
Power Profiling Model for RISC-V
Core

Lin Zhang

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 28.04.2023

Supervisor

Prof. Jussi Ryynänen

Advisor

Dr. Marko Kosunen

Copyright © 2023 Lin Zhang

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Lin Zhang
Title Power Profiling Model for RISC-V Core
Degree programme Electronics and Nanotechnology
Major Micro- and Nanoelectronic Circuit Design Code of major ELEC3036
Supervisor Prof. Jussi Ryynänen
Advisor Dr. Marko Kosunen
Date 28.04.2023 Number of pages 58+4 Language English
Abstract
The reduction of power consumption is considered to be a critical factor for efficient
computation of microprocessors. Therefore, it is necessary to implement a power
management system that is aware of the computational load of the CPU cores. To
enable such power management, this project aims to develop a power profiling model
for the RISC-V core. TheSyDeKick verification environment was used to develop
the power profiling models. Additionally, Python-controlled mixed mode simulations
of C-programs compiled for A-Core were conducted to obtain needed data for the
power profiling of the digital circuitry. The proposed methodology could employ a
time-varying power consumption profiling for the A-Core RISC-V microprocessor
core which depends on software, voltage, and clock frequency. The results of this
project allow for the creation of parameterized power profiles for the A-Core, which
can contribute to more efficient and sustainable computing.
Keywords RISC-V, Power Profiling, Power Management, TheSyDeKick

Aalto-yliopisto, PL 11000, 00076 AALTO
www.aalto.fi

Diplomityön tiivistelmä

Tekijä Lin Zhang
Työn nimi Tehon Profilointimalli RISC-V Corelle
Koulutusohjelma Elektroniikka ja nanoteknologia
Pääaine Mikro- ja nanoelektroniikkasuunnittelu Pääaineen koodi ELEC3036
Työn valvoja Prof. Jussi Ryynänen
Työn ohjaaja TkT Marko Kosunen
Päivämäärä 28.04.2023 Sivumäärä 58+4 Kieli Englanti
Tiivistelmä
Virrankulutuksen vähentäminen on kriittinen tekijä mikroprosessorien tehokkaassa
laskennassa. Siksi on tarpeen toteuttaa virrankulutuksen hallintajärjestelmä, joka tun-
nistaa CPU-ytimien laskennallisen kuorman. Tämän projektin tavoitteena on kehittää
virrankulutusprofiilimalli RISC-V-ytimelle. TheSyDeKick-tarkistusympäristöä käy-
tettiin virrankulutusprofiilimallien kehittämiseen. Lisäksi C-ohjelmille käännetyistä
A-Core-mikroprosessoria varten suoritettiin Python-ohjattuja sekoitetun tilan simu-
lointeja tarvittavien tietojen saamiseksi digitaalisten piirien virrankulutusprofiilien
määrittämiseksi. Ehdotettu menetelmä voisi käyttää aikaan sidottua virrankulu-
tusprofiilin määrittämistä A-Core RISC-V mikroprosessoriytimelle, joka riippuu
ohjelmistosta, jännitteestä ja kellotaajuudesta. Tämän projektin tulokset mahdollis-
tavat parametroitujen virrankulutusprofiilien luomisen A-Corelle, mikä voi edistää
tehokkaampaa ja kestävämpää laskentaa.
Avainsanat RISC-V, Tehon Profilointi, Virranhallinta, TheSyDeKick

5

Preface
First, I’m deeply grateful to Professor Jussi Ryynänen and my instructor Marko
Kosunen, whose expertise, guidance, and support were instrumental in shaping this
thesis. Their mentorship challenged me to think critically, to dig deeper, and to strive
for excellence. Thanks Aleksi Korsman, Otto Simola, and Verneri Hirvonen from the
A-Core project for their help. The days in the ECD group will be unforgettable.

I also want to express my gratitude to Dejun Zhang and Haizhi Lin, who are
my parents, for their encouragement and unwavering support throughout my study
at Aalto. Additionally, my thanks is extended to my friends Peiyao Xu, Mengyuan
Huangfu, Qi Qi, Shuchang Zhang, Shuhe Yu, Zixuan Ning, and Xin Zhong for their
companionship during the challenging winter months. They believed in me even
when I doubted myself, and their love and encouragement kept me going.

Thank you to all who have played a role in this journey. I am grateful for your
support.

Otaniemi, 11.04.2023

Lin Zhang

6

Contents
Abstract 3

Abstract (in Finnish) 4

Preface 5

Contents 6

Symbols and Abbreviations 8

1 Introduction 11

2 Background 13
2.1 Central Processing Unit . 13
2.2 Instruction Set Architecture . 14
2.3 RISC-V . 15
2.4 A-Core Processor Implementation . 18

3 Power Consumption and Management 20
3.1 Power Consumption in CMOS Technology 20

3.1.1 Static Power Consumption . 22
3.1.2 Dynamic Power Consumption 22

3.2 Power Management . 23
3.2.1 Power Management System 24

3.3 Parasitic Information . 26
3.3.1 Parasitic Formats . 26
3.3.2 Standard Parasitic Exchange Format 26

3.4 Waveform Information . 27
3.4.1 Signal Change Formats . 27
3.4.2 Value Change Dump . 28

4 Tools and methodology 30
4.1 Design Workflow . 30
4.2 Power Profiling Model Structure . 31
4.3 TheSyDeKick . 33
4.4 ModelSim . 34

4.4.1 VCD File Generation . 34
4.4.2 VCD File Size Reduction . 34

4.5 IC Design Flow . 35
4.5.1 SPEF File Generation . 37

5 Design verification 39
5.1 Trap Test . 39

5.1.1 ModelSim Results . 40
5.1.2 Profile Results . 40

7

5.1.3 Summary of Results . 43
5.2 Blinky Test . 44

5.2.1 ModelSim Results . 44
5.2.2 Profile Results: Enable F-extension 45
5.2.3 Profile Results: Disable F-extension 49
5.2.4 Summary of Results . 51

6 Conclusions 53

References 55

A Trap Test 59

B Blinky Test 61

8

Symbols and Abbreviations
Abbreviations

AI Artificial Intelligence

ALU Arithmetic Logic Unit

CISC Complex Instruction Set Computer

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CSV Comma Separated Values

CU Control Unit

DRC Design Rule Checking

DSPF Detailed Standard Parasitic Format

DV FS Dynamic Voltage and Frequency Scaling

EDA Electronic Design Automation

EV CD Enhanced Value Change Dump

FPU Floating Point Unit

FSDB Fast Signal Database

GPIO General Purpose Input/Output

GPU Graphics Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

I/O Input/Output

IC Integrated Circuit

IoT Internet of Things

ISA Instruction Set Architecture

JTAG Joint Test Action Group

LED Light-emitting Diode

LV S Layout versus Schematic

9

MOSFET Metal Oxide Semiconductor Field Effect Transistor

NMOS N-channel Metalo Oxide Semiconductor

PMOS P-channel Metal Oxide Semiconductor

PMU Power Management Unit

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RSPF Reduced Standard Parasitic Format

RTL Register Transfer Level

SoC Systems-on-a-Chip

SPEF Standard Parasitic Exchange Format

SPF Standard Parasitic Format

UDP User Datagram Protocols

V CD Value Change Dump

Symbols

A Total area of the transistors

CL Capacitance of the load

EC Energy stored on the capacitor

EV DD Energy taken from the supply

f0→1 Frequency of energy-consuming transitions

i Current

IDD DC current from supply

Ileak Leakage current

Ioff Off-state leakage current

Isub Substrate leakage current

p Power

Pdynamic Dynamic power

Pdyn Dynamic power

10

Pstatic Static power

Ptotal Total power

t Time

v Voltage

VDD Supply voltage

Vin Input voltage

Vout Output voltage

w Energy

1 Introduction
Over the past two decades, microprocessor technology has made significant advance-
ments, resulting in a performance improvement of three orders in magnitude [1].
However, the energy efficiency of microprocessors has emerged as a crucial limiting
factor that extends beyond the number of processors [2, 3]. Modern systems-on-chips
experience thermal limitations and require enhanced energy efficiency to improve
performance while maintaining chip longevity [4]. To address these constraints,
effective power management systems are necessary to enhance energy efficiency while
avoiding performance degradation. Such systems should adapt to the demands and
limitations of specific workloads to optimize power consumption without affecting
performance.

Achieving power management for modern microprocessor cores involves a complex
closed-loop software-hardware optimization challenge aimed at regulating power
supply and clock resources in accordance with computational requirements [5, 6].
Latest research of RISC-V processors has been demonstrated by research groups
involved in RISC-V implementations [7–9]. To enable the advancement of power
management systems for the A-Core RISC-V microprocessor core developed in Aalto
University, the development of a dynamic power profile model is essential, which is a
software, voltage and clock-frequency dependent time-varying power consumption
profiling model. Additionally, the model has the potential to evaluate the power
consumption and efficiency of other microprocessor cores, providing a comprehensive
assessment of their dynamic power consumption. The structure of this thesis is as
follows:

Chapter 2 presents the background information on the CPU (Central Processing
Unit), ISA (Instruction Set Architecture), RISC-V, and A-Core processor imple-
mentation. The function of the CPU and how ISA impacts microprocessor design
are explained. The chapter then delves into the details of the RISC-V architecture,
which offers the benefits of open-source design and customizable microprocessors.
The implementation of A-Core processor is also discussed, which is based on the
RISC-V architecture.

Chapter 3 explores power consumption and management techniques. It exam-
ines power consumption in CMOS technology, including static and dynamic power
consumption. Related literature review of power management techniques and power
management systems are reviewed. The chapter also covers parasitic information
and waveform information, which are used to analyze the power consumption and
develop the profile model of digital circuits. The power profiling algorithms in this
thesis utilizes various information extracted from the core during its operation, such
as signal change information from the VCD file and capacitance information of nets
from the SPEF file. These data will be employed to compute the power consumption,
and the time-based power consumption curve will be generated for power profiling.

Chapter 4 provides an overview of the tools and methodology used in this project.
This chapter introduces the workflow and the structure of the power profiling model,
also the design methodology employed in this project is comprehensively presented.
The power profiling algorithms developed in this thesis leverages the capabilities of

12

TheSyDeKick and Python programming language. A user-friendly TheSyDeKick
interface for controlling and running simulations is established, which simplifies the
power profiling process. The interface also enables the use of Python-based simplified
power profiles for hardware and power management system development. Additionally,
the chapter explores the ModelSim, IC design flow and the file generation which can
be used in the profiling model.

