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Abstract 
 
Property valuation is an important task for various stakeholders, including 
banks, local authorities, property developers, and brokers. As a result of the 
characteristics of the real estate market, such as the infrequency of trades, 
limited supply, negotiated prices, and small submarkets with unique traits, 
there is no clear market value for properties. Traditionally property 
valuations are done by expert appraisers. Property valuation can also be 
done accurately with machine learning methods, but the lack of 
interpretability with accurate machine learning methods can limit the 
adoption of those methods. Interpretable machine learning methods could 
be a solution to this issue, but there are concerns related to the accuracy of 
these methods. 

This thesis aims to evaluate the feasibility of interpretable machine 
learning methods in property valuation by comparing a promising 
interpretable method to a more complex machine learning method that has 
had good results in property valuation previously. The promising 
interpretable method and the well-performed machine learning method are 
chosen based on previous literature. 

The two chosen methods, Extreme Gradient Boosting (XGB) and 
Explainable Boosting Machine (EBM) are compared in terms of prediction 
accuracy of properties in six big municipalities of Denmark. In addition to 
the accuracy comparison, the interpretability of the EBM is highlighted. 

The accuracy of the XGB method is better, even though there are no big 
differences between the two methods in individual municipalities. The 
interpretability of the EBM is good, as it is possible to understand, how the 
model makes predictions in general, and how individual predictions are 
made. 

Keywords  Property valuation, machine learning, interpretable machine 
learning, XGBoost, XGB, Explainable Boosting machine, EBM 
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Tiivistelmä 

 
Kiinteistöjen arviointi on tärkeä tehtävä eri sidosryhmien, kuten pankkien, 
kuntien, kiinteistökehittäjien ja välittäjien kannalta. 
Kiinteistömarkkinoiden ominaisuudet, kuten harvoin tapahtuvat kaupat, 
rajoitettu tarjonta, neuvotellut hinnat ja paikalliset erot, vaikuttavat siihen, 
että kiinteistöillä ei ole selkeää markkina-arvoa. Perinteisesti kiinteistöjen 
arvioinnin tekevät asiantuntijat. Kiinteistöjen arviointi voidaan tehdä 
tarkasti myös koneoppimismenetelmillä, mutta tulkittavuuden puute 
tarkoilla koneoppimismenetelmillä voi rajoittaa näiden menetelmien 
käyttöönottoa. Tulkittavat koneoppimismenetelmät voisivat olla ratkaisu 
tähän ongelmaan, mutta näiden menetelmien tarkkuus ei välttämättä ole 
tarvittavalla tasolla. 

Tämän työn tavoitteena on arvioida tulkittavien 
koneoppimismenetelmien toteutettavuutta kiinteistöjen arvioinnissa 
vertaamalla lupaavaa tulkittavissa olevaa menetelmää monimutkaisempaan 
koneoppimismenetelmään, jolla on aiemmin saatu hyviä tuloksia 
kiinteistöjen arvioinnissa. Lupaava tulkittava menetelmä ja hyvin tuloksia 
saanut koneoppimismenetelmä valitaan aikaisemman kirjallisuuden 
perusteella. 

Valittuja menetelmiä, Extreme Gradient Boosting (XGB) ja Explainable 
Boosting Machine (EBM), verrataan kiinteistöjen ennustetarkkuuden 
suhteen kuudessa Tanskan suuressa kunnassa. Tarkkuusvertailun lisäksi 
EBM tulkittavuutta esitellään. 

XGB-menetelmän tarkkuus on parempi kokonaisuudessaan, vaikkakin 
erot yksittäisissä kunnissa ovat pieniä. EBM tulkittavuus on hyvä, ja on 
mahdollista ymmärtää, miten malli tekee ennusteita yleisesti ja miten 
yksittäisiä ennusteita tehdään. 

Avainsanat  Kiinteistöjen arviointi, koneoppiminen, tulkittava koneoppi-
minen, XGBoost, XGB, Explainable Boosting Machine, EBM 
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1 Introduction 
 
Property valuation is important for various stakeholders. Banks use it for 
collateral loans and mortgage release, local authorities use it for taxation, 
property developers use it for investment purposes, and brokers use it for 
transactions (Lee, 2022; Su et al., 2021). However, the real estate market has 
characteristics that make the market price unclear (Hilbers et al., 2001). Each 
property is unique, trades are infrequent, supply is limited, transaction costs 
are high, prices are negotiated and change over time, and the real estate 
market consists of smaller submarkets with unique traits. 

As there is no clear market price, a method for evaluating properties is 
needed. Properties are valued by estimating what the price of a property 
would be if it was sold (Pagourtzi et al., 2003). Traditionally valuations have 
been done based on the experience and knowledge of expert appraisers. More 
recently, as more data has become obtainable and infrastructure for 
computing has developed, machine learning algorithms have been used to 
predict the price of properties with great success. For example, the neural 
network approach of Peng et al. (2021) outperformed valuations made by 
professional appraisers in most of the comparisons. 

Many machine learning methods are so complex that the predictions 
that are made are not understandable. The lack of understandability can 
reduce the attractiveness of machine learning algorithms, as organizations 
can be reluctant to adopt models that are not understandable (Veale et al., 
2018). In addition, subjects of automated decision-making, for example, 
individuals seeking a loan with a property as collateral, have a right to 
meaningful information about the logic involved under the General Data 
Protection Regulation (GDPR) of the European Union (Selbst & Powles, 
2018). 

Post-hoc interpretability methods could be a solution to this issue, as 
they can be used to explain any machine learning method. However, there 
are some issues related to the uncertainty of the explanations produced by 
post-hoc interpretability methods (Rudin, 2019). Another possibility is using 
machine learning methods that are constrained in a way, which makes them 
interpretable. Some authors think that there is a trade-off between accuracy 
and interpretability with intrinsically interpretable methods (Breiman, 2001; 
Lundberg & Lee, 2017).  Rudin (2019) however claims that the trade-off 
between accuracy and interpretability does not necessarily exist. 

 
1.1 Research problem and research questions 

 
The main objective of this thesis is to estimate the usability of interpretable 
methods compared to more complex black-box methods in property 
valuation and highlight the benefits of interpretability in property valuation 
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machine learning tasks. In this thesis, the research problem is considered 
from the point of view of Nordea, for which an interpretable challenger model 
is provided in this thesis. 

The objective of this thesis is to answer the following research questions:  
1. What are the benefits of interpretability in property valuation? 
2. Can interpretable machine learning methods predict property prices 

as accurately as complex state-of-the-art machine learning methods?  
3. How can the used interpretable method be explained? 

 
1.2 Research design and scope 

 
First, interpretability in machine learning is described in detail. A review of 
previous literature is done to determine, what methods have been 
successfully used in estimating property prizes, and what interpretable 
methods could be used in this thesis. In addition, methods that were chosen 
based on the literature are described in detail. 

After that, interpretable and black-box methods that were chosen based 
on the literature review, are compared to determine if there is a trade-off 
between the chosen methods. In addition, a model that was built with the 
chosen interpretable method is presented to highlight the interpretability of 
the chosen method. 

There is extensive literature on machine learning methods that have been 
compared in property valuation. Based on the literature, the most promising 
black-box type methods are identified, and a single best method will be 
chosen for this thesis. As there is extensive literature on this topic, the 
considered machine learning methods are limited to methods that have been 
used in multiple studies. 

For interpretable methods, all methods that have been used in property 
valuation are included, as the literature on interpretable machine learning in 
property valuation is scarce. The chosen interpretable method is determined 
based on the performance when compared to the previously identified 
promising methods. 

The research questions are answered based on the data that has been 
provided by Nordea. The data is limited to transactions of owner-occupied 
properties in six, big municipalities of Denmark. 

 
1.3 Structure of the thesis 

 
This thesis has the following structure. Section 2 introduces interpretable 
machine learning as a topic and discusses the strengths and weaknesses of 
different ways of ensuring interpretability. Section 3 reviews the existing 
literature on machine learning methods that have been used in property 
valuation. The most promising black-box and interpretable methods are 
chosen based on the literature review. The used data, chosen methods, and 
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other decisions related to the modelling process are detailed in Section 4. 
Section 5 presents the results of different methods and highlights the 
interpretability of the chosen interpretable method. Lastly, Section 6 
includes discussions of findings and avenues of future research. 
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2 Interpretability in machine learning 
 

In this section, different definitions of interpretability are introduced and the 
reasons for interpretability are discussed. After that, characteristics of good 
explanations of machine learning systems, and strengths and weaknesses of 
different ways of providing explanations are presented. 

There is no clear consensus on the definition of interpretability in the 
machine learning context (Doshi-Velez & Kim, 2017; Lipton, 2018; Molnar, 
2020). According to Rudin (2019), the meaning of interpretability is domain 
specific. 

Even though there seems to be an agreement that there is no clear 
definition of interpretability, some authors have provided useful definitions 
that are related to human understanding. Doshi-Velez and Kim (2017) define 
interpretability as the ability to present or present machine learning systems 
to humans. According to Molnar (2020), the interpretability of machine 
learning is related to the ease of understanding why certain predictions have 
been made. If it is easy to understand the reasoning for predictions made by 
a model, the interpretability of said model is high. 

Interpretability can be divided into two categories, post-hoc 
interpretability and intrinsic interpretability (Molnar, 2020). Post-hoc 
interpretability refers to separate methods that can be applied to any 
machine learning model after training (Doshi-Velez & Kim, 2017). Post-hoc 
interpretability methods are used to explain black-box machine learning 
models that do not produce understandable explanations of predictions 
(Rudin, 2019). 

According to Rudin (2019), intrinsically interpretable models are 
constrained in a way that conveys useful knowledge, while Molnar (2020) 
notes that intrinsic interpretability stems from the simple structure of 
machine learning models that are easily understandable. 

 
2.1 Why interpretability? 
 
According to Lipton (2018), the reasons for decisions are often important. In 
addition to making accurate predictions, understanding why predictions are 
made is also important. Lundberg and Lee (2017) state that understanding 
why a model makes certain predictions can be as important as prediction 
accuracy. 
 
Adoption of machine learning  
 
Lack of interpretability is limiting the adoption of complex machine learning 
methods in many industries. According to Veale et al. (2018), several 
practitioners noted that getting organizational buy-in with models that were 
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not interpretable was difficult. Lorenz et al. (2022) state that the adoption of 
machine learning may seem surprisingly slow in many industries, and the 
lack of model interpretability is limiting the acceptance and implementation 
of machine learning methods. According to Alvarez Melis and Jaakkola 
(2018), the lack of interpretability can hamper the adoption of machine 
learning in high-stakes decision-making especially. Lee (2022) brings up the 
low interpretability of often-used black-box type methods as a reason for the 
slow adoption of machine learning methods for property valuation. 

Interpretability in machine learning is expected to catalyse the adoption 
of machine learning according to Molnar (2020). Similarly, Lorenz et al. 
(2022) note that understanding how predictions are made through 
interpretability will ease practical applications. Lee (2022) anticipates that 
interpretable machine learning will be a catalyst in the adoption of machine 
learning techniques in property valuation. 
 
Mismatch of goals 
 
The goals of developing machine learning models, e.g. maximizing out-of-
sample accuracy, are not always aligned with real-world tasks that they are 
meant to solve (Ribeiro et al., 2016). Interpretable models might help with 
the issue of mismatching goals of machine learning models and the real-
world (Lipton, 2018). 

According to Doshi-Velez and Kim (2017), algorithms often optimize a 
proxy of function for the ultimate goal. By understanding how a model works, 
it is possible to ensure that the proxy goal and the ultimate goal align or that 
the gap between the goals is visible. Similarly, Molnar (2020) notes that 
interpretability helps with the gap that is caused by the imperfect goal 
specification of machine learning models.  

 
Confirming important criteria 
 
When machine learning systems are understood by humans, it is possible to 
confirm other important criteria of machine learning systems (Doshi-Velez 
& Kim, 2017). Doshi-Velez and Kim (2017) list five of these criteria, which are 
fairness, privacy, robustness, causality, and trust. 

Rudin et al. (2018) bring up the possibility to evaluate and debate the 
fairness of a model as a benefit of interpretability. With explanations, it is 
possible to prove that the decision-making has been done fairly and ethically 
(Adadi & Berrada, 2018). 

According to Lorenz et al. (2022), interpretability enhances the reliability 
of machine learning models. Ghorbani et al. (2019) note that it is possible to 
establish necessary trust by reliably explaining predictions of machine 
learning models. Trusting single predictions and trusting the model are 
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impacted by how well humans understand the model’s behaviour, which is 
necessary for the model to be used (Ribeiro et al., 2016). 

 
High stakes 
 
Rudin (2019) states that interpretability is needed for high-stakes decision-
making. According to Lipton (2018), the ability of humans to understand the 
reasoning of machine learning models is important in critical areas, such as 
medicine, criminal justice, and finance. Similarly, Molnar (2020) claims that 
as soon as a model has a significant financial or societal impact, 
understanding how and why predictions are made ensures trust and fairness. 
 
Gaining knowledge 
 
Another reason, why interpretability is important is related to gaining 
knowledge. According to Lorenz et al. (2022) understanding how a machine 
learning model arrived at its prediction will make it possible to gain new 
insights about the phenomenon that is studied. Doshi-Velez and Kim (2017) 
note that explanations of the inner workings of machine learning models can 
be converted to knowledge. According to Adadi and Berrada (2018), 
explainable artificial intelligence can help with gaining knowledge on the 
subject matter. 
 
