
Towards Cloud Agnostic
Quantum-Classical Hybrid
Computing

Dang Hai Luong

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 29.5.2023

Supervisor

Assist. Prof. Dr. Paler Alexandru

Advisors

Dr. Valtteri Lahtinen

Asser Lähdemäki

Copyright © 2023 Dang Hai Luong

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Dang Hai Luong
Title Towards Cloud Agnostic Quantum-Classical Hybrid Computing
Degree programme Computer, Communication and Information Sciences
Major Computer Science Code of major SCI3042
Supervisor Assist. Prof. Dr. Paler Alexandru
Advisors Dr. Valtteri Lahtinen, Asser Lähdemäki
Date 29.5.2023 Number of pages 57+1 Language English
Abstract
Quantum classical hybrid computing is a paradigm which describes systems of
classical and quantum computers that enable running quantum algorithms and
hybrid algorithms consisting of classical and quantum parts in a programmable
interface. Such quantum classical hybrid systems are provided by popular cloud
computing providers such as Amazon Web Services (AWS), Azure, Google Cloud
and IBM, to name a few. Using these services, researchers can access either real
quantum computers or high-performance quantum simulators without owning the
expensive hardwares. However, each service comes a different set of available features,
capabilities and, for example, supported set of basic quantum gates. Thus it is
important to understand the differences between each service’s provided capabilities
when choosing a suitable cloud provider to run a quantum circuit.

Managing cloud-provisioned infrastructure is an issue that should also be solved.
One possible solution to such issue is to deterministically manage the cloud infras-
tructure using Infrastructure as Code (IaC) methodology. The methodology enables
declarative and deterministic approach to manage and provision cloud infrastructure
via human-readable definition files. Abstraction is one additional benefit of using
IaC, which means IaC definitions can be designed to be independent of cloud service
providers, or cloud-agnostic.

The purpose of this thesis is to designs an Infrastructure-as-code definition in
Terraform language to manage cloud infrastructure from AWS and Azure. The
definition is designed to enable an easy switch between such services. The thesis
also explores and compares 2 above mentioned cloud providers. In particular, the
thesis focuses on each provider’s capabilities and efficiency of designing and running
different quantum circuits.
Keywords quantum computing, hybrid computing, terraform, infrastructure as code

4

Preface

I want to thank Asst. Prof. Dr. Alexandru Paler and my advisors Dr. Valtteri
Lahtinen and Asser Lähdemäki for their guidance. I also want to thank my friend
Aashish Sah for supporting me and giving me hints and tips during the research of
this thesis.

Otaniemi, 29.5.2023

Dang Hai Luong

5

Contents

Abstract 3

Preface 4

Contents 5

Abbreviations 7

1 Introduction 8
1.1 Quantum gates . 8
1.2 Quantum circuits . 9
1.3 Hybrid computing . 9

1.3.1 Applications of quantum hybrid computing 9
1.4 Structure of the thesis . 10

2 Background: Quantum computing 11
2.1 Qubits and gates . 11

2.1.1 Superposition . 12
2.1.2 Entanglement . 13
2.1.3 Density matrix . 14
2.1.4 Unitary matrix . 15
2.1.5 Hadamard gate . 15
2.1.6 Phase shift gate . 16

2.2 Quantum algorithms . 16
2.3 Quantum software frameworks . 17
2.4 Quantum computing cloud infrastructure 18

2.4.1 IBM . 21
2.4.2 Microsoft Azure . 22
2.4.3 AWS . 22
2.4.4 Google Cloud . 22

2.5 Infrastructure as code . 23
2.5.1 AWS cloud development kit 24
2.5.2 Terraform . 24
2.5.3 Cloud development kit for Terraform 26

6

3 Methods 27
3.1 Random quantum circuits and quantum algorithms 28

3.1.1 Depth of a quantum circuit 29
3.1.2 Number of quantum gates in a quantum circuit 29
3.1.3 Run time of a quantum circuit 30
3.1.4 Parallelize quantum circuit execution 31

3.2 Quantum circuit selection . 31
3.2.1 Graph state circuit . 32
3.2.2 Greenberger-Horne-Zeilinger circuit 32
3.2.3 Hidden linear function circuit 34
3.2.4 Commonly supported quantum gates 35

4 Implementation and evaluation 36
4.1 Architecture . 37

4.1.1 Circuit exporter . 38
4.1.2 Main circuit executor . 38
4.1.3 Benchmark quantum device executor 39
4.1.4 Shared custom Terraform provider 39

4.2 System data and logic flows . 41

5 Results and discussion 43
5.1 Execution efficiency . 43

5.1.1 Execution queue on quantum computers 44
5.1.2 Efficiency on running the task loop 44
5.1.3 Custom Terraform provider 45
5.1.4 Qiskit circuit transpiler . 46
5.1.5 Errors handling . 46

5.2 Benchmark formula results . 46
5.3 Execution cost . 47
5.4 Conclusion and future works . 49

References 53

7

Abbreviations

Abbreviations

SDK Software Development Kit
SaaS Software-as-a-service
PaaS Platform-as-a-service
IaaS Infrastructure-as-a-service
AWS Amazon Web Services
API Application Programming Interface
IaC Infrastructure as Code

1 Introduction

Quantum computing is an emerging and swiftly developing discipline that seeks
to make use of the characteristics of quantum mechanics to conduct calculations
beyond what’s possible of conventional computers. Quantum computers conduct
certain types of calculations more quickly than classical computers. In addition,
quantum computers may employ the quantum mechanical property of superposition
to conduct certain forms of parallel calculations [15, 47, 14]. As a result of these
characteristics, quantum computers have the potential to become a useful tool for
the solution of certain sorts of problems, such as the factoring of big numbers and
the searching of enormous databases, which are now either difficult or impossible to
solve with conventional computers [53].

Quantum computers have the capability for resolving particular challenges signif-
icantly quicker than classical computers, but their development is still in its infancy.
Consequently, hybrid computing combines the capabilities of classical and quantum
computers to resolve problems that are challenging or impossible for either form of
computer to solve on its own [28].

1.1 Quantum gates

Quantum gates are essential to quantum computing since their function is to permit
the systematic and predetermined transformation and processing of quantum infor-
mation. Single qubit gates and multiple qubit gates are the two sorts of quantum
gates used for influencing quantum states in quantum computing. Single qubit
gates operate on a single qubit and serve the purpose to modify the qubit’s state
or to carry out quantum state space rotations. The Pauli X gate, the Pauli Y gate,
and the Pauli Z gate are common single-qubit gates. These gates are utilized for
operations such as inverting the qubit state, rotating the qubit state in the X-Y plane,
and altering the qubit’s phase, respectively. Multiple qubit gates, on the contrary,
operate simultaneously on multiple qubits and are utilized to entangle several qubits
or conduct complex quantum state operations. The CNOT gate, the 16 SWAP gate,
and the Toffoli gate are examples of common multiple-qubit gates. These gates are
utilized for entangling qubits, exchanging the states of two qubits, and performing
conditional operations on the state of multiple qubits, respectively [14].

9

1.2 Quantum circuits

Quantum circuits represent the manipulation and processing of quantum information.
At a high level, a quantum circuit consists of a series of quantum gates applied to a
set of quantum bits (qubits). These gates are unitary transformations that alter the
state of the qubits in a well-defined way [47].

Quantum circuit is the ability to entangle qubits, which allows them to interact
and perform operations that are not possible on classical computers. For instance,
a quantum circuit may entangle two qubits in such a manner that a measurement
of one qubit relies on the state of the other qubit, even though the two qubits are
physically separated by a significant distance. This is possible even if the two qubits
are at distinct locations. One of the primary distinctions between quantum and
classical computing may be found in this phenomena, which is referred to as quantum
non-locality [47].

Quantum circuits can also be used to conduct other quantum operations, such as
quantum teleportation, which enables the transmission of quantum states between
distant qubits, and quantum error correction, which protects against errors and
decoherence caused by environmental factors [14].

1.3 Hybrid computing

Quantum hybrid computing is a type of computing that combines the capabilities
of classical computing with those of quantum computing. It involves using both
classical computers and quantum computers to solve problems that are too complex
or too time-consuming for classical computers to solve on their own [28].

Due to their ability to utilize the principles of quantum mechanics, quantum
computers can conduct certain types of calculations significantly faster than classical
computers. However, they are still in the developmental phases. Using classical
computers for certain tasks and quantum computers for others, quantum hybrid
computing enables us to take advantage of the strengths of both types of computers.
Using classical computers to process and analyze data generated by quantum com-
puters is an example of quantum hybrid computing. This can help surmount the
limitations of quantum computers and enable the solution of complex problems that
were previously intractable [28].

1.3.1 Applications of quantum hybrid computing

There are a few examples of quantum hybrid computing:

10

1. Quantum optimization: Optimization problems are a form of mathematical
problem in which, given a set of possible solutions and a set of constraints, the
objective is to identify the optimal solution. Using quantum algorithms, it is
possible to simultaneously explore a vast space of potential solutions [4, 18].

2. Quantum chemistry: Quantum computers can be used to perform quantum
chemistry calculations, which can help to better understand the properties of
chemical compounds and predict their behavior [4, 18].

3. Quantum simulations: Quantum computers can be used to simulate complex
systems, such as the behavior of materials or the behavior of biological molecules.
Quantum simulation helps to revolutionize the field of computational fluid
dynamics (CFD) by providing new computational capabilities beyond classical
computing, by utilizing quantum parallelism and quantum superposition to
perform multiple computations simultaneously [4, 18, 15].

4. Quantum encryption: Quantum computers can be used to enhance the security
of classical encryption systems by generating and distributing keys that are
much more difficult to break [4, 18, 15].

Quantum hybrid computing has the potential to improve many different areas of
science, engineering, and technology by providing more powerful and efficient ways
to solve complex problems.

1.4 Structure of the thesis

The thesis is organized in the following way: Chapter 2 contains the theoretical
background and high-level description of quantum computing, the background on
cloud infrastructure, as well as Infrastructure as Code (IaC) and its advantages, as
well as introduce popular IaC tools. Chapter 3 describes the research methodology.
Chapter 4 describes the experiment execution of running the circuit in parallels in
different clouds using IaC tool. Chapter 5 shows the benchmark result of previous
experiment, concludes the thesis and shows possible future work.

