
REVIEW

Updates on radiotherapy-immunotherapy combinations: Proceedings of 6th annual 
ImmunoRad conference
Fabiana Gregucci a,b, Sheila Spada a, Mary Helen Barcellos-Hoff c, Nina Bhardwaj d,e, Charleen Chan Wah Hak f, 
Alba Fiorentino b,g, Chandan Guha h, Monica L. Guzmani,j, Kevin Harrington k, Fernanda G. Herrera l, 
Jamie Honeychurch m, Theodore Hong n, Lorea Iturri o, Elisabeth Jaffeep, Sana D. Karam q, Simon R.V. Knottr, 
Constantinos Koumenis s, David Lyden t, Ariel E. Marciscano a, Alan Melcher u, Michele Mondini v,w,x, 
Anna Mondino y, Zachary S. Morris z, Sean Pitroda aa, Sergio A. Quezada bb, Laura Santambrogio a,j,cc, 
Stephen Shiao dd, John Stagg ee, Irma Telarovic ff, Robert Timmerman gg, Marie-Catherine Vozenin hh, 
Ralph Weichselbaum ii, James Welshjj, Anna Wilkins kk, Chris Xu ll, Roberta Zappasodi mm,nn,oo, Weiping Zou pp, 
Alexandre Bobardqq, Sandra Demariaa,rr, Lorenzo Galluzzi a,j,cc, Eric Deutschv,w,x, and Silvia C. Formenti a,j

aDepartment of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; bDepartment of Radiation Oncology, Miulli General Regional Hospital, 
Acquaviva delle Fonti, Bari, Italy; cDepartment of Radiation Oncology, School of Medicine, University of California, San Francisco, CA, USA; dPrecision 
Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; eTisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 
New York, NY, USA; fTranslational Immunotherapy Team, The Institute of Cancer Research, London, UK; gDepartment of Medicine and Surgery, LUM 
University, Casamassima, Bari, Italy; hDepartment of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, 
NY, USA; iDivision of Hematology/Oncology, Department of Medicine, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; 
jSandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; kThe Institute of Cancer Research/The Royal Marsden NHS 
Foundation Trust, National Institute for Health Research Biomedical Research Centre, London, UK; lCentre Hospitalier Universitaire Vaudois, University 
of Lausanne and Ludwig Institute for Cancer Research at the Agora Cancer Research Center, Lausanne, Switzerland; mDivision of Cancer Sciences, 
University of Manchester, Manchester, UK; nDepartment of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, 
MA, USA; oInstitut Curie, Université PSL, CNRS UMR3347, INSERM U1021, Signalisation Radiobiologie et Cancer, Orsay, France; pJohns Hopkins Sidney 
Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; qDepartment of Radiation Oncology, University of Colorado, Aurora, CO, USA; 
rDepartment of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; sDepartment of Radiation Oncology, Perelman School of 
Medicine, University of Pennsylvania, Philadelphia, PA, USA; tChildren’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and 
Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; uDivision of 
Radiotherapy and Imaging, Institute of Cancer Research, London, UK; vDepartment of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, 
France; wUniversité of Paris-Saclay, Saclay, France; xINSERM U1030, Radiothérapie Moléculaire et Innovation Thérapeutique, Villejuif, France; yDivision 
of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; zDepartment of Human Oncology, 
University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; aaDepartment of Radiation and Cellular Oncology, The University of 
Chicago, Chicago, IL, USA; bbCancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK; 
ccCaryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; ddDepartment of Radiation Oncology, Cedars-Sinai Medical Center, 
Los Angeles, CA, USA; eeCentre de Recherche du Centre Hospitalier de l’Universite de Montreal, Faculty of Pharmacy, Montreal, Canada; ffLaboratory 
for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland; ggDepartments of Radiation Oncology 
and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA; hhLaboratory of Radiation Oncology, Radiation Oncology Service, 
Department of Oncology, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; iiDepartment of Radiation and 
Cellular Oncology, Ludwig Center for Metastases Research, University of Chicago, IL, USA; jjThe University of Texas MD Anderson Cancer Center, 
Houston, TX, USA; kkDivision of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom, Royal Marsden Hospital, 
Sutton, UK; llSchool of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA; mmDivision of Hematology and Medical Oncology, 
Department of Medicine, Weill Cornell Medicine, New York, NY, USA; nnImmunology and Microbial Pathogenesis Program, Weill Cornell Graduate 
School of Medical Sciences, New York, NY, USA; ooParker Institute for Cancer Immunotherapy, San Francisco, CA, USA; ppDepartments of Surgery and 
Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; qqGustave Roussy Cancer Campus, Villejuif, France; rrDepartment of 
Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA

