
# **Toxicological assessment of aerosols emitted by three cannabis inhalation methods:** joints, vaporizers, and Electronic Non-Nicotine Delivery Systems (ENNDS) N. Sambiagio<sup>1</sup>, R. Auer<sup>1,2</sup>, M. Wittwer<sup>3</sup>, A. Schoeni<sup>2</sup>, <u>A. Berthet<sup>1</sup></u>



### unisantė

## Introduction

- **Users** are increasingly interested in safer alternative inhalation methods than joints and reduce their exposure to toxicants.
- This includes cannabis vaporizers and cannabis extract vaping using an electronic non-nicotine delivery system (ENNDS).
- **Very few studies investigated the toxicological profiles of these alternatives in** laboratory conditions.
- INO published data on the filter efficiency to reduce toxicants in joint emissions.

## **Objectives**

- **Compare the toxicological profile of cannabis aerosols emitted by vaporizers and** ENNDS to cannabis smoke (without tobacco) by quantifying the concentrations of 91 compounds.
- 4 Compare the  $\Delta^9$ -tetrahydrocannabinol ( $\Delta^9$ -THC) delivery efficiencies between the electronic devices and joints
- **W** Evaluate the influence of the heating system type for vaporizers, and of devices and e-liquids for ENNDS on emissions.

## **Devices and products tested**

| ab1. Characte                     | eristics of the thr | Tab2. Chara                                                |                                                            |                       |        |
|-----------------------------------|---------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------|--------|
|                                   | FX⁺ by Wolkenkfraft | Air II by Arizer                                           | Mighty⁺ by<br>Storz & Bickel                               |                       | 0<br>4 |
|                                   | WOLKENKRAFT"        |                                                            |                                                            |                       |        |
| Type of heating                   | Convection          | Combination of<br>convection conduction<br>(hybrid system) | Combination of<br>convection conduction<br>(hybrid system) | Coil                  | O      |
| Time to heat up                   | 20 – 30 s           | 60 – 90 s                                                  | 60 s                                                       | Resistance            |        |
| Temperature<br>ranges             | 170 – 220°C         | 50 – 220°C                                                 | 170 – 210°C                                                | Activation            | Draw   |
| Herb capacity<br>(chamber volume) | Up to 400 mg        | 100 – 200 mg                                               | Up to 300 mg                                               | Reservoir<br>capacity |        |
|                                   |                     |                                                            |                                                            |                       |        |