11

2 Background: Quantum computing

This chapter contains a brief introduction to quantum circuits and quantum gates.
The mathematics of quantum computing involves the use of linear algebra and
matrix operations to manipulate and measure quantum states. We show a brief
mathematical representation of quantum resources, namely, qubits, entanglement,
and superposition. We discuss about quantum linear solver and the Qiskit quantum
computing software development kit.

2.1 Qubits and gates

Quantum bits, or qubits, are the fundamental information elements in quantum
computing. In contrast to classical bits in conventional computing, which signify
information as the binary digits 0 or 1, qubits reflect the concept of superposition,
enabling them to simultaneously represent both states [7, 55, 15]. Consequently,
qubits provide an exponential growth in computational power as the number of qubits
increases, thereby expediting complex problem-solving [39].

Beyond superposition, another property of qubits is entanglement. Entanglement
is a fundamental quantum mechanical characteristic in which pairings or groups
of qubits may communicate in such a way that the state of each qubit becomes
inextricably linked to the state of the others, regardless of the distance between
them. Within an entangled state, information about one qubit instantaneously
reveals information about the other entangled qubits, enabling parallelism and
interconnectivity on a scale unattainable in classical systems [22, 26].

Typically, a qubit is implemented using a quantum system with two levels, such
as the spin of an electron or the polarization of a photon [12]. These systems can
be manipulated using various quantum operations, or quantum gates, to perform
quantum computations.

Quantum gates are the foundational components of quantum computing. Quan-
tum gates possess unique properties that distinguish them from classical gates. These
properties arise from the principles of quantum mechanics and the most important
ones are unitarity and reversibility. Quantum gates are unitary, meaning their opera-
tions preserve the total probability of the quantum state. Every quantum gate is
reversible, meaning for every operation, there exists an inverse operation that can
undo its effect. Quantum gates can operate on multiple qubits at once, enabling
complex, multi-particle interactions [14]. Due to the no-cloning theorem, quantum
gates cannot produce an exact copy of an indeterminate undetermined quantum

12

state. This property fundamentally differentiates quantum information processing
from classical computing, where information can be copied freely [54].

2.1.1 Superposition

Quantum superposition is a concept in quantum mechanics that explains the simul-
taneous probabilities of multiple quantum states. It asserts that a quantum particle,
such as an electron or photon, can simultaneously exist in multiple locations or possess
multiple values of energy, momentum, or spin. In contrast to classical mechanics, in
which objects are described as existing in definite states, this is the case. Quantum
superposition is fundamental to comprehending the behavior of quantum systems and
has numerous applications in disciplines such as quantum computing, cryptography,
and quantum simulations. The concept of quantum superposition continues to be
one of the most captivating and intriguing aspects of quantum mechanics [47].

In the realm of quantum mechanics, the state of a quantum system can be
described mathematically through the use of wave functions. These wave functions
are complex-valued functions that characterize the probability of a quantum system
being observed in a particular state. These wave functions can be represented as
linear combinations of the wave functions of their constituent states [47]. For example,
consider a quantum system with two basis states, |0⟩ and |1⟩. Those basis states are
the orthonormal basis when the states are visualized in Hilbert space. In the matrix
form, those states can be represented as:

|0⟩ =
⎡⎣1
0

⎤⎦

|1⟩ =
⎡⎣0
1

⎤⎦
If the quantum system is in a superposition state, its wave function can be written

as:

ψ(x) = α |0⟩ + β |1⟩

where α and β are complex numbers known as quantum system amplitudes. The
amplitudes relate to the probability of measuring the quantum system in the |0⟩ and
|1⟩ states, respectively.

The idea of quantum superposition, which is an essential component of quantum
mechanics, may be shown with the help of the Bloch sphere, which is named after its

13

inventor. The Bloch sphere is a kind of hypersphere that has three dimensions and
depicts all of the states that are conceivable for a quantum system. It consists of the
black local Cartesian axis vectors, the red Bloch vector for the subsystem, and the
blue dashed scaled correlation axes. The scaled correlation axes of each Bloch sphere
are pairwise perpendicular, and they are designated with their index i to denote the
correlation pairing that arises between the two Bloch spheres [13]. Figure 1 shows a
visual representation of a bloch sphere.

Figure 1: Bloch sphere conveying the initial state vector of a qubit at 1√
2(|0⟩ + i |1⟩)

[47]

The principle of superposition is an essential part of quantum mechanics and may
be found at the core of a wide variety of quantum phenomena, including quantum
entanglement and quantum tunneling.

2.1.2 Entanglement

Quantum entanglement is a phenomenon in quantum mechanics that is a special kind
of correlation that exists between two or more quantum systems. It is a fundamental
property of all quantum systems [22], and has been discovered to have a number of
uses in fields like quantum computing and cryptography [26].

Entanglement in quantum physics is mathematically explained by the idea of a
composite system. A system made up of two or more smaller systems, sometimes
referred to as subsystems, is referred to as a composite system. When the component
subsystems of a composite system are not yet entangled, the state of the composite
system can be indicated as the tensor product of the subsystems’ states. Consider,
for instance, a composite system with two smaller systems, A and B, each containing
a single qubit. The state of the composite system can be written as:

14

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩

Where |ψA⟩ is the state of subsystem A and |ψB⟩ is the state of subsystem B.
In order to ascertain the degree of entanglement existing in a system of multiple

particles in pure states, a technique known as the Schmidt decomposition is utilized
in quantum information and quantum computing [42]. It is a technique for breaking
down a wavefunction into a collection of terms, each containing the wavefunction of
a different subsystem. For every bipartite quantum system, this decomposition also
enables us to represent a pure state vector in terms of a single sum rather than two
sums [35]. The decomposition expresses the composite system’s state as a sum of
product states:

|ψ⟩ =
∑︂

i

λi |ϕi⟩A |ψi⟩B

where λi are known as the Schmidt coefficients, and |ϕi⟩A and |ψi⟩B are known
as the Schmidt basis states.

An important property in quantum computing and quantum information science
is entanglement, which allows quantum systems to do particular tasks that are
impossible for conventional computers to perform. Quantum teleportation, which
shows the non-local features of entangled quantum systems and makes a significant
addition to the science of quantum information, is one such activity made possible
by entanglement. [14].

2.1.3 Density matrix

The density matrix, which characterizes the statistical traits of a quantum system,
is one of the most important mathematical instruments employed in quantum com-
putation. Mixed states, which are states that are a "probabilistic mixture of pure
states", may be depicted by using the density matrix, which can be used to describe
mixed states [34]. It additionally has the ability for describing the state of a quantum
system when noise or decoherence is present [48, 27]. Here is an example of a density
matrix for a qubit in a mixed state:

ρ = p |0⟩ ⟨0| + (1 − p) |1⟩ ⟨1|

This density matrix represents a mixed state in which the qubit has a probability
p of being measured as |0⟩ and a probability (1 − p) of being measured as |1⟩.

15

The density matrix can be used to calculate the expected value of observables,
such as the Pauli matrices, which are a set of three 2x2 complex matrices that are
commonly used to represent quantum states [48, 27]. The Pauli matrices are defined
as:

X =
⎡⎣0 1
1 0

⎤⎦

Y =
⎡⎣0 −i
i 0

⎤⎦

Z =
⎡⎣1 0
0 −1

⎤⎦
Where the X, Y, and Z matrices represent the spin of a particle along the x, y,

and z axes, respectively.

2.1.4 Unitary matrix

Unitary matrices are important in both linear algebra and quantum physics. A square
matrix with an inverse equal to its transpose conjugate is known as a unitary matrix.
This characteristic ensures that a vector’s inner product and norm are preserved in
unitary matrices. As a result, linear transformations that preserve a vector space’s
geometric structure are described by unitary matrices. Unitary matrices are used in
quantum physics to express rotations and other spatial transformations, in addition
to the chronological progression of a quantum system [27]. Here is an example of a
unitary matrix in quantum computing:

U =
⎡⎣ cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

⎤⎦
This is the matrix illustration of a quantum gate called a rotation gate, which

shifts a qubit by an angle of θ along the y-axis.

2.1.5 Hadamard gate

The Hadamard gate is a prime instance of a quantum gate, and it is one that works
on a single qubit. The Hadamard gate is characterized by the matrix shown following:

16

H = 1√
2

×

⎡⎣1 1
1 −1

⎤⎦
The Hadamard gate modifies the state of a qubit from its computational base

state |0⟩ or |1⟩ to the superposition state (|0⟩+ |1⟩)/
√

2 or (|0⟩−|1⟩)/
√

2, respectively
[43].

2.1.6 Phase shift gate

To apply a phase shift to a qubit, the phase shift gate spins the qubit’s state vector
around the origin of the complex plane [25]. An unitary matrix which characterizes
the phase-shift gate is shown below:

P =
⎡⎣1 0
0 eiθ

⎤⎦
where θ is the phase shift angle.
The phase shift gate’s unitary transformation of the qubit state is represented by

this matrix. For instance, the matrix would change the qubit to the state |1⟩, if it
were now in the state |0⟩. The matrix would change the qubit from its current state
of |0⟩ to that of eiθ |0⟩. The relative phase between a qubit’s 0 and 1 states may be
altered using the phase shift gate [25].

2.2 Quantum algorithms

In place of classical bits, qubits are used in quantum algorithms. A quantum
algorithm typically consists of several key components:

1. Initialization: In this phase, the quantum computer’s qubits’ starting state
is prepared. A mixture of single-qubit and multi-qubit gates may be used to
accomplish this [49].

2. Quantum operations: This step is where the main computation takes place. It
involves applying a series of quantum gates to the qubits in order to perform
the desired computation. The specific operations used will depend on the
algorithm being implemented [49].

3. Measurement: After the quantum operations have been performed, the algo-
rithm’s result is determined by measuring the eventual state of the qubits. This

17

step collapses the qubits into a classical state, which can be read out by the
classical computer [49].

4. Classical post-processing: Some quantum algorithms require additional classical
computation to process the output obtained in the measurement step [49].

Many quantum algorithms will also include error-correction methods in addition
to these essential parts to counteract the effects of noise and decoherence on the
quantum system.

In the subject of quantum computing, quantum algorithms and quantum circuits
are ideas that are closely connected. A quantum algorithm is a process or collection
of instructions that may be used by a quantum computer to carry out a particular
calculation or solve a particular issue. High-level programming languages are used to
create quantum algorithms, which are created to take use of the special capabilities
of quantum computers [49]. Shor’s method for factoring integers, Grover’s algorithm
for database searching, and quantum simulation algorithms are a few examples
of quantum algorithms. A quantum circuit, on the other hand, uses a quantum
computer to physically execute a quantum algorithm. To control the state of the
qubits in the quantum computer, a network of quantum gates, which are the essential
components of quantum computing, is employed. Circuit diagrams, which display
the positioning of the quantum gates and the qubits on which they operate, are often
used to describe quantum circuits. The actions outlined by the quantum algorithm
are implemented by quantum circuits, which are also created to precisely control the
qubits [14].