ABSTRACT
Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunother
apy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immu
nostimulation. However, only a few RT-IT combinations have been tested successfully in patients with 
cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT 
in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the 
interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of 
fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts 
and findings presented at the Sixth Annual ImmunoRad conference.
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Introduction

The landscape of cancer treatments has been revolutionized by 
the introduction of various immunotherapeutic agents, notably 
immune checkpoint inhibitors (ICIs).1,2 However, only 
a limited fraction of patients obtain long-term clinical benefit 
from immunotherapy (IT).3,4 In this context, radiotherapy 
(RT) has emerged as a promising tool to extend the therapeutic 
potential of IT.5–7 At least in some instances, RT can indeed 
elicit an “in situ vaccination” effect to jumpstart tumor- 
targeting immune responses that can be amplified with IT.8– 

10 However, RT can also mediate a variety of immunosuppres
sive effects11, and several obstacles remain against the wide
spread implementation of successful RT-IT combinations in 
the clinic.12,13

Since 2016, Weill Cornell Medicine (New York) and the 
Gustave Roussy Cancer Campus (Paris) have joined forces to 
organize an annual conference that provides a forum for edu
cation, discussion, and networking among investigators inter
ested in developing safe and effective RT-IT combinations 
(ImmunoRad). ImmunoRad is alternated between New York 
and Paris, allowing for the participation of faculty and trainees 
working across the globe to promote worldwide networking 
and collaborations. Each year, ImmunoRad provides a unique 
opportunity to extend the assorted and interactive community 
of researchers working on RT-IT combinations, including early 
career as well as experienced scientists, representing a sparkling 
environment for sharing knowledge and accelerating research 
on this exciting field of study.

In 2022, Immunorad hosted 33 speakers coming from 
a variety of disciplines including cancer immunology, cell and 
molecular biology, computational biology, medical physics, 
immuno-oncology, and radiation oncology. These experts cov
ered various aspects of basic and clinical research, providing an 
opportunity for vivid discussion over recent discoveries on 
resistance mechanisms and strategies to overcome them, pre
dictive biomarker identification, patient management, and clin
ical trial design. The conference also included one Poster Session 
and a Continuing Medical Education (CME) activity in colla
boration with the Society for Immunotherapy of Cancer (SITC). 
Here, following a rational order based on research topics, we 
summarize the key concepts and findings presented at the Sixth 
Annual ImmunoRad conference in September 2022 in 
New York City.

Core news

Radiotherapy and immunotherapy in preclinical models

Cancer therapy has achieved tremendous progress in the last 
decade, with ICIs deeply changing the treatment landscape of 
specific cancer types.1,2 The recognition that only a minority of 
patients with cancer benefit from ICI-based immunotherapy,3 

however, has driven an intense wave of preclinical and clinical 
investigations aimed at identifying novel therapeutic partners 
for ICIs, including RT.