Chapter 5 focuses on the design verification results, which is crucial to ensure
that the design meets the specifications correctly. To assess the feasibility of the
power profiling model, different test targets are evaluated and simulated to assess
their efficiency, which include the trap test and the blinky test. Furthermore, the
model’s correctness and generality will be evaluated. The power profiling is carried
out on the A-Core RISC-V microprocessor, and the results of different simulations
are presented and summarized.

The objective of the work is using the post-layout data from the synthesized
A-Core microprocessor to create a software, voltage and clock-frequency dependent
time-varying power consumption profiles. During the work, the theory of the designed
model is thoroughly studied and applied to the practical realm. The operation of the
developed model is verified with simulations to show their good performance. Overall,
the thesis aims to contribute to the development of efficiency computing by proposing
a methodology to create a power profiling model for the RISC-V microprocessor core
that can optimize power consumption while maintaining performance.

13

2 Background

2.1 Central Processing Unit
The CPU is a vital constituent of a computer system, responsible for executing
program instructions [10, 11]. The CPU carries out instructions involving basic
arithmetic operations, logic operations, control functions, and input/output (I/O)
operations. The general structure of CPU is depicted in Fig. 1. It is comprised of
several key components, including the ALU (Arithmetic Logic Unit), which conducts
arithmetic and logic operations; the memory unit encompassing processor that provide
operands to the ALU and preserve the results of ALU operations; and the control unit
(CU), which supervises instruction fetching, decoding, and execution by synchronizing
the operations of the ALU and other components [10, 12].

Modern CPU design trends involve incorporating CPUs into IC (Integrated
Circuit) microprocessors that can accommodate multiple CPUs on a single chip,
leading to the development of multicore processors [13]. Additionally, each physical
CPU, or processor core, can be configured to support multi-threading, allowing for
the creation of additional virtual or logical CPUs [14, 15]. In addition to the CPU,
an IC microprocessor may incorporate memory, GPU (Graphics Processing Unit),
peripheral interfaces, and other components. This integration of multiple components
into a single chip is known as a microcontroller or System-on-a-Chip (SoC). The
amalgamation of components within a singular integrated circuit contributes to
enhanced efficiency and a reduced physical footprint, making it a desirable solution
for various computing applications [16].

Fig. 1. General Structure of CPU [10]

Typically, the CPU executes an instruction by retrieving it from memory, em-
ploying the ALU to conduct the required operation, and subsequently storing the
obtained result back into memory [17]. The control unit is a constituent of the CPU,
responsible for guiding its operation. It delivers timing and control signals to the

14

computer’s memory, ALU, and I/O devices. The management of most computer
resources is undertaken by the control unit, which is responsible for coordinating the
flow of data between the CPU and other peripheral devices. [17, 18].

A CPU’s circuitry is embedded with a predetermined set of fundamental opera-
tions, termed an instruction set, which includes functions such as addition, subtraction,
and comparison [18, 19]. Each instruction is identified by a unique bit combination,
denoted as the machine language opcode. When processing an instruction, the CPU
deciphers the opcode into control signals, which subsequently govern the CPU’s
behavior. The actual arithmetic or logic operation for each instruction is executed
by the ALU, which carries out integer arithmetic and logic operations (bitwise).

The ALU’s inputs comprise operands for operation, status data from prior
operations, and a code from the CU indicating the operation to perform. In addition
to integer math and logic operations, the CPU’s instruction set may include various
machine instructions, such as loading data, storing it, and performing mathematical
operations on floating point numbers, which are executed by the FPU (Floating
Point Unit) [19]. Based on the instruction, operands may be obtained from internal
CPU registers, external memory, or produced by the ALU. Upon the stabilization of
all input signals and their passage through the ALU circuitry, the resulting outcome
of the concluded operation is manifested at the ALU’s outputs [18, 20].

2.2 Instruction Set Architecture
The ISA serves as an abstract model of a computer system that outlines how the
software manages the CPU, acting as the interface between the software and hardware,
outlining the CPU’s capabilities and how it executes tasks. The ISA is an essential
aspect that distinguishes CPUs. Different processor hardware implementations are
achievable with ISA, resulting in various performance levels [21].

CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction
Set Computer) are two primary categories of ISA. CISC contains many unique
instructions, including specialized ones that are rarely used. As a result, the number
of instructions in CISC is extensive, which is more complex. RISC, on the other
hand, only includes the most commonly used instructions, with infrequently used
operations executed through multiple commonly used instructions, resulting in a
compact instruction set. Fig. 2 outlines the primary differences between CISC and
RISC [22, 23].

Initially, CISC was preferred over RISC as it offered more functionality with fewer
instructions. However, as the CISC instruction set developed and more specialized
instructions were added, it became evident that 80% of these instructions were
rarely used, leading to increased CPU design complexity, increased time cost, and
hardware overhead. Consequently, since the advent of RISC, modern instruction set
architectures have gradually shifted towards RISC architecture [22].

15

Fig. 2. CISC and RISC

2.3 RISC-V
The CPU architecture was mainly controlled by Intel (x86 architecture) and ARM
(ARM architecture) for a long time [24, 25]. Besides the x86 and ARM architectures,
the RISC-V ISA has gained significant popularity in recent years in both academia
and industry [26, 27]. RISC-V is built on the concept of reduced instruction set
computers and originated from research at Berkeley in 2010 [28].

The complexity of the mature x86 and ARM architectures, along with expensive
patents and architecture licensing issues, led the Berkeley developers to invent a
free, simple, and open-source ISA, which is RISC-V. One of the key advantages of
RISC-V is its open-source nature, enabling collaboration and innovation within the
industry [27, 28]. This has resulted in a thriving ecosystem of hardware and software
developers actively contributing to the advancement of the ISA.

Fig. 3. Industry Innovation on RISC-V

16

As shown in Fig. 3, the versatility of the RISC-V ISA has led to a surge
in the development of RISC-V based processors for various applications, such as
microcontrollers, IoT SoCs, and AI SoCs [29, 30]. Companies can optimize RISC-V
based processors for specific use cases and applications, improving performance and
energy efficiency [31]. Furthermore, the open-source nature of RISC-V has facilitated
the development of new hardware accelerators and custom instructions, enhancing
the performance and efficiency of RISC-V based processors [32].

The encoding of the RISC-V instruction set is highly consistent, arranging
the indices of the general-purpose register necessitated by the instruction at a
predetermined location within the instruction code (Fig. 4). This organization
enables the instruction decoder in seamlessly decoding the index of the register and
subsequently accessing the general register file. Consequently, the decoder can rapidly
decode the register index and retrieve the contents of the general register file [33, 34].

In a typical RISC-V instruction, the first few bits might indicate the operation
to be performed, while a specific position within the instruction code might indicate
the index of the register that should be used as the source operand. Another specific
position might indicate the index of the register that should be used as the destination
operand. By following this consistent structure, RISC-V processors can more easily
decode and execute instructions quickly and efficiently [33].

Fig. 4. Instruction Set Encoding of RISC-V [33]

In the RISC-V architecture, each instruction is encoded as a fixed-length binary
code, typically 16 or 32 bits in length, depending on whether the instruction is part
of the compressed or uncompressed instruction set. Like other RISC architectures,
RISC-V employs "load" and "write" instructions for memory access, while other
standard instructions are unable to access memory [35]. The architecture supports
1-byte, half-word, and single-word read/write operations, with the basic unit of
memory access being 1 byte.

17

The RISC-V architecture is modular, with each module represented by an English
letter [33]. The fundamental subset of integer instructions is denoted by the alphabetic
character "I", constitutes the most essential and obligatory part of the instruction
set. Utilizing this subset, a comprehensive software compiler can be implemented
(Fig. 5). Additional instruction subsets, such as M/A/F/D/C, function as optional
modules (Fig. 6). A specific combination of the modules "IMAFD" represented by
the English letter "G", wherein RV32I[M][A][F][D] corresponds to RV32G.

To enhance code density, RISC-V also offers a "compressed" subset of instructions,
symbolized by the alphabetic character "C" (Fig. 6). Compressed instructions
have a length of 16 bits, while normal uncompressed instructions are 32 bits long.
Additionally, the RISC-V encompasses an "embedded" architecture, denoted by "E"
(Fig. 5). This architecture is predominantly employed in deeply embedded systems
that prioritize minimal area and power consumption, necessitating support for only
16 general purpose integer registers, as opposed to 32 in non-embedded standard
architectures.

Fig. 5. Basic Instruction Sets of RISC-V

Fig. 6. Optional Modules of RISC-V

18

2.4 A-Core Processor Implementation
A-Core is a modular and easily expandable RISC-V core, which can be used as a
controller in the mixed-mode System-on-Chip designs, implemented by ECD group
from the Department of ELE at Aalto University [36]. A-Core aims to address
several areas of development, including the RV32I core, a set of standard and custom
extensions, programming interface, hardware verification with RTL (Register-transfer
Level) simulations, and a firmware development environment that includes assembly
and C programming. By focusing on these areas, A-Core developers created a flexible
and robust RISC-V core that can support a wide range of applications and use cases.
Additionally, the use of open-source tools and accessible programming languages
allows for greater collaboration and transparency in the development process, which
led to more innovation and progress.

The development of the A-Core RISC-V core involved building an open source
implementation from scratch with accessible tools, which required the Chisel hardware
description language. Chisel is incorporated within the Scala programming language,
elevating the abstraction level for circuit design and facilitating a more intuitive
and efficient design process while also supporting rich parameterization [37]. The
compiler generated Verilog description that can be used to synthesize the circuit.
Chisel’s ability to operate at a higher abstraction level diminishes the time and effort
necessary for circuit design and simultaneously enhances the quality of the produced
circuits [37].