2.3 Quantum software frameworks

Quantum computing software development frameworks are tools and libraries that
provide a set of functions and interfaces for constructing and manipulating quantum
circuits, running them on quantum hardware or simulators, and analyzing the results.
These frameworks are designed to make it easier to explore the potential of quantum
computing. Software development frameworks for quantum computing comes in forms
of software development kits (SDK) [52]. SDKs for quantum computing typically
provide several key components, such as:

1. A quantum programming language: This is a high-level programming language
that is used to write quantum algorithms. It is designed to be intuitive and

18

easy to use, and it allows developers to write quantum programs in a way that
is similar to writing classical programs [52].

2. A quantum simulator: A conventional computer may now mimic the actions of
a quantum computer thanks to this piece of software. Before launching their
quantum applications on a real quantum computer, developers may use this
tool to ensure they are bug-free [52].

3. A quantum compiler: A quantum program written in the quantum programming
language may be translated by this program into a quantum circuit that can
be run on a real quantum computer [52].

4. An interface to real quantum computers: Certain software development kits
(SDKs) provide an interface to quantum computers that are hosted in the
cloud. This enables software developers to execute their quantum applications
on actual quantum hardware [52].

5. Additional tools and libraries: Some SDKs also provide additional tools and
libraries for tasks such as visualization, optimization, and error correction [52].

Some of the popular and well-known SDKs include Qiskit (IBM), PyQuil (Rigetti),
ProjectQ (Microsoft), and Cirq (Google). IBM’s Qiskit is an open-source software
development platform for quantum computing. It is designed to build and execute
quantum programs on a variety of quantum hardware platforms, as well as simulate
quantum circuits on classical computers [15].

The Qiskit is a collection of tools and libraries that may be used to create and
manipulate quantum circuits, as well as run these circuits on quantum hardware or
simulators and analyze the outcomes of these runs. In addition to that, it has a toolkit
for controlling the running of quantum programs and enhancing the performance of
quantum circuits [52].

One of the key features of Qiskit is its modular design, which allows users to
customize and extend it to fit their specific needs. It is also designed to be user-friendly,
with a simple, intuitive interface and extensive documentation.

2.4 Quantum computing cloud infrastructure

Building and maintaining a large-scale quantum computer requires significant in-
vestment in specialized hardware, software, and expertise. As a result, only a few

19

organizations and research institutions have the resources and know-how to develop
and operate quantum computers [4].

Cloud quantum computing offers access to quantum computing resources over
the internet, eliminating the need for specialized expertise and expensive hardware.
However, the performance is limited by internet connectivity and the processing power
of quantum computers. Hybrid quantum computing overcomes these limitations by
combining classical and quantum computing, allowing users to leverage the strengths
of both approaches. The classical computer manages the quantum hardware and
performs pre-processing and post-processing tasks [15]. The quantum hardware
performs the quantum computations that are too difficult or slow to perform on
classical hardware. Cloud hybrid quantum computing takes this approach further by
combining cloud computing and hybrid quantum computing, providing the benefits
of both [28].

Hybrid computing systems have become increasingly accessible to the general
audience, largely due to the widespread availability and convenience of cloud in-
frastructure. Several prominent technology corporations, including IBM, Microsoft
through its Microsoft Azure platform, Amazon via Amazon Web Services (AWS),
and Google Cloud, have been instrumental in delivering these services to a broad user
base. Cloud infrastructure, at its core, refers to the amalgamation of both physical
and virtual resources that support the delivery of cloud services over the internet.
These resources include servers, storage, and networking, which are managed and pro-
visioned through virtualization and containerization technologies, and orchestration
tools, to provide a consistent and programmable interface to customers.

There are 3 major distribution method of cloud infrastructure: [29, 44].

• IaaS is the most fundamental kind of cloud computing, entails the provisioning of
virtualized components of a computer system via the internet. These resources
can be used to run any software, including custom applications and operating
systems [46]. Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud Platform (GCP) are examples of IaaS providers.

• PaaS offers a platform for the development and operation of custom applications.
It consists of services such as databases, web servers, and middleware that can
be used to deploy and operate applications without managing the required
infrastructure [46]. Heroku, Amazon Elastic Beanstalk, and Microsoft Azure
App Service are all examples of this distribution method.

• SaaS provides software applications over the internet, typically accessed via

20

a web browser. These applications are fully managed and maintained by
the provider and can be used by customers on a subscription basis [5, 46].
Salesforce, Google Apps, and Microsoft Office 365 are just a few examples of
SaaS providers.

The provision of cloud infrastructure for quantum computing remains a specialized
domain. Nevertheless, a select group of organizations and institutions that have
managed to construct operational quantum computers are pioneering the accessibility
of these potent systems [44]. They offer access to the public through various interfaces,
including web-based platforms and application programming interfaces (APIs). These
interfaces allow users to design and execute quantum algorithms without the need
for direct physical access to the quantum hardware, thus democratizing quantum
technology access. Some examples of companies that offer cloud-based quantum
computing infrastructure include:

1. IBM: IBM Q is a family of quantum computers provided by IBM, which
includes a range of systems with varying levels of quantum volume, qubit
count, and connectivity. The IBM Q systems are designed to be accessible
to a wide range of users, from researchers and scientists to businesses and
organizations, through the IBM Cloud platform. IBM Q provides access to
both hardware and software tools for quantum computing, including the IBM
Quantum Experience, a cloud-based interface for experimenting with quantum
algorithms and running quantum simulations [11, 15].

2. Rigetti Computing: Rigetti Computing is a technology company that provides
quantum computing systems and services. The company offers a range of
quantum computers, including superconducting and hybrid systems, which are
designed for use in a variety of applications, including optimization, machine
learning, and cryptography. Rigetti Computing also provides a cloud-based
platform, Forest, that allows users to program and run quantum algorithms,
as well as access to its quantum processors through APIs [55, 15].

3. D-Wave: D-Wave Systems Inc. exists as a Canadian corporation specializing
in the commercialization and development of quantum computing. Quantum
computers from D-Wave use a quantum annealing technique, which is designed
to tackle optimization problems, and are used in many different kinds of
applications, such as machine learning, cryptography, and drug discovery. The
company provides access through the cloud to its quantum computers, and

21

its systems are utilized by government agencies, universities, and enterprises
worldwide [32].

4. Google: Google Quantum Cloud is a quantum computing platform provided
by Google. It provides cloud-based access to quantum computing resources,
such as quantum processors and quantum simulators, for a broad spectrum of
applications, such as optimization, machine learning, and cryptography. The
Google Quantum Cloud also provides a suite of tools and services for developing,
testing, and deploying quantum algorithms, making it accessible to a wide
range of users, from researchers and scientists to businesses and organizations
[40].

5. Microsoft Azure: Microsoft Azure offers a cloud-based quantum computing ser-
vice called Azure Quantum. This service provides access to a range of quantum
processors and simulators, including Microsoft’s own quantum processors and
simulators, as well as third-party quantum processors and simulators [40, 21].

6. AWS: Amazon Braket is a cloud-based quantum computing utility provided
by AWS. This service provides access to a variety of quantum processors and
simulators, including those offered by Amazon Web Services and by third-party
vendors [17].

Despite the still-specialized nature of this field, the efforts made by these organiza-
tions to provide cloud-based access to quantum computing resources mark a significant
stride in integrating quantum technology into the broader digital ecosystem.

2.4.1 IBM

IBM’s Quantum Cloud platform provides access to its state-of-the-art quantum
processors, including the IBM Q system, which has processors with up to 53 qubits.
It also provides access to its simulators, software development kits and libraries, and
other tools to help developers and researchers build and run quantum applications
[11].

IBM has been actively working in the field of quantum computing for quite a
while, and its quantum computing cloud infrastructure is considered one of the most
advanced and mature in the industry. IBM Quantum Experience is an open platform
that gives consumers access to the IBM Q systems and enables them to undertake
experiments. IBM Quantum Composer is a graphical user interface that allows users
to create quantum circuits by dragging and dropping components. IBM Quantum

22

Lab also provides a collaborative platform for researchers and developers to share
their work, resources and expertise [11].

2.4.2 Microsoft Azure

Azure Quantum provides access to its own quantum processors, including the topo-
logical qubits based on anyons which is a unique approach in the field of quantum
computing, in addition to providing access to third-party quantum processors such
as IonQ and Quantinuum. It also offers a development environment that includes li-
braries, software development kits, and other tools to help developers and researchers
build and run quantum applications [21].

Azure Quantum also provides access to a wide range of classical resources, such
as virtual machines and storage, that can be used to run and support quantum
applications. Microsoft has also partnered with a number of leading companies in the
quantum computing industry, such as 1QBit, Zapata Computing, and Cambridge
Quantum Computing, to provide customers with access to the latest quantum
computing technologies and expertise [21].

Microsoft is actively working in the field of quantum computing and its Azure
Quantum is considered one of the most comprehensive and well-integrated quantum
computing platforms on the market.

2.4.3 AWS

Amazon Braket provides access to its own quantum simulators, as well as access to
third-party quantum processors from companies such as IonQ, D-Wave, and Rigetti
Computing. It also provides a development environment that includes libraries,
software development kits, and other tools to help developers and researchers build
and run quantum applications [17].

AWS also provides access to a wide range of classical resources, such as virtual
machines and storage, that can be used to run and support quantum applications.
Additionally, the service allows customers to use the same AWS Identity and Access
Management (IAM) policies, security groups, and VPCs that they use for their other
AWS resources.

2.4.4 Google Cloud

Google’s Quantum Cloud platform provides access to its state-of-the-art quantum
processors, including the Sycamore processor which was the first quantum computer

23

that demonstrated quantum supremacy in 2019. Google also provides access to its
simulators, software development kits and libraries, and other tools to help developers
and researchers build and run quantum applications [40].

2.5 Infrastructure as code

A software engineering technique called infrastructure as code (IaC) enables program-
mers and system administrators to manage and provide computer resources without
the need of manual procedures. IaC offers a consistent and repeatable method for
building, deploying, and managing infrastructure, which lowers the possibility of
human mistake, accelerates deployments, and boosts the agility of the development
process [2, 1, 30, 2].