ATR serine/threonine kinase (ATR) is one of the principal 
kinases involved in the DNA damage response (DDR) to RT, 
and ATR inhibitors have been shown to sensitize cancer cells to 
chemotherapy and RT in preclinical tumor models14. Kevin 

Harrington (The Institute of Cancer Research, London, UK) 
presented his work showing that ATR inhibitors radiosensitize 
cancer cells by reducing homologous recombination and abro
gating RT-induced cell cycle arrest in G2, an effect that is 
accompanied by the accumulation of interferogenic micronu
clei. In line with this notion, ATR inhibitors combined with RT 
result in robust nucleic acid-dependent type I and II interferon 
(IFN) signaling, abundant secretion of chemokines involved in 
immune cell recruitment (i.e., CCL3, CCL5, and CXCL10) and 
hence superior T cell and natural killer (NK) cell-mediated 
anticancer immunity.15,16 Interestingly, such an NK cell 
response can be further boosted with ICIs targeting T cell 
immunoreceptor with Ig and ITIM domains (TIGIT) and 
programmed cell death 1 (PDCD1, best known as PD-1), at 
least in human papilloma virus (HPV)-negative murine oral 
squamous cell carcinomas.17 Jamie Honeychurch (University of 
Manchester, Manchester, UK) discussed a growing interest on 
the mechanisms through which RT might influence the inter
action between NK and cancer cells. Published in vitro data 
from this team suggest indeed that RT can promote short-term 
resistance to immune effector molecules such as perforin 1 
(PRF1), thus reducing (at least temporarily) cancer cell sus
ceptibility to lysis by NK cells.18 In vivo models confirm that 
RT transiently decreases the cancer cell sensitivity to NK and 
T cell – mediated killing.18

Another point of considerable interest revolves around the 
possibility of using RT to convert “cold”, non-immunogenic 
tumors into “hot”, immunogenic lesions.19 In this setting, the 
effects of low-dose radiation therapy (LDRT, <2 Gy per frac
tion) remain largely unexplored. Early evidence presented by 
Fernanda G. Herrera (University of Lausanne, Switzerland) 
suggests that LDRT can reprogram the microenvironment of 
various mouse tumor models to mobilize innate and adaptive 
immune responses, ultimately engaging dendritic cells (DCs) 
and CD4+ effector T cells with cytolytic activity in support of 
tumor control.20,21 Moreover, Jim Welsh (MD Anderson 
Cancer Center, Houston, TX, USA) demonstrated that high- 
dose RT to primary mouse lung tumors combined with LDRT 
to secondary metastases plus systemic ICIs can effectively 
control metastatic tumors through the engagement of innate 
and adaptive immunity, a systemic response that has been 
dubbed “radscopal effect”.22,23

Sergio Quezada (University College London Cancer 
Institute, London, UK) showed that targeting interleukin 2 
receptor subunit alpha (IL2RA, best known as CD25) with 
a monoclonal antibody (mAb) that enables antibody- 
dependent cell cytotoxicity (ADCC) and antibody-dependent 
cell phagocytosis (ADCP) but preserves interleukin 2 (IL2) 
signaling is a potent strategy to promote cancer rejection in 
mouse models of glioblastoma immunity.24 This effect reflects 
CD4+CD25+FOXP3+ regulatory T (TREG) cell depletion and 
consequent restoration of tumor-targeting immunity.24 

Whether this strategy can be efficiently combined with RT 
remains to be investigated. Interestingly, Roberta Zappasodi 
(Weill Cornell Medicine, New York, NY, USA) showed that 
TREG cell immunosuppressive functions can be blocked with 
neoadjuvant cytotoxic T lymphocyte-associated protein 4 
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(CTLA4)-targeting ICIs in mouse models of glycolysis- 
defective mammary carcinoma, resulting in long-lasting 
tumor-specific immunological memory and protection from 
metastasis specifically in this tumor metabolic setting.25 These 
findings point to TREG cells and tumor metabolism as potential 
targets to investigate in the context of RT to limit immunosup
pression in irradiated tumors.