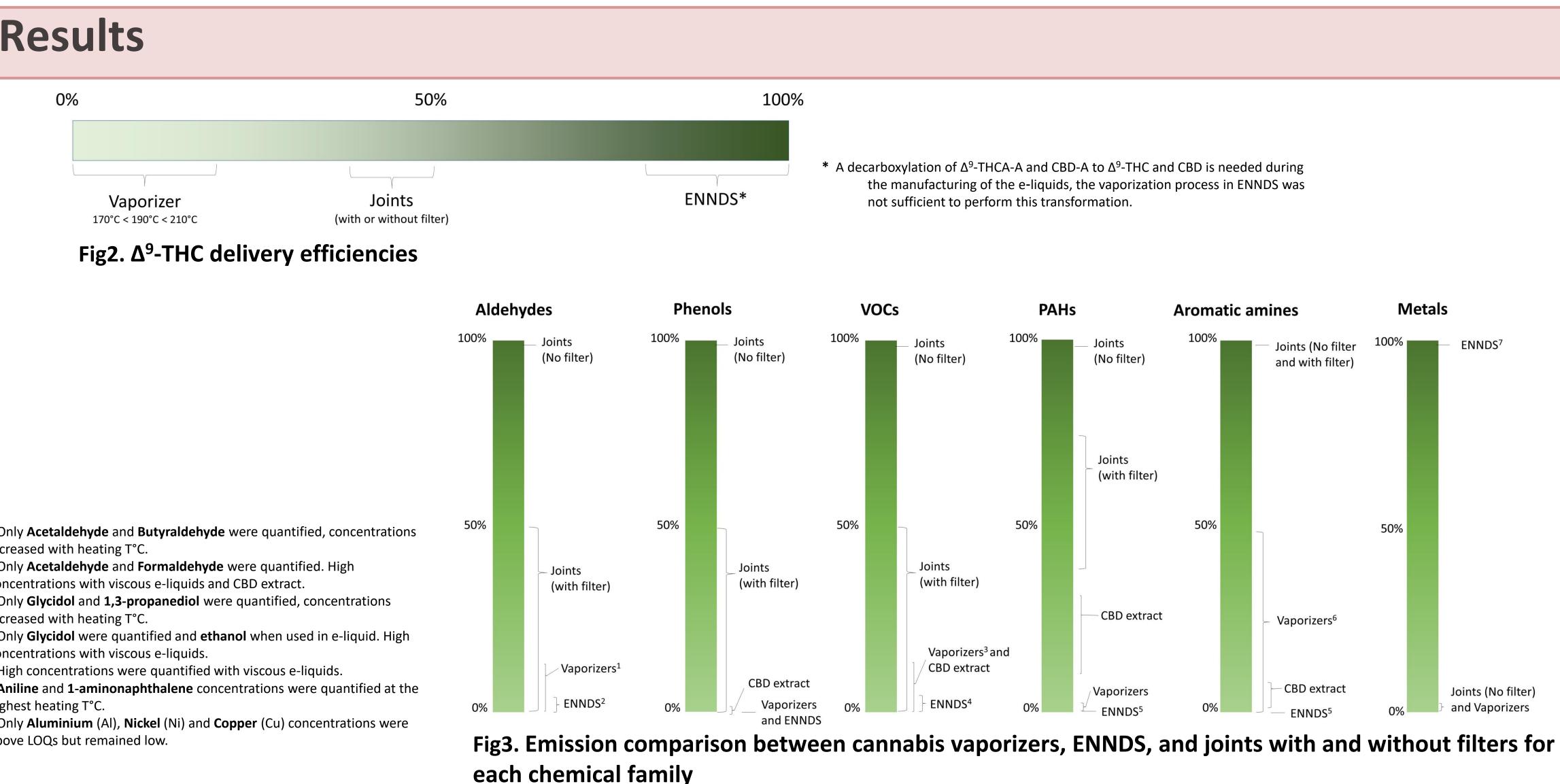
### Joints (without tobacco)