IaC entails describing the ideal state of the infrastructure using a high-level
programming language, such as YAML or JSON. The infrastructure’s setup, in-
cluding the amount and size of servers, the software bundles to install, the network
configuration, and the security rules, is defined by the code. IaC’s "as code" suffix
alludes to the use of software engineering practices, including version control, for
upkeep of IaC scripts, which enables developers to work together on the code and
monitor changes over time [38].

When the code is executed, it creates or updates the infrastructure to match
the desired state. This can be done using a variety of tools, such as Ansible,
Terraform, or CloudFormation, which automate the deployment and configuration
of the infrastructure [2]. The tools provide a declarative approach to infrastructure
management, which means that they focus on the desired state of the infrastructure,
rather than the steps needed to get there. This makes it easier to manage complex
infrastructures and to make changes without causing disruptions [2].

Infrastructure as Code (IaC) is particularly valuable in cloud hybrid computing,
where the combination of cloud computing and hybrid quantum computing creates a
complex and dynamic infrastructure. In cloud hybrid computing, the infrastructure
consists of both classical and quantum computing resources, which must be provi-
sioned and managed in a consistent and efficient way. IaC provides a way to manage
both types of resources using the same code base, which simplifies the management
of the infrastructure and reduces the risk of inconsistencies and errors.

At present, there exists no Infrastructure as Code (IaC) tools or frameworks
that have been explicitly designed for the management of cloud hybrid quantum
computing infrastructure. Nonetheless, certain IaC tools, including Terraform,

24

provide extensibility via support for custom Application Programming Interfaces
(APIs) implemented in Go programming language. This enables developers to
create their own frameworks to support IaC for cloud hybrid quantum computing
by leveraging the flexibility and extensibility of Terraform. In this way, developers
can utilize the capability of Terraform to manage hybrid cloud infrastructure in
combination with quantum computing resources [20]. While custom development
is required to achieve this, the provision of a foundation via the use of tools such
as Terraform that provide flexibility in API design and extensibility, supports the
ability to create bespoke solutions for the management of cloud hybrid quantum
computing infrastructure via IaC.

2.5.1 AWS cloud development kit

AWS Cloud Development Kit (CDK) is an Infrastructure as Code (IaC) tool that
enables developers to define cloud infrastructure resources using familiar programming
languages, such as TypeScript, Python, and Java, instead of domain-specific languages
(DSLs). AWS CDK provides an object-oriented approach to defining cloud resources,
which allows developers to create reusable and modular components that can be
shared across projects. With AWS CDK, developers can define their infrastructure
as code, which means that they can manage their cloud resources using a consistent
and repeatable process. AWS CDK generates a CloudFormation template from the
code, which can be used to create and manage the infrastructure resources on AWS
[45].

Notably, AWS CDK is limited in its applicability to multi-cloud infrastructures as
it solely supports a single cloud provider. This characteristic impedes its versatility
in scenarios where multiple cloud providers are used, as developers may need to
maintain disparate infrastructure configurations for each respective cloud provider.

2.5.2 Terraform

An infrastructure as code (IaC) tool called Terraform is intended to assist users in
managing infrastructure and cloud resources. It is an open-source application created
by HashiCorp that enables users to design infrastructure as code (IAC) and deliver it
across several cloud service providers, including as AWS, Azure, and Google Cloud,
as well as on-premises settings like bare metal servers, private clouds, and more. It
enables users to define and provision a data center’s infrastructure using configuration
files. With Terraform, users can create, modify, and version their infrastructure

25

while managing the entire lifecycle of their cloud resources. It supports a wide range
of resource types, including virtual machines, databases, containers, networks, and
storage. It also allows users to create reusable modules for their infrastructure, which
can be shared and reused across multiple projects. This helps users to save time
and effort, as well as increase consistency across their projects. Terraform uses a
domain-specific language (DSL) called HashiCorp Configuration Language (HCL) to
define infrastructure resources, and it can also be integrated with other tools such as
Ansible and Puppet for configuration management [20].

One of the key benefits of using Terraform is its ability to manage infrastructure
as code, which enables version control, collaboration, and reusability of infrastructure
configurations. This allows for easier management and scaling of resources, as well
as the ability to roll back changes in the event of errors or failures. Additionally,
Terraform’s support for multiple cloud providers allows for the creation of multi-cloud
and hybrid environments, which can provide added flexibility and scalability [8].

Terraform is widely used in industry and academia for provisioning and managing
cloud infrastructure. It is particularly useful for organizations that want to automate
the provisioning and management of cloud resources, as well as for organizations
that are moving towards a DevOps model for infrastructure management.

Here is an example of Terraform code that provisions an Amazon Web Services
(AWS) EC2 instance:

1 provider "aws" {

2 region = "us -west -2"

3 }

4

5 resource " aws_instance " " example " {

6 ami = "ami -0 ff8a91507f77f867 "

7 instance_type = "t2.micro"

8

9 tags = {

10 Name = "example - instance "

11 }

12 }

Listing 1: "Simple EC2 Deployment using Terraform"

In this example, the provider block specifies that we are going to use the AWS
provider and the region is set to us-west-2.

The resource block creates an EC2 instance using the aws_instance resource type.
The ami (Amazon Machine Image) is set to a specific image ID and instance_type is

26

set to t2.micro. The tags block is used to assign a name to the instance. Once this
code is run, Terraform will create the specified EC2 instance and the user can verify
that the instance has been created by looking at the AWS management console.

2.5.3 Cloud development kit for Terraform

The Infrastructure as Code (IaC) tool Terraform Cloud Development Kit (CDK)
allows programmers to design cloud infrastructure resources. With the help of
Terraform CDK, developers may define cloud resources using a class-based, object-
oriented approach, resulting in reusable, modular components that can be used in
several projects. Terraform CDK also provides a library of pre-built constructs, called
"construct libraries", that represent the different infrastructure resources and their
configurations. These libraries provide programmers access to a high-level abstraction
that is tailored for the Terraform platform, allowing them to construct and manage
infrastructure resources. In order to construct and manage infrastructure resources
on a variety of cloud and on-premises platforms, Terraform CDK produces Terraform
configurations from the code [19].

27

3 Methods

The chapter describes the benchmarking method of quantum computers with different
quantum circuits. We examine the properties of quantum circuits and explore the
impact these properties have on the selection of the experiment. The advantages of
Infrastructure as Code (IaC) on the portability of quantum algorithm deployment is
discussed.

The portability of quantum circuit execution is crucial because it enables the
transfer of quantum circuits from one environment to another, while ensuring that
they continue to function correctly [51]. By guaranteeing the portability of quantum
circuit execution, researchers and developers can more easily test and deploy quantum
circuits in new environments, which can help to advance the field more quickly and
effectively [24]. Additionally, portability enables quantum circuits to be executed
in a variety of settings, from local workstations to large-scale cloud-based quantum
computers. This can help to ensure that quantum circuits are accessible to a wider
range of users, regardless of their computational resources. Furthermore, it allows
for easier collaboration between researchers and institutions, as quantum circuits can
be shared and executed on different platforms [31].

In order to assess the portability of quantum circuits in various settings, it is
imperative to ensure the transportability of their execution [51]. Infrastructure as
Code (IaC) facilitates the seamless migration of quantum circuits across different
environments. Infrastructrure as Code (IaC) eliminates the need for manual con-
figuration, which can be time-consuming and prone to errors. By using IaC, the
deployment process can be automated and streamlined, reducing the risk of errors
and enabling quantum circuits to be deployed more quickly and easily. This can
help to ensure that quantum circuits are executed consistently and accurately, even
as they are moved between different environments. Another advantage of IaC is
that it provides a single source of truth for the configuration of the infrastructure
required to run quantum circuits. This makes it easier to maintain and update the
infrastructure over time, as changes can be made in a centralized manner, rather
than having to manually update each environment.

Terraform [20] leverages the application programming interface (API) of each cloud
environment to instantiate and allocate cloud resources, thereby obviating the need
for direct interaction with the cloud platform. Additionally, Terraform standardizes
cloud deployment by providing a unified programming interface, facilitating the
management of cloud resources across disparate environments [20]. At present, the

28

conventional implementation of Terraform in certain cloud providers does not yet
provide support for the deployment of a native quantum circuit execution environment.
In such instances, it is advisable to deploy a generic execution environment, such as
a virtual machine, in the cloud provider as an alternative.

3.1 Random quantum circuits and quantum algorithms

A random generated quantum circuit is one in which the quantum gates and other
circuit elements are selected at random. One example of a randomly generated circuit
is shown on Figure 2.

Figure 2: A randomly generated circuit created from Qiskit library

In contrast, a quantum algorithm is a structured and methodical sequence of
quantum gates and other operations that are designed to solve a specific computational
problem or to achieve a certain goal. One example of a quantum algorithm circuit is
shown on Figure 3.

Figure 3: A quantum circuit for creating a hidden linear function

In other words, a random generated quantum circuit provides an unknown
objective or purpose, while a quantum algorithm is created with a well-defined
objective in mind. The properties and behavior of a random generated quantum
circuit can be highly unpredictable, whereas a quantum algorithm is designed to
produce a predictable outcome.

Consequently, it is advisable to utilize a quantum algorithm as opposed to a
randomly generated quantum circuit when conducting benchmarking. In order to

29

make informed decisions regarding which quantum algorithms to experiment with
and benchmark, it is necessary to comprehend the properties of quantum algorithms
in order to predict and accurately record the outcomes of the experiments.

There are various properties associated with quantum circuits. Within the context
of this thesis. These properties form a basis for benchmarking. It is essential to have
an understanding of:

1. The depth of the quantum circuits;

2. The number of quantum gates involved;

3. The required runtime of the quantum circuit;

4. The potential for parallelization.

3.1.1 Depth of a quantum circuit

An important consideration in computing with qubits is the depth of a quantum
circuit. The number of quantum gate layers, that must be applied to the input
quantum state in order to create the desired output, is referred to as the depth of a
quantum circuit. The depth refers to the quantity of time-steps necessary to perform
the circuit. It is a crucial element in defining a quantum circuit’s overall complexity,
as well as its error potential and the resources needed to execute it.

Figure 4: A randomly generated circuit with the depth of 2

Another definition of depth is the total number of nearest-neighbor qubits in
the circuit, or as the number of two-qubit gates making up the circuit [6]. In either
scenario, the execution time of a quantum circuit is precisely proportional to its
depth [9].

