heaps are eventually colonized 
by a range of bryophyte species, even those characterized by 
low sporophyte and gemmae production (Hutsemékers et al. 
2008, but see Zanatta et al. 2020). Second, the idea that 
traits such as the sexual condition – which itself drives spo-
rophyte frequency – actually impact species dispersal capaci-
ties, and hence distribution ranges, has been questioned 
(Laenen et al. 2016).

In conclusion, our results show that SDM accuracy can 
be significantly predicted from species traits in bryophytes. 
The percent variance of approximately 56% of SDM accu-
racy explained by species traits was, however, somewhat lower 
than that reported in previous studies (e.g. 58% in plants, 
Guisan et al. 2007, 69% in beetles, Tessarolo et al. 2021, 
88% in spermatophytes, McCune et al. 2020). While such a 
difference may reflect the global characteristics of the group 
investigated, and in particular their dispersal capacity, they 
may also point to the need to acquire additional informa-
tion on species traits in bryophytes. Bryophyte trait databases 
have increasingly become available (van Zuijlen et al. 2023 
and references therein), but how bryophyte functional traits 
and trait relationships vary with environmental variation is 
not well known (Wang et al. 2022). Most traits used in bryo-
phytes have been derived from empirically derived Ellenberg 
values for species ecological preferences (van Zuijlen et al. 
2023). Revised values for N preference have been provided 
for Central Europe (Simmel et al. 2021), but a critical re-
assessment of all Ellenberg values based on quantitative data, 
fuelled by the increasing availability of environmental data 
across large scales (Panagos et al. 2012, Amatulli et al. 2018, 
Lembrechts et al. 2020), would be desirable. Furthermore, 
functional-trait relationships for bryophytes can differ 
between geographical locations (Wang et al. 2022), as shown, 
for example, by significant trait differences between island 
and continental populations (Patiño et al. 2013), calling 
for the development of regional databases extended to areas 
located beyond Europe.
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