From preclinical models to clinical translation

Considerable discussion revolved around the urgent need to 
significantly improve patient prognosis in several RT- and/or 
IT-resistant cancers. In this setting, Theodore Hong 
(Massachusetts General Hospital, Boston, MA, USA) presented 
the results of a single-arm, non-randomized phase II clinical 
trial combining RT (delivered in 3 fractions of 8 Gy each) with 
the PD-1 blocker nivolumab and the CTLA4 blocker ipilimu
mab in patients with microsatellite stable colorectal cancer 
(CRC) and pancreatic ductal adenocarcinoma (PDAC) 
(NCT03104439). Disease control rate was promising, and 
responding patients exhibited increased tumor infiltration by 
NK cells and signs of innate immune signaling in post- 
treatment biopsies,26 pointing to the successful engagement 
of anticancer immunity. In a different scenario (i.e., IT- 
sensitive microsatellite instable CRC), Nina Bhardwaj (Mount 
Sinai institute, New York, NY, USA) showed that tumors with 
a high load of frameshift mutations display significant infiltra
tion by activated CD8+ memory T cells and superior clinical 
responses to PD-1 blockers.27 Whether RT can be harnessed to 
boost PD-1 sensitivity in patients with reduced amounts of 
frameshift mutations remains to be investigated.

Elizabeth Jaffee (Johns Hopkins University, Baltimore, MD, 
USA) presented several studies that are investigating the com
plex signaling networking between inflammatory and stromal 
cells that characterize the PDAC microenvironment, with the 
aim of converting PDAC into an immune-responsive 
tumor.28,29 Of note, the dismal disease outcome that is gener
ally associated with PDAC often involves metastatic dissemi
nation to the liver. In this context, Weiping Zou (University of 
Michigan, Ann Harbor, MI, USA) reported that liver metas
tases are resistant to IT because of the ability of liver-resident 
macrophages30,31 to promote the demise of tumor-targeting 
CD8+ T cells, pointing to a potential role for RT as a strategy 
to circumvent this immunosuppressive mechanism32.

Recent findings from a randomized clinical study enrolling 
locally advanced head and neck squamous cell carcinoma 
(HNSCC) failed to demonstrate an advantage for the addition 
of IT to standard-of-care chemoradiation,33 corroborating the 
existence of obstacles toward the successful clinical translation 
of RT-IT combinations. Charleen Chan (The Institute of 
Cancer Research, London, UK) presented data from 
a syngeneic mouse model of HPV+ HNSCC demonstrating 
that adjuvant PD-1 blockage started 7 days after RT improved 
tumor control as compared to other treatment schedules, 
which has important implications for clinical trial design. 
Along similar lines, Sana Karam (University of Colorado 
Cancer Center, Aurora, CO, USA) demonstrated that elective 
nodal irradiation (ENI) suppresses immune responses as 
potentially driven to tumor-targeting RT (delivered in 3 

fractions of 8 Gy each) plus IT in mouse models of HNSCC, 
although it increases the risk for regional metastasis, globally 
pointing to tumor-targeting RT plus IT followed by delayed 
ENI or surgical node resection as to an optimal approach for 
the management of HNSCC.34 Importantly, similar findings 
have previously been reported in mouse CRC models by Ariel 
Marciscano (Weill Cornell Medicine, New York, NY, USA), 
who alluded to these results (based on a single RT fraction of 
12 Gy) during his presentation.35 Irma Telarovic (University of 
Zurich, Zurich, Switzerland) presented additional data in sup
port of this concept from her preclinical work in a mouse 
melanoma model (also based on a single RT fraction of 12  
Gy).36