3.1.2 Number of quantum gates in a quantum circuit

The number of gates in a quantum circuit is the total number of quantum operations,
or quantum gates, carried out to the qubits throughout the computation.

30

Figure 5: A randomly generated circuit with 7 quantum gates

Quantum circuit efficacy can be affected by a variety of factors, including the
number of quantum gates utilized by the circuit. The correlation is not, however,
inverse. In general, additional time would be required for additional entrances. Not
all gates are created equal; some are more complicated and may require more time
to implement. In certain circumstances, gates can be employed concurrently if they
operate on distinct qubits and the quantum computing architecture permits it, which
is discussed in Section 3.1.4.

3.1.3 Run time of a quantum circuit

The amount of time needed to execute a quantum circuit and produce the desired
output is referred to as the runtime. Given that it directly affects the actual viability
and scalability of the algorithms, the runtime is a key parameter for measuring the
efficiency of quantum algorithms and quantum circuits.

The runtime of a quantum circuit is influenced by various factors, such as the
number and type of quantum gates used, the number of qubits involved, and the
specific requirements of the computational problem being addressed. In order to
identify the required run time of a quantum circuit, classical pre- and post-processing
tasks must be performed. This could include algorithm-independent tasks involved in
the orchestration of a quantum circuit’s pre- or post-processing tasks. For instance,
if the workflow is going to allow the selection of appropriate quantum hardware
depending on the input data at runtime, then the workflow is going to need to
describe all of the various alternative implementations for the jobs [50].

The required runtime can also be impacted by the underlying hardware and
infrastructure used to implement the circuit, such as the quality and performance of
the quantum processors and the availability of quantum error correction techniques
[50].

31

3.1.4 Parallelize quantum circuit execution

The ability to perform parallel execution of a quantum circuit is a key requirement
for efficient quantum computing. To achieve this, the quantum circuit includes a
finite-size universal instruction set of quantum gates such as {H,T,CNOT} or a
continuously-parameterized set such as {H,Rz(θ), CNOT}. The quantum circuit is
used to replicate a quantum system’s dynamics for any given input state. To further
optimize the circuit for parallel execution of the quantum gates, a classical algorithm
can be devised to reduce the depth of the quantum circuit (e.g. [41]).

Figure 6: A quantum circuit to realize exp(−iθX ⊗ Y ⊗ 1 ⊗ Z) for a dimensionless
evolution time θ using the Hadamard gate [41]

With the quantum circuit introduced in Figure 6, one alternative of parallelizing
such circuit is to perform the quantum gates that are not dependent on the result of
other gates.

Auxiliary qubits are additional qubits used to assist in quantum computing
algorithms. They can be viewed as transient storage for a quantum computation,
analogous to how temporary variables are utilized in classical computing. By acting
as intermediaries, auxiliary qubits can allow additional operations to be conducted
concurrently [36, 3].

3.2 Quantum circuit selection

The following three different benchmark quantum circuits will be used as benchmarks:
Graph State Circuit, Greenberger-Horne-Zeilinger (GHZ) Circuit, and Hidden Linear
Function Circuit. The selected quantum devices for executing these benchmark
circuits include the IonQ device, Rigetti Aspen M-3, and Lucy. These devices were
chosen based on their availability at the time of writing this thesis.

The Terraform script within this module plays a crucial role in spawning the
AWS API client in different regions to support execution on the aforementioned
quantum devices. By doing so, the module ensures that the benchmark circuits

32

can be executed on a variety of quantum devices, irrespective of their geographical
location.

For the benchmark circuits, the number of shots is determined based on the
number of qubits in the circuit. Specifically, the shots are set equal to 10n−1,
where n represents the number of qubits. This approach allows for an appropriate
balance between the level of accuracy and computational resources required for each
benchmark circuit.

3.2.1 Graph state circuit

The structure of a graph state is grounded in graph theory, which offers an efficient and
intuitive representation of quantum states in the context of quantum computing. In
this framework, quantum states are mapped onto undirected graphs, where vertices
correspond to qubits and edges signify the entanglement between these qubits.
The underlying mathematical foundation of graph states is stabilizer formalism,
where each qubit is associated with a set of stabilizer operators. These operators,
which are tensor products of Pauli matrices, commute with the quantum state and
can be used to capture the correlations between entangled qubits effectively. The
graph representation allows researchers to perform various quantum operations and
transformations by modifying the graph’s structure, such as adding or removing
vertices or edges, as well as local complementation.

Figure 7: Qiskit rendered visualization of a Graph State circuit with 4 qubits

3.2.2 Greenberger-Horne-Zeilinger circuit

The GHZ circuit is constructed using a combination of single-qubit Hadamard (H)
gates and multi-qubit controlled-NOT (CNOT) gates. The Hadamard gate is applied
to the first qubit, initializing it in a superposition state, while the remaining qubits

33

Figure 8: OpenQASM representation of a graph state circuit with 4 qubits

are left in their initial |0⟩ state. Subsequently, a series of CNOT gates is applied, with
the first qubit serving as the control and the remaining qubits as targets, successively.

Figure 9: OpenQASM representation of a GHZ circuit with 3 qubits

Figure 10: Qiskit rendered visualization of a GHZ circuit with 3 qubits

GHZ state in case of 2 qubits is commonly known as Bell state [16].

34

3.2.3 Hidden linear function circuit

The structure of the Hidden Linear Function (HLF) circuit involves multiple single-
qubit and multi-qubit operations. An n-qubit input register is initialized to the
|0⟩ state, and a single qubit is prepared in the |1⟩ state for the output register. A
Hadamard (H) gate is applied to all qubits, placing them in a superposition. The
quantum oracle, which encodes the hidden linear function, is then applied to the
superposed state. The oracle operation involves a series of controlled-X (CNOT)
gates that entangle the input register with the output register according to the
secret linear function. After the oracle operation, another layer of Hadamard gates is
applied to the input register, followed by a measurement. The measurement outcome
reveals information about the secret linear function.

Figure 11: OpenQASM representation of a HLF circuit with 3 qubits

Figure 12: Qiskit rendered visualization of a HLF circuit with 3 qubits

35

3.2.4 Commonly supported quantum gates

In accordance with the AWS Braket documentation, Table 1 lists the common basis
gates supported by each quantum device utilized in this study. By employing the
transpile function from the qiskit.compiler package, it is possible to transpile any
given circuit into the most frequently supported quantum gates.

IonQ Rigetti Aspen M-3 Lucy
x ✓ ✓ ✓
y ✓ ✓ ✓
z ✓ ✓ ✓
h ✓ ✓ ✓
cnot/cx ✓ ✓ ✓
cz ✓ ✓
cy ✓
swap ✓ ✓ ✓
rx ✓ ✓ ✓
ry ✓ ✓ ✓
rz ✓ ✓ ✓

Table 1: Quantum gates supported by IonQ, Rigetti Aspen M-3, and Lucy

36

4 Implementation and evaluation

To determine the quantum computers whose execution results most closely align
with simulated outcomes, various benchmarking methodologies can be employed.
One viable approach involves normalizing all execution results to represent the
probability of all conceivable quantum states across all qubits. Subsequently, a
benchmarking metric can be utilized to compute a fidelity value for each quantum
computer, effectively facilitating the identification of those that exhibit the highest
degree of congruence with simulated results.

There are two different benchmarking methods implemented in this thesis:

1. Hellinger fidelity provides a means to quantitatively assess the similarity between
two probability distributions.

2. Total Value Distance number serves as a means to quantitatively evaluate the
dissimilarity between two probability distributions.

The Hellinger fidelity measure is particularly advantageous due to its ability to
offer an intuitive, geometric interpretation of the distance between two distributions.
In the realm of quantum computing, the Hellinger fidelity is commonly employed
to evaluate the closeness of the execution results of quantum circuits and their
corresponding theoretical or simulated outcomes [23].

Given two probability distributions P and Q, the Hellinger fidelity is calculated
using the following formula:

H(P,Q) = (1 −
∑︂

(√pi − √
qi)2)2

Where pi and qi denote the individual probability values of the distributions
P and Q, respectively, and the summation runs over all possible outcomes. The
resulting fidelity value ranges between 0 and 1, with 1 indicating perfect agreement
between the two distributions, and 0 signifying complete dissimilarity [23].

The Total Variation Distance (TVD) fidelity is calculated using the following
formula (P and Q are two probability distributions P and Q):

TV D(P,Q) = 1
2 ∗

∑︂
|pi − qi|

Where pi and qi represent the individual probability values of the distributions
P and Q, respectively, and the summation is carried out over all possible outcomes.
The resulting fidelity value ranges from 0 to 1, with 0 indicating perfect agreement
between the two distributions, and 1 signifying complete dissimilarity.

37

4.1 Architecture

The proposed system shown in Figure 13 aims to address the challenges of optimizing,
deploying, and executing quantum circuits on various quantum computing devices.
The system comprises three primary components: Circuit Exporter, Main Circuit
Execution, and Benchmark Quantum Device Executor.

Figure 13: Dependency Graph of the System

The Circuit Exporter module utilizes Qiskit Transpiler to optimize quantum
circuits for efficient execution on target devices. The Main Circuit Execution module
is responsible for deploying and executing the optimized circuits using Terraform
deployment scripts. These scripts automate the process of deploying quantum circuits
to different cloud-based quantum computing devices. The Benchmark Quantum
Device Executor module benchmarks available quantum devices by deploying and

38

executing predefined tasks on them, while collecting and comparing the results to
determine the best device for a given circuit. The system leverages a Terraform
custom provider and cloud provider APIs to interact with quantum computing
platforms.

4.1.1 Circuit exporter

The Circuit Exporter module is implemented as a Python script, this module leverages
Qiskit [37] and Qiskit Braket [10] utilities to carry out its primary functions. Quantum
circuits are created using the QuantumCircuit class from the Qiskit library, ensuring
compatibility with a wide range of quantum computing devices.

Optimization of quantum circuits is achieved through Qiskit’s transpilation
process, which is configured to use a specific set of quantum gates: ’x’, ’y’, ’z’, ’h’,
’cnot’, ’rx’, ’ry’, ’rz’, and ’cx’. This choice of gates is informed by their universal
compatibility that is listed on section 3.2.4, as all supported quantum devices are
capable of executing these gates. Consequently, the Circuit Exporter module is
equipped to maintain full compatibility across diverse quantum computing platforms.