Fig. 7. Illustration of ACoreChip [38]

As Fig. 7 shows, ACoreChip is a SoC that includes a RISC-V processor core
(ACoreBase), memory and peripherals. Memory-mapped peripherals encompass
RAM, ProgMem (read-only access to instruction memory), GPIO (General Purpose
Input/Output), and custom accelerator IP. ACoreBase communicates with memory

19

through an AXI4-Lite data bus, which provides a low-latency, high-throughput
interface for data memory operations. In addition, ACoreChip has a separate
instruction fetch bus to improve instruction throughput and reduce the impact of
memory access latency. JTAG (Joint Test Action Group) programming interface is
used to program and debug the processor core, allowing testing and refining.

ACoreBase is the RISC-V CPU core utilized in ACoreChip, which supports a
parameterized RV32I[M][F][C] extension configurations [33]. It enables multi-cycle
instruction fetch and execution, resulting in efficient performance. The RV32I base
as a default includes instructions for basic integer arithmetic and logic, program
flow modification, and memory access (load/store). Additionally, the "M" extension
specifies instructions for the multiplication and division operations of integers. The "F"
extension is also supported, which allows for single-precision floating-point operations.
To manage the control and status registers required for the "F" extension, the "Zicsr"
extension is required, which can be utilized for implementing timers and counters. The
"C" extension permits the intermixing of 16-bit instructions with 32-bit instructions
freely.

A-Core is a 7-stage pipelined, which allows for efficient instruction fetch, decode,
and execution, shown in Fig. 8. Because A-Core is an individual core, pipelining
becomes the first major push to improve single-core performance. Pipelining is found
in virtually all modern processors. The data path was divided into separate stages,
and registers were added between the stages. Additionally, the core supports a
machine mode execution environment, and the parameterized RV32I[M][F][C][Zicsr]
configuration enables the core to support a wide range of applications. A-Core is
also designed to handle most synchronous exceptions, enabling it to recover from
errors and continue processing without significant disruption.

Fig. 8. A-Core Pipeline [38]

20

3 Power Consumption and Management
Power is characterized as the rate of energy expenditure or absorption over time and
is quantified in watts (W). It can be expressed as the product of energy w (joules)
and time t (second), as shown in (1).

p = dw

dt
= vi (1)

In (1), the term p denotes instantaneous power, which is a time-dependent
variable. The power consumed or provided by an element is determined through the
multiplication of the voltage v across it and the current i traversing it. A positive (+)
sign signifies that the element is absorbing power, while a negative (-) sign indicates
that the element is supplying power.

Power is an essential concept in electronics, representing the quantity of energy
dissipated per unit of time in a device. It is also used to quantify the rate at which
electrical energy is transferred or transformed. Electronic devices and systems rely
on power to operate, which is usually supplied by batteries or power adapters. These
power sources convert electrical energy from a power source into the required voltage
and current levels for the device. Furthermore, power is a critical factor in determining
the performance of electronic devices and systems. Generally, devices and systems
with a higher power rating can perform more work within a given period than those
with a lower power rating.

The total power dissipated within a device comprises two components: static
power and dynamic power, as depicted in (2). Static power is dissipated when the
device is in a steady state, while dynamic power is consumed during device switching.

Ptotal = Pstatic + Pdynamic (2)

3.1 Power Consumption in CMOS Technology
In CMOS technology, power consumption is an important aspect to consider when
designing digital circuits. The fundamental building block of a CMOS system is the
CMOS inverter, which consists of a complementary pair of MOSFET transistors.
The inverter acts as a signal negator and is used to implement logical functions. Fig.
9 shows the inverter in transistor level.

As (2) reveals that a CMOS inverter has two primary sources of power con-
sumption: static power and dynamic power. Static power, results from the short
circuit current which flows when both complementary transistors are simultaneously
activated during switching. This causes a direct current flow originating between the
supply and the ground. Dynamic power, conversely, is expended when the inverter
changes its logical state, leading to the charging or discharging of the load capacitance
[39–41].

21

Fig. 9. CMOS Inverter in Transistor Level [39]

The transient characteristics of a CMOS inverter during switching can be observed
in Fig. 10, which illustrates the voltage and current characteristics. During the
high-to-low transition, the Vin (input voltage) drops, activating the PMOS transistor
and deactivating the NMOS transistor. Consequently, the Vout (output voltage) starts
to decrease, but initially, it decreases slowly due to the capacitance of the connected
load. As the Vout continues to decrease, the capacitance becomes discharged, and the
output voltage decreases more rapidly until it reaches a stable low state. As for the
IDD (DC current from supply), it remains at a low level at the beginning. Then the
IDD increases rapidly and decrease rapidly until it reaches the stable low state [39].

Fig. 10. Transient Characteristics of CMOS Inverter [39]

22

3.1.1 Static Power Consumption

Static power in CMOS circuits occurs when the circuit is in idle/standby state, even
if it is not actively executing tasks. This power consumption mainly stems from
leakage current flowing through the transistors and parasitic capacitances when the
circuit is "OFF" [39, 41].

The static power consumed can be articulated as the multiplication of Ileak and
the VDD , as shown in (3). Here, Ileak represents the total leakage current flowing
through the circuit’s transistors, and VDD denotes the supply voltage [39].

Pstatic = Ileak · VDD (3)

Leakage current is affected by several factors, such as temperature, voltage,
and process technology. To model the leakage current, the Ioff (off-state leakage
current of the transistors), Isub (substrate leakage current), and A (total area of the
transistors) must be considered. The leakage current can be modeled as [39]:

Ileak = Ioff · A + Isub (4)

Substituting the Ileak in (3) by (4), the static power consumption can be then
modeled as:

Pstatic = (Ioff · A + Isub) · VDD (5)

This equation demonstrates that the static power consumption in the CMOS
circuit exhibits proportionality to the leakage current, supply voltage, and transistor
area. By minimizing leakage current and total transistor area, the static power
consumption of modern electronics can be reduced. As the demand for energy-
efficient devices continues to grow, minimizing static power consumption will remain
a critical aspect of circuit design [39, 41].

3.1.2 Dynamic Power Consumption

Since static power consumption comprises a relatively minor segment of the total
power consumed compared to dynamic power consumption, it is often disregarded.
Dynamic power, serving as the principal origin of power dissipation, is consumed
during switching due to the charging/discharging of the load capacitance [39, 42].
During the high-to-low transition, the load capacitor discharges, while during the
low-to-high transition, the capacitor charges. Both transitions require energy from
the supply voltage, and a portion of this energy is dissipated in the transistors [42].

Considering the low-to-high transition situation, assuming the input signal of the
inverter have zero rise/fall times, which implies that the NMOS and PMOS devices
are never simultaneously active [42]. Consequently, the equivalent circuit depicted in
Fig. 9 is valid, as shown in Fig. 11.

23

VDD

VOUT

IVDD

CL

Fig. 11. Equivalent Circuit of Inverter (Low to high transition) [39]

By integrating the instantaneous power over the relevant period, the values of the
EV DD which is the energy drawn from the supply during the low-to-high transition,
and the energy EC retained on the capacitor at the transition end can be determined.
Each switching cycle necessitates an amount of energy equal to CLV 2

DD, where CL

signifies the load capacitance and VDD represents the supply voltage. The frequency
of device switching must also be considered when calculating the power consumption.
If the device is switched on and off f0→1 times per second, the dynamic power
consumption is:

Pdyn = CLV 2
DDf0→1 (6)

where f0→1 signifies the frequency of transitions.

3.2 Power Management
Electronic devices are known for their complex power requirements, which necessi-
tates careful power supply control to ensure efficient and effective operation. This
underscores the importance of power management in electronic devices. High power
dissipation leads to increased energy consumption and temperatures. To keep energy
consumption low and prevent overheating, minimizing power dissipation is essential
for CPUs. Power management is also critical for optimizing the physical size of em-
bedded systems. Effective management of the factors that impact power dissipation
in CMOS circuits is necessary to minimize power consumption while still maintaining
required functionality and performance, with the goal of maximizing energy efficiency
[43].

In comparison to other components, CPUs possess more sophisticated capabili-
ties for dynamically managing energy consumption. Prevalent power management
techniques include DVFS (Dynamic Voltage and Frequency Scaling), which allows

24

for power reduction at the expense of performance, and power management through
low-power states that reduce power at the cost of functionality [44, 45]. Power gating
is another method that involves selectively shutting off power to parts of the circuit
when not in use, resulting in substantial power savings, particularly in circuits with
high leakage current.

Investigating the sources of power dissipation in modern CMOS circuits reveals
that supply voltage significantly affects both dynamic and static power, while clock
frequency also impacts dynamic power dissipation [46, 47]. As a result, reducing
the voltage level and clock frequency of a CPU can decrease power consumption.
The voltage and clock frequency of a processor are interrelated, with the capaci-
tance charging/discharging time in a transistor determining the speed of logic state
switching. Since charge and discharge time depends on the current, which is a
function of voltage, the maximum frequency is contingent upon the applied voltage.
Consequently, the clock frequency and supply voltage should be adjusted concurrently
to accommodate the processor’s requirements, maintaining the voltage as low as
possible for any selected clock frequency to optimize energy efficiency. As processor
workloads and usage fluctuate over time, regulating voltage and clock frequency in
real-time based on the processor’s needs can significantly lower energy consumption.

Power management is a critical aspect of designing and operating electronic
devices. By carefully managing the power consumption of these devices, it is feasible
to reduce energy consumption, minimize heat dissipation, and maintain the desired
level of functionality and performance [43].

3.2.1 Power Management System

The power management system, as shown in Fig. 12, is a critical component of any
modern microprocessor. It consists of several key components, including the PMU
(Power Management Unit), supply unit, clock unit, performance metrics, and the
CPU. The PMU controls the supply unit and the clock unit provided to the CPU
based on the performance metrics [48–51].

In detail, the PMU monitors the power usage of various components of the
microprocessor and adjusts the power supply accordingly. It can reduce the power
supply to the processor core when the processor is idle, and increase it when the
processor is under heavy load to ensure efficient power usage. The PMU also manages
the sleep and wake states of the processor by reducing power supply to the processor
core and other components in low-power sleep states, and quickly increasing it during
wake-up transitions [51]. In addition to power management, the PMU can improve
the overall performance of the processor by carefully controlling the power supply to
the processor core and other components. By ensuring the processor operates at its
maximum speed and efficiency, the PMU can help reduce overall power consumption.
Therefore, the PMU plays a crucial role in the operation of a microprocessor by
ensuring efficient power usage and effective performance, which ultimately enhances
the performance of the electronic device [48, 51].