Troubleshooting and improving through iterations 
 
According to Rudin (2019), one main benefit of interpretability is that it 
makes troubleshooting easier. Adadi and Berrada (2018) bring up the ability 
to quickly identify and correct mistakes as a reason for explainable artificial 
intelligence.  

Adadi and Berrada (2018) also mention that explainable artificial 
intelligence makes it easier to improve models through iteration. According 
to Rudin (2019), interpretability can lead to more accuracy through a better 
understanding of the studied problem and iteration. 

 
Legal requirements 
 
GDPR adds to the need to address the interpretability of machine learning 
models. Goodman and Flaxman (2017) argue that the right to explanation 
exists, while it is not clear what is meant by that, while Wachter et al. (2017) 
disagree with Goodman as according to them there is no clear right to 
explanation outlined in GDPR. Selbst and Powles (2018) however argue that 
rights to “meaningful information of the logic involved” when individuals are 
subject to automated decision-making in articles 13-15 of GDPR essentially 
give individuals the right to an explanation. Adadi and Berrada (2018), Rudin 
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(2019), and Doshi-Velez and Kim (2017) also bring up compliance with the 
law as a reason for interpretability. 
 
Why not? 
 
Interpretability is not always necessary. If a model can be trusted because it 
has been used successfully over time, or if there are no significant 
consequences for unacceptable results, interpretability might not be needed 
(Doshi-Velez & Kim, 2017; Molnar, 2020). In addition, interpretability might 
allow manipulation of the system (Molnar, 2020). 

Interpretability can also cause misplaced trust in machine learning. 
Poursabzi-Sangdeh et al. (2021) found that participants of their study were 
worse at detecting sizable mistakes made by an interpretable prediction 
model when compared to a black-box type prediction model.  
 
2.2 How to evaluate interpretability? 
 
Swartout and Moore (1993) list five general requirements for useful 
explanations of artificial intelligence systems. These requirements can also 
apply to the explanations of modern machine learning models, as there are 
many similarities in more recent machine learning interpretability literature. 
The five requirements are fidelity, understandability, sufficiency, low 
construction overhead, and efficiency. 
 
Fidelity 

 
The first general requirement by Swartout and Moore (1993) is fidelity, which 
refers that explanation must accurately represent the system that is being 
explained.  In more recent literature, Ribeiro et al. (2016) bring up local 
fidelity as an essential criterion for explanations and Alvarez Melis and 
Jaakkola (2018) mention faithfulness as a desideratum of explanations. 
Important aspects of explanations that are related to the fidelity desideratum 
are the stability of explanations brought up by Alvarez Melis and Jaakkola 
(2018) and the robustness of explanations brought up by Ghorbani et al. 
(2019). 

 
Understandability 

 
The second requirement listed by Swartout (1993) is understandability: the 
explanations are only useful if they are understood by the users of the 
systems. Also, Ribeiro et al. (2016) bring up understandability as an 
important factor in explanations. 

Lipton (2018) lists different notions of interpretability that are all related 
to understandability. These notions are simulatability, which refers to the 
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ability to replicate the decision-making process of a trained algorithm, 
decomposability, which refers to understanding parts of the model, such as 
the impact of an input variable, and algorithmic transparency, which refers 
to understanding how a learning algorithm converges.  

Molnar (2020) presents different scopes of interpretability. In addition to 
algorithmic transparency, the difference between global and local 
interpretability is brought up. Global interpretability refers to understanding 
how a model makes predictions, while local interpretability refers to 
understanding why a single prediction was made. 

Molnar (2020) mentions that holistic, global interpretability is often very 
hard to achieve, as completely understanding any model that has over a few 
parameters or weights is difficult. This is related to a measure of 
interpretability presented by Rudin (2019), which is sparsity, as the sparsity 
of models affects how easy they are to understand. For linear models, Molnar 
(2020) argues that humans cannot imagine feature spaces with more than 3 
features, which limits the understandability of models with many features. 

Molnar (2020) brings up another level of global interpretability, global 
interpretability on a modular level. It refers to understanding parts of the 
model at a time, such as the effects of single features or interactions between 
features, and is easier to achieve than holistic, global interpretability. Global 
interpretability on a modular level is similar to the decomposability notion 
introduced by Lipton (2018). 

 
Sufficiency  

 
The third requirement of explanations listed by Swartout and Moore (1993) 
is sufficiency, the explanations need to produce answers to all the questions 
that users of the system might have. Alvarez Melis and Jaakkola (2018) also 
brought up a similar desideratum of interpretability that should be satisfied, 
which is explicitness. 

 
Low construction overhead  

 
Low construction overhead is the fourth requirement of explanations listed 
by Swartout and Moore (1993). Producing explanations should not add too 
much additional workload for the designer of the system, as it might result in 
foregoing explanations altogether. 

 
Efficiency 

 
The last requirement of explanations presented by Swartout and Moore 
(1993) is efficiency, which focuses on the runtime efficiency of creating 
explanations. Similar to low construction overhead, creating explanations 
should not affect the runtime of a system too much. 
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2.3 Post-hoc interpretability 
 
With simple models, the best explanation is the model itself. With more 
complex models that cannot produce understandable explanations of 
predictions, an explanation model that approximates the original model is 
needed for producing explanations (Lundberg & Lee, 2017). With the 
growing availability of big data, complex models are often more accurate than 
simpler ones (Lundberg & Lee, 2017). Modern machine learning techniques 
can automatically detect non-linearities, transformations, and high-order 
interactions, which results in great accuracy (Mayer et al., 2019). 

According to Lipton (2018), one advantage of post-hoc interpretability 
comes from the ability to provide interpretability without losing accuracy. 
Model-agnostic characteristic of post-hoc interpretability methods makes it 
possible to explain the best current methods as well as all future methods 
(Ribeiro et al., 2016). 

The main deficiency of post-hoc interpretability methods is related to 
fidelity. According to Rudin et al. (2022), post-hoc explanations are too often 
misleading or wrong. Lipton (2018) also mentioned that post-hoc 
explanations can be misleading.  Alvarez Melis and Jaakkola (2018) claim 
that most post-hoc interpretability methods are not faithful to the original 
model. The untrustworthy explanations can create misplaced trust in the 
black-box models, which can be harmful (Rudin et al., 2022). 

Dimanov et al. (2020) show that explanations produced by post-hoc 
interpretability methods, including Partial Dependence Plot (PDP), Local 
Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive 
exPlanations (SHAP), can be misleading, as these methods do not necessarily 
identify significant features correctly. 

Gosiewska and Biecek (2019) found problems related to inconsistency, 
uncertainty, and infidelity with commonly used post-hoc interpretability 
methods including SHAP, and LIME. According to Gosiewska and Biecek 
(2019), the root cause of these issues is the simplicity of explanation 
methods, when compared to complex black-box methods. Baniecki et al. 
(2021) fooled PDP with data poisoning algorithms. They found that the 
explanations of low-variance models are robust, while the robustness of the 
explanations of more complex models is not satisfactory.   

Rudin (2019) argues that explanation methods might leave out so much 
information that the explanations make no sense. According to Rudin (2019), 
summary statistics of predictions would be a more accurate term instead of 
explanations, as the produced graphs show trends on how features are 
related to predictions instead of explaining how the models work. Also, 
Alvarez Melis and Jaakkola (2018) argue that explanations of most post-hoc 
interpretability methods are not explicit enough. 
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According to  Rudin (2019), the additional explanation model with post-
hoc interpretability creates an extra burden, when the explanations show 
something that is not intended, as the practitioners need to troubleshoot the 
explanation model as well as the underlying black-box model. Dimanov et al. 
(2020) suggest rigorous robustness checks to combat robustness issues of 
explanation methods. Similarly, Baniecki et al. (2021) suggest ensuring the 
reliability of explanation results by utilizing the data poisoning methods.  

Rudin (2019) argues that the whole idea of post-hoc interpretability is 
problematic because if the explanation model would be completely faithful to 
the underlying model, the underlying model would not be needed, and the 
interpretable explanation model should be used. If the explanation model is 
not faithful to the underlying model, neither the explanation model nor the 
underlying model can be trusted. 
 
2.4 Intrinsic interpretability 

 
With intrinsically interpretable methods, the explanation is the model itself, 
which is the biggest strength of intrinsic interpretability. No additional 
methods are needed for producing explanations, and the explanations 
accurately represent the trained model. In addition, with interpretable 
models, it is easier to improve the model throughout the process, as the user 
has a clear understanding of what is happening. Because of this,  Rudin 
(2019) argues that this could reverse the trade-off between accuracy and 
interpretability, as interpretability would lead to more accuracy. 

The main weakness of interpretable models is connected to the effect that 
the simple, understandable structure that is needed for interpretability, can 
have on predictive performance. Rudin (2019) states that there is a 
widespread belief that there exists a trade-off between interpretability and 
accuracy in machine learning.  

This trade-off between interpretability and accuracy in machine learning 
methods is also brought up by other authors. Breiman (2001) states that in 
general, accuracy requires complex models, while simple and interpretable 
models are not accurate. According to Lundberg and Lee (2017), big data has 
increased the attractiveness of complex black-box models, making the 
interpretability-accuracy trade-off relevant. 

Lipton (2018) claims that using inherently interpretable models requires 
giving up predictive performance. Mayer et al. (2019) have a similar view of 
the trade-off between interpretability and accuracy as according to them 
complex black-box type machine learning methods can be more accurate 
than standard linear methods with the cost of losing interpretability. 
Similarly, Lorenz et al. (2022) state that machine learning researchers must 
decide between maximizing predictive power and limiting the model to 
understand basic mechanisms at work. According to Rudin et al. (2022) 
however, the accuracy of black-box models is not generally better than the 
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accuracy of well-designed interpretable models. Lack of accuracy can lead to 
untrustworthy explanations, as according to Breiman (2001) if there is a 
trade-off between interpretability and accuracy, the gained information is 
untrustworthy and generally not useful. 

Rudin (2019) argues that the belief that there is necessarily a trade-off 
between accuracy and interpretability in machine learning, is a myth. When 
considering, how this myth might have been justified, Rudin (2019) brings 
up an unlikely example of comparing the predictive performances of a 
decision tree method developed in 1984 to a deep neural network developed 
in 2018 and concluding that the trade-off exists. However, in literature, 
where the trade-off has been discussed, simple and old interpretable models 
have been compared to more modern black-box models. For example, 
Breiman (2001) compared a decision tree method to a random forest 
method, Lipton (2018) compared linear regression models with deep neural 
network models and Mayer et al. (2019) compared modern machine learning 
techniques such as random forests, neural networks, and gradient boosting 
to linear regression when discussing the trade-off between interpretability 
and accuracy. 

Rudin (2019) brings up several additional arguments for why the trade-
off does not exist necessarily. One is based on the Rashomon effect 
introduced by Breiman (2001), which describes a phenomenon, where often 
a multitude of equations have similar error rates. For example,  with linear 
regression with different variable selections or decision trees with slightly 
perturbed data, where the produced trees are different, the error rates across 
different models were very similar. Semenova et al. (2022) researched the 
effect of large Rashomon sets, where many different models have similar 
predictive performance, on the existence of interpretable and accurate 
models. One of their findings was that simple and interpretable yet accurate 
models are more likely to exist with datasets that have large Rashomon sets. 

Being able to capture complex relationships is seen as a strength of black-
box type models (Mayer et al., 2019), while  Rudin (2019) argues that if a 
hidden pattern is important enough, also interpretable models could leverage 
it. According to  Rudin (2019) the belief that the trade-off between accuracy 
and interpretability exists acts as a self-fulfilling prophecy, as it makes 
researchers ignore attempting to build interpretable and accurate models. 
This effect is also magnified by the fact that many researchers are trained to 
build deep models but not interpretable models (Rudin, 2019). 

Rudin (2019) mentions that compared to unconstrained black-box models 
interpretable methods can be significantly harder to construct in terms of 
domain expertise and computation. Solving constrained optimization 
problems is generally harder than solving unconstrained ones. More complex 
methods learn transformations, non-linearities, and high-order interactions 
automatically (Mayer et al., 2019) while discovering and utilizing these 
patterns with interpretable models is difficult (Rudin, 2019). 
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One weakness in terms of the interpretability of linear models brought up 
by Lipton (2018) is that linear models often have good algorithmic 
transparency, while their simulatability and decomposability might be lower 
than other methods, due to heavy feature engineering, or a large number of 
features. 
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3 Property valuation 
 
In this section, different property valuation approaches are presented. After 
that, the best complex and interpretable methods are identified. 
 
3.1 Property valuation approaches 

 
Gabrielli and French (2020) present three internationally recognized 
property valuation approaches. These approaches are the cost approach, the 
income approach, and the market approach. In the cost approach, a property 
is valued based on how much it would cost to reconstruct it. In the income 
approach, the value of a property is derived from possible future income that 
it would provide. In the market approach, price information of other 
properties is utilized to determine the value of a property. (Pagourtzi et al., 
2003) In this thesis, the focus is on owner-occupied properties. According to 
Pagourtzi et al. (2003), the market approach is most suitable for valuing 
these kinds of properties.  

In the market approach, properties can be valued with the comparable 
method, where properties are valued by selecting similar comparable 
properties and adjusting the prices of the comparable properties based on 
their similarity to the subject property (Pagourtzi et al., 2003).  Alternatively, 
the value of properties can be also evaluated based on historical data with 
regression methods and machine learning methods (Gabrielli & French, 
2020). 