Figure 14: Output of the Circuit Exporter module for a hidden linear function circuit

Following the transpilation process, Qiskit Braket utilities are employed to convert
the optimized quantum circuits into the OpenQASM [33] format. This conversion
ensures that the circuits are represented in a standardized language, which further
enhances their compatibility with various quantum computing devices.

4.1.2 Main circuit executor

The "Main Circuit Execution" section presents an essential aspect of the system that
focuses on deploying and executing optimized quantum circuits on the best quantum

39

computing device, as determined by the "Benchmark Quantum Device Executor"
module. Implemented as a Python script, executed as a child process of a Python
parent process using the multiprocessing library, the Main Circuit Execution module
runs concurrently with the Benchmark Quantum Device Executor. The module is
designed to accept a parameter representing the device ID of the optimal quantum
computer, as identified by the Benchmark Quantum Device Executor.

One of the critical components within the Main Circuit Execution module is
the Terraform script, which provisions Amazon Web Services (AWS) resources and
declares AWS Braket quantum tasks to run a quantum circuit. The Terraform script
leverages the custom Terraform provider, as mentioned in the system dependency
chart, to interact seamlessly with the AWS infrastructure.

The module is designed to execute quantum circuits continuously, with each new
execution commencing upon receipt of results from the previous run. This continuous
execution approach allows for rapid feedback and analysis, enabling iterations and
refinements of quantum circuits based on the results obtained from each execution.

4.1.3 Benchmark quantum device executor

The "Benchmark Quantum Device Executor" section is an integral component of the
system that is responsible for benchmarking available quantum computing devices
by deploying and executing predefined tasks on them. Implemented as a Python
script, the Benchmark Quantum Device Executor module runs in parallel with the
"Main Circuit Execution" module.

Upon completion of the benchmark executions, the results from all quantum
devices are compared with the outcome of the quantum simulator DM1 from Amazon
Braket service. The comparison utilizes the Hellinger fidelity calculation to determine
which result is closest to the simulator’s output. By identifying the quantum device
with the highest fidelity, the Benchmark Quantum Device Executor module enables
the system to select the most suitable quantum computing device for executing a
given circuit.

4.1.4 Shared custom Terraform provider

At present, in the context of the emerging field of quantum computing services,
Terraform does not offer innate support for deploying these cutting-edge services,
necessitating the exploration of alternative approaches. To accommodate these evolv-
ing demands, the Terraform Provider Framework has been developed as an external

40

Application Programming Interface (API). This sophisticated framework empowers
developers with a programming interface specifically designed to create bespoke
deployment implementations for a diverse array of cloud services. Consequently,
this mitigates the limitations of Terraform’s core functionality with respect to the
specialized needs of quantum computing service deployment. The Terraform custom
provider encompasses several crucial components that facilitate seamless interaction
with cloud services:

1. Provider API client definition: This component serves as an access point for
provider users, enabling them to input credentials or configuration settings for
authenticating with the cloud service API.

2. A collection of data sources retrievable through the provider: Each data source
boasts its own implementation, offering users an interface to define parameters
for fetching and acquiring data.

3. An assortment of resources deployable and manageable via the provider: Each
resource constitutes a distinct Golang interface, equipped with methods for
creating, updating, reading, and deleting cloud-based resources.

From the capabilities provided by the Terraform custom provider, a comprehensive
implementation plan has been devised to facilitate AWS Braket deployment, which
encompasses the following components:

1. Provider API definition: This configuration incorporates the retrieval of AWS
credentials, which subsequently initializes an AWS Braket API client. Ad-
ditionally, the provider definition enables the specification of the region in
which the API client operates, allowing for the execution of quantum tasks in
various geographical locations (e.g., running a quantum task on Lucy in the
eu-central-1 region, while IonQ operates in the us-east-1 region).

2. A curated list of quantum devices as data sources: This data source provides
essential information regarding the status of each quantum device, indicating
whether a given device is online, queued, offline, or retired.

3. A quantum circuit definition as a resource: This component outlines the
characteristics and parameters of a quantum circuit to be executed on the
designated quantum device.

41

4. A quantum task as a resource: The task specifies the circuit to be executed,
the quantum device to be employed, and additional parameters such as the
number of shots and the storage location for the resulting data.

By implementing these crucial elements, the Terraform custom provider effectively
supports AWS Braket deployment and streamlines the management of quantum
tasks on various devices and within distinct regions. The custom Terraform provider
has been meticulously designed to operate in conjunction with the standard AWS
Terraform provider. This collaborative approach ensures the seamless deployment of
essential dependencies, such as S3 buckets and IAM roles, which are crucial for the
successful execution of AWS Braket. By integrating the capabilities of both providers,
users can effectively manage their AWS resources and expedite the deployment
process for quantum computing services.

4.2 System data and logic flows

We outline how each component in the experiment system interact, shown in Figure 15.
The Circuit Exporter component is designed to be operated manually, allowing users
to have full control over the selection of quantum circuits. The primary function of
this component is to export OpenQASM circuits in the form of a text file. Since
the rest of the components in the system execute automatically, this manual control
enables users to choose the appropriate circuit for specific tasks or requirements.

Both the Main Circuit Execution and Benchmark Quantum Device Executor
components read the text file provided by the Circuit Exporter. Upon receiving the file,
these components initiate a Terraform script that calls upon cloud provider APIs to
deploy the quantum circuits. Each component processes its own results independently,
ensuring a seamless operation. The Benchmark Quantum Device Executor identifies
the best-performing quantum device and submits its result to a parameter queue.
This parameter is then picked up by the Main Circuit Executor during each execution
cycle. In the event that the Main Circuit Executor does not receive a new parameter,
it continues to use the previously obtained value, maintaining consistent performance.
Terraform scripts employed in the aforementioned components utilize both custom
Terraform providers and standard cloud service providers, such as Amazon Web
Services (AWS) and Microsoft Azure. The standard providers supply the prerequisite
cloud resources to the custom provider, enabling cross-provider reference through
Terraform’s built-in support.

42

Figure 15: Logic flow of the system

43

5 Results and discussion

In this chapter, we present the results of the experimental setup from Chapter 4.
We offer insights into the current level of maturity in cloud support for quantum
computing, as well as the efficiency of execution queues and the time required
for execution. Additionally, the findings encompass observations regarding the
performance of the custom Terraform provider and the efficacy of the benchmark
methods applied to the specified quantum computers.

We had to undertake numerous iterations and testing to successfully deploy an
accurate circuit and obtain the necessary data. This is because the current state of
quantum computing service support within prominent cloud computing platforms
presents a multitude of challenges, such as inadequate documentation pertaining to
deployment parameters and the specific regions in which the service is available. For
instance, the Azure platform, at the time of writing this thesis, maintains a beta
designation for their quantum computing service through both the RestAPI and
CLI. This deficiency in comprehensive guidance hinders the efficient onboarding of
new developers and users, compounded by the scarcity of readily available online
resources such as tutorials, examples, and courses.

The absence of standardized methods for storing the results of quantum circuit
executions contributes to the complexity of the field. The heterogeneity of quantum
devices’ output further complicates matters; some devices yield a probability list
encompassing all states, whereas others provide the measured bit state for each shot.
Additionally, the adoption of open formats for quantum circuits, such as OpenQASM,
has not been universally embraced by all quantum devices, leading to a lack of
consensus on a standardized description for quantum circuits. This discordance
generates significant difficulties in establishing cross-platform support for quantum
circuits, as it necessitates the development of circuit translators to bridge the gap
between differing formats. Such a task is both laborious and unscalable, further
underscoring the need for a unified approach to the implementation and management
of quantum computing services within the cloud computing domain.

5.1 Execution efficiency

This section describes the effectiveness of the implementation. This consists of
the execution time, the execution queue on quantum computers, and the CPU
architecture support for the custom Terraform provider. In addition, the section
discloses implementation flaws and proposed solutions for future works.

44

Figure 16: Snapshots of the execution queue in hours in Amazon Braket service

5.1.1 Execution queue on quantum computers

At the time of composing this thesis, it is noteworthy that the execution queue for each
quantum processing unit (QPU) tends to be lengthy and exhibits a lack of consistency
between different units. This inconsistency ultimately results in protracted execution
durations, posing challenges for efficient quantum computing. Furthermore, the
frequent offline status of some quantum devices significantly hampers the effectiveness
of circuit execution, creating additional obstacles in the pursuit of optimal performance
in this rapidly developing field.

During implementation, it is noticed that the processing queue shown on the
cloud service’s user interface (UI) does not match the real time spent waiting. During
the completion of the implementation, there have been times when the quantum job
was done both earlier and later than the time shown on the queue.

5.1.2 Efficiency on running the task loop

In the context of energy efficiency, executing the task loop on a personal computer
proves to be suboptimal, as the majority of the process involves waiting for results.
Consequently, transitioning the loop to a cloud service that utilizes serverless ex-

45

ecution appears to be a more prudent approach, as it enables processing of the
quantum device results only when they are readily available. However, it is essential
to acknowledge the limited cross-cloud support in this regard, which introduces its
own set of challenges to be addressed in order to fully capitalize on the potential
benefits of such an approach in the realm of quantum computing.

5.1.3 Custom Terraform provider

The Terraform provider, as it currently stands, solely supports the x86 architecture
[20], which subsequently necessitates emulation when implementing the provider
on an ARM platform. This reliance on emulation inevitably results in diminished
performance, as the process introduces additional computational overhead.

Standard Terraform providers do not currently provide precompiled executable
binaries for this architecture. Therefore, the use of Terraform in arm64 environments
requires the compilation of the source code from scratch, an additional, non-trivial
phase that increases the complexity of the implementation setup procedure. This
circumstance necessitates additional time and resources, as well as a heightened
degree of caution. Each time the configuration is introduced to a new computing
environment, meticulous care must be taken to ensure that the compiled source code
is completely compatible and performs as expected. This situation highlights the
imperative need for more universal support in Terraform’s offerings, specifically to
facilitate the adoption and administration of arm64 architecture systems, which are
becoming increasingly popular.

There exists an identifiable anomaly within the Azure Command Line Interface
(CLI): the missing reference to the azure.storage.blob package during quantum
task submissions. Awaiting a formal resolution may be advisable. Meanwhile, a
temporary solution exists, particularly relevant for MacOS users. By running az
–version, one can ascertain the CLI’s Python installation location, for example,
/opt/homebrew/Cellar/azure-cli/2.46.0/libexec/bin/python. From this, one can in-
voke the corresponding Python’s pip, typically found at /opt/homebrew/Cellar/azure-
cli/2.46.0/libexec/bin/pip3, to install the absent azure.storage.blob package. Un-
fortunately, the current state of Azure CLI for quantum job submissions is severely
impaired. It does not respect the CLI flag override, thereby necessitating the preset-
ting of the default workspace, resource group, and location before initiating a job
submission. Further exacerbating the situation is the conspicuous lack of compre-
hensive documentation detailing supported circuit and output formats. As a result,
users face unanticipated input formats during job submissions, leading to execution

46

challenges.