TCR signaling changes dynamically upon RT, indicating 
that there may be a specific therapeutic window for IT with 
PD-1 blockage37. Simon Knott (Cedars-Sinai Medical Center, 
Los Angeles, CA, USA) presented data from a window-of- 
opportunity clinical study investigating neoadjuvant PD-1 
blockage followed by stereotactic body radiotherapy (SBRT) 
in women with resectable triple negative breast cancer 
(NCT03366844). This study involved the collection of 
a research biopsy shortly after PD−1 blockage, enabling the 
longitudinal dissection of tumor microenvironment (TME) 
alterations associated with pathological responses in the surgi
cal piece. In the setting of relapsed/refractory large B-cell 
lymphoma, chimeric antigen receptor (CAR) T cells represent 
an effective treatment option.38 RT stands out as an advanta
geous partner for CAR T cells in various manners.39–41 First, 
focal RT can be used as a bridge therapy, while CAR T cells are 
manufactured (which takes multiple weeks).42 Moreover, as 
presented by Monica Guzman (Weill Cornell Medicine, 
New York, NY, USA) and Anna Mondino (IRCCS San 
Raffaele Scientific Institute, Milan, Italy), RT can be delivered 
to the entire mouse (in one fraction of 1 Gy) or locally (in 3 
fractions of 8 Gy each) to extend the therapeutic potential of 
CAR T cells or TCR-engineered T cells in models of acute 
lymphoblastic leukemia (ALL)43,44 and prostate cancer 
(unpublished observations), respectively. Whether these obser
vations relate to the ability of RT to promote the upregulation 
of death receptors (DRs) on the surface of malignant cells45 

remains to be formally established.
Finally, Sean Pitroda (University of Chicago, Chicago, IL, 

USA) presented the first comprehensive immunogenomic ana
lysis of a randomized Phase I clinical trial testing concurrent or 
sequential ablative RT plus dual PD−1/CTLA4 blockage as 
a first-line therapy in patients with non-small cell lung cancer 
(NSCLC).46 Importantly, concurrent IT was found to be super
ior to sequential IT at improving responses and OS in patients 
with immunologically cold, highly aneuploid tumors, but not 
in those with less aneuploid neoplasms.46 These observations 
not only confirm previous findings on the ability of ICIs to 
compensate for potential immunosuppressive effects of RT47,48 

but also suggest that tumor aneuploidy may represent 
a potential biomarker to personalize the addition of RT to IT.

Immunomodulators and the TME

Considerable attention is currently being given to factors and 
mechanisms that may represent targets for immunostimulatory 
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agents other than ICIs, both locally and systemically. In this 
setting, Stephen Shiao (Cedars-Sinai Medical Center, Los 
Angeles, CA, USA) presented original work on the regulation 
of tumor-targeting immune responses by intestinal fungi.49 

Specifically, antifungal regimens were associated with improved 
immune tumor control by RT in mouse models of breast cancer 
and melanoma, whereas opposite results were obtained with 
antibacterial agents.49 Corroborating the potential relevance of 
these observations for cancer patients, high intratumoral levels 
of C-type lectin domain containing 7A (CLEC7A), a pattern 
recognition receptor activated by fungal components50, were 
negatively associated with survival in breast cancer patients.49 

Further investigation is required to validate these findings in 
multiple tumor types. David Lyden (Weill Cornell Medicine, 
New York, NY, USA) discussed the role of extracellular vesicles 
(EVs) and notably exomeres as modulators of immunity as well 
as potential prognostic and therapeutic targets. Indeed, EVs 
(which are essentially secreted by all cell types) contain DNA, 
RNA, and proteins encapsulated in a lipid bilayer and can be 
transferred from cell to cell as a means of communication,51 for 
instance as metabolic regulators.52 Cancer cells secrete increased 
amounts of EVs upon interactions with other components of the 
TME.53 Of note, tissue- and plasma-derived EV proteins may 
serve as biomarkers for early oncogenesis, pre-metastatic niche 
formation, as well as organotropism during metastatic 
dissemination.54,55 Finally, Laura Santambrogio (Weill Cornell 
Medicine, New York, NY, USA) presented data regarding the 
biogenic amine 3-hydroxykynurenine (3-HKA), a metabolite 
produced by a lateral branch of the indoleamine 2,3-dioxygenase 
1 (IDO1) pathway in DCs, lymphatic endothelial cells, and 
human cancer cell lines.56 3-HKA has been shown to mediate 
pronounced immunosuppressive effects in vivo, in a number of 
mouse models of autoimmune disorders including psoriasis and 
nephrotoxic nephritis.56 It will be interesting to determine 
whether 3-HKA can be efficiently targeted to improve the 
immunostimulatory effects of RT.