Algorithms that mimic the comparable method were utilized by 
Trawiński, Lasota, et al. (2017), Trawiński, Telec, et al. (2017), Lasota, Telec, 
et al. (2011), and Kempa et al. (2011). In Trawiński, Lasota, et al. (2017) and 
Trawiński, Telec, et al. (2017) methods called nearest similar transactions, 
latest transactions in the area and random similar transactions had worse 
accuracy than all the machine learning methods that they were compared to. 
Lasota, Telec, et al. (2011) and Kempa et al. (2011) utilized an algorithmic 
approach developed by professional valuators to simulate the routine work 
of property valuators. In Kempa et al. (2011) many of the machine learning 
methods had better performance than the expert algorithm, while in Lasota, 
Telec, et al. (2011) the expert algorithm had a good comparative performance. 

 
3.2 Linear regression 

 
Linear regression is categorized as a traditional valuation method by 
Pagourtzi et al. (2003). Linear regression has been popular in property 
valuation literature, where the accuracy of different methods has been 
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compared. It is often used as a baseline model that other more complex 
models are compared to. 

In semi-log functional form, where the dependent variable is transformed 
with natural logarithm, linear regression has often been the weakest 
performing method out of the compared methods in property valuation 
literature (Gnat, 2021b; Hong et al., 2020; Hurley & Sweeney, 2022; Mayer 
et al., 2019; Selim, 2009). There are also some comparative studies 
(Alexandridis et al., 2019; Bogin & Shui, 2020), where linear regression with 
semi-log functional form is better than some of the compared methods, while 
still being considerably worse than the best methods. 

The comparative performance of linear regression with linear functional 
form has been similar to the performance with semi-log functional form. In 
many comparative studies standard linear regression was the worst in 
accuracy out of the compared methods (Abidoye & Chan, 2018; Ghatnekar & 
Shanbhag, 2021; Guan et al., 2014; Liu et al., 2018; Reyes-Bueno et al., 2018; 
Štubňová et al., 2020; Valier, 2020a; Yilmazer & Kocaman, 2020). There are 
also many studies, where linear regression has been more accurate than some 
of the methods that it was compared to, while still being considerably weaker 
than the best methods (Antipov & Pokryshevskaya, 2012; Dimopoulos & 
Bakas, 2019; Jamil et al., 2020; Mrsic et al., 2020; Nejad et al., 2016; 
Tchuente & Nyawa, 2022; Trawiński, Telec, et al., 2017; Valier, 2020b; Yee 
et al., 2021). The reason for the low predictive performance of linear 
regression lies in its inability to model non-linearity and complex patterns 
(Hong et al., 2020; Hurley & Sweeney, 2022). 

Due to its interpretable nature, linear regression is often used to 
determine the casual relationship between the price of the property and some 
characteristics of the property or external factors. The effect of adjacent 
public transportation infrastructure (Chen et al., 2019; Zhang & Shukla, 
2023), Airbnb density in the post-code area (Thackway et al., 2022), 
proximity to former prison (Shehata et al., 2021), school quality (Rajapaksa 
et al., 2020), tourist volume (Liu et al., 2020), green certificates of buildings 
(Dell’Anna & Bottero, 2021), the proximity of urban villages or slums 
(Hussain et al., 2021), distance to nearest cell phone tower (Rajapaksa et al., 
2018), the proximity of historical sites (Hicks & Queen, 2016),  septic system 
and type of soil (Vedachalam et al., 2013), and drinking water quality (Des 
Rosiers et al., 1999) to value of a property has been studied with linear 
regression 

In addition to standard linear regression, other methods for fitting linear 
functions have also been used in property valuation. These include lasso and 
ridge regression. Ridge and lasso regression both include a regularization 
term, which pushes the values of coefficients towards zero (Bogin & Shui, 
2020; Doumpos et al., 2021; Gnat, 2021a). The difference between lasso and 
ridge is that lasso tends to set the coefficients to zero, while ridge just shrinks 
the coefficients, without setting them to zero (Tibshirani, 2011). 



23 

 

When included in studies with linear regression, neither ridge nor lasso 
regression offers considerable improvements in property valuation accuracy 
(Bogin & Shui, 2020; Doumpos et al., 2021; Jamil et al., 2020). When 
compared to more complex machine learning methods, lasso and ridge 
regression have often been less accurate than the more complex machine 
learning models (Bin et al., 2017; Bogin & Shui, 2020; Doumpos et al., 2021; 
Gnat, 2021a; Jamil et al., 2020) 

The accuracy of linear regression is often considerably lower than the 
accuracy of the best methods it has been compared to, so even though linear 
regression has good interpretability, it will not be considered for the 
empirical part of this thesis. 

 
3.3 Machine learning methods 

 
3.3.1 Decision tree methods 
 
Machine learning methods based on decision trees have been very popular in 
property valuation. Methods based on a single decision tree are often not as 
accurate as more complex machine learning methods. There are a lot of 
comparative studies, where other methods are considerably more accurate 
(Antipov & Pokryshevskaya, 2012; Hurley & Sweeney, 2022; Lasota et al., 
2013; Lasota, Makos, et al., 2009; Lasota, Sachnowski, et al., 2009; Lasota et 
al., 2015; Masrom et al., 2022; Mrsic et al., 2020; Nejad et al., 2016; Nejad et 
al., 2017; Valier, 2020a, 2020b; Yee et al., 2021). In Jamil et al. (2020) 
however, the decision tree method was better than the methods it was 
compared to. While methods based on a single decision tree can be 
interpretable, they will not be included in the empirical part of this thesis due 
to their poor performance, when compared to other methods. 

While the performance of a single decision tree has not been good, other 
methods based on decision trees have had a very good performance. 
Ensemble methods that are typically used with decision trees include bagging 
and boosting. In bagging, separate training sets, which do not involve all the 
training samples, are created for individual models, and the final prediction 
is the average prediction of the separate models (Breiman, 1996). In 
boosting, new instances are iteratively trained to minimize the difference 
between the previous prediction and the prediction target (Friedman, 2001). 

Methods based on bagged decision trees, including random forest, are 
often among the best-performing methods (Antipov & Pokryshevskaya, 
2012; Dimopoulos & Bakas, 2019; Gnat, 2021a; Ho et al., 2021; Hong et al., 
2020; Lasota, Sachnowski, et al., 2009; Masrom et al., 2022; Nejad et al., 
2016; Nejad et al., 2017; Talaga et al., 2019; Valier, 2020a, 2020b; Yee et al., 
2021; Yilmazer & Kocaman, 2020). However, in Bańczyk et al. (2011), bagged 
decision stumps, which have only one split per tree, had the worst 
performance. 
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There are also studies, where some other methods have outperformed 
decision tree-bagging methods. In these studies, random forest is often 
outperformed by methods based on gradient boosting (Ghatnekar & 
Shanbhag, 2021; Jarosz et al., 2020; Mayer et al., 2019; Niu & Niu, 2019; 
Schulz & Wersing, 2021). In Niu and Niu (2019) random forest was also 
outperformed by multilayer perceptron (MLP), while advanced interpretable 
methods that will be presented later, have also outperformed random forest 
(Hurley & Sweeney, 2022; Mayer et al., 2019; Schulz & Wersing, 2021). 

Methods based on boosted decision trees have had good performance in 
property valuation. These methods include gradient boosting machine, 
AdaBoost, and extreme gradient boosting (XGB). Gradient boosting machine 
is often the best method or has almost the same accuracy as the best method 
(Ho et al., 2021; Jarosz et al., 2020; Liu et al., 2018; Mayer et al., 2019; Mrsic 
et al., 2020; Tchuente & Nyawa, 2022). There are also some studies, where 
other methods are better than gradient boosting. In Niu and Niu (2019) MLP 
was better than gradient boosting, in Nejad et al. (2017) random forest was 
more accurate, and in Nejad et al. (2016) random forest and few neural 
network approaches were better. In Dimopoulos and Bakas (2019) the 
performance of the gradient boosting machine was very poor, but the 
gradient boosting model was overfitted in that study. 

XGB is an improved implementation of gradient boosting, which has 
built-in regularization (Chen & Guestrin, 2016). It was the best method in 
Ghatnekar and Shanbhag (2021), Gnat (2021b), Mrsic et al. (2020), and 
Nejad et al. (2016). 

Interestingly, when XGB has not been the absolute best method, the 
results have been very poor. Other decision tree ensemble methods 
outperformed XGB in Nejad et al. (2017), where the hyperparameter tuning 
for XGB was very limited. In Talaga et al. (2019) all other methods, including 
decision trees and linear regression, had better performance. In that study, 
the feature selection methods that increased the accuracy of other methods 
were not utilized for the XGB method. Also, the data was divided into very 
small subsets for model training, which might make XGB overfit. AdaBoost, 
where the decision trees are limited to one split into two nodes, has similar 
but slightly worse accuracy than XGB in Tchuente and Nyawa (2022) and 
Mrsic et al. (2020). 

Another tree-based method that has seen a lot of use in property valuation 
literature is a model tree. In the model tree, there are separate multivariate 
linear regressions in each leaf node (Lasota et al., 2013). Model trees are often 
better than MLP (Graczyk et al., 2009; Lasota et al., 2015; Nejad et al., 2016; 
Trawiński, Lasota, et al., 2017; Trawiński, Telec, et al., 2017) and linear 
regression (Graczyk et al., 2009; Nejad et al., 2016; Trawiński, Telec, et al., 
2017). The model tree performed well overall but was still worse than XGB 
and random forest in Nejad et al. (2016). 
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The model tree is often combined with bagging and boosting, and the 
comparative performance is similar to the standard model tree. Bagged 
model tree is often better than bagged MLP (Bańczyk et al., 2011; Graczyk et 
al., 2010; Lasota, Łuczak, et al., 2011; Trawiński, Lasota, et al., 2017), bagged 
RBF (Bańczyk et al., 2011; Lasota, Łuczak, et al., 2011) and linear regression 
(Graczyk et al., 2010; Lasota, Łuczak, et al., 2011), while being worse than 
bagged SVM (Graczyk et al., 2010; Lasota, Łuczak, et al., 2011). The results 
are similar with boosted model tree (Graczyk et al., 2010; Trawiński, Lasota, 
et al., 2017). 

 
3.3.2 Neural network methods 
 
Neural networks have received a lot of attention in property valuation 
literature. Convolutional neural networks (CNN) used in image classification 
can offer additional useful information for property valuation. Different CNN 
architectures have been used for valuing Google street view images of 
properties (Johnson et al., 2020) and satellite images around the properties 
(Lin et al., 2021). For this thesis, however, only machine learning approaches 
that use tabular data are considered. 

Two neural network methods have mainly been used in previous property 
valuation literature. These are MLP and Radial Basis Function (RBF). The 
performance of the two methods has been compared in several studies. In 
some of the studies, MLP has outperformed RBF (García et al., 2008; Lasota, 
Makos, et al., 2009), while in others RBF had better performance than MLP 
(Antipov & Pokryshevskaya, 2012; Graczyk et al., 2010). In addition, Telec et 
al. (2013) found no differences in the performance of RBF and MLP. 

Other neural network methods have also been used in property valuation. 
Lee and Park (2020) compared MLP to a Bayesian neural network with MLP 
outperforming the Bayesian neural network. Lasota, Makos, et al. (2009) 
also included a DMNeural method, which was worse than MLP and RBF in 
terms of accuracy. 

When methods based on neural networks have been compared to other 
property valuation methods, the comparative performance of neural 
networks has varied a lot. There are many studies, where neural networks 
have been compared to linear regression (Abidoye & Chan, 2018; Guan et al., 
2014; Mimis et al., 2013; Selim, 2009; Štubňová et al., 2020). In all of them, 
neural networks were more accurate than linear regression. 

In many studies, MLPs have been the best or one of the best methods when 
compared to other machine learning approaches (Alexandridis et al., 2019; 
Lasota, Makos, et al., 2009; Lasota, Sachnowski, et al., 2009; Masrom et al., 
2022). In addition, Talaga et al. (2019) used MLP with bagging in Talaga et 
al. (2019). 

There are also many studies, where MLP and RBF have had considerably 
worse accuracy than other machine learning methods (Antipov & 
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Pokryshevskaya, 2012; Lam et al., 2009; Liu et al., 2018; Mayer et al., 2019; 
Nejad et al., 2016; Tajani et al., 2015; Tchuente & Nyawa, 2022; Telec et al., 
2013; Trawiński, Telec, et al., 2017; Valier, 2020a).  Also bagged MLPs have 
been outperformed by other methods in many studies (Bańczyk et al., 2011; 
Graczyk et al., 2010; Trawiński, Lasota, et al., 2017).  

The reasoning for the performance of MLPs has been discussed in some of 
the papers, where its comparative performance has been subpar. Antipov and 
Pokryshevskaya (2012) explain the poor performance of MLPs to the 
insufficient tuning of the model, while Lam et al. (2009) mention the large 
number of tuneable hyperparameters, which make the model hard to tune. 

 
3.3.3 Other methods 

 
K-nearest-neighbours (KNN) method has also received a lot of attention in 
property valuation literature. It is often either one of the worst methods 
(Mrsic et al., 2020; Nejad et al., 2016; Valier, 2020b) or at least far from the 
best method (Antipov & Pokryshevskaya, 2012; Gnat, 2021b; Hurley & 
Sweeney, 2022; Lasota, Sachnowski, et al., 2009; Tchuente & Nyawa, 2022; 
Valier, 2020a). As an exception, the accuracy of KNN was very close to the 
most accurate method of random forest in Gnat (2021a). According to 
Tchuente and Nyawa (2022), KNN performs poorly with large datasets and 
a large number of important variables, which could explain the poor 
performance of KNN. 