25

MetrcisPMU

CLK

CPU
Supply

Fig. 12. Power Management System

The clock unit is a vital component responsible for generating clock signals that
drive the processor’s operation. It comprises a clock generator that produces clock
signal and a clock distribution network that distributes the signal to the processor’s
components. The clock unit synchronizes the various components’ activities, making
it a critical element of the microprocessor’s operation [52]. Without it, the processor
would be unable to perform any tasks, as the components wouldn’t be able to coor-
dinate their activities. Additionally, the clock frequency determines the processor’s
speed, making the clock unit a key factor in its overall performance. The higher
the clock rate, the faster the processor can perform its tasks. Adjusting the clock
frequency can also reduce power consumption, enabling power management [53].
When the processor is idle, the clock frequency can be reduced to conserve power.
When the processor is under heavy load, the clock frequency can be increased to
ensure that the processor has enough power to perform its tasks [54].

The supply unit, another component of the power management system, provides
power to the various components of the processor. It includes a power converter that
transforms the input power from a power source, into the voltage and current levels
required by the processor, as well as a power distribution network that supplies power
to the various components. The supply unit ensures a stable and reliable source of
power, which is necessary for the proper functioning of the processor [52]. It also
optimizes performance and power efficiency by adjusting power supply according to
the components’ power needs, to ensure that the processor uses power only when
needed. The supply unit provides the necessary power to the processor core and
other components to ensure that they can operate at their maximum speed and
efficiency. This can help to improve the overall performance of the processor, which
is important for applications that require high-performance computing.

26

Performance metrics are crucial for evaluating the microprocessor’s capabilities
and comparing the performance of different microprocessors [54]. One common metric
is the clock speed, which refers to the number of clock cycles per second that the
processor can perform. Higher clock speed means a processor with higher clock speed
that can perform tasks more quickly than a processor with a lower clock speed. The
number of cores is another important metric, as most modern microprocessors have
multiple independent processing units that can operate simultaneously. A higher core
count enables the processor to perform more tasks simultaneously, improving overall
performance. Cache size and memory bandwidth are also performance metrics for
microprocessors [52, 54]. The cache is a high-speed memory utilized by the processor
to store frequently accessed data, and a larger cache can improve performance.
Memory bandwidth pertains to the volume of data that can be transferred between
the CPU and the primary memory within a specified time frame. Higher memory
bandwidth can improve processor performance.

3.3 Parasitic Information
3.3.1 Parasitic Formats

The SPF (Standard Parasitic Format) is a widely adopted standard to define the
netlist parasitics, created by Cadence Design Systems. There are two forms of SPF:
DSPF (Detailed-SPF) and RSPF (Reduced-SPF). Both DSPF and RSPF characterize
parasitic information through an RC network. However, RSPF employs an RC "pi"
model for each net. This model encompasses an equivalent "near" capacitance at the
net driver, an equivalent "far" capacitance for the net, and an equivalent resistance
that links the two capacitances. Conversely, DSPF models a detailed RC parasitic
network for every net. As a result, DSPF provides greater accuracy than RSPF, but
also DSPF files are generally larger than RSPF files for identical designs. Additionally,
DSPF lacks a specification for coupling capacitors, and it shares structural similarities
with a SPICE netlist.

The SPEF (Standard Parasitic Exchange Format) is an IEEE standard which
defines netlist parasitics. While SPEF differs from SPF, they serve a similar purpose.
and both of them account for resistance and capacitance parasitics. SPEF can
represent parasitics in detailed or reduced (pi-model) forms, with the reduced form
being more prevalent. Moreover, SPEF offers a syntax for modeling capacitance
between different nets. In comparison to DSPF and RSPF, SPEF is more compact
due to its use of name-to-integer mappings.

3.3.2 Standard Parasitic Exchange Format

The SPEF is widely employed for representing the parasitic data of wires within a
chip [55]. It accurately captures the parasitic elements of wires (non-ideal), such
as resistances and capacitances, but does not consider wire inductance. SPEF is a
crucial format for exchanging parasitic information among various EDA (Electronic
Design Automation) tools during the design process [55]. After the place and route
stage, SPEF is extracted, enabling precise calculations for IR-drop analysis and other

27

analyses. The SPEF file contains resistance and capacitance parameters that depend
on the block placement and the routing among the placed cells.

Typical SPEF files comprise four main sections, including header, name map,
top level port, and the parasitic section. The header section provides information
regarding design name, extraction tool, and units. To diminish the SPEF file size,
the name map section permits the mapping of long names to abbreviated numbers
preceded by "*" [55]. The top level port section lists the top level ports within the
design, designating them as "I" (input), "O" (output), or "B" (bidirectional).

In the parasitic section, each extracted net encompasses a D_NET section. This
section commences with a "D_NET" line that conveys the net name and its total
capacitance. The CONN subsection delineates the connectivity of the nets by enu-
merating the pins associated with the net. The CAP subsection provides a detailed
description of the capacitance data for the net, which encompasses the parasitic
capacitance between a node and either the ground or another node within the net.
Finally, the RES subsection presents the resistance network pertinent to the net,
representing the parasitic resistances situated between pairs of nodes or points within
the net.

1 *D_NET *105 1.94482
2
3 *CONN
4 *I JHV/ U64885 :E I *C 643.845 9827.11 *L 3.30000
5 *I JHV/ U65821 :Z O *C 641.216 9324.88 *D OR2N1P1
6 *I JHV/ U56325 :A I *C 690.356 9176.02 *L 5.50000
7
8 *CAP
9 1 JHV/ U64885 :E 0.936057

10 2 JHV/ U56325 :A JHV/ U10716 :Z 0.622675
11 3 JHV/ U65821 :Z 0.386093
12
13 *RES
14 1 JHV/ U64885 :E JHV/ U65821 :Z 10.7916
15 2 JHV/ U64885 :E JHV/ U56325 :A 8.07710
16 3 JHV/ U56325 :A JHV/ U65821 :Z 11.9156
17 *END

Listing 1. Example Parasitics Section of the SPEF File

3.4 Waveform Information
3.4.1 Signal Change Formats

There are various file formats available to save waveform data used in EDA and
digital verification. Commonly used formats include VCD (Value Change Dump),
EVCD (Enhanced Value Change Dump), and FSDB (Fast Signal Database) . Each
of these formats has specific features and advantages, which make them suitable for
different types of electronic design and verification tools [56, 57].

28

VCD, a text file format, represents the simulation waveforms generated during
digital logic simulation [58]. It contains information about signal changes and their
timestamps. EVCD is an extension of the VCD format that includes additional
information such as signal values and signal attributes [58]. FSDB, a binary file
format, is used to store simulation data, including waveform information and debug
information [57]. FSDB files are preferred over VCD files in the semiconductor
industry because of their faster speed and compactness. The use of these formats
has become critical for electronic designers and verification engineers, as they enable
accurate and efficient analysis and simulation of digital circuits. The choice of format
depends on the specific requirements of the simulation and analysis tools being used.

3.4.2 Value Change Dump

VCD is a file format utilized to store and represent digital simulation waveforms in the
field of EDA [58]. A VCD file comprises data about changes in the values of selected
variables in the design, as recorded by value change dump system tasks. There are
two types of VCD files: the four state type and the extended type. The extended
type represents variable changes in all states and includes strength information. The
four state type, on the other hand, represents variable changes in "0", "1", "x", and "z",
without strength information [58]. In this project, the four state type value change
dump file was employed, the format will be discussed in detail.

The standard four state VCD file typically consists of four primary sections, each
with its own purpose: header, variable definition, dumpvars, and value change section.
The header section contains meta-information about the VCD file, such as the date,
version, and timescale. It starts with a keyword, and ends with "$end" [58]. The
timescale defines the time unit used for the simulation data.

1 $date
2 Tue Oct 18 14:41:32 2022
3 $end
4 $version
5 QuestaSim Version 10.6 _1
6 $end
7 $timescale
8 1fs
9 $end

Listing 2. Example Header Section

The variable definition section contains scope information and enumerates signals
instantiated. The keyword "$scope" indicates the hierarchical scope or module in
the design where the signals are defined. The scope is specified as a module, task,
or function, followed by the name of the scope. The keyword "$var" defines a
signal/variable within the current scope. Each signal/variable is assigned a concise
identifier used in the following value change section [58]. Multiple variables can share
the same identifier if the simulator determines that they will always possess the same
value. The following example variable definitions section defines three signals (clk,
reset, and data) within the "top" module scope.

29

1 $scope module top $end
2 $var wire 1 ! clk $end
3 $var wire 1 " reset $end
4 $var wire 8 # data $end
5 $upscope $end

Listing 3. Example Variable Definition Section

Staring with the keyword $dumpvars, the dumpvars section lists the initial values
of the variables that are to be dumped. In the following example dumpvars section,
all the variables defined in the variable definition sections are listed with initial value.

1 $dumpvars
2 0!
3 0"
4 b00000000 #
5 $end

Listing 4. Example Dumpvars Change Section

The value change section enumerates time-ordered changes in signal values. The
data is written in a compact form to reduce the file size. The "#" symbol followed
by a time value (integer) specifies the simulation time at which the value changes
occur. The value change is represented by the new value of the signal ("0", "1", "x",
or "z") followed by the unique identifier of the signal. Multiple value changes can
occur at the same simulation time and can be listed on the same line. The example
value change section shows the changes in signal values at different time points (5fs,
10fs, and 15fs) in the simulation.

1 $dumpon
2 #5
3 0!
4 1"
5 x#
6 #10
7 1!
8 0"
9 #15

10 0!
11 1"
12 b00000001 #
13 $end

Listing 5. Example Value Change Section

30

4 Tools and methodology

4.1 Design Workflow
The power consumed by a system comprises both dynamic and static power, with the
former being the dominant factor. Due to the relatively small size of static power, it
is often ignored in power profiling. The general idea of the power profiling is based
on the activities of key signals to evaluate the power consumption. Therefore, the
information of the time-based signal activity and traced net capacitance is needed.
To achieve this, detailed capacitance information of the net is saved in SPEF files
extracted through the digital flow, and the switching activities are saved in VCD files
simulated by running post-layout simulations through TheSyDeKick using post-layout
Verilog.