Ariel Marciscano (Weill Cornell Medicine, New York, NY, 
USA) discussed the promise of targeting the adenosine- 
signaling pathway as a potent inducer of intratumoral 
immunosuppression.57 Adenosine accumulates in the TME 
upon degradation of extracellular ATP by ectonucleotidases, 
including ectonucleoside triphosphate diphosphohydrolase 1 
(ENTPD1, best known as CD39) and 5’-nucleotidase ecto 
(NT5E, best known as CD73).58 Based on promising results 
from preclinical models of breast carcinoma59 and CRC,60 

CD73 blockers are currently tested in combination with RT 
in these oncological indications and in combination with anti- 
PD-L1 therapy in a randomized Phase 3 trial in lung cancer 
(NCT03875573). John Stagg (Université de Montréal, 
Montréal, Canada) provided additional insights into this path
way by discussing results that suggest that CD39 and CD73 
have non-redundant cooperative functions in polarization of 
the TME, with unexpected links to the DNA damage 
response.61 Specifically, in mouse models of pancreatic carci
nomas, CD73 appears to protect against DNA damage, corre
lating with preserved NAD levels and superior activity of the 
DNA repair protein poly(ADP-ribose) polymerase 1 (PARP1) 
and culminating with suppressed stimulator of interferon 
response cGAMP interactor 1 (STING1) signaling and 

quenched type I IFN responses.61 Sana Karam (University of 
Colorado Cancer Center, Aurora, CO, USA) presented addi
tional results suggesting that immunosuppressive mechanisms 
other than PD-1 and CTLA4 signaling may provide novel 
targets to improve the therapeutic efficacy of RT, notably 
hepatitis A virus cellular receptor 2 (HAVCR2, best known as 
TIM−3) signaling, tumor necrosis factor receptor superfamily, 
member 9 (TNFRSF9; best known as 4-1BB or CD137) signal
ing, and TREG cell functions.62,63 Mary Helen Barcellos-Hoff 
(University of California San Francisco, San Francisco, CA, 
USA) added to these observations by discussing the therapeutic 
potential of targeting transforming growth factor beta (TGFβ). 
In a mouse model of glioblastoma and breast cancer brain 
metastases, radiation-induced TGFβ activity could be imaged 
by positron emission tomography in situ and inhibiting TGFβ 
in these models extended the survival benefits afforded by 
RT.64 These studies corroborate previous data demonstrating 
that TGFβ signaling opposes tumor-targeting immune 
responses driven by RT65–67 and cancer cell-intrinsic cytotoxi
city of RT.68,69 The clinical relevance of these mechanisms is 
further supported by the ability of HPV to inhibit TGFβ sig
naling, which at least in part explains the superior sensitivity of 
HPV+ HNSCCs to RT and DNA-damaging chemotherapeutics 
as compared to their HPV− counterparts68. Silvia Formenti 
(Weill Cornell Medicine, New York, NY, USA) provided 
further clinical insights into the ability of RT to elicit tumor- 
targeting immune responses that can be successfully actioned 
with IT. Specifically, she shared her positive experience about 
combining SBRT with ipilimumab in patients with NSCLC, 
a setting in which clinical responses were associated (at least in 
some patients) with increased circulating type I IFN and the 
ability of RT of upregulating tumor-associated antigens 
(TAAs).70 Similar findings have been obtained by the same 
team in preclinical tumor models, which also highlighted a role 
for RT-driven DR upregulation of cancer cells as well as of 
cytotoxic CD4+ T cells in the efficacy of RT.71 Whether cyto
toxic CD4+ T cells also participate in the clinical activity of RT 
remains to be formally elucidated. Along these lines, it will be 
important to decipher the role of normal tissue exposure in the 
efficacy of RT. Recent preclinical data in model of KRAS- 
driven lung cancer suggest indeed that normal club cells of 
the epithelial airways responding to RT secrete a factor, namely 
secretoglobin, family 1A, member 1 (SCGB1A1, also known as 
CC10) that support the therapeutic synergy between RT and 
ICIs.72