Support vector machine (SVM) is another machine learning method, 
which has been used in many property valuation studies. It consistently 
outperforms KNN, different neural network methods, and methods based on 
linear regression (Bin et al., 2017; Ghatnekar & Shanbhag, 2021; Graczyk et 
al., 2009; Graczyk et al., 2010; Lam et al., 2009; Lasota, Łuczak, et al., 2011; 
Lasota, Sachnowski, et al., 2009; Liu et al., 2018; Valier, 2020b). There are 
some exceptions, as in Tchuente (2022) SVM is worse than KNN, linear 
regression, and MLP, in Lasota et al. (2015) linear regression is more 
accurate than SVM, and in Nejad et al. (2016) best MLP approaches 
outperform best SVM approaches. When compared to the model tree, SVM 
was better in Graczyk et al. (2009) and worse in Lasota et al. (2015). 

The performance of SVM is also consistent when compared to well-
performing methods based on gradient-boosted trees or bagged trees. The 
performance of these methods is consistently better than SVM (Ghatnekar & 
Shanbhag, 2021; Ho et al., 2021; Liu et al., 2018; Nejad et al., 2016; Tchuente 
& Nyawa, 2022; Valier, 2020b). In Lasota, Sachnowski, et al. (2009) the 
performance of SVM is similar to the performance of random forest. 
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3.3.4 Conclusion of machine learning methods 
 
Overall, random forest, XGB and MLP seem to be the most potential machine 
learning methods for property valuation. MLP seems to have some 
inconsistency issues due to being hard to tune, while random forest seems to 
have consistently good but not great results. XGB seems to be the most 
promising method overall, as most of the time it outperforms all other 
methods. 
 
3.4 Advanced interpretable methods 

 
While standard linear regression has not been very accurate compared to 
other methods overall, linear regression methods have had better 
comparative performance when spatial effects have been introduced in some 
way. Doumpos et al. (2021) used an approach, where only the closest 
properties are used for estimating the value of a property. They also tried 
using weights for properties used in model fitting, where the weights are 
inversely proportional to the distance between the target property and the 
property used in model fitting. With the weighted local approach, linear 
regression and lasso regression were more accurate than machine learning 
methods that were considerably better in the normal approach. Dimopoulos 
and Moulas (2016) used a similar geographically weighted regression 
approach, where different functions for linear regression are created locally. 
This approach outperformed linear regression. Similarly, Oust et al. (2020) 
used geographically weighted regression, which outperformed linear 
regression, regression kriging, and vicinity-based regression tuning. 

Mayer et al. (2019) used regression with a semi-log functional form that 
had separate intercepts at state, regional, and municipal levels. This 
regression approach was only slightly less accurate than the best machine 
learning method. Mimis et al. (2013) used a linear regression approach, 
where in addition to the independent variables, the estimated price of a 
property was also affected by the price of nearby properties. This approach 
was less accurate than the MLP it was compared to. Schulz and Wersing 
(2021) used a similar spatial autoregressive model, which was considerably 
worse than the best methods in that study. 

Dimopoulos and Bakas (2019) used a high-order regression approach, 
where combinations of independent variables up to third order were included 
and added in a greedy stepwise manner. This approach was a clear 
improvement over standard linear regression, while still not being as 
accurate as random forest, which had the best comparative performance. 

Reyes-Bueno et al. (2018) used a multivariate adaptive regression splines 
algorithm (MARS), which outperformed model tree and linear regression.  In 
MARS data is modelled with piecewise linear segments that are created by 
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iteratively adding knots that improve performance until an end condition is 
reached and removing knots that are not effective afterwards. 

Mayer et al. (2022) created structured additive regression (STAR) models 
that were fitted with XGB and lightGBM and compared them to normal XGB 
and lightGBM approaches respectively. The STAR method is based on 
additive functions that are restricted to only a subgroup of features. Mayer et 
al. (2022) did two separate property valuation case studies. In the first one, 
a STAR model was fitted with XGB, and only locational variables were 
allowed to interact with each other, while separate functions were fitted for 
the rest of the features. In the second one, a STAR model that was fitted with 
lightGBM, and locational variables and transaction time were allowed to 
interact with each other. In both case studies, the STAR models had slightly 
worse accuracies than the complex unconstrained models. 

A generalized additive model (GAM) is a special case of the STAR model, 
where the additive functions are limited to single features (Mayer et al., 
2022). Generative Additive Model plus interactions (GA2M) are similar to 
GAMs in structure, while also including functions that involve a pair of 
features (Lou et al., 2013). Hurley and Sweeney (2022) compared GAM and 
GA2M models with different specifications to machine learning methods 
including KNN, decision tree, and random forest. In their approach, they had 
separate functions fitted with splines for four of the variables and one 
pairwise function that included latitude and longitude. The best GA2M 
outperformed all the machine learning methods, including random forest. 

Rajapaksa et al. (2018) compared the accuracy of GAM and GA2M to the 
accuracy of linear regression in a quantitative study. In their different GA2M 
models they predetermined the allowed pairwise functions. While there was 
no difference in terms of accuracy between GAM and GA2M, both offer a 
significant improvement in terms of accuracy compared to standard linear 
regression. 

Schulz and Wersing (2021) compared random forest, gradient boosting 
machine, polynomial model, penalised spline model and geo-spatial model 
in property valuation. The penalised spline model has a structure similar to 
GA2M, where the features are modelled with either coefficients or functions 
limited to one or two features. Their penalised spline model was as accurate 
as the gradient boosting machine, and more accurate than other methods. 

Explainable Boosting Machine (EBM) is an implementation of the GA2M 
algorithm (Nori et al., 2019), where all separate functions for all the features 
are fitted first and functions for pairwise interactions that increase the 
accuracy the most, are fitted after. In Yang et al. (2021) EBM was compared 
to Multilayer Perceptron, random forest, generalized linear model, EBM 
without pairwise interactions, and their approach GAMI-Net in many 
different regression tasks. EBM outperformed all other methods in property 
valuation. 
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When it comes to comparative performance, when compared to the best 
black-box methods identified in the previous section, GA2M, penalised 
spline, and STAR all seem to have the possibility of performing well with a 
minimal trade-off between interpretability and accuracy. In the STAR and 
the penalised spline methods, the allowed functions or feature interactions 
need to be predetermined, which would need knowledge of how different 
features typically affect the value of a property. In the EBM implementation 
of GA2M, all features are included in the single feature fitting phase and two 
feature functions are selected automatically, which is why it is chosen for this 
thesis, as there is no accurate knowledge available of how different features 
affect the property prices with these type of models. 
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4 Methodology 
 

In this section, dataset and accuracy metrics are presented. After that, the 
machine learning methods and hyperparameter optimisation method are 
described in detail. 
 
4.1 Data 
 
Data used in this thesis include property transactions from Denmark. The 
data includes all property transactions between the years 2009 and 2021. The 
quality of data is good enough that it could be used without any data cleaning. 
Still, some transactions and features are excluded for the following reasons. 

As Danish Financial Supervisory Authority (DFSA) has limited the use of 
automated valuation models to big municipalities, the transaction data is 
limited to Copenhagen, Aarhus, Aalborg, Odense, Frederiksberg, and 
Roskilde. There are different types of properties included in the original data, 
but only residential properties are selected for this thesis, as the aim of this 
thesis is to valuate residential properties. The original dataset includes 
features related to public valuation and valuation for tax purposes, which are 
omitted to not make the model reliant on other property valuations. In 
addition, transactions over 7.5 million DKK are omitted, as DFSA does not 
allow the use of automated valuation models for properties over that amount. 
Also, the date of the transaction is changed to two different features, month, 
and year of the transaction. Both methods, EBM and XGB, can handle 
categorical features, such as the postal number of an area, without any data 
transformations, so categorical features are not encoded in any way. The 
features that were included in the final dataset are outlined in Table 1.  

The data is split into training and testing data based on the time of the 
transaction. The latest transactions from the last quarter of 2021 are used for 
testing, while all other transactions, from 2009 to September 2021, are used 
for training. 

No additional feature selection was done, as there are no prior studies that 
discuss the effect of different features with EBM in property valuation. Also, 
XGB should automatically detect the most important patterns in the data, so 
omitting features should not increase accuracy. The impact of a variety of 
factors on the value of a property has been studied in previous literature, but 
the findings of those studies are not relevant in feature selection for this 
thesis, because those studies used linear regression to study the causal 
relationships and both methods have the ability capture more complex 
relationships. 
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Table 1: Feature descriptions 
Feature Type Explanation 
kom nr Categorical municipality number 
post nr Categorical postal number 
zone kode Categorical Zoning of the area 
ejendom type Categorical Property type 
opfoerelse aar Numeric Built year 
ombyg aar Numeric, optional Most recent remodelling  year 
areal vaegtet Numeric Floor area 
areal grund Numeric, optional Land area 
areal kaelder Numeric, optional Basement area 
areal kaelder bolig Numeric, optional Residential basement area 
areal tageetage saml Numeric, optional Attic area 
areal tageetage udnyt Numeric, optional Residential attic area 
areal garage indb Numeric, optional Built-in garage area 
area udbus indb Numeric, optional Built-in shed area 
areal udestue Numeric, optional Winter garden area 
areal garage saml Numeric, optional Garage area 
areal carport Numeric, optional Carport area 
vaerelse antal Numeric Number of rooms 
etager antal Numeric Number of floors 
bad antal Numeric Number of bathrooms 
toilet antal Numeric Number of flushing WCs 
Coordinates:   
koor oest Numeric ETRS89 x-coordinate 
koor nord Numeric ETRS89 y-coordinate 
Distance to nearest:   
tog station Numeric Train station 
bus stop Numeric bus stop 
metro station Numeric Metro station 
s tog station Numeric S-train station 
motorvej Numeric Motorway 
laege Numeric General practitioner 
supermarked Numeric Supermarket 
skole Numeric School 
daginstitution Numeric Daycare centre 
hospital Numeric Hospital 
apotek Numeric Pharmacy 
bibliotek Numeric Library 
lugthavn Numeric Airport 
kyst Numeric Coastline 
skov Numeric Forest 
soe Numeric Lake 
idraetshal Numeric Sports centre 
svoemmehal Numeric Football field 
Transaction:   
tran year Categorical The month of sale agreement 
tran month Numeric Year of sale agreement 
Label:   
transaction amount Numeric Agreed purchase price 
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The final dataset includes transformations from Copenhagen, Aarhus, 
Aalborg, Odense, Frederiksberg, and Roskilde. The number of transactions 
used for training and testing models from each city is reported in Table 2. 
The number of transactions in testing data is untypically small when 
compared to the number of transactions in training data. This train-test split 
aims to mimic the intended use of the property valuation model in Nordea. 
 
Table 2: Number of transactions used in training and testing in each munici-
pality.  

City Training size Testing size 
Copenhagen 58494 209 
Aarhus 34423 101 
Aalborg 22571 87 
Odense 18389 60 
Frederiksberg 11701 39 
Roskilde 9956 31 
Total 155 534 527 

 
For both methods, two different modelling approaches are used. In the 

global approach, all the data is used for training a single model for all 
municipalities. In the local approach, separate models are trained for all six 
municipalities included. 

 
4.2 Machine learning pipeline 

 
In this thesis, a datapoint represents single property transaction 𝑖 = (1, . . , 𝑛), 
where 𝑛 is the size of dataset, label 𝑦௜ represents the transaction price, and 
feature vector 𝒙௜ = ൫𝑥௜ଵ, … , 𝑥௜௃൯ represents features in Table 1. The objective 
of the machine learning algorithms is to model the relationship between 
features and labels: 

𝑦௜ ≈ 𝐹(𝒙௜). (1) 
Machine learning models predict labels based on feature vectors: 

𝑦ො௜ = 𝐹(𝒙௜). (2) 
Machine learning models aim to minimise the difference between predicted 
label 𝑦ො௜ and the actual label 𝑦௜. 
 
4.2.1 Accuracy metrics 

 
Root mean squared error (RMSE) is used as a criterion that is optimised with 
hyperparameter optimization algorithms and for comparing finalised 
models. RMSE is derived from mean squared error (MSE), which is used as 
a criterion that is minimised in the training stage of both methods, so RMSE 
ranks compared models similarly to MSE. MSE is defined as: 
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𝑀𝑆𝐸 =  
∑ (𝑦௜ − 𝑦ො௜)

ଶ௡
௜ୀଵ

𝑛
. (3) 

RMSE is used instead of MSE because it is more understandable according 
to Steurer et al. (2021), as its scale is similar to the prediction target. RMSE 
is defined as: 

𝑅𝑀𝑆𝐸 =  ඨ
∑ (𝑦௜ − 𝑦ො௜)

ଶ௡
௜ୀଵ

𝑛
. (4) 

In addition to RMSE, median absolute prediction error (MDAPE) is 
reported, when different methods are compared. According to Steurer et al. 
(2021), ratio-based measures can be more relevant than difference measures 
such as RMSE. MDAPE is defined with the following formula: 

𝑀𝐷𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 ฬ
𝑦ො௜

𝑦௜
− 1ฬ . (5) 

 
4.2.2 Gradient boosting 
 
Both XGB and EBM are based on gradient-boosted decision trees, so 
gradient-boosted decision trees are introduced before XGB and EBM. Tree-
structured predictors introduced in Breiman et al. (1984) are constructed by 
repeatedly splitting subsets of learning sample into two subsequent subsets 
or nodes. The predicted values for each instance are determined by terminal 
nodes, where the samples are classified based on the splitting criteria of each 
intermediate node. The predicted value in each terminal node is constant.  