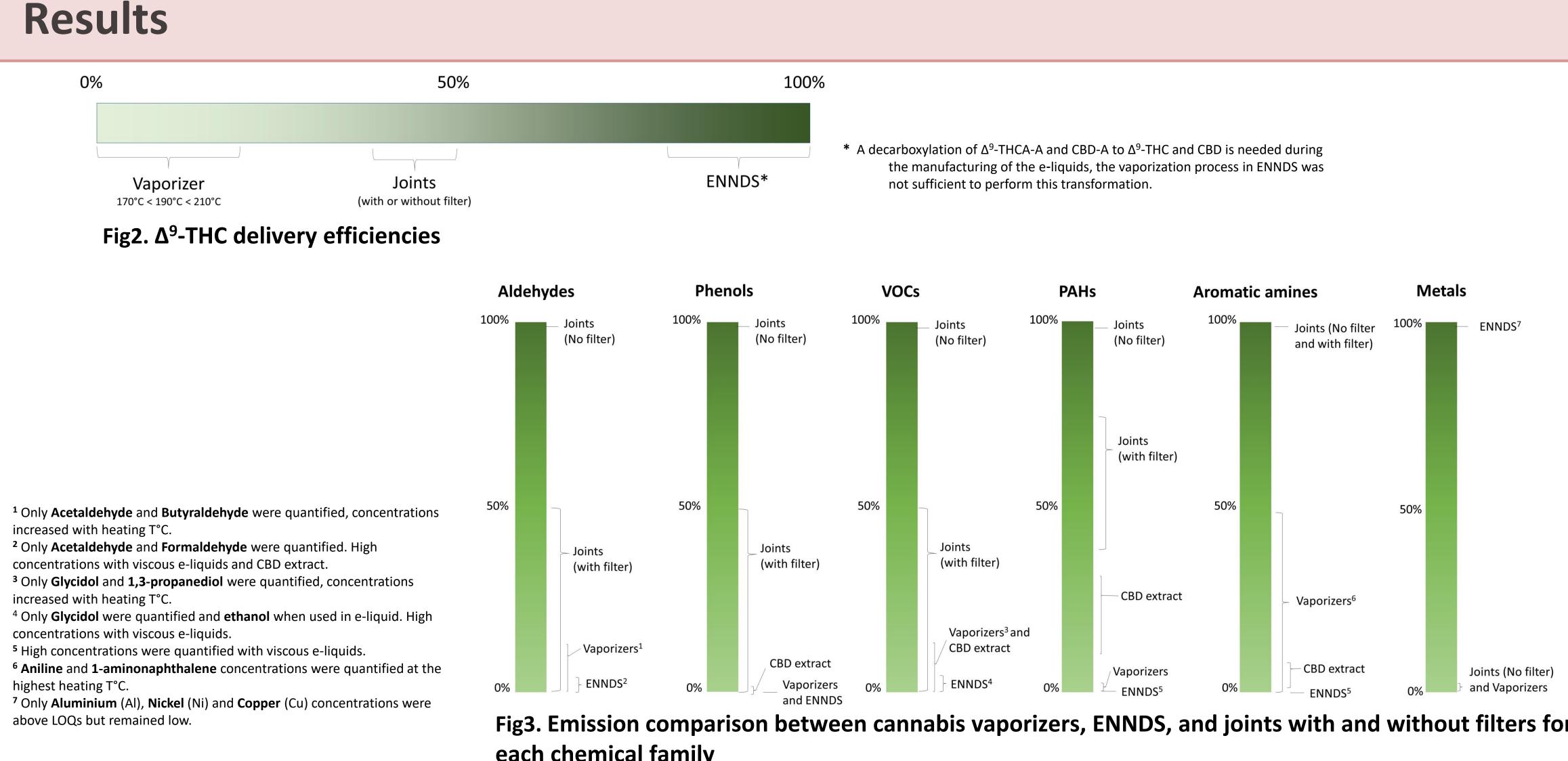
Without filter

With filter

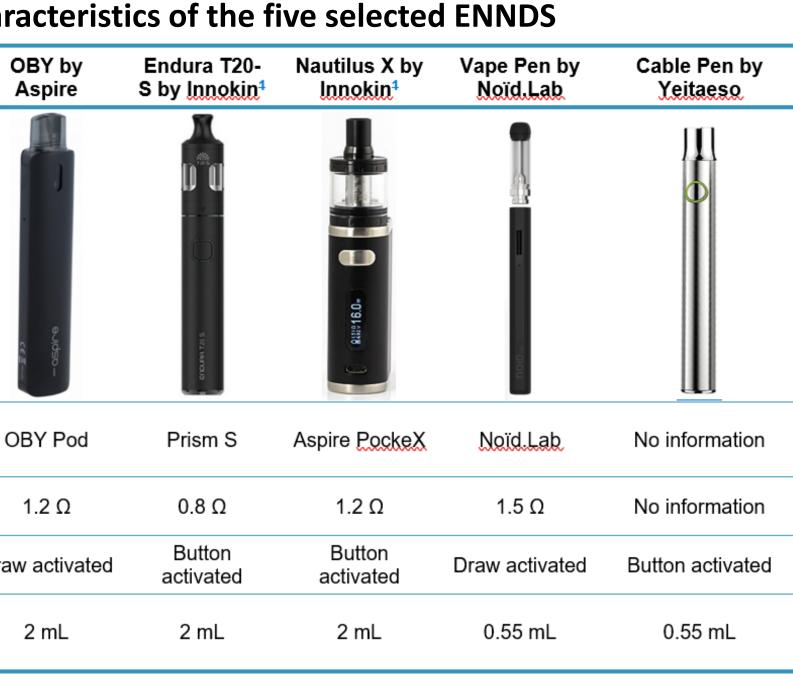
(cellulose + active carbon) Hybrid Supreme Filters (30 mm long, 6.4 mm diameter)