Fig. 13. Design Workflow

VCD and SPEF files are widely used file formats in the electronics design industry
because of their compatibility across different tools and platforms [59]. VCD files
are commonly used for digital simulations and contain a record of changes to the
value of each signal in a design over time, making them ideal for post-simulation
analysis and debugging [60]. This feature also makes them useful for tracking and
analyzing power consumption in digital circuits, as changes in signal values often
correspond to changes in power usage. SPEF files, on the other hand, are used

31

for parasitic extraction and timing analysis. They contain parasitic information,
such as capacitance and resistance, which affect the behavior of signals in a design.
SPEF files enable the extraction of parasitic information from a layout and can be
used to generate accurate timing models. Together, VCD and SPEF files provide a
comprehensive and accurate representation of digital circuits, allowing for precise
power profiling and optimization [60]. By tracking changes in signal values and
accurately modeling parasitic elements, power consumption can be addressed in the
design process, leading to more efficient and effective electronic designs.

Fig. 13 illustrates the workflow of the power profiling process. The digital flow
provides the SPEF file and the post-layout Verilog. The post-layout Verilog is sent
to TheSyDeKick to extract the required value change information of the signals for
a specific test, which is stored in a VCD file. The SPEF and VCD files are then
parsed, together with the necessary information, the power consumption of each
signal per toggle can be calculated. The necessary information, such as core voltage
and clock frequency, is obtained from the report file from the flow. Finally, the
power per timestamp is calculated and saved in CSV files, and the time-based power
consumption curve can be plotted, which will be used for power profiling.

4.2 Power Profiling Model Structure
The power profiling model works as a TheSyDeKick entity, consisting of the "Simula-
tion File", "Result Files", and "LoPoMan" folder. The "Simulation Files" contains
the SPEF and VCD files used for simulation. The "Result Files" includes CSV files
with time-based power information, TXT files with block names of this design, and
YAML files detailing the relationship between net name and its capacitance, also
signal name and its power consumption of each toggle. YAML file allows representing
complex data structures in a human-readable format, which is suitable in this design.
CSV files are used to plot the power profiling curve, the curve will be saved in EPS
format. The "LoPoMan" contains the scripts of the power profiling model. As a
TheSyDeKick entity, the model also employs "./configure && make" to simplify the
user’s power profiling process.

Fig. 14. Structure of the Power Profiling Model

32

The current power profiling model includes various features, including the gener-
ation of the basic structure of A-Core. Before performing actual power consumption
analysis, the basic structure of A-Core is extracted for further module power analysis.
The current general structure of A-Core is depicted in Fig. 15. The model also
supports top-level module power consumption analysis and submodule power con-
sumption analysis of the specified module under the top-level module. Additionally,
it supports power consumption analysis of a specified time interval and analyzing
the average power consumption.

The power profiling model in TheSyDeKick platform provides a comprehensive
tool for analyzing power consumption in digital circuits. With its features, users can
accurately profile power consumption and optimize their designs for better efficiency.
The model simplifies the process for users, allowing for more efficient power analysis
and optimization.

Fig. 15. Structure of A-Core

33

4.3 TheSyDeKick
TheSyDeKick is a multi-tool simulation and development environment designed to
facilitate the creation of complex systems [38]. Its primary objective is to provide
users a unified control environment that enables users to simulate, design, and
measure various components of the system using a range of tools. This objective is
realized through the employment of a unified control environment responsible for the
managing, analyzing, and graphical representation of the consequent outcomes [61].

Python language was chooses to implement TheSyDeKick’s control environment
for its robust support for computing and signal processing, as well as its compatibility
with interfaces to measurement equipment. Regardless of the language or tool used, all
component descriptions are stored in the "Entities" directory. To ensure a standardized
method for initializing git submodules, a script called "./init_submodules.sh" is
utilized. Configuration is accomplished via the "./configure" script, which generates
the Makefile, while execution is conducted using "make". The "./configure && make"
structure is employed to eliminate the need for continually documenting configuration
and execution procedures [38]. The main feature of TheSyDeKick pertains to the
manner in which it interconnects various objects, or entities. By combining these
features, TheSyDeKick enables users to seamlessly simulate, design, and measure
intricate systems using a single control environment.

Fig. 16. Structure of theSDK

34

4.4 ModelSim
The ModelSim software supports the VCD file format for simulating circuit designs
[62]. To simulate a design using ModelSim, several files need to be collected, including
the design files with stimulus, working and resource libraries, and the configuration
file automatically generated by the library mapping directive. Next, this design
must be compiled using specific ModelSim commands, contingent on the language
employed in its development [63]. Then, the "vsim" command is run on the top
level module, and upon its successful loading, ModelSim progressively loads the
instantiated modules and UDP (User Datagram Protocols) situated within the design
hierarchy, facilitating the connections of ports and the resolution of hierarchical
references.The initiation of the simulation is accomplished by setting the simulation
time to 0 and employing the "run" command. Debugging can be performed using
the ModelSim GUI and various commands, operations, and windows.

The transcript file generated can serve as a .do file, which functions as a rudi-
mentary scripting language for ModelSim [62]. The .do files encompass a series of
commands executable within the ModelSim command prompt, including those used
during simulation. During simulation, waves can be added to observe the behavior
of the design using the "add wave" command, which creates a wave in the simulation
environment and assigns it to a specific input/output. Waves can also be assigned
colors using the "-color" flag, such as "add wave -color yellow x" to create a yellow
wave for the input x [63].

4.4.1 VCD File Generation

ModelSim could provide two types of VCD file generation: the extended VCD File
and the four state VCD File. As mentioned before, the four state type was chosen in
this project due to its widespread utilization and extensive support as a standard
format and it did not require the additional information that the extended VCD File
provides. Therefore, the four state VCD File was a more efficient and suitable choice
for this project. The .do file can be modified to create a VCD file for signals under
the desired module, such as the module ACoreChip.

1 # Specify VCD filename
2 vcd file ACoreChip .vcd
3
4 # Enable VCD to dump signals under a desired instance
5 vcd add -r sim /: tb_ACoreChip : ACoreChip :*

Listing 6. Commands to Generate the VCD File

4.4.2 VCD File Size Reduction

Typically, VCD files generated by ModelSim can be quite large. ModelSim provides
the option to compress VCD files using the "gzip" algorithm. By specifying the
[-compress] argument or specifying a .gz extension, the VCD will be stored in this
compressed format [63]. Python library "gzip" allows to work with this compressed

35

files end with .gz.

1 vcd dumpports [- compress] [- direction]
2 [-file <filename >] [- force_direction]
3 [-in] [-out] [-inout]

Listing 7. Reducing the VCD File Size Using gzip Algorithm[63]

Users can also employ the "vcd on" and "vcd off" commands to regulate the VCD
dumping process[63]. The "vcd on" command initiates VCD dumping to a designated
file, simultaneously capturing the present values of all VCD variables. The "vcd on"
command is executed automatically by default upon reaching the simulation time at
which the "vcd add" command was carried out. In contrast, the "vcd off" command
ceases the dumping to a specified file, consequently recording all the dumped variable
values as "x". Additionally, the "when" command enables users to direct ModelSim to
perform actions based on specified conditions, such as ceasing the simulation when a
particular signal value is reached or at a specific simulation time. By utilizing these
commands, users can obtain a VCD file for a desired interval. For instance, if a VCD
file when the core is enabled is needed, i.e., when the signal "core_en" changes from
0 to 1, they can add the following commands to the .do file [63].

1 vcd file ACoreChip .vcd
2 vcd add -r sim /: tb_ACoreChip : ACoreChip :*
3 vcd off
4
5 when {sim /: tb_ACoreChip : ACoreChip :core: io_core_en == 1} {
6 vcd on
7 }
8
9 run -all

Listing 8. Generating VCD File, when the core is enabled

4.5 IC Design Flow
The procedure of creating an integrated circuit is referred to as the IC design flow,
encompassing a series of steps from establishing design specifications to manufacturing
the final physical IC product. These stages are depicted in Fig. 17. Although the
design process is often portrayed linearly, numerous iterations occur between adjacent
stages, and occasionally between stages further apart.

The IC design process is initiated with a predetermined set of requirements, which
serve as the benchmark for evaluating the initial design. If the design fail to fulfill
the requirements, enhancements are necessitated. The transistor-level design flow
originates from a set of design specifications that typically outline the anticipated
functionality of the designed block, along with constraints on delay times, power
dissipation, etc.

36

Fig. 17. Stages of IC Design Flow

A schematic editor functions as the traditional approach to capture a transis-
tor/gate level design, affording an intuitive means of drawing, positioning, and
interconnecting individual components that constitute this design. The resultant
schematic is required to accurately represent the electrical properties of all elements,
including their connections and links to the power supply and ground, and input/out-
put interface pins, which are essential to generate the corresponding netlist. This
netlist will be utilized in the subsequent design phases. Consequently, the formulation
of a comprehensive circuit schematic constitutes the initial, critical step in the IC
design flow.

37

For a circuit design encompassing smaller hierarchical components, it proves
advantageous to recognize the modules early in the design process and allocate each
module an appropriate symbol. This approach condenses the schematic representation
of the overall system, generating symbols to represent the circuit is essential for
subsequent simulation steps.

Upon completing the transistor-level representation of a circuit using a schematic
editor, the circuit’s electrical performance and functionality must be verified with a
simulation tool. Detailed transistor-level simulation constitutes the first thorough
validation of a circuit’s operation and is essential to accomplish before proceeding
to subsequent design optimization steps. Based on simulation results, designers
typically modify device properties to enhance performance.

Developing a mask layout is a critical stage in the design flow of integrated circuits.
Designers must execute DRC (Design Rule Checking) rectify all errors to finalize
the mask layout. After completing the mask layout design, the circuit extraction
process is conducted to produce a detailed netlist for simulation. The circuit extractor
identifies transistors and their connections, in addition to the parasitics information
existing between layers. The extracted netlist offers an precise estimation of device
dimensions and parasitics. Subsequently, the extracted netlist file and parameters are
employed for LVS (Layout versus Schematic) comparison and post-layout simulations.