Breiman et al. (1984) described three main elements that are needed for a 
tree-structured predictor: 

 1. A way to select how splits are performed in each intermediate 
node 

 2. A rule to determine, when nodes are terminal 
 3. A rule to assign value to every terminal node. 
Schapire (1990) introduced an algorithm that combines multiple weak 

learners to form a strong learner. The basic idea is that weak learners that are 
barely better than coinflip can achieve high accuracy by combining multiple 
weak learners. Friedman (2001) introduced the gradient boosting machine, 
which utilizes the same base idea, in which multiple weak learners are 
combined to form a strong learner.  

𝐹୑(𝑥) =  ෍ 𝑓௠(𝑥),

ெ

௠ୀ ଴

(6) 

where 𝑓଴(𝑥) is an initial guess, and  {𝑓௠(𝑥)}ଵ
ெ are individual functions or 

boosts that are trained iteratively and that are based on the predictions of the 
previous iterations.  

The first step 𝑓଴(𝑥) is a constant value for all the samples 𝑖 that minimizes 
the used loss function 𝑙(𝑦௜, ŷ௜). The loss function that is most used with 
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gradient boosting is squared-error loss. The constant value 𝑦ො଴ of the first step 
is given by the following equation: 

𝑓଴(𝑥) = argmin
௬ොబ

෍ 𝑙(𝑦௜, 𝑦ො଴)

ே

௜ୀଵ

= argmin
௬ොబ

෍
1

2
(𝑦௜ − ŷ଴)ଶ

ே

௜ୀଵ

, (7) 

which is solved by calculating the zero point of the derivatives with respect to 
the predicted value 𝑦ො଴: 

1

2
෍

𝜕

𝜕ŷ
(𝑦௜ − 𝑦ො଴)ଶ

ே

௜ୀଵ

= − ෍(𝑦௜ − 𝑦ො଴)

ே

௜ୀଵ

= 0 (8) 

By solving this equation, the value of the initial step 𝑓଴(𝑥) becomes: 

𝑓଴(𝑥) = 𝑦ො଴ =
1

𝑛
෍ 𝑦௜

ே

௜ୀଵ

(9) 

so, the constant value of the initial step is the mean of the observed values 
{𝑦௜}ଵ

௡. 
Each subsequent step {𝑓௠(𝑥)}ଵ

ெ is a weak regression tree that is limited in 
size and created with the following procedure. New prediction targets 𝑦෤௜௠ are 
calculated for each sample 𝑖 based on the negative gradient of previous 
predictions loss 𝑙൫𝑦௜, 𝐹௠ିଵ(𝑥)൯ with respect to the predicted value 𝐹௠ିଵ(𝑥): 

𝑦෤௜௠ = − ቈ
∂𝑙൫𝑦௜ , 𝐹(𝑥௜)൯

∂𝐹(𝑥௜)
቉

ி(௫)ୀி೘షభ(௫)

, 𝑖 = 1, 𝑁, (10) 

which is the residual error of the previous prediction when the squared error 
loss function is used: 

𝑦෤௜௠ = 𝑦௜ − 𝐹(௠ିଵ)(𝑥௜), 𝑖 = 1, 𝑁. (11) 
With other loss functions, 𝑦෤௜௠ are close to the residual error, which is why 

they are called pseudo-residuals. Next, a weak regression tree is created to 
predict the pseudo-residuals of the previous step 𝑦෤௜௠.  

The tree 𝑓௠(𝑥) splits space 𝑥 into disjoint regions 𝑅௧௠, 𝑡 = 1, 𝑇. The split 
finding criterion is determined by the used loss function. The newly selected 
split has the lowest loss across all the possible split candidates. The number 
of terminal nodes 𝑇 is determined by tuneable hyperparameter(s) that 
constrain the size of the three, such as the maximum number of terminal 
nodes or the maximum tree depth. The output of the tree 𝑓௠(𝑥) is given by: 

𝑓௠(𝑥) =  ෍ 𝜔௧௠

்

௧ୀଵ

1(𝑥 ∈  𝑅௧௠), (12) 

where 1(∙) is an indicator with a value of 1 if it is true, and 0 otherwise. 𝜔௧௠ 
is a coefficient of the terminal node 𝑅௧௠ and is given by: 

𝜔௝௠  =  argmin
ఠ

෍ 𝑙(𝑦௜, 𝐹௠ିଵ(𝑥) + 𝜔)

௫೔ ∈ ோ೟೘

, (13) 

which reduces to: 
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𝜔௝௠  =  argmin
ఠ

෍
1

2
(𝑦෤௜௠ − 𝜔)ଶ

௫೔ ∈ ோ೟೘

, (14) 

with the squared error loss function. In that case the coefficient 𝜔௧௠ for each 
terminal node  𝑅௧௠ is the average of pseudo-residuals 𝑦෤௜௠ in that node. 

Finally, the approximation is updated in the following way: 
𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) +  𝜂𝑓௠(𝑥), (15) 

where 𝜂 is a tuneable hyperparameter, also called the learning rate, which 
controls the size of each boosting step. Friedman (2001) found that small 
values, where 𝜂 < 0.1, generate the most accurate results, and that with 
smaller values for  𝜂, the number of iterations 𝑀 needs to be higher to achieve 
accurate predictions. 

 
4.2.3 Extreme gradient boosting 
 
XGB, introduced by Chen and Guestrin (2016), has several improvements 
over the gradient boosting algorithm that are related to regularization, speed, 
and scalability. Similar to the gradient boosting algorithm, XGB creates an 
ensemble of regression trees that predicts the target variable in an additive 
manner. Instead of trying to minimize some differentiable loss function 
𝑙(𝑦, 𝑦ො), XGB maximizes the following regularized objective, which resembles 
loss reduction: 

𝐿(𝐹) =  − ෍ 𝑙(𝑦௜, 𝑦ො௜) − ෍ 𝛺(𝑓௠)

ெ

௠ୀଵ

௡

௜ୀଵ

, (16) 

where 𝛺(𝑓) =  𝛾𝑇 + 𝜆𝜔ଶ. 
The regularization term 𝛺 includes hyperparameters 𝛾 and 𝜆, which will 

be introduced later. The objective of a single step 𝑚 is: 

𝐿௠ =  − ෍ 𝑙(𝑦௜,

௡

௜ୀଵ

𝑦ො௜(௠ିଵ) − 𝑓௠(𝑥௜)) −  𝛺(𝑓௠) (17) 

Chen and Guestrin (2016) used a second-order approximation to optimize 
the objective: 

𝐿௠ ≃  ෍[𝑙(𝑦௜,

௡

௜ୀଵ

𝑦ො௜(௠ିଵ)) − 𝑔௜𝑓௠(𝑥௜) − ℎ௜𝑓௠
ଶ(𝑥௜)] −  𝛺(𝑓௠), (18) 

where 𝑔௜ =   
ப

ப௬ො೔(೘షభ)
𝑙(𝑦௜, 𝑦ො௜(௠ିଵ)) and  ℎ௜ =   

பమ

ப௬ො೔(೘షభ)
𝑙(𝑦௜, 𝑦ො௜(௠ିଵ)) are gradient 

and Hessian statistics of the loss function respectively. With the squared 

error loss function 𝑙൫𝑦௜, 𝑦ො௜(௠ିଵ)൯ =  
ଵ

ଶ
(𝑦௜ − 𝑦ො௜(௠ିଵ))ଶ, the gradient 𝑔௜ is the 

negative residual error of the previous step: 
𝑔௜ =  −൫𝑦௜ − 𝑦ො௜(௠ିଵ)൯ = −𝑦෤௜௠, (19) 

and the Hessian ℎ௜ is: 
ℎ௜ = −1 (20) 
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By removing constant values simplified objective can be obtained: 

𝐿෨௠ = − ෍[𝑔௜𝑓௠(𝑥௜) + ℎ௜𝑓௠
ଶ(𝑥௜)]

௡

௜ୀଵ

−  𝛺(𝑓௠), (21) 

Let 𝐼௧ be the set of instances in a terminal node 𝑡 with tree structure 𝑞(𝑥). 
By expanding equation 16 the maximized objective of a single leaf node 
becomes: 

𝐿෨௠ = − ෍[𝑔௜𝑓௠(𝑥௜) + ℎ௜𝑓௠
ଶ(𝑥௜)]

௡

௜ୀଵ

−  𝛾𝑇 − 𝜆 ෍ 𝜔௧
ଶ

்

௧ୀଵ

 

𝐿෨௠ = ෍ −2 ቌ ෍ 𝑔௜

௜ ∈ ூ೟

ቍ 𝜔௧ − ( ෍ ℎ௜ + 𝜆)

௜ ∈ ூ೟

்

௧ୀଵ

 𝜔௧
ଶ −  𝛾𝑇. (22) 

For a fixed structure 𝑞(𝑥) the optimal weight 𝜔௧
∗ for leaf 𝑡 can be obtained 

with partial derivate with respect to weight 𝜔௧: 

∂

∂𝜔௧
ቌ−2 ቌ ෍ 𝑔௜

௜ ∈ ூ೟

ቍ 𝜔௧ − ( ෍ ℎ௜ + 𝜆)𝜔௧
ଶ −  𝛾𝑇

௜ ∈ ூ೟

ቍ = 0 

−2 ቌ ෍ 𝑔௜

௜ ∈ ூ೟

ቍ − 2( ෍ ℎ௜ + 𝜆)

௜ ∈ ூ೟

 𝜔௧ = 0 

𝜔௧
∗ =  −

∑ 𝑔௜௜ ∈ ூ೟

∑ ℎ௜ + 𝜆௜ ∈ ூ೟

. (23) 

Utilizing this equation, the simplified objective becomes: 

𝐿෨௠(𝑞) = ෍
൫∑ 𝑔௜௜ ∈ ூ೟

൯
ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூ೟

−  𝛾𝑇.

்

௧ୀଵ

(24) 

This simplified objective is used as a criterion for split selection. Let 𝐼௅ and 𝐼ோ 
be the set of instances in the left and right nodes after a split. The best split 
is the split that maximizes loss reduction, which is calculated in the following 
way: 

𝐿௦௣௟௜௧ =  ൥
൫∑ 𝑔௜௜ ∈ ூಽ

൯
ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூಽ

+
൫∑ 𝑔௜௜ ∈ ூೃ

൯
ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூೃ

−
(∑ 𝑔௜௜ ∈ ூ )ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூ
൩ − 𝛾 (25) 

The original paper by Chen and Guestrin (2016) introduced two 
regularisation hyperparameters, 𝜆 and 𝛾. Additional regularisation 
parameter 𝛼, which has similar effect with lasso regularisation, is also 
included in XGB. With the 𝛼 regularisation parameter the optimal weight 𝜔௧

∗ 
becomes: 

𝜔௧
∗ =  −

∑ 𝑔௜௜ ∈ ூ೟
± 𝛼

∑ ℎ௜ + 𝜆௜ ∈ ூ೟

, (26) 

the simplified objective becomes: 
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𝐿෨௠(𝑞) = ෍
൫∑ 𝑔௜௜ ∈ ூ೟

± 𝛼൯
ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூ೟

−  𝛾𝑇,

்

௧ୀଵ

(27) 

and equation 25 becomes: 

𝐿௦௣௟௜௧ =  ൥
൫∑ 𝑔௜ ± 𝛼௜ ∈ ூಽ

൯
ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூಽ

+
൫∑ 𝑔௜௜ ∈ ூೃ

± 𝛼൯
ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூೃ

−
(∑ 𝑔௜௜ ∈ ூ ± 𝛼)ଶ

∑ ℎ௜ + 𝜆௜ ∈ ூ
൩ − 𝛾 (28) 

With the squared error loss function, the optimal weight is 𝜔௧
∗: 

𝜔௧
∗ =  

∑ 𝑦෤௜௠௜ ∈ ூ೟
± 𝛼

∑ 1 + 𝜆௜ ∈ ூ೟

, (29) 

and the simplified objective is: 

𝐿෨௠(𝑞) = ෍
൫∑ −𝑦෤௜௠௜ ∈ ூ೟

± 𝛼൯
ଶ

∑ 1 + 𝜆௜ ∈ ூ೟

− 𝛾𝑇.

்

௧ୀଵ

(30) 

The impact of 𝜆 can be seen as the denominator of equations 29 and 30 is 
the number of instances in a node + 𝜆. 𝜆 penalises calculated loss reduction 
and weight of nodes with a low number of instances. The numerator part of 
these equations consists of the sum of residuals or negative residuals and a 
regularisation term ±𝛼.  The regularisation term affects the weights 𝜔௧

∗ and 
the corresponding loss reduction 𝐿෨௠(𝑞) values by shrinking or ignoring the 
values of the summation ∑ 𝑔௜௜ ∈ ூ೟

. If ∑ 𝑔௜௜ ∈ ூ೟
 is bigger than 𝛼, the sign is 

negative, if ∑ 𝑔௜௜ ∈ ூ೟
 is smaller than negative 𝛼, the sign is positive, otherwise, 

the optimal weight and the corresponding loss reduction value for a given 
node are zero. So 𝛼-regularization pushes weights and loss reduction values 
towards zero and ignores values smaller than the threshold 𝛼 altogether. 

Overall, XGB works in a similar way to gradient boost. In each iteration, a 
tree is created by adding splits that maximise the split criterion 𝐿௦௣௟௜௧ in 
equation 28. After a tree is created, it is pruned based on 𝐿௦௣௟௜௧ criterion. If 
the 𝐿௦௣௟௜௧ of a leaf branch is negative, the branch is pruned, until the 𝐿௦௣௟௜௧ of 
all leaf branches are non-negative.  The regularisation parameter 𝛾 creates a 
boundary that the first part of equation 28 needs to exceed to not be pruned.  