### Tab3. Composition of the six e-liquids tested


|                                                 | e-liquid #1                                  | e-liquid #2                      | e-liquid #3        | e-liquid #4        | e-liquid #5      | CBD<br>extract   |
|-------------------------------------------------|----------------------------------------------|----------------------------------|--------------------|--------------------|------------------|------------------|
| Type of cannabis<br>extraction                  | Solvents                                     | Supercritical<br>CO <sub>2</sub> | Solvents           | Solvents           | Solvents         | Solvents         |
| Percentage of<br>cannabis extracts <sup>1</sup> | 5.4%                                         | _2                               | 5.4%               | 5.4%               | -                | 100%             |
| Percentage of<br>glycerol (VG)                  | 18.9%                                        | 30% <sup>3</sup>                 | 0%                 | 20%                | 20%              | 0%               |
| Percentage of<br>propylene glycol<br>(PG)       | 0%                                           | 70%4                             | 100%               | 80%                | 80%              | 0%               |
| Percentage of<br>polyethylene<br>glycol (PEG)   | 37.8% PEG400<br>18.9% PEG300<br>18.9% PEG200 | 0%                               | 0%                 | 0%                 | 0%               | 0%               |
| Ƽ-THC content                                   | 4.21% <sup>4</sup>                           | <1%4                             | 8.8% <sup>5</sup>  | 11.5% <sup>5</sup> | 0%               | <0.2%5           |
| CBD content                                     | 1.4% <sup>4</sup>                            | 3.15%4                           | 0.13% <sup>5</sup> | 0.14%5             | 10% <sup>5</sup> | 62% <sup>5</sup> |
| Viscosity                                       | High                                         | Low                              | Low                | Low <sup>6</sup>   | Low              | High             |

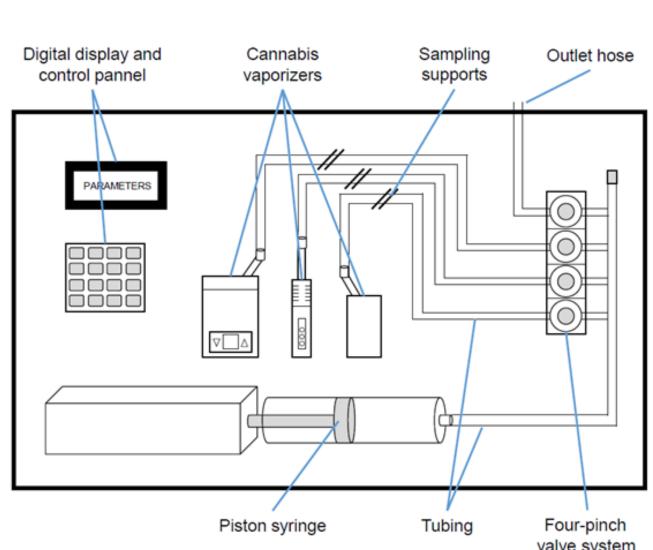

<sup>1</sup> Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland <sup>2</sup> Institute of Primary Health Care (BIHAM), University of Bern, Switzerland <sup>3</sup> Federal Office of Public Health (FOPH), Prevention and Public Health Services, Switzerland

## Study design


families in emissions (3 replicates:

- Cannabinoids (7 compounds)
- Aldehydes (13 compounds)
- **Volatile organic compounds** (20 compounds)
- Phenolic compounds (7 compounds)
- **Polycyclic aromatic hydrocarbons** (16 compounds)
- **Aromatic amines (8 compounds)**
- Metals (20 compounds)






- **A**



Cannabis extract consists of a mixture of cannabinoids and terpene Confidential information ercentage of cannabis extracts was not taken into account -THC content was calculated as total  $\Delta^9$ -THC = ( $\Delta^9$ -THCA-A x 0.877) +  $\Delta^9$ -THC: CBD content was calculated otal CBD = (CBD-A x 0.877) + CBD Content quantified by the company Poor solubility of cannabis extracts

- We quantified the following chemical





## **Discussion – Conclusion**

4 Cannabis users may benefit from cannabis vaporizers or ENNDS as alternative to joints, due to reduction of exposure to toxicants.

 $\clubsuit$  Choice of e-liquids containing  $\Delta^9$ -THC and of ENNDS devices must be made to avoid overheating. Further studies on real puffing regime use are needed to confirm these results obtained in laboratory conditions.

Addition of filter to joints reduce toxicant concentrations without changing the toxicological profile.

### Abstract Final ID # 3420

### Tab4. Smoking regimes used for each tested cannabis products to generate emissions

| Cannabis products   | Smoking regime  | Puff volume | Puff duration | Puff interval |
|---------------------|-----------------|-------------|---------------|---------------|
| Joints              | HCI standard    | 55 mL       | 2 s           | 30 s          |
| Cannabis vaporizers | Adapted CORESTA | 80 mL       | 3 s           | 30 s          |
| ENNDS               | Adapted CORESTA | 80 mL       | 3 s           | 30 s          |

### Three replicates per tested devices and products