The most effective method for analyzing the performance of the designentails
conducting a post-layout simulation on the extracted circuit netlist. A comprehensive
mask layout of the intended circuit must be processed and must successfully pass
DRC and LVS checks without any violations. If post-layout simulation results
are unsatisfactory, modifications to transistor dimensions is mandated to attain the
desired circuit performance under realistic conditions. This procedure may encompass
multiple design iterations until the post-layout simulation results align with the
initial design specifications. However, the post-layout simulation outcome which is
satisfactory does not assure a wholly triumphant product. The actual performance
can only be determined through the examination of the fabricated chip prototype.

4.5.1 SPEF File Generation

Generating a SPEF file through digital flow involves a series of steps. Start by
setting up the design in the digital flow environment, including the design files
and any necessary libraries and constraints. Then the extraction process was on,
commands "extrac_rc" will create the extracted netlist. This netlist will contain
all of the information about the parasitic characteristics of the design. Command
"write_parasitics" will then write the parasitic information into SPEF file. Following
scripts can be used to generate the SPEF file in digital flow, showed in Code 9.

38

1 create_flow_step -name write_parasitics -owner flow -
exclude_time_metric {

2 extract_rc
3 write_parasitics -rc_corner rcworst_CCworst -spef_file

ACoreChip_worst .spef
4 write_parasitics -rc_corner rcbest_CCbest -spef_file

AaltoProc_wio_rcbest_CCbest .spef}

Listing 9. Generating the SPEF File

As the SPEF file contains the resistance information that won’t be utilized in
the design, to reduce the file size and analyzing time, modifications can be done to
the aforementioned scripts, by adding "-no_resistances" argument to generate the
SPEF file without the resistance network for the net which is showed in Code 10.

1 create_flow_step -name write_parasitics -owner flow -
exclude_time_metric {

2 extract_rc
3 write_parasitics -no_resistances -rc_corner cworst_CCworst

-spef_file ACoreChip_best .spef
4 write_parasitics -no_resistances -rc_corner cbest_CCbest -

spef_file ACoreChip_best .spef}

Listing 10. Generating the SPEF File without resistance information

39

5 Design verification
Different programs were executed on the A-Core processor to verify the power profile
model. Milliwatt (mW) was selected as the unit of power, and millisecond (ms) was
chosen as the time unit. The power results presented have a precision of 4 decimal
places in general, but in some cases the power results were showed in 7 decimal
to identify the differences. The time is reported with a precision of four decimal
places. The selected level of precision has been chosen to ensure accurate reporting
and facilitate the identification of differences. However, it should be noted that the
precision should be adjusted based on the specific requirements of the situation.

5.1 Trap Test
The test program "trap" is designed as a configuration of a RV32I[M][Zicsr] C-language
program. The source code for this test can be accessed in Appendix A. The test
begins by defining functions required for the simulation, such as the recursive function
for computing the factorial of an integer and the function of delay. Once the core
is enabled, the test proceeds by computing the factorial of an integer and testing
memory write/read operations. To ensure the correctness of the calculation and
A-Core function, 4 integers were used for testing one by one to show the pattern.

Fig. 18. ModelSim Results of the Trap Test

40

5.1.1 ModelSim Results

The results of the trap test during ModelSim simulation are presented in the Fig. 18.
The simulation lasted for a total of 14.9497 ms, and the signal "simdone" indicated
its completion. Prior to the simulation duration, the A-Core underwent preparation,
while the JTAG and TDR remained active. At 14.4597 ms, the signal "core_en"
was triggered, indicating the activation of the A-Core for calculation purposes. As a
result, the instruction-related blocks, ALU, memory blocks, and AXI4-related blocks
became active and executed the simulation.

5.1.2 Profile Results

Fig. 19 displays the power consumption behavior during the trap test. Prior to
approximately 14.4500 ms, the power consumption remained at a low level because
the core was inactive. The minor peak observed at the beginning can be attributed
to the activation of all signals and their assignment to new values. Afterward, the
power consumption increased and remained high for about 3 ms before suddenly
decreasing and remaining at an exceedingly low level until the end of the simulation.
The observed trend of power consumption is consistent with the ModelSim results.
The average power consumed of trap tests was 0.0593 mW.

Fig. 19. Power Consumption of the Trap Test

For the purpose of attaining a more comprehensive comprehension of power
consumption patterns, a zoom-in analysis was performed on the data starting from
14.4597 ms, when the core was enabled. From the Fig. 20, it can be found four
similar peaks representing the four integers used for testing the chip’s function with
delay.

41

Fig. 20. Power Consumption of the Trap Test (Zoomed)

As shown in Fig. 15, the top-level module ACoreChip comprises several submod-
ules, including axi4l_mm_demux, core, cypto_acc, gpio, jtag, progmem, ram, and
uart. Fig. 21 presents the power consumption of the module core. As the central
part of A-Core, the module core consumes the majority of power and exhibits the
same changing pattern as ACoreChip. After the core was enabled, the average power
consumption was 0.4978 mW, which accounts for 92.5795% of the power consumed
by ACoreChip.

Fig. 21. Power Consumption of the Trap Test: core

42

Taking the submodule axi4l_mm_demux as an example, which represents the
AXI4-Lite data bus that ACoreBase communicates with memory through. The power
consumption of axi4l_mm_demux is showed in Fig. 23. As the ModelSim results
(Fig. 22), the power consumption is corresponding to the signal change.

Fig. 22. ModelSim Results of the Trap Test: AXI4

Fig. 23. Power Consumption of the Trap Test: axi4l_mm_demux

In Fig. 24, the power consumption of the remaining submodules under ACoreChip
are presented. The jtag submodule is not active during the simulation. The submod-
ules ram, gpio, and uart exhibit peaks in power consumption when the calculation of
factorial is running and when memory read/write operations are being tested. On
the other hand, the progmem submodule has peaks at the same position but stays
active at a high level of 0.0095 mW during the calculation and at a low level of 0.0040
mW when the core exists in a dormant state.

43

Fig. 24. Power Consumption of the Trap Test: other submodules of ACoreChip

5.1.3 Summary of Results

The simulation time for the trap test was approximately 14.9497 ms, during which
the average power consumption was 0.0593 mW. Given that the enabled-core part
consumes the majority of power, attention was paid on analyzing the performance of
A-Core. Specifically, the average power consumption of ACoreChip was measured in
the enabled-core part, which was found to be 0.5377 mW. The power profile analysis
indicated that the power-intensive happens when the number is under factorial
calculation.

To provide a detailed breakdown of power consumption among different submod-
ules of ACoreChip in the enabled-core part, the results were present in Table I. This
table reports the average power consumption in mW with 7 decimals to show the
differences between modules. As the central module of the chip, the core had the
highest average power consumption of 0.4977745 mW, which accounted for 92.5779%
of ACoreChip. The crypto_acc had the second-highest average power consumption
of 0.0086227 mW, accounting for 1.6037% of ACoreChip. The progmem and ram

44

consumed less power, and accoundts for 0.2914% and 0.0879% of the whole chip
power consumption separately. The modules axi4l_mm_demux, gpio, and uart
had very low average power consumption, each accounting for less than 0.0010%
of ACoreChip, with values of 0.0000053 mW, 0.0000016 mW, and 0.0000015 mW,
respectively. The jtag module had an average power consumption of 0 mW.

Table I. Power Consumption of Trap Test: submodues of ACoreChip

Module Average power [mW] Percentage of ACoreChip
core 0.4977745 92.5779%
crypto_acc 0.0086227 1.6037%
progmem 0.0015668 0.2914%
ram 0.0004724 0.0879%
axi4l_mm_demux 0.0000053 0.0010%
gpio 0.0000016 0.0003%
uart 0.0000015 0.0003%
jtag 0.0000000 0.0000%

5.2 Blinky Test
The "Blinky" test program is a configuration of a RV32I C-language program that is
executed on the A-Core. The source code corresponding to the blinky test program
can be found in Appendix B. The test involves defining functions that are used
during the simulation. Once the core is enabled, it turns off all outputs (gpo) and
then cyclically shifts the asserted output by setting gpo to "1" and then to "0" through
a for loop. Then, it blinks 4 LEDs with a delay.

5.2.1 ModelSim Results

As illustrated in Fig. 25, the blinky test takes a total of 7.4506 ms. Prior to 6.9579
ms, the core was undergoing preparation for the simulation. At 6.9579 ms, the signal
core_en transitioned from 0 to 1, indicating the activation of the core for simulation
purposes. The detailed transactions of the gpio are depicted in Fig. 26, where it
can be observed that the A-Core initially turned off all outputs and then cyclically
shifted the asserted outputs. Subsequently, all outputs were set to 1 and then reset
to 0 one by one through the loop. Finally, the A-Core blinked four LEDs with a
delay between each blink, which starts at a time stamp of 7.4026 ms.

45

Fig. 25. ModelSim Results of Blinky Test

Fig. 26. ModelSim Results of the Blinky Test: GPIO

5.2.2 Profile Results: Enable F-extension

The power consumption analysis of the blinky test program is presented. Fig. 27
illustrates the power consumption of the top-level module ACoreChip, with an average
power consumption of 0.0978 mW during this phase. The power remained low until
approximately 6.9500 ms, during which the core was inactive. The enabled-core
phase is also analyzed, which began at 6.9579 ms, exhibited a distinct pattern of
power consumption. The A-Core started blinking at around 7.4026 ms.

46

Fig. 27. Power Consumption of Blinky Test

Fig. 28 shows the contribution of each submodule to the whole power consumption.
It was observed that the submodule core was the primary contributor, while the jtag
submodule remained active before 6.9579 ms and consumed negligible power during
the core-enable phase.

47

Fig. 28. Power Consumption of Blinky Test: other submodules of ACoreChip

The submodules within the core were analyzed, such as alu_block, control,
decoder_block, and ppl_ctrl. The results are presented in Fig. 29. Among the
submodules under the alu_block, namely alu, fpu_block, and mult_block, the
fpu_block consumed the highest power, showed in Fig. 30.

48

Fig. 29. Power Consumption of Blinky Test: submodules of core

Fig. 30. Power Consumption of Blinky Test: submodules of alu_block

49

5.2.3 Profile Results: Disable F-extension

Based on the aforementioned results, it is clear that the submodule fpu_block within
the ACoreChip/core/alu_block constitutes the primary factor influencing power
consumption within the ACoreChip. However, according to the source code of
the blinky test (Appendix B), the floating-point operation is not required for this
simulation. Therefore, the F-extension (supports single precision floating point
instructions) can be disabled for this simulation using a function called "disable_f".