Finally, weights 𝜔௧
∗ are assigned to terminal nodes 𝑅௧. After each iteration 

the approximation is updated in the same way: 

𝐹௠(𝑥) = 𝐹௠ିଵ(𝑥) +  𝜂𝑓௠(𝑥) =  𝐹௠ିଵ(𝑥) +  𝜂 ෍ 𝜔௝௠
∗

்

௧ୀଵ

1൫𝑥 ∈  𝑅௝௠൯ (31) 

In addition to learning rate 𝜂, XGB includes another technique that aims to 
prevent overfitting, which is called subsampling. In subsampling, only a 
subset of the original dataset is used for a certain part of the algorithm. Row 
subsampling can be done in each iteration 𝑚, while column subsampling can 
be done for each tree, each level of the tree, or each node. The column 
subsampling hyperparameters work in a multiplicative manner. For 
example, if subsample ratios for all three column subsampling values are 0.5, 
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the ratio of used columns becomes 0.5ଷ = 0.125. The subsampling techniques 
also speed up the computations. 

XGB has two algorithms for finding split candidates. A basic exact greedy 
split finding algorithm enumerates all possible split points of all features and 
chooses the best split according to equation 28. With large datasets with 
continuous features, this becomes computationally expensive, as the number 
of possible split points becomes large. Chen and Guestrin (2016) also propose 
an alternative split-finding algorithm called the approximate algorithm, 
which proposes split points based on distributions of features. The 
approximate algorithm maps continuous features into buckets, where each 
bucket has a similar number of instances. The boundaries of these buckets 
then become candidate split points. This algorithm has two variants, global 
and local, where the global variant proposes all split points before building a 
tree, while the local variant re-proposes split points after each split. 

In addition, XGB can handle missing values with sparsity aware split 
finding algorithm. In each candidate split with features that have missing 
values, the split criterion in equation 28 is calculated twice. Once with 
grouping missing values to the left node and once with grouping the missing 
values to the right node. The direction, which obtains higher loss reduction, 
is chosen as the default direction of missing values for the split candidate in 
question. The rest of the improvements over gradient boost introduced by 
Chen and Guestrin (2016) are related to the parallelizability of the algorithm. 
 
4.2.4 Explainable boosting machine 

 
EBM is a part of the InterpretML framework by Microsoft. EBM is an 
implementation of the GA2M algorithm introduced by Lou et al. (2013). 
GA2M is an improvement over GAM originally introduced by Hastie and 
Tibshirani (1986). GAM has the following form: 

𝑦ො = ℊ(𝐸[𝑌]) =  𝛽଴ + ෍ 𝜙௝൫𝑥௝൯, (32) 

where ℊ is the link function that adapts the GAM to different situations such 
as regression and classification, and 𝜙௝ represents individual functions for 
each feature 𝑥௝. The identity link function is used for regression tasks. 

Lou et al. (2012) compared GAMs to more complex models and found out 
that standard GAMs cannot always achieve the same accuracy as more 
complex models such as random forests. GA2M extends the GAM by adding 
pairwise interactions: 

𝑦ො = ℊ(𝐸[𝑌]) =  𝛽଴ + ෍ 𝜙௝൫𝑥௝൯ + ෍ 𝜙௝,௞൫𝑥௝ , 𝑥௞൯, (33) 

where 𝜙௝,௞ represent individual pairwise interaction functions for each 
involved pair of features 𝑥௝ , 𝑥௞. By adding the pairwise interactions Luo et al. 
(2013) aimed to increase the accuracy while maintaining the inherent 
interpretability of standard GAMs. 
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GA2Ms are constructed in two stages. In the first stage the main effects 
∑ 𝜙௝൫𝑥௝൯ for single features are fitted, and in the second phase, the most 

important pairwise interactions ∑ 𝜙௝௞൫𝑥௝ , 𝑥௞൯ are detected and fitted. Similar 
to gradient boosting the initial guess 𝐹଴(𝑥) is the average of observed values 
𝑦௜: 

𝐹଴(𝑥௜) =  𝑦ො଴ =
1

𝑛
෍ 𝑦௜,

ே

௜ୀଵ

(34) 

which is also the intercept 𝛽଴. 
In each subsequent step {𝐹௠(𝑥)}ଵ

ெ weak individual trees 𝑓௝௠(𝑥) are 
constructed for each feature 𝑗. First residual error 𝑦෤௜௝௠ for each instance of 
the previous prediction is calculated as the prediction target for the current 
step: 

𝑦෤௜௝௠ = 𝑦௜ − ቌ 𝐹௠ିଵ(𝑥௜) + ෍ 𝜂𝑓௞௠(𝑥௜)

௝ିଵ

௞ୀଵ

ቍ , (35) 

where  𝐹௠ିଵ(𝑥௜) is the prediction of the previous round, and ∑ 𝜂𝑓௞௠(𝑥௜)
௝ିଵ
௞ୀଵ  is 

the sum of the predictions of trees created in the current round. Next a new 
tree 𝑓௝௠(𝑥) that is limited to feature 𝑗, is constructed to predict the residual 
𝑦෤௜௝௠. Similar to gradient boosting, the coefficients of the tree 𝑓௝௠(𝑥), are the 
average residual errors 𝑦෤௜௝௠ in a terminal node. In each round, all features 
are cycled through, and after each round, the predictions are updated in the 
following way: 

𝐹௠(𝑥) =  𝐹௠ିଵ(𝑥௜) + ෍ 𝜂𝑓௝௠(𝑥).

௃

௝ୀଵ

(36) 

The learning rate 𝜂 is typically considerably lower with EBM compared to 
gradient boosting or XGB. The low learning rate leaves room for the impact 
of each feature and makes the order that the features are cycled through 
irrelevant. These rounds are repeated until the maximum number of rounds 
is reached, or the stopping criterion is met. After that, individual functions 
𝜙௝൫𝑥௝൯ for each feature 𝑗, are created with trees 𝑓௝௠(𝑥) that have been created 
throughout interactions: 

𝜙௝൫𝑥௝൯ = ෍ 𝜂𝑓௝௠(𝑥).

ெ

௠ୀଵ

(37) 

In the second stage functions for the pairwise interactions ∑ 𝜙௝௞൫𝑥௝ , 𝑥௞൯ are 
constructed. First, the most important pairwise interactions are detected 
with a FAST algorithm. Two sets 𝑆 and 𝑍, where 𝑆 includes selected pairwise 
interactions and 𝑍 includes remaining pairwise interactions, are maintained. 
Small trees 𝑓௝௞(𝑥) are created for each pairwise interaction in 𝑍 to predict 
residual error 𝑟 of main effects: 
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𝑟 = 𝑦௜ − 𝐹ெ(𝑥௜). (38) 
These small trees are limited to three splits, the first split is done with one 

of the features and both nodes created with the first split are split based on 
the other feature. For each of the four terminal nodes created, the weight is 
calculated as the average residual error in that node. The pairwise interaction 
that reduces residual error the most is selected and moved to set 𝑆. After, the 
residual error 𝑟 is updated in the following manner: 

𝑟 = 𝑦௜  − 𝐹ெ(𝑥௜)  − ෍ 𝑓௝,௞(𝑥௜)

(௝,௞)∈ ௌ

, (39) 

where ∑ 𝑓௝,௞(𝑥௜)(௝,௞)∈ ௌ  is the output of the small trees of selected pairwise 
interactions. This procedure of creating trees for remaining pairwise 
interactions in 𝑍, moving the best pairwise interaction to 𝑆, and updating the 
residual error 𝑟, is repeated until the size of 𝑆 is equal to a hyperparameter 
that limits the number of pairwise interactions, or until none of the 
interactions in 𝑍 improves the accuracy of the prediction. 

After detecting the most important pairwise interactions, the functions for 
the pairwise interactions ∑ 𝜙௝௞൫𝑥௝ , 𝑥௞൯ are constructed in a manner that is 

similar to the main effects ∑ 𝜙௝൫𝑥௝൯. The initial step 𝐺଴(𝑥௜) is the prediction of 
the model built so far: 

𝐺଴(𝑥௜) = 𝐹ெ(𝑥௜). (40) 
In each round, the pairwise interactions in 𝑆 are cycled through. For each 

pairwise interaction a tree 𝑓(௝,௞) limited to the two features is created to 
predict the residual error of the previous prediction. The weights for each 
terminal node are assigned as the average residual error of that node, and the 
predictions are updated. The update after one round is summarized by this: 

𝐺௠(𝑥) =  𝐺௠ିଵ(𝑥௜) + ෍ 𝜂𝑓(௝,௞)௠(𝑥௜)

(௝,௞)∈ ௌ

. (41) 

After M rounds, or after the stopping criterion is met, the predictive model 
is complete, and the individual functions for pairwise interactions are given 
by: 

𝜙௝,௞൫𝑥௝,௞൯ = ෍ 𝜂𝑓(௝,௞)௠(𝑥).

ெ

௠ୀଵ

(42) 

EBM implementation of the GA2M algorithm includes additional techniques 
to increase accuracy or decrease the computational cost of the algorithm. To 
speed up the algorithm, similar to the approximate algorithm of XGB, EBM 
discretizes continuous features into bins based on quantiles, where each bin 
has a similar number of instances in them. These bins are used as candidate 
split points for finding splits when constructing trees 𝑓. This discretization is 
done separately for main effects and pairwise interactions. The maximum 
number of bins for detecting and fitting pairwise interactions 𝜙௝,௞൫𝑥௝,௞൯ is 
determined by the max interaction bins hyperparameter, while the maximum 
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number of bins for fitting main effects 𝜙௝൫𝑥௝൯ is determined by the max bins 
hyperparameter. 

To increase the accuracy of the algorithm, EBM allows bootstrap 
aggregating in two levels. On the outer level, data are subsampled without 
replacement to create samples, which involve only a part of the data. The left-
out part of the dataset is used for the early stopping criterion. The number of 
subsamples created is equal to the outer bags hyperparameter. Each bag 
works independently with the expectation of pairwise interaction detection, 
where each bag ranks the pairwise interactions separately, but the final 
pairwise interactions are selected for all the bags based on the average rank 
of pairwise interactions across the bags. For the final shape functions of main 
effects and pairwise interactions, the outputs are the average outputs of 
shape functions for each bag. This outer bag procedure is parallelized across 
the number of cores in a machine, so it doesn’t necessarily affect the 
computational cost of the algorithm. 

In the inner level, datapoints are sampled with replacement for each tree 
𝑓 that is constructed. The average output across inner bags is the final output 
of each tree. The number of inner bags is controlled with hyperparameter 
inner bags. Bagging in the inner level increases computational cost. 
 
4.3 Tree-structured Parzen Estimator 
 
Due to the high number of tuneable hyperparameters in XGB and the 
slowness of EBM, the traditional grid search method for optimizing 
hyperparameters was determined to be too slow. Instead, an implementation 
introduced by Bergstra et al. (2015) of the Tree-structured Parzen Estimator 
(TPE) algorithm, introduced by Bergstra et al. (2011), is used.  

Putatunda and Rama (2018) compared the TPE algorithm with grid 
search and random search for tuning hyperparameters of XGB and found 
that TPE is faster than grid search and more accurate than random search. 
TPE is one of the suitable hyperparameter optimization methods for large 
hyperparameter spaces mentioned by Yang and Shami (2020). 

TPE algorithm belongs to the group of Sequential Model-Based Global 
Optimization (SMBO) algorithms. SBMO algorithms iterate between 
evaluating the true function 𝐹 and approximating the surrogate function 
given observation history 𝐻. Observation history consists of pairs of loss 
𝐹(𝑥(௜)) of the true function and parameters 𝑥(௜) that were used to obtain the 
loss. 

The point 𝑥∗ that maximizes the surrogate function is proposed for the 
next evaluation of the true function. SBMOs differ in the way, in which the 
surrogate function is modelled and the next candidate point 𝑥∗ is obtained. 
The TPE algorithm, as well as other some other SBMO algorithms, obtain 𝑥∗ 
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by optimising Expected Improvement (EI) criterion. EI is defined by the 
following formula: 

𝐸𝐼௬∗(𝑥) ∶=  න max(𝑦∗ − 𝑦, 0)𝑝ெ(𝑦|𝑥)𝑑𝑦 ,
ஶ

ିஶ

(43) 

where 𝑝ெ(𝑦|𝑥) refers to the surrogate model of the true function, and 𝑦∗ is 
some threshold, which’s set up changes from one algorithm to another. 

Configuration space, where the best values for hyperparameters are 
searched, is defined in Hyperopt with different distributions, such as uniform 
distribution between thresholds or gaussian distribution. Also, the 
representation of discrete and conditional variables is possible. The tree-
structure of TPE refers to the ability to represent hyperparameters in a tree-
like structure, in a way that some hyperparameters are only relevant when 
other hyperparameters have a certain value. TPE transforms these 
configuration spaces into some variations of truncated Gaussian 
distributions. The hyperparameters for the first 20 iterations are randomly 
sampled from the prior distributions, and the following iterations are done 
based on the suggestions of the TPE algorithm. 