Anna Wilkins (The Institute of Cancer Research, London, 
UK) showed that cancer-associated fibroblasts (CAFs), 
a heterogeneous population of stromal cells that can mediate 
potent immunosuppressive effects,73 are associated with poor 
RT outcomes in rectal tumors,74 a detrimental effect that is 
paralleled by the establishment of fibrosis and can be prevented 
by dual TGFβ/PD-L1 blockage (at least in preclinical models of 
PDAC, glioblastoma, and lung carcinoma).66 On a similar 
note, Ralph Weichselbaum (University of Chicago, Chicago, 
IL, USA) presented preclinical findings demonstrating that 
targeting myeloid-derived suppressor cells (MDSCs), 
a population of immature myeloid cells with potent immuno
suppressive activity that has been linked to poor RT outcomes 
in multiple preclinical tumor models,75 improves the efficacy 
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of RT combined with STING1 agonists in mouse CRCs.76 

Specifically, all-trans retinoic acid (ATRA) was found to pro
mote myeloid cell differentiation toward a population of 
inflammatory TAMs that supported RT efficacy via activation 
of adaptive immune responses that could be boosted with PD- 
L1 inhibitors to favor abscopal responses.77 Overall, the 
mechanisms and diversity of immune alterations in irradiated 
tumors remain poorly understood, warranting more research 
aiming at the identification of clinically viable strategies to 
polarize the TME in support of successful RT-IT combinations.

Innovative approaches for radiation delivery

Technical progress achieved over the past two decades has 
enabled the development of innovative approaches for deliver
ing RT to cancer patients. Whether these strategies may offer 
advantages over conventional RT techniques for the develop
ment of successful RT-IT combinations remains to be formally 
elucidated. Zachary Morris (University of Wisconsin, Madison, 
WI, USA) presented data demonstrating that targeted radio
nuclide therapy (TRT) – consisting in the delivery of a tumor- 
targeted radioisotope (e.g., 90Y-NM600)78 – can elicit antic
ancer immunity in preclinical models of cold tumors, an effect 
that depends on STING1 signaling and can be boosted not only 
with ICIs but also with non-ablative external beam RT at 
a single disease site.79 This promising approach combines 
systemic immunostimulation by TRT with an in situ vaccina
tion strategy80,81 and has been proven feasible in a veterinary 
trial enrolling dogs with advanced-stage melanoma or 
osteosarcoma.82

Marie-Catherine Vozenin (Lausanne University Hospital, 
Lausanne, Switzerland) presented immunobiological aspects 
of ultra-high dose rate (FLASH) irradiation.83,84 Specifically, 
she discussed the superior ability of FLASH to spare normal 
tissues as compared to conventional RT, while preserving an 
equivalent efficacy against the tumor, an effect that appears to 
be independent from the organ-specific TME and the activa
tion of anticancer immunity, but may involve differential lipid 
peroxidation and Fenton reactions.85 In line with this possibi
lity, hypoxic cancer cells are more sensitive to transcriptional 
changes elicited by FLASH than their normoxic counterparts. 
In line with these observations, Lorea Iturri (Institut Curie, 
Orsay, France) showed that proton FLASH is comparable to 
conventional-rate proton irradiation at recruiting lymphoid 
cells to the TME of mouse glioblastoma but enables superior 
preservation of memory functions.86 Moreover, she presented 
data on the ability of minibeam RT (MBRT) – an innovative 
technique that involved spatial-dose modulation – to control 
rat glioblastomas upon the activation of anticancer immunity, 
an effect that was not parallel by elevated toxicity as in the case 
of conventional RT at an equivalent dose (30 Gy)87. 
Constantinos Koumenis (University of Pennsylvania, 
Philadelphia, PA, USA) presented findings corroborating the 
superior ability of proton FLASH compared to standard proton 
radiation to better spare intestinal function, including prolif
eration of epithelial cells, and reduce fibrosis while being equi
potent in controlling PDAC growth in preclinical mouse 
models88. Early studies based on single-cell transcriptomics 
support a differential activation of the IFN response in the 