The power consumption of the ACoreChip before and after disabling the F-
extension is depicted in Fig. 31. It is evident that the power consumption has
significantly decreased from 0.8722 mW to 0.0648 mW, a reduction of approximately
92.5705%. The time at which the core is enabled has changed from 6.9589 ms to
7.2331 ms, indicating that the A-Core requires more time to prepare because of the
increased complexity of the source code. However, the simulation time of the actual
blinky does not show a significant difference. The detailed power consumption of the
submodules under ACoreChip with the disabled F-extension can be found in Fig. 32.

Fig. 31. Power Consumption of Blinky Test: ACoreChip, with F-extension (top) and
without F-extension (bottom)

50

Fig. 32. Power Consumption of Blinky Test: submodules of ACoreChip, without
F-extension

51

5.2.4 Summary of Results

The power consumption analysis of ACoreChip in the blinky test with the F-extension
is summarized in Tables II, III, and IV. In this section, the power results also used 7
decimals to identify the differences between modules. As indicated, the dominant
contributor to ACoreChip’s power consumption is the core module, which accounts
for 95.3168% of the total power consumption. Among the submodules of the module
core, the submodule alu_block is the most power-hungry, consuming 98.2986% of
the core’s total power consumption. Furthermore, within the alu_block submodule,
the fpu_block submodule is responsible for 99.8042% of alu_block’s total power
consumption.

Table II. Power Consumption of Blinky Test: submodues of ACoreChip

Module Average power [mW] Percentage of ACoreChip
core 0.8313303 95.3168%
crypto_acc 0.0086227 0.9886%
progmem 0.0018519 0.2123%
ram 0.0004838 0.0555%
axi4l_mm_demux 0.0000111 0.0013%
gpio 0.0000093 0.0011%
uart 0.0000019 0.0002%
jtag 0.0000000 0.0000%

Table III. Power Consumption of Blinky Test: submodues of core

Module Average power [mW] Percentage of core
alu_block 0.8171859 98.2986%
decoder_block 0.0003025 0.0364%
ppl_ctrl 0.0002704 0.0325%
control 0.0001828 0.0220%

Table IV. Power Consumption of Blinky Test: submodues of alu_block

Module Average power [mW] Percentage of alu_block
fpu_block 0.8155859 99.80421%
alu 0.0004395 0.05378%
mult_block 0.0003759 0.04600%

52

To investigate the impact of the F-extension on the power consumption, Table V
presents the average power consumption of different modules of A-Core with and
without the F-extension. The results indicate that disabling the F-extension can signif-
icantly reduce the power consumption of both ACoreChip and the module core. Specif-
ically, when the F-extension is enabled, ACoreChip consumes 0.8721761 mW, while
the core module consumes 0.8313303 mW. However, with the F-extension disabled,
the power consumption of the core module drops to 0.0249320 mW, and ACoreChip’s
power consumption reduces to 0.0648478 mW. Modules such as crypto_acc, prog-
mem, ram, axi4l_mm_demux, gpio, uart, and jtag exhibit minimal or no difference
in power consumption with and without the F-extension. Notably, the power con-
sumption of jtag remains constant at 0 mW in both cases.

Table V. Power Consumption of Blinky Test: ACoreChip, with and without F-
extension

Module Pavg with F-
extension [mW]

Pavg without F-
extension [mW]

ACoreChip 0.8721761 0.0648478
core 0.8313303 0.0249320
crypto_acc 0.0086227 0.0086227
progmem 0.0018519 0.0018590
ram 0.0004838 0.0004730
axi4l_mm_demux 0.0000111 0.0000110
gpio 0.0000093 0.0000095
uart 0.0000019 0.0000017
jtag 0.0000000 0.0000000

53

6 Conclusions
The objective of the work is using the post-layout data from the synthesized A-Core
microprocessor to create a power profiling model which can do software, voltage and
clock-frequency dependent time-varying power consumption profiles. By analyzing
the power consumption patterns, designers can strike an optimal balance between
performance and power consumption, catering to the requirements of specific appli-
cations. Furthermore, such a model facilitates the development of dynamic power
management strategies, enabling systems to adapt their power consumption based
on workload demands. Additionally, power profiling models serve as a valuable tool
for benchmarking and comparing core implementations, ultimately guiding designers
in selecting the most suitable implementations.

The developed power profiling model available in TheSyDeKick platform is an
effective tool for analyzing the power consumption. The model simplifies the process
for users and provides accurate power consumption profiling to optimize designs for
better efficiency. The model is equipped with various features such as the generation
of the basic structure of the core, top-level and submodule power consumption analysis
of the specified module, analysis of power consumption within a specified time interval,
and average power consumption analysis. By utilizing this model, designers can
efficiently optimize their digital circuit designs for better power efficiency.

Literature review of related background knowledge was conducted and presented.
Due to the open-source, customizable, and growing ecosystem, the RISC-V is be-
coming increasingly popular in the industry, education and research. ECD group
from Aalto University developed their own modular and expandable RISC-V core
A-Core, which can be used as a controller in the mixed-mode System-on-Chip designs.
Power consumption in CMOS technology was reviewed. Various techniques for power
management, including dynamic voltage scaling, clock gating, and power gating were
discussed. Information and formats of parastics and waveform utilized in the power
consumption calculation were introduced.

The development of power profiling algorithms primarily utilized TheSyDeKick
and Python, where the former provided a simulation and verification environment.
An interface was established for controlling and running simulations, which simplified
the generation of test benches and execution, as well as post-processing for power
profiling. This interface enabled the use of Python-based simplified power profiles for
further hardware and power management system development. The power profiling
algorithms operate based on various information extracted from the core during
operation, such as signal change information and capacitance information of nets,
which is then utilized to compute the power consumption of the core. Capacitance
information was generated by digital flow and stored in SPEF file, while signal change
information was generated through the post-route simulation in TheSyDeKick and
stored as VCD file. To evaluate the feasibility of the power profiling model, different
test targets were reviewed and simulated to evaluate their efficiency, as well as the
model’s correctness and generality. The dynamic power consumption of the A-Core
was analyzed, and the results of different simulations were presented and summarized.

54

Future efforts could be directed towards the use of the existing power profiling
model in power management system development. To avoid time-consuming RTL
simulations in mixed-mode systems, a model that generates estimates for metrics
as a function of supply voltage and clock-frequency with sufficient accuracy can
be created to support the development of power control algorithms/software. The
ultimate goal is the physical implementation of a full power management system.

In conclusion, this thesis has presented the development and evaluation of a
dynamic power profile model for microprocessor cores, which is essential for sup-
porting power management system development. The power profiling algorithms
were implemented using TheSyDeKick and Python, and the workflow and design
methodology were presented. Through simulations, the efficiency, correctness, and
generality of the model were evaluated. The results demonstrated that the model
can be used to evaluate the power consumption and efficiency of microprocessor
cores. Future work could focus on integrating the power profiling model into power
management system development and creating a model that generates estimates for
metrics as a function of supply voltage and clock-frequency. The objectives of the
thesis were successfully achieved, and the performance of the developed model was
verified through simulations.

55

References
[1] S. Borkar and A. A. Chien, “The future of microprocessors,” Communications

of the ACM, vol. 54, no. 5, pp. 67–77, 2011.
[2] J. Rabaey, Low power design essentials. Springer Science & Business Media,

2009.
[3] D. M. Brooks et al., “Power-aware microarchitecture: Design and modeling

challenges for next-generation microprocessors,” IEEE Micro, vol. 20, no. 6,
pp. 26–44, 2000.

[4] A. Jerraya and W. Wolf, Multiprocessor systems-on-chips. Elsevier, 2004.
[5] J. Kong, S. W. Chung, and K. Skadron, “Recent thermal management tech-

niques for microprocessors,” ACM Computing Surveys (CSUR), vol. 44, no. 3,
pp. 1–42, 2012.

[6] J. Pouwelse, K. Langendoen, and H. Sips, “Dynamic voltage scaling on a
low-power microprocessor,” in Proceedings of the 7th annual international
conference on Mobile computing and networking, 2001, pp. 251–259.

[7] B. Keller et al., “A risc-v processor soc with integrated power management
at submicrosecond timescales in 28 nm fd-soi,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 7, pp. 1863–1875, 2017.

[8] J. C. Wright et al., “A dual-core risc-v vector processor with on-chip fine-grain
power management in 28-nm fd-soi,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 12, pp. 2721–2725, 2020.

[9] B. Zimmer et al., “A risc-v vector processor with simultaneous-switching
switched-capacitor dc–dc converters in 28 nm fdsoi,” IEEE Journal of Solid-
State Circuits, vol. 51, no. 4, pp. 930–942, 2016.

[10] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative
approach. Elsevier, 2011.

[11] S. Sriram and S. S. Bhattacharyya, Embedded multiprocessors: Scheduling and
synchronization. CRC press, 2018.

[12] D. A. Patterson and J. L. Hennessy, Computer organization and design ARM
edition: the hardware software interface. Morgan kaufmann, 2016.

[13] J. Parkhurst, J. Darringer, and B. Grundmann, “From single core to multi-core:
Preparing for a new exponential,” in Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, 2006, pp. 67–72.

[14] S. Akhter and J. Roberts, Multi-core programming. Intel press Hillsboro,
Oregon, 2006, vol. 33.

[15] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip (mpsoc)
technology,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 10, pp. 1701–1713, 2008.

56

[16] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip Verification: Method-
ology and Techniques. Springer Science & Business Media, 2007.

[17] J. Šilc, J. Silc, B. Robic, and T. Ungerer, Processor Architecture: From Dataflow
to Superscalar and Beyond; with 34 Tables. Springer Science & Business Media,
1999.

[18] D. L. Kuck, Structure of Computers and Computations. John Wiley & Sons,
Inc., 1978.

[19] D. TMS320C55x, “Cpu reference guide,” Texas Instruments Inc, 2004.
[20] L. Gopal, N. S. M. Mahayadin, A. K. Chowdhury, A. A. Gopalai, and A. K.

Singh, “Design and synthesis of reversible arithmetic and logic unit (alu),” in
2014 International Conference on Computer, Communications, and Control
Technology (I4CT), IEEE, 2014, pp. 289–293.