Instead of directly modelling 𝑝(𝑦|𝑥) TPE models  𝑝(𝑥|𝑦) and 𝑝(𝑦). The 
modelling of 𝑝(𝑥|𝑦) is done by forming two densities 𝑙(𝑥) and 𝑔(𝑥): 

𝑝(𝑥|𝑦) =  ൜
𝑙(𝑥) 𝑖𝑓  𝑦 < 𝑦∗

𝑔(𝑥) 𝑖𝑓  𝑦 ≥ 𝑦∗ , (44) 

where 𝑙(𝑥) is created with observations ൛𝑥(௜)ൟ, where obtained loss 𝐹(𝑥(௜)) was 
smaller than the threshold 𝑦∗. In a sense, density 𝑙(𝑥) represents good 
observations and density 𝑔(𝑥) represents bad observations. The TPE 
algorithm sets 𝑦∗ to be some quantile γ of the observed loss values: 

γ = 𝑝(𝑦 < 𝑦∗). (45) 
Bergstra et al. (2011) show that EI can be approximated in the following way:  

𝐸𝐼௬∗(𝑥) =  න (𝑦∗ − 𝑦)𝑝(𝑦|𝑥)𝑑𝑦
௬∗

ିஶ

∝  ቆγ + (1 − γ)
𝑔(𝑥)

𝑙(𝑥)
ቇ

ିଵ

. (46) 

The approximation of EI can be maximized by maximizing 
௟(௫)

௚(௫)
, which 

means choosing values 𝑥 that have a high probability in 𝑙(𝑥) and a low 
probability in 𝑔(𝑥). 

Separate densities are formed for each tuneable hyperparameter. With 
continuous search spaces, the formed densities are a mixture of prior and 
gaussian distributions centred at each point 𝑥(௜) in search history, with a 
standard deviation equal to the distance to the greater of its distances to 
nearest neighbours in each direction. For search spaces with uniform priors 
over intervals (𝑎, 𝑏), the gaussian mixture is limited between 𝑎 and 𝑏. For 
discrete variables with 𝑁 different possible values, the prior distribution is a 
vector of 𝑁 probabilities 𝑝௜, and the posterior probabilities of each value are 
proportional to 𝑁𝑝௜ + 𝐶௜, where 𝐶௜ represents the number of occurrences of 
value 𝑖 in the search history. 
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The weight of observations is scaled in TPE, as the 25 most recent 
observations have weight 1. The observations before that have evenly spaced 

weights over an interval (
ଵ

௡
, 1), where 𝑛 is the number of iterations.  

In each iteration, the TPE algorithm utilizes search history 𝐻 to form 
densities for the good group 𝑙(𝑥) and bad group 𝑔(𝑥), and suggests new 

values for 𝑥, which maximize the density 
௟(௫)

௚(௫)
. The suggested values are used 

to obtain new loss value 𝐹(𝑥(௜)) and the search history 𝐻 is updated. These 
iterations are repeated until some stop criterion, such as time or number of 
iterations is reached. 

The approximation of EI is illustrated in Figure 1, which shows loss values 
of individual trials, which are represented with dots, on the right y-axis and 
densities of the different distributions on the left y-axis. This illustrative 
example has 10 searches in total, and the searches are grouped based on loss 
values to create two densities l(x) and g(x). Individual searches that are used 
to form l(x) are the most accurate ones, while the rest of the searches are used 
to form g(x). The value of the learning rate, which corresponds to the peak of 
the EI curve, would be the suggested value for the next search. 
 

Figure 1: Approximation of EI in TPE 
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4.4 Hyperparameter optimisation decisions 
 
Ghatnekar and Shanbhag (2021), and Mrsic et al. (2020) reported significant 
increases in property valuation accuracy when comparing XGB with 
optimized hyperparameter values to XGB with standard hyperparameter 
values. The tuned hyperparameters and their search spaces are reported in 
Table 3. For all XGB models, the TPE algorithm was performed for 300 
rounds. 
 
Table 3: XGB hyperparameter search spaces used in TPE 

Hyperparameter Search space 
max depth quniform(3,18,1) 
gamma uniform(1,1 000) 
alpha uniform(1,1 000 000) 
lambda uniform(1,1 000 000) 
colsample by tree uniform(0.5,1) 
colsample by level uniform(0.5,1) 
colsample by node uniform(0.5,1) 
subsample uniform(0.5,1) 
min child weight quniform(0,20,1) 
number of estimators quniform(100,1 000,1) 
eta, learning rate uniform(0.001,0.9) 

 
The creators of EBM claim that the default hyperparameter values should 

work well in all situations and that there is no need for hyperparameter 
tuning with EBM. According to Nori et al. (2021), who utilized a slight 
variation of standard EBM, the default parameters work well on a variety of 
datasets. However, hyperparameter tuning was performed for EBM models. 
The tuned hyperparameters and their search spaces are reported in Table 4. 
For all EBM models, the TPE algorithm was run for 100 rounds. The number 
of rounds is lower compared to XGB because EBM is considerably slower, the 
number of tuned hyperparameters is lower, and the expected significance of 
hyperparameter tuning based on literature is smaller. 

 
Table 4: EBM hyperparameter search spaces used in TPE 

Hyperparameter Search space 
max bins quniform(2,500,1) 
number of interactions quniform(1,50,1) 
outer bags quniform(1,20,1) 
inner bags quniform(0,20,1) 
min samples per leaf quniform(0,20,1) 
learning rate uniform(0.001,0.1) 
max leaves quniform(2,20,1) 
max interaction bins quniform(2,64,1) 
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Uniform prior was used for search spaces, as there is no clear information 
on what type of values each hyperparameter could be expected to have. 
Quniform refers to uniform search space where possible values are spread 
across some interval. For example, if the interval is 1, possible values are 
integers that are in the defined range. With most hyperparameters, if the best 
results were obtained with a hyperparameter value that was close to the edge 
of its initial search space, that search space was enlarged and the 
hyperparameter search was repeated. With the number of pairwise 
interactions hyperparameter in EBM the search space was not enlarged, 
because the least important pairwise interactions did not have a significant 
impact on the predictions and increasing the number of interactions would 
slow down the hyperparameter search too much. 

For each model, a 10-fold cross-validation was used to calculate the loss 
value for TPE. Data were split ten times into a training part that is 9/10 of 
the training data and a validation part that includes 1/10 of the training data. 
The average RMSE across the folds is used as a criterion that is optimized 
with TPE. The hyperparameters that were used to obtain the lowest RMSE 
for a single model were then used as the final hyperparameters for that 
model. 
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5 Results 
 
In this section, the results of chosen methods and approaches are compared, 
and the interpretability of an EBM model is highlighted. The graphs that are 
used to highlight the interpretability of EBM are produced with the 
InterpretML framework, where EBM is implemented. 
 
5.1 Model comparison with the global approach 
 
The accuracies of both methods with the global approach are shown in Table 
5. The total accuracy refers to the accuracy of a model across all 
municipalities, which is the objective that is minimized in model training. In 
addition, the accuracies in each municipality are also reported to compare to 
local approach more easily and to identify, which municipalities work well 
with the global approach. RMSE for training data is also reported to show the 
level of overfitting in the models. The municipalities are sorted in descending 
order based on how many transactions from each municipality are included 
in the dataset. 
 
Table 5: Accuracies of different models with the global approach 
Method XGB XGB XGB EBM EBM EBM 
Dataset Train Test Test Train Test Test 
Metric RMSE RMSE MDAPE RMSE RMSE MDAPE 
Copenhagen 274 184 433 661 7.0 417 672 523 902 9.1 
Aarhus 267 311 386 528 6.5 458 607 444 351 9.1 
Aalborg 232 561 398 069 10.6 411 962 506 057 14.0 
Odense 256 405 638 692 12.1 438 311 758 965 15.7 
Frederiksberg 291 882 487 860 7.4 442 800 574 156 10.1 
Roskilde 293 817 635 932 13.9 486 195 746 694 14.0 
Total 267 665 466 070 8.1 435 180 558 342 10.6 

 
The results reported in Table 5 show that the trained XGB model predicts 

property prices more accurately than the trained EBM model with the global 
approach. MDAPE and RMSE are better in total and in all the municipalities 
except for Roskilde, where the MDAPE of both models are similar, while 
RMSE is still better with XGB. 

The function of EBM that captures the impact of municipalities is shown 
in Figure 2. Municipality 1 refers to Copenhagen, where otherwise similar 
properties have the lowest valuations. In municipality 3, which refers to 
Aarhus, valuations are highest, while there are no sizable differences between 
the other municipalities. The low accuracy of EBM, when compared to XGB, 
could stem from its inability to model local differences across the 
municipalities. The differences across municipalities in EBM are mostly 
captured with the single values shown in Figure 2 that are added to the 
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additive function, while XGB can capture more complex relationships that 
could more accurately represent the uniqueness of individual municipalities. 

 

 
5.2 Model comparison with the local approach 
 

The accuracies of both methods with the local approach are shown in 
Table 6. In addition to the individual accuracies of single municipalities, 
which is the target of learning algorithms, the total accuracy across all 
municipalities is reported to allow comparisons to the global approach. 

 
Table 6: Accuracies of different models with the local approach 

 
With the local approach, the accuracy of EBM increased significantly 

compared to the global approach, while the accuracy of XGB also improved 
slightly. The total accuracy of XGB is still better, while the difference in both 
RMSE and MDAPE is significantly smaller than in the global approach. 
When individual municipalities are compared, there is no clear difference 
between the two methods with the local approach. In some municipalities, 
the out-of-sample accuracy of EBM is better, while in others, the out-of-

Method XGB XGB XGB EBM EBM EBM 
Dataset Train Test Test Train Test Test 
Metric RMSE RMSE MDAPE RMSE RMSE MDAPE 
Copenhagen 225900 413791 6.9 359942 432480 7.4 
Aarhus 201725 420565 6.0 382932 422635 7.2 
Aalborg 184177 335179 8.5 322846 446716 16.0 
Odense 180719 547984 9.2 336175 684175 8.7 
Frederiksberg 237390 470150 6.8 320811 469094 6.6 
Roskilde 230219 672576 14.7 387352 653793 12.6 
Total 211221 444414 7.4 356389 485876 8.5 

Figure 2: Effect of the municipality feature in the EBM model  
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sample accuracy of XGB is better. Except for Aalborg, the differences are not 
very big. Interestingly in Odense, the RMSE of XGB is significantly better, 
while the MDAPE of EBM is better. 

While the test accuracies of the two methods are mostly similar, the 
training RMSE is significantly lower with XGB, which makes it seem that the 
XGB models were overfitted, even with the hyperparameter optimization and 
10-fold cross-validation procedure that aims to reduce overfitting. The 
difference in terms of RMSE between the training set and the test set is 
smaller with EBM models, which makes EBM as a method seem more robust. 

 
5.3 Global interpretability of EBM 
 
The global interpretability of EBM is highlighted by presenting the built 
Copenhagen EBM model with the local approach. Figure 3 showcases feature 
importances that are calculated based on the average absolute effect that 
each feature has on the predictions. The Copenhagen EBM model has 43 
features with individual functions and 50 functions that capture pairwise 
interactions. These feature importance measures in Figure 3 show, which of 
these functions has the biggest effect on the predictions on average, and it 
will be utilized in this thesis as only functions of some of the most important 
features will be presented. In the single feature function graphs, the grey 
areas represent uncertainty that comes from the difference in functions 
across different outer bags in the training phase of the algorithm.  

Figure 3: Feature importance of EMB Copenhagen model 
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In addition, distributions of features are presented under most of the 
functions to get an idea, of how the values of each feature are distributed. 

Figure 4 shows the effect of the weighted floor area of a property. An 
increase in weighted floor area increases the predicted price and the increase 
from each added square meter gradually decreases. There are not a lot of 
properties, where the weighted floor area is more than 200 square meters, 
which could explain the inconsistency of the function with high values of the 
weighted area. There can be close to a 3 million DKK difference in predicted 
price just based on the weighted floor area. 

 

 
Figure 5 shows the function for the year of the transaction. The predicted 

price of properties grows each year, while the differences between years vary. 
According to this function, the valuation of a property would be 2 million 
DKK more in 2021, compared to 2010. 

 

 

Figure 4: Single feature function of the weighted floor area 

Figure 5: Single feature function of the year of the transaction 
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Figure 6 shows the function of the number of rooms, which shows that 
each additional room of up to 8 rooms increases the predicted price. The 
difference in predicted price between 1 and 8 rooms is close to 1 million DKK. 

 
The function of feature distance to the nearest coast is shown in Figure 7. 

Properties near a coast have higher valuations, the effect of distance to the 
nearest coast diminishes fast as the distance increases, and after 2 kilometres 
the effect stays similar until 10 kilometres of distance. Being right next to the 
coast can increase the predicted price by close to 1 million DKK compared to 
distances, where the function plateaus. 

 

 
 
 
 
 
 

Figure 7: Single feature function of distance to the nearest coast 

Figure 6: Single feature function of number of rooms 
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The function of the postal code is shown in Figure 8. There are differences 
up to 0.5 million DKK between different post number areas. The biggest 
effect is on areas, where there are not many property transactions. In areas, 
where most of the transactions happen, there is a smaller effect. 

 

 
Figure 9 shows the function of the ERTS89 x-coordinate of the property. 

The function increases the predicted prices of properties in eastern parts of 
Copenhagen while decreasing the predicted prices of properties in western 
parts of Copenhagen. 

 

 
  

Figure 8: Single feature function of postal number in area 

Figure 9: Single feature function of ERTS89 x-coordinate of property 
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The function of the built year is shown in Figure 10. Properties in newly 
constructed buildings have higher predicted prices. The function has a U-
shape in the last 100 years, where the price of properties in buildings built 
between 1970 and 1980 is the lowest, and the predicted price is higher in 
older buildings. 