5.1.4 Qiskit circuit transpiler

During the transpilation process, an observed issue arises within the Qiskit transpiler,
whereby it fails to recognize that the CNOT and CX gates are, in fact, equivalent.
This oversight manifests as a limitation, as the transpiler throws an exception when
the basis gate set does not encompass both CNOT and CX gates, even though
they represent the same quantum operation. Addressing this bug is essential in
order to ensure the accurate and efficient transpilation of quantum circuits, thereby
facilitating a more robust framework for quantum computing applications.

5.1.5 Errors handling

Given the variety of potential error occurrences, the current implementation’s lack
of an error-handling mechanism is glaring and a significant shortcoming. Errors
can arise from a variety of sources, with network disruptions being a prominent
example that leads to the unsuccessful execution of API calls to the cloud provider.
In addition, as long as the API remains in beta, cloud providers retain the right to
modify response values within API requests. Consequently, a more robust system
for managing errors is required. This should include comprehensive monitoring
and graceful system termination protocols to guarantee that abrupt, unanticipated
changes do not result in catastrophic system failures or data loss. These enhancements
would unquestionably increase the system’s stability and dependability.

5.2 Benchmark formula results

In accordance with the benchmarking formulas from Chapter 4, a consistent outcome
has been observed when assessing the fidelity of the three distinct quantum circuits
delineated in Section 3.2. The results are comprehensively displayed in Figure 17
and Figure 18.

Two figures list the number of qubits present in each circuit. The selection of
quantum circuit and number of qubits in this instance are random. When bench-
marking the performance of the quantum circuits execution across different quantum
machines, IonQ device has consistently performed better than the other two in both
metrics. It is difficult to determine why IonQ performs better than the other two
devices without comparing the noise and error at the hardware level.

47

Figure 17: TVD metrics per quantum machines

Taking a closer look at one quantum computer, the Rigetti Aspen M-3, since
it has the shortest execution queue, both the Total value distance metrics and the
Hellinger fidelity give the same answer: the more qubits are used in a circuit, the
less close the actual result is to what was expected. Those metrics are presented
in Figure 19 and Figure 20. Interestingly, despite the fact that the GHZ circuit
has fewer gates than the Graph State circuit, the GHZ circuit’s fidelity metrics are
inferior to those of Graph State circuit.

5.3 Execution cost

In determining the economic viability of quantum circuit execution, the number
of rounds, or repetitive measurements of a quantum circuit, necessary to produce
meaningful results is a crucial factor. The cost of operating quantum circuits is
directly proportional to the number of these executions; consequently, it is crucial
to select the optimal number of shoots in order to control expenditures without
compromising the quality of the results.

A task in AWS Braket is operationally defined as a single deployment of a quantum
circuit, executed a given number of shots (n). Each of these tasks incurs a certain
cost that is calculated based on a formula:

48

Figure 18: Hellinger fidelty per quantum machines

C = t+ n ∗ s

In this equation, t represents the base price of deploying a task, n is the quantity
of shots, and s is the cost per shot. Figure 21 visualizes the cost to execute a single
quantum task in 3 quantum computers used in the benchmarking.

Although the cost is not the focus of this thesis, represents a potential financial bar-
rier for practical applications. It requires striking a balance between cost-effectiveness
and the pursuit of statistically significant results.

Per-task price Per-shot price Per-minute price
IonQ $0.3 $0.03
Lucy $0.3 $0.00035
Aspen-M-3 $0.3 $0.00035
AWS Braket Simulators $0.075-$0.275

Table 2: Execution cost on the quantum computers provided by AWS Braket used
in benchmarking

The pricing strategy for quantum computing provided by the Azure Quantum
service is distinct. Using the same Rigetti Aspen M-3 machine as an illustration, the
price per quantum task is proportional to the quantum computer’s execution time.
However, since we were unable to effectively deploy a circuit for execution in the

49

Figure 19: TVD metrics per number of qubits

implementation, we cannot compare the costs of AWS and Azure.
When considering simulators, the cost metric takes a different perspective. Here,

the cost corresponds to the time required for the simulator to execute the quantum
circuit. Simulator costs are more predictable, providing a platform for initial testing
that is more cost-effective. This is especially true for the Microsoft Azure Quantum
service, since all the quantum simulations are free to use at the time this thesis was
written. The value of cloud-based services such as Amazon Web Services (AWS)
and Microsoft Azure is rising in this context. These platforms facilitates preliminary
circuit testing prior to deployment on actual QPUs. This strategy of conducting
’trial runs’ on simulators could be instrumental in reducing the costs associated with
quantum circuit execution and accelerating the transition of quantum computing
from academic theory to practical, real-world applications.

5.4 Conclusion and future works

The primary objective of this research was the development of a custom Terraform
provider to enhance the efficiency of deploying quantum circuits while concurrently
conducting benchmarking calculations to ascertain the most effective quantum device,
whose results closely align with simulated expected values. Moreover, the study

50

Figure 20: Hellinger fidelty per number of qubits

includes a proof of concept script designed to execute a main quantum circuit on a
quantum device, as determined by a separate process.

Despite encountering limitations in cloud service support and experiencing slow,
inefficient execution times of quantum computers, the project successfully demon-
strated the deployment of various quantum circuits through a unified interface, while
addressing the challenges faced and offering solutions for their mitigation.

Furthermore, the utilization of infrastructure as code significantly enhanced the
quality of quantum circuit execution, particularly in terms of maintainability and
security. This research, therefore, serves as a valuable contribution to the ongoing
development and optimization of quantum computing deployment and benchmarking
methodologies.

The research carried out in this thesis has established a pioneering framework,
thereby opening a plethora of avenues for refining and augmenting the setup. No-
tably, the thesis managed to successfully deploy and benchmark quantum computers
offered by Amazon Web Services (AWS). However, the implementation pertaining
to Microsoft Azure encountered challenges primarily due to the insufficiency of docu-
mentation, inhibiting a successful execution. Future endeavors, building upon the
foundational work of this thesis, could strive to expand the deployment to include
Microsoft Azure and other cloud services, thereby amplifying the reach and utility of

51

Figure 21: Execution Cost for IonQ, Lucy and Rigetti quantum computers in AWS
Braket with relations to number of shots

quantum computing applications.
One significant area identified for future enhancement pertains to the quantum

circuit transpiler implemented in the thesis, which, in its current form, has limited
capabilities. The transpiler supports the output of OpenQASM exclusively, deploying
a single static output to all supported quantum computers. This scope could be
broadened in future work to allow dynamic output adjustment to a circuit, and also
incorporate support for additional quantum circuit formats, hence offering a more
adaptable and versatile transpiler.

Moreover, the benchmarking and execution of the setup, which presently rely
on a local computer, could be migrated to a cloud service in subsequent iterations.
This transition would circumvent the requirement of a perpetually operating local
computer, offering a more scalable and efficient solution.

The infrastructure state instantiated by Terraform currently lacks secure storage
and is instead retained within the local machine. This scenario poses a significant
hindrance to system portability, particularly when multiple developers seek concurrent
utilization of the same system for deploying distinct experiments. Due to the lack of
a synchronization mechanism for the state, potential conflicts could arise, leading
to phenomena such as deadlocks and unpredictable system behaviours. Potential
solutions for centralized state management within Terraform could be implemented

52

using services such as Amazon Web Services (AWS) DynamoDB or AWS Simple
Storage Service (S3).

Lastly, considering the extended processing times innate to quantum computing,
the implementation of a notification system could substantially enhance the usability
of the setup. Currently, there is no mechanism to alert users when a benchmarking
task has completed. Incorporating an email notification system would enable users
to be promptly informed upon the completion of a benchmark, facilitating a more
proactive response. Such additions would greatly augment the user experience
and increase the practicality of the system, ultimately contributing to the broader
accessibility and effectiveness of quantum computing.

53

References
[1] S. Achar. Enterprise saas workloads on new-generation infrastructure-as-code

(iac) on multi-cloud platforms. Global Disclosure of Economics and Business,
10(2):55–74, 2021.

[2] R. Akond, M. Rezvan, and W. Laurie. A systematic mapping study of infras-
tructure as code research. vol., 108:65–77, 2019.

[3] B. Anne and K. Elham. Parallelizing quantum circuits. vol., 410:2489–2510,
2009.

[4] A. Bayerstadler, G. Becquin, J. Binder, T. Botter, H. Ehm, T. Ehmer, M. Erd-
mann, N. Gaus, P. Harbach, M. Hess, J. Klepsch, M. Leib, S. Luber, A. Luckow,
M. Mansky, W. Mauerer, F. Neukart, C. Niedermeier, L. Palackal, R. Pfeif-
fer, C. Polenz, J. Sepulveda, T. Sievers, B. Standen, M. Streif, T. Strohm,
C. Utschig-Utschig, D. Volz, H. Weiss, and F. Winter. Industry quantum
computing applications. EPJ Quantum Technology, 8(1):25, 2021. Number: 1
Publisher: Springer Berlin Heidelberg.

[5] Alexander Benlian, Thomas Hess, and Peter Buxmann. Drivers of SaaS-adoption
– an empirical study of different application types. Business & Information
Systems Engineering, 1(5):357–369, 2009.

[6] F. G. S. L. Brandāo, A. W. Harrow, and M. Horodecki. Local random quantum
circuits are approximate polynomial-designs. vol., 346:397–434, 2016.

[7] Gilles Brassard, Isaac Chuang, Seth Lloyd, and Christopher Monroe. Quan-
tum computing. Proceedings of the National Academy of Sciences, 95(19):15,
September 1998.

[8] Yevgeniy Brikman. Terraform: Up and Running. " O’Reilly Media, Inc.", 2022.

[9] Winton Brown and Omar Fawzi. Scrambling speed of random quantum circuits,
2012.

[10] Qiskit Community. Qiskit braket plugin, URL: https://github.com/qiskit-
community/qiskit-braket-provider. Accessed on 7 May 2023.