epithelial and immune compartments of the intestine exposed 
to proton FLASH vs. standard proton radiation, which may 
contribute to such a sparing effect. Robert Timmerman (UT 
Southwestern University, Dallas, TX, USA) introduced 
PULSAR (Personalized Ultrafractionated Stereotactic 
Adaptive Radiotherapy). PULSAR enables large intervals 
(weeks or months) between each RT dose by delivering high 
doses per faction, hence improving the tolerance of organs at 
risk and facilitating adaptations of treatment regimen based on 
tumor response and modification of its microenvironment.89 

Specifically, PULSAR combined with a PD-L1 blocker was 
shown to mediate robust therapeutic effects in immunocom
petent mouse models of CRC and lung carcinoma, an effect 
that was abrogated by CD8+ T cell depletion.90

Personalization of RT-IT strategies with imaging

One of the key issues for the development of successful RT-IT 
combinations is the lack of specific biomarkers that would 
predict the likelihood of individual patients to respond beyond 
standard parameters that are normally used to inform the 
usage of RT or IT as individual agents91. As discussed by Eric 
Deutsch (Gustave Roussy Cancer Center, Paris, France), one 
promising way to identify biomarkers to personalize treatment 
in the RT-IT setting is radiomics, a technique that allows 
investigators to extract quantitative information by medical 
imaging and to apply artificial intelligence for the discovery 
of predictive models of response92. Radiomics has indeed been 
successfully applied to develop an imaging biomarker of 
tumor-infiltrating CD8+ T cells in patients receiving IT93,94. 
Another field of recent development is the possibility to study 
the movement of lymphocytes in vivo within TDLNs via high- 
resolution three-photon microscopy. Chris Xu (Cornell 
University, Ithaca, NY, USA) presented work with three- 
photon microscopy visualizing CD4+ and CD8+ T cell motility 
in mouse lymph nodes. Specifically, CD4+ and CD8+ T cell 
distributions were found to be strongly related to antigen 
presenting with a critical role for local chemokine gradients.95 

Whether these findings can be extrapolated to human lymph 
nodes and whether they may provide predictive information 
on the likelihood of individual patients to benefit from RT-IT 
combinations remain to be investigated.

Concluding remarks

Despite considerable progress at least in some oncological 
indications,70,96,97 several obstacles remain against the clinical 
implementation of successful RT-IT combinations across 
a wide range of oncological indications.13 Specifically, addi
tional work is required to dissect the impact of dose and 
fractionation on the immunogenicity of RT, delineate 
approaches that limit the exposure of circulating lymphocytes 
and TDLNs (at least initially), define optimal treatment sche
dules for RT to synergize with IT (which may depend on tumor 
type and specific IT), characterize the potential benefits from 
low-dose exposure of normal tissues, and clarify the immuno
genic potential of charged particles including protons 
(Figure 1). We are positive that progress in these directions 
will be accelerated by the framework provided by ImmunoRad, 
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and we look forward to discussing the most recent discoveries 
as well as persisting challenges in the field at the Seventh 
ImmunoRad conference, which will be held in Paris in 
September 2023.
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