 

 
The function of distance to the nearest swimming hall is presented in 

Figure 11. Interestingly, properties with bigger distances to the nearest 
swimming hall have a higher predicted price, compared to properties that are 
closer to swimming halls. 

 
 

Figure 10: Single feature function of built year 

Figure 11: Single feature function of distance to the nearest swimming hall 
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Figure 12 presents the function for distance to the nearest train station. 
Low distances to train stations have higher predicted prices on the 
properties. 

 
The function for distance to the nearest s-train station is shown in Figure 

13. Very small distances seem to have a negative effect on predicted prices, 
while medium distances have close to zero effect on the predicted price, and 
longer distances decrease the predicted price. 

 

 
The function of distance to the nearest airport is shown in Figure 14. 

Property being too close to airports decreases the predicted price, and the 
biggest positive effects are between 10 and 18 kilometres in distance. Higher 
distances have low predicted prices. 

Figure 13: Single feature function of distance to the nearest s-train station 

Figure 12: Single feature function of distance to the nearest train station 
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The most important function that includes two features is shown in Figure 

15. The two features are the year of the transaction on the y-axis and the 
weighted floor area of a property in square meters on the x-axis. The function 
shows that in more recent years the predicted prices of properties with high 
weighted floor area are higher, while closer to 2010 the predicted prices of 
smaller properties are higher. When the effect of this function is considered 
together with the effect of transaction year function in Figure 5 it can be 
understood better. The average property has risen 2 million DKK in value, 
the value of bigger properties has grown nearly 2.5 million DKK, while the 
value of smaller properties has grown roughly 1.5 million in the same 
timeframe of 10 years. 
 

Figure 14: Single feature function of distance to the nearest airport 

Figure 15: Two feature function with weighted floor area on the x-axis and 
transaction year on the y-axis 
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5.4 Local interpretability of EBM 
 
In this part, the local interpretability of EBM is presented through individual 
predictions made by the local approach Copenhagen model with the test data. 
Four example transactions from different price ranges were chosen for 
presentation. The intercept in each prediction is the average transaction price 
in the training data. The rest of the explaining factors are based on the 
functions of individual features and pairwise interactions. 

Figure 16 shows the local explanation of the first example transaction. The 
high prediction is a result of the relatively large weighted floor area and the 
novelty of the building. Also, the number of rooms and pairwise interactions 
of the previously mentioned features increase the predicted price 
significantly.  

 
The local explanation of the second example transaction is shown in Figure 
17. The predicted price stems mostly from the intercept and transaction 
year. The novelty of the building also increases the predicted price.  

 
  

Figure 16: Explanation of the first example prediction 
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Figure 18 shows the third example transaction. The baseline of the 

predicted price, which comes from intercept and the year of the transaction, 
is decreased due to the relatively small weighted floor area. 

 
The final example transaction is presented in Figure 19. In the final 

example, the predicted price is mainly decreased due to the small size of the 
property, the low number of rooms, and the western location. 

 
  

Figure 17: Explanation of the second example prediction 

Figure 18: Explanation of the third example prediction 
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As the intercept and the year of the transaction are the same in each 

property, the biggest differences in predicted price across the properties stem 
from features that reflect the size of the property and the built year feature. 
The impact of the rest of the features is small in most of the examples, which 
aligns with the feature importance calculations in Figure 3.  

 
 
 

Figure 19: Explanation of the fourth example prediction 
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6 Conclusion 

6.1 Discussion of the results 
 
This thesis aimed to analyse the feasibility of interpretable machine learning 
in property valuation and to produce an interpretable machine learning 
model that could be compared to the property valuation model used in 
Nordea. In the literature review, the benefits of interpretability in machine 
learning were discussed and the best-performing black-box method and 
promising interpretable method were identified. The chosen methods, XGB 
and EBM were compared in the empirical part of the study. 
 
6.1.1 Benefits of interpretability in property valuation 
 
The benefits that could be achieved with interpretable machine learning in 
property valuation were examined in the second section. As the EBM model 
is highly interpretable, it could make a difference, if the lack of 
interpretability has impeded the adoption of complex machine learning 
methods. Interpretability of EBM could make it seem more plausible than 
more complex machine learning methods because it is easier to verify and 
trust the model, as the impact of each feature is understandable. In addition, 
it is possible to comply with the requirements of GDPR, as providing 
meaningful information of the logic involved can be done, when there are 
individuals that would be affected by the predictions made by an EBM model. 

There are additional benefits that interpretability might bring. Even 
though the feature functions of EBM do not imply causal relationships 
between the features and prediction price, it is possible to gain some 
information on the relationships between the features of properties and 
property prices. Also, interpretability can help the model-building progress. 
For example, in the early stages of this thesis, some inconsistencies in the 
data were found after looking at the feature functions of an EBM model. 
Those inconsistencies might have not been found with more complex 
machine learning models. 
 
6.1.2 Accuracy-interpretability trade-off 
 
The chosen methods were compared with two different modelling 
approaches. In the global approach, where data from all of the six included 
municipalities were used to train a single model for both methods, the XGB 
was considerably better overall. With the global modelling approach, there is 
a clear trade-off between accuracy and interpretability. 

With the local modelling approach, where individual models were trained 
for all the included municipalities, the difference between the two methods 
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is considerably smaller. While XGB still had better accuracy overall, the 
interpretable EBM predicted property prices more accurately in some of the 
municipalities, and the differences in accuracy between the two methods 
were very small in most municipalities. With the local modelling approach, 
the trade-off between accuracy and interpretability is small overall, and non-
existent in some of the municipalities. 

 
6.1.3 Interpretability of EBM 
 
The interpretability of the local approach Copenhagen EBM model was 
highlighted by presenting the most important functions of the model and 
some example predictions. With the functions, it is possible to infer, how the 
EBM model makes predictions.  

In EBM, the value of a function that corresponds to the value of a feature 
or values of two features is just added to the final prediction. Because of this, 
the impact that single features have is easy to understand. Due to the high 
number of features and functions based on single features or pairs of 
features, global, holistic interpretability is impossible to achieve. However, 
global interpretability on a modular level is possible to achieve, as the impact 
of each individual function is understandable. 

The functions that are trained in the EBM do not imply a causal 
relationship between the features and predicted price as many of the features 
can be correlated and the impact of one feature can be captured in the 
function of another feature. For example, the graph in Figure 6 shows that an 
increase in the number of rooms increases the predicted price, but it might 
be possible that when comparing two otherwise similar properties, the 
property with more rooms does not seem more valuable to a possible buyer. 
This might be a result of correlated features and EBM fitting all the single-
feature functions simultaneously. 

There are a lot of features included that in some way reflect the location of 
a property, and according to Mayer et al. (2022), there is typically collinearity 
among these types of features. For example, some post number areas that 
have highly valued properties, might not have a significant impact through 
the post number function, and the impact could be included through the 
distance to coast function or the distance to city centre function. Also, the U-
shape of the built year could be explained with location, as some older 
buildings might have better locations than buildings that were built later. 

The explanations of example predictions show, how individual predictions 
can be explained. The most important factors are easily identifiable, and it is 
easy to understand, what type of impact each function has. If the effect of a 
function does not make sense initially, it is possible to refer to the global 
explanation of that function to understand, why it impacts the prediction in 
that way. It is possible to achieve local interpretability with EBM. 
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6.2 Contributions 
 
The main contributions of this thesis come from the comparing accuracies of 
the two methods. With the two chosen methods, there is a trade-off between 
interpretability and accuracy, as the interpretable EBM method does not 
produce as accurate predictions as the less interpretable XGB method. Even 
though the XGB method is more accurate, the difference in terms of accuracy 
is not very big, and the EBM method with the local approach is more accurate 
in some of the municipalities that were included in the study. This is one of 
the first studies that use EBM in property valuation, and the first one that 
compares XGB and EBM in property valuation. 

Another contribution of this thesis comes from the comparison of 
accuracies between local and global approaches. The accuracy of the XGB 
method increases slightly when individual models are trained in each 
municipality, while with EBM, the accuracy increases significantly. The EBM 
method benefits more from localized model training, which might be a result 
of the relatively simple and additive structure of EBM. 

This thesis contributes to interpretable property valuation literature by 
highlighting the interpretability of EBM. In this thesis, the interpretability of 
the EBM is highlighted by displaying the most important single feature and 
two feature functions, which shows how easy it is to interpret EBM models. 
In addition, the local interpretability of EBM is highlighted by showing 
example explanations of predictions. With these explanations of single 
predictions, it is easy to understand, why the prediction was made, which 
could be useful, when companies looking to adopt machine learning methods 
consider, how the requirements of GDPR can be fulfilled. In previous 
interpretable property valuation literature only Hurley and Sweeney (2022) 
have interpreted interpretable models that were used in property valuation, 
as they included three graphs that highlight how features affect the price per 
square meter in their GAM approach. In this thesis, the prediction target is 
the transaction price of a property, which can be even more interpretable, 
because it shows, how features affect the price of a property directly. 

 
6.3 Limitations and future research 
 
This thesis aimed to find out, if there is an accuracy-interpretability trade-off 
in property valuation, by comparing one proven and previously well-
performing machine learning method to a candidate interpretable method. 
Several limitations need to be addressed and offer possibilities for future 
research. 

One of the aims of the literature review was to identify the best possible 
machine learning method that would be compared to the interpretable 
method, and while earlier property valuation literature supports the XGB 
decision, other methods could be even more accurate, which could increase 
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the accuracy-interpretability trade-off. Also, the difference in accuracies 
between train RMSE and test RMSE indicates, that there might be room for 
improvement, with the optimization of XGB. Similarly, there might be some 
room for improvement when it comes to the choice or design of the 
interpretable method that could decrease or remove the accuracy-
interpretability trade-off. There might be other methods that are more 
accurate, yet interpretable that have not been used in property valuation 
previously or have not been used optimally. In future research, including 
more interpretable methods and more benchmark machine learning 
methods, as well as implementing XGB better, could help to gain an even 
more accurate picture of the accuracy-interpretability trade-off in property 
valuation. 

Another limitation of this thesis, which affects both XGB and EBM, is that 
there are no features that represent the condition of a property, which could 
be a key factor for possible buyers. The built year feature and the year of most 
recent remodelling are the only features that could be connected to the 
condition of a property, but they are only indicative when it comes to the 
condition of a property. Having additional data that would represent the 
condition of a property more accurately, could increase the accuracy of both 
methods. If it would be possible to obtain data that represents the condition 
of properties, determining how much more accurate these methods could be 
and what the differences in terms of accuracies would be with the additional 
data, could be an interesting future research topic. 

This thesis has some limitations when it comes to generalisability. The 
data that was used was limited in different ways, which affect the 
generalisability of findings. The data only includes transactions from six big 
municipalities of Denmark, and the comparative accuracies of the chosen 
methods and the accuracy-interpretability trade-off could be different in 
more rural areas of Denmark or other countries. 

The training data included transactions of owner-occupied properties, 
which also limits the generalisability of the findings, as the findings do not 
apply to other types of properties, where the value of properties stems from 
different factors. Also, when it comes to owner-occupied properties 
specifically, the upper limit on the price of properties to be included limits 
the generalisability of the findings, as the used methods might not be 
similarly capable of predicting prices of more expensive properties. 

The generalisability of these findings over different periods can also be 
problematic. In this thesis, the transactions that were used in the test set were 
from the last quarter of 2021, and the train set used data between the years 
2009-2021. It is possible that changes in external factors, such as interest 
rates, could affect transaction prices, and there might be differences in how 
well the chosen methods can capture these changes that happen over time. 

These generalizability issues of this thesis provide ideas for future 
research. It would be interesting to see how the two methods compare with 
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data from different periods, other countries, more rural areas, properties 
from different price ranges, or properties with different ownership types and 
use. 

The accuracy of the EBM model could be improved if the EBM feature 
fitting procedure was changed. For example, it might make more sense to 
exclude the x- and y-coordinates from the single feature fitting procedure and 
include them as a two-feature function instead. It is likely that possible 
buyers value the location of a property instead of its x- and y-coordinates 
separately. However, even if this was done, the impact of the function 
involving the two coordinates might be low, because all the two-feature 
functions are fitted after the single-feature functions in EBM. Also, as all the 
single feature functions are fitted simultaneously, it can be possible that a 
feature captures an impact that would be more accurately represented by 
another feature. For example, if the function for the number of rooms was 
fitted after the function for the weighted area, it could result in more accuracy 
and a different function for both of the features. The standard feature fitting 
procedure of EBM is strict in this sense as it only allows fitting single-feature 
functions first and either searches for two-feature functions or fits pre-
determined two-feature functions after that. This might restrict the EBM 
models in terms of accuracy, and modifications that would allow more 
flexibility in terms of feature fitting order could result in more accuracy. 

The interpretability of the built EBM model could also be improved. The 
previously mentioned exclusion of coordinates from the single-feature 
functions could also increase the interpretability of the model, as it could be 
more understandable to have one two-feature function for location instead 
of two single-feature functions. Also, potential problems that could arise, 
when all single feature functions are fitted simultaneously, might affect the 
interpretability of the model. It could make more sense if the impact of a 
certain factor, the size of the property, for example, would be captured in one 
function instead of several functions. 

In addition, the vast number of features and feature interactions decrease 
the interpretability of EBM. It could be possible to exclude some of the most 
insignificant and feature interactions, without losing accuracy, which could 
improve the interpretability of EBM. These ideas for improvements of EBM 
offer a possibility for further research to determine if the interpretability-
accuracy trade-off could be smaller and if the interpretability of EBM could 
be increased without losing accuracy. 
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