[11] Andrew Cross. The IBM Q experience and QISKit open-source quantum
computing software. In APS March Meeting Abstracts, volume 2018 of APS
Meeting Abstracts, page L58.003, January 2018.

[12] David P. DiVincenzo. The physical implementation of quantum computation.
Fortschritte Der Physik, 48(9):771–83, 2000.

[13] O. Gamel. Entangled Bloch spheres: Bloch matrix and two-qubit state space.
Phys. Rev. A, 2016.

54

[14] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. Equivalent quantum
circuits, 2011.

[15] Sukhpal Singh Gill, Adarsh Kumar, Harvinder Singh, Manmeet Singh, Kamal-
preet Kaur, Muhammad Usman, and Rajkumar Buyya. Quantum computing:
A taxonomy, systematic review and future directions. Software: Practice and
Experience, 52(1):66–114, 2022.

[16] N Gisin and H Bechmann-Pasquinucci. Bell inequality, bell states and maximally
entangled states for n qubits. Physics Letters A, 246(1):1–6, 1998.

[17] Constantin Gonzalez. Cloud based QC with Amazon Braket. Digitale Welt,
5(2):14–17, 2021.

[18] Teresa Guarda, Washington Torres, and Maria Fernanda Augusto. The impact
of quantum computing on businesses. In Osvaldo Gervasi, Beniamino Murgante,
Sanjay Misra, Ana Maria A. C. Rocha, and Chiara Garau, editors, Computa-
tional Science and Its Applications – ICCSA 2022 Workshops, Lecture Notes in
Computer Science, pages 3–14. Springer International Publishing, 2022.

[19] Inc HashiCorp. CDK for terraform, URL:
https://developer.hashicorp.com/terraform/cdktf. Accessed on 14 Feb
2023.

[20] Inc HashiCorp. Terraform documentation, URL:
https://developer.hashicorp.com/terraform/docs. Accessed on 14 Feb
2023.

[21] Johnny Hooyberghs. Azure quantum. In Johnny Hooyberghs, editor, Introducing
Microsoft Quantum Computing for Developers: Using the Quantum Development
Kit and Q#, pages 307–339. Apress, 2022.

[22] Ryszard Horodecki, PawełHorodecki, MichałHorodecki, and Karol Horodecki.
Quantum entanglement. vol., 81(2):865–942, June 2009.

[23] Zhi-Xiang Jin and Shao-Ming Fei. Quantifying quantum coherence and non-
classical correlation based on hellinger distance. Phys. Rev. A, 97:062342, Jun
2018.

[24] N. Khammassi, I. Ashraf, J. V. Someren, R. Nane, A. M. Krol, M. A. Rol,
L. Lao, K. Bertels, and C. G. Almudever. Openql: A portable quantum
programming framework for quantum accelerators. ACM Journal on Emerging
Technologies in Computing Systems, 18:1, 2021.

[25] E. Knill. Quantum gates using linear optics and postselection. Phys. Rev. A,
66:052306, Nov 2002.

[26] G. Leonid. Classical complexity and quantum entanglement. vol., 69(3):448–484,
November 2004.

55

[27] Chi-Kwong Li, Rebecca Roberts, and Xiaoyan Yin. Decomposition of unitary
matrices and quantum gates. International Journal of Quantum Information,
2013. Publisher: World Scientific Publishing Company.

[28] Thomas Lubinski, Cassandra Granade, Amos Anderson, Alan Geller, Mar-
tin Roetteler, Andrei Petrenko, and Bettina Heim. Advancing hybrid quan-
tum–classical computation with real-time execution. Frontiers in Physics, 10,
2022.

[29] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing, 2011.

[30] R. Modi. Infrastructure as code. In Deep-Dive Terraform on Azure. Apress
Berkeley, CA, 2021.

[31] Thien Nguyen, Dmitry Lyakh, Eugene Dumitrescu, David Clark, Jeff Larkin, and
Alexander McCaskey. Tensor network quantum virtual machine for simulating
quantum circuits at exascale. ACM Transactions on Quantum Computing, 4:1,
2022.

[32] Shuntaro Okada, Masayuki Ohzeki, Masayoshi Terabe, and Shinichiro Taguchi.
Improving solutions by embedding larger subproblems in a d-wave quantum
annealer. Scientific Reports, 9(1):2098, 2019. Number: 1 Publisher: Nature
Publishing Group.

[33] Openqasm. Quantum assembly language for extended quantum circuits, URL:
https://github.com/openqasm/openqasm.

[34] Rajiv Pandey, Pratibha Maurya, Guru Dev Singh, and Mohd. Sarfaraz Faiyaz.
Evolutionary Analysis: Classical Bits to Quantum Qubits, pages 115–129.
Springer Nature Singapore, Singapore, 2023.

[35] Arun K. Pati. Existence of the schmidt decomposition for tripartite systems.
vol., 278:118–122, 2000.

[36] Dong Pyo Chi, Jeong San Kim, and Soojoon Lee. Quantum algorithms without
initializing the auxiliary qubits. Phys. Rev. Lett., 95:080504, Aug 2005.

[37] Qiskit. Qiskit website, URL: https://qiskit.org/. Accessed on 7 May 2023.

[38] A. Rahman, E. Farhana, and L. Williams. The ‘as code’ activities: development
anti-patterns for infrastructure as code. Empir Software Eng, 25:3430–3467,
2020.

[39] Gokul Subramanian Ravi, Kaitlin N. Smith, Pranav Gokhale, and Frederic T.
Chong. Quantum computing in the cloud: Analyzing job and machine charac-
teristics. In 2021 IEEE International Symposium on Workload Characterization
(IISWC, pages 39–50, 2021.

56

[40] Gokul Subramanian Ravi, Kaitlin N. Smith, Prakash Murali, and Frederic T.
Chong. Adaptive job and resource management for the growing quantum
cloud. In 2021 IEEE International Conference on Quantum Computing and
Engineering (QCE), pages 301–312, 2021.

[41] R. Sadegh, W. Nathan, and C. S. Barry. Quantum-circuit design for efficient
simulations of many-body quantum dynamics. vol., 14, 2012.

[42] S. Sciara, F. R. Lo, and G. Compagno. Universality of schmidt decomposition
and particle identity. Sci Rep, 7, 2017.

[43] Enaul haq Shaik and Nakkeeran Rangaswamy. Implementation of quantum
gates based logic circuits using ibm qiskit. In 2020 5th International Conference
on Computing, Communication and Security (ICCCS), pages 1–6, 2020.

[44] Harpreet Singh and Abha Sachdev. The quantum way of cloud computing.
In 2014 International Conference on Reliability Optimization and Information
Technology (ICROIT), pages 397–400, 2014.

[45] Daniel Sokolowski. Infrastructure as code for dynamic deployments. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, page
1775–1779, New York, NY, USA, 2022. Association for Computing Machinery.

[46] Anthony T Velte, Toby J Velte, Robert C Elsenpeter, and Robert C Elsenpeter.
Cloud computing: a practical approach. McGraw-Hill New York, 2010.

[47] K. Venkateswaran. Fundamentals of Quantum Computing. Springer Cham,
2022.

[48] Alexander Yu Vlasov. On symmetric sets of projectors for reconstruction of a
density matrix, 2003.

[49] Dave Wecker and Krysta M. Svore. Liqui| : A software design architecture and
domain-specific language for quantum computing, 2014.

[50] B. Weder, J. Barzen, F. Leymann, and M. Salm. Automated quantum hardware
selection for quantum workflows. vol., 10, 2021.

[51] Benjamin Weder, Uwe Breitenb"ucher, Frank Leymann, and Karoline Wild.
Integrating quantum computing into workflow modeling and execution. In
2020IEEE/ACM 13th International Conference on Utility and Cloud Computing
(UCC, pages 279–291, 2020.

[52] Robert Wille, Rod Van Meter, and Yehuda Naveh. Ibm’s qiskit tool chain:
Working with and developing for real quantum computers. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1234–
1240, 2019.

57

[53] Marcus Woo. What is a quantum computer? Engineering and Science,
76(1):20–25, 2013.

[54] William K. Wootters and Wojciech H. Zurek. The no-cloning theorem. Physics
Today, 62(2):76–77, 02 2009.

[55] Will Zeng, Blake Johnson, Robert Smith, Nick Rubin, Matt Reagor, Colm Ryan,
and Chad Rigetti. First quantum computers need smart software. Nature,
549(7671):149–151, 2017. Number: 7671 Publisher: Nature Publishing Group.

	Abstract
	Preface
	Contents
	Abbreviations
	1 Introduction
	1.1 Quantum gates
	1.2 Quantum circuits
	1.3 Hybrid computing
	1.3.1 Applications of quantum hybrid computing

	1.4 Structure of the thesis

	2 Background: Quantum computing
	2.1 Qubits and gates
	2.1.1 Superposition
	2.1.2 Entanglement
	2.1.3 Density matrix
	2.1.4 Unitary matrix
	2.1.5 Hadamard gate
	2.1.6 Phase shift gate

	2.2 Quantum algorithms
	2.3 Quantum software frameworks
	2.4 Quantum computing cloud infrastructure
	2.4.1 IBM
	2.4.2 Microsoft Azure
	2.4.3 AWS
	2.4.4 Google Cloud

	2.5 Infrastructure as code
	2.5.1 AWS cloud development kit
	2.5.2 Terraform
	2.5.3 Cloud development kit for Terraform

	3 Methods
	3.1 Random quantum circuits and quantum algorithms
	3.1.1 Depth of a quantum circuit
	3.1.2 Number of quantum gates in a quantum circuit
	3.1.3 Run time of a quantum circuit
	3.1.4 Parallelize quantum circuit execution

	3.2 Quantum circuit selection
	3.2.1 Graph state circuit
	3.2.2 Greenberger-Horne-Zeilinger circuit
	3.2.3 Hidden linear function circuit
	3.2.4 Commonly supported quantum gates

	4 Implementation and evaluation
	4.1 Architecture
	4.1.1 Circuit exporter
	4.1.2 Main circuit executor
	4.1.3 Benchmark quantum device executor
	4.1.4 Shared custom Terraform provider

	4.2 System data and logic flows

	5 Results and discussion
	5.1 Execution efficiency
	5.1.1 Execution queue on quantum computers
	5.1.2 Efficiency on running the task loop
	5.1.3 Custom Terraform provider
	5.1.4 Qiskit circuit transpiler
	5.1.5 Errors handling

	5.2 Benchmark formula results
	5.3 Execution cost
	5.4 Conclusion and future works

	References