[21] H.-W. Tseng, “Instruction set architecture,” 2006.
[22] T. Jamil, “Risc versus cisc,” Ieee Potentials, vol. 14, no. 3, pp. 13–16, 1995.
[23] D. Bhandarkar and D. W. Clark, “Performance from architecture: Comparing a

risc and a cisc with similar hardware organization,” in Proceedings of the fourth
international conference on Architectural support for programming languages
and operating systems, 1991, pp. 310–319.

[24] U. Degenbaev, “Formal specification of the x86 instruction set architecture,”
2012.

[25] J. Goodacre and A. N. Sloss, “Parallelism and the arm instruction set architec-
ture,” Computer, vol. 38, no. 7, pp. 42–50, 2005.

[26] D. Kanter, “Risc-v offers simple, modular isa,” Microprocessor Report, pp. 4–5,
2016.

[27] E. Cui, T. Li, and Q. Wei, “Risc-v instruction set architecture extensions: A
survey,” IEEE Access, vol. 11, pp. 24 696–24 711, 2023.

[28] A. S. Waterman, Design of the RISC-V instruction set architecture. University
of California, Berkeley, 2016.

[29] E. Torres-Sánchez, J. Alastruey-Benedé, and E. Torres-Moreno, “Developing
an ai iot application with open software on a risc-v soc,” in 2020 XXXV
Conference on Design of Circuits and Integrated Systems (DCIS), IEEE, 2020,
pp. 1–6.

[30] M. Sharma, E. Bhatnagar, K. Puri, A. Mitra, and J. Agarwal, “A survey of
risc-v cpu for iot applications,” Available at SSRN 4033491, 2022.

[31] P. D. Schiavone et al., “Arnold: An efpga-augmented risc-v soc for flexible and
low-power iot end nodes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 29, no. 4, pp. 677–690, 2021.

[32] Y. Lee et al., “An agile approach to building risc-v microprocessors,” ieee Micro,
vol. 36, no. 2, pp. 8–20, 2016.

57

[33] A. Waterman et al., “The risc-v instruction set manual,” Volume I: User-Level
ISA’, version, vol. 2, 2014.

[34] A. S. Waterman, Design of the RISC-V instruction set architecture. University
of California, Berkeley, 2016.

[35] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic, “The
risc-v instruction set manual volume 2: Privileged architecture version 1.7,”
University of California at Berkeley Berkeley United States, Tech. Rep., 2015.

[36] M. Kosunen, V. Hirvonen, A. Korsman, and O. Simola, A-Core, https :
//gitlab.com/a-core, [Accessed: 2023-4-10].

[37] J. Bachrach et al., “Chisel: Constructing hardware in a scala embedded
language,” in Proceedings of the 49th Annual Design Automation Conference,
2012, pp. 1216–1225.

[38] M. Kosunen, TheSyDeKick-complete kit for system-on-chip development, https:
//github.com/TheSystemDevelopmentKit, [Accessed: 2023-4-10].

[39] B. Razavi, Fundamentals of microelectronics. John Wiley & Sons, 2021.
[40] T. Simunic, “Dynamic management of power consumption,” Power aware

computing, pp. 101–125, 2002.
[41] N. S. Kim et al., “Leakage current: Moore’s law meets static power,” computer,

vol. 36, no. 12, pp. 68–75, 2003.
[42] M. N. Horenstein, Microelectronic circuits and devices. Prentice-Hall, Inc.,

1990.
[43] F. C. Lee and X. Zhou, “Power management issues for future generation

microprocessors,” in 11th International Symposium on Power Semiconductor
Devices and ICs. ISPSD’99 Proceedings (Cat. No. 99CH36312), IEEE, 1999,
pp. 27–33.

[44] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: The laws
of diminishing returns,” in Proceedings of the 2010 international conference on
Power aware computing and systems, 2010, pp. 1–8.

[45] B. Keller et al., “Sub-microsecond adaptive voltage scaling in a 28nm fd-soi
processor soc,” in ESSCIRC Conference 2016: 42nd European Solid-State
Circuits Conference, 2016, pp. 269–272.

[46] L. Benini and G. DeMicheli, Dynamic power management: design techniques
and CAD tools. Springer Science & Business Media, 1997.

[47] V. Tiwari, R. Donnelly, S. Malik, and R. Gonzalez, “Dynamic power manage-
ment for microprocessors: A case study,” in Proceedings Tenth International
Conference on VLSI Design, IEEE, 1997, pp. 185–192.

[48] J. Haj-Yahya et al., “Power management of modern processors,” Energy Efficient
High Performance Processors: Recent Approaches for Designing Green High
Performance Computing, pp. 1–55, 2018.

https://gitlab.com/a-core
https://gitlab.com/a-core
https://github.com/TheSystemDevelopmentKit
https://github.com/TheSystemDevelopmentKit

58

[49] J. C. Wright et al., A dual-core risc-v vector processor with on-chip fine-grain
power management in 28-nm fd-soi, 2020.

[50] B. Keller et al., A risc-v processor soc with integrated power management at
submicrosecond timescales in 28 nm fd-soi, 2017.

[51] C. Schmidt et al., Programmable fine-grained power management and system
analysis of risc-v vector processors in 28-nm fd-soi, 2020.

[52] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for
system-level dynamic power management,” IEEE transactions on very large
scale integration (VLSI) systems, vol. 8, no. 3, pp. 299–316, 2000.

[53] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced cpu
energy,” Mobile Computing, pp. 449–471, 1996.

[54] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli, “Policy optimization
for dynamic power management,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 813–833, 1999.

[55] Ieee standard for integrated circuit (ic) open library architecture (ola), 2020.
[56] S. Ahuja, D. A. Mathaikutty, G. Singh, J. Stetzer, S. K. Shukla, and A. Din-

gankar, “Power estimation methodology for a high-level synthesis framework,”
in 2009 10th International Symposium on Quality Electronic Design, IEEE,
2009, pp. 541–546.

[57] D. E. Galbi, K. Kannan, and M. Hudson, “Measuring active power using pt px
a user perspective,” SNUG Bostone, pp. 1–13, 2010.

[58] Ieee standard verilog hardware description language, 2001.
[59] C. Papameletis, “Development of design methodologies and cad tools for system-

level evaluation of interconnect reliability issues in soc designs,” 2010.
[60] J. Becker, M. Huebner, and M. Ullmann, Power estimation and power mea-

surement of xilinx virtex fpgas: Trade-offs and limitations, 2003.
[61] S. Porrasmaa, “Programmatic integrated circuit design in context of Analog-

to-Digital converters,” M.S. thesis, Aalto University, Finland, 2021.
[62] ModelSim ® SE user’s manual, https://www.lirmm.fr/~bosio/TPVHDL/

docs/modelsim_se_user.pdf, [Accessed: 2023-4-10].
[63] Modelsim command reference manual, https://cseweb.ucsd.edu/~hadi/

teaching/cs3220/01-2014fa/doc/modelsim/ModelSim_Reference_Manual_
v10.1c.pdf, [Accessed: 2023-4-10].

https://www.lirmm.fr/~bosio/TPVHDL/docs/modelsim_se_user.pdf
https://www.lirmm.fr/~bosio/TPVHDL/docs/modelsim_se_user.pdf
https://cseweb.ucsd.edu/~hadi/teaching/cs3220/01-2014fa/doc/modelsim/ModelSim_Reference_Manual_v10.1c.pdf
https://cseweb.ucsd.edu/~hadi/teaching/cs3220/01-2014fa/doc/modelsim/ModelSim_Reference_Manual_v10.1c.pdf
https://cseweb.ucsd.edu/~hadi/teaching/cs3220/01-2014fa/doc/modelsim/ModelSim_Reference_Manual_v10.1c.pdf

59

A Trap Test
#include <stdint.h>
#include "a-core-utils.h"
#include "a-core.h"
#include "acore-gpio.h"

// statically initialize some data in .data section
int result = 3;

// factorial of an integer
int factorial(int n) {

if (n == 0)
return 1;

else
return n * factorial(n-1);

}

void delay(int cycles) {
for (int i = 0; i < cycles; i++) asm("nop");

}

void main() {
// test function calls
int a = 4;
result = factorial(a);
int thresh = 50; //delay

// test memory write
(volatile int)(0x20000000) = result;

// test memory read
volatile int r = *(volatile int*)(0x20000000);

asm("li t1, 0x20000000");
asm("li t2, 0");
asm("sb t2, 2(t1)");
asm("addi t2, t2, 1");
asm("sb t2, 3(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 0(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 1(t1)");
asm("addi t2, t2, 1");
asm("addi t2, t2, 1");

60

delay(thresh);

a = 4;
result = factorial(a);
(volatile int)(0x20000000) = result;
r = *(volatile int*)(0x20000000);
asm("li t1, 0x20000000");
asm("li t2, 0");
asm("sb t2, 2(t1)");
asm("addi t2, t2, 1");
asm("sb t2, 3(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 0(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 1(t1)");
asm("addi t2, t2, 1");
asm("addi t2, t2, 1");

delay(thresh);

a = 7;
result = factorial(a);
(volatile int)(0x20000000) = result;
r = *(volatile int*)(0x20000000);
asm("li t1, 0x20000000");
asm("li t2, 0");
asm("sb t2, 2(t1)");
asm("addi t2, t2, 1");
asm("sb t2, 3(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 0(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 1(t1)");
asm("addi t2, t2, 1");
asm("addi t2, t2, 1");

delay(thresh);

a = 10;
result = factorial(a);
(volatile int)(0x20000000) = result;
r = *(volatile int*)(0x20000000);
asm("li t1, 0x20000000");
asm("li t2, 0");

61

asm("sb t2, 2(t1)");
asm("addi t2, t2, 1");
asm("sb t2, 3(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 0(t1)");
asm("addi t2, t2, 1");
asm("sh t2, 1(t1)");
asm("addi t2, t2, 1");
asm("addi t2, t2, 1");

delay(thresh);

// infinite loop
for(;;);

}

B Blinky Test

#include <stdint.h>
#include "a-core-utils.h"
#include "a-core.h"
#include "acore-gpio.h"

#define GPIO_OUT (volatile uint32_t*)0x30000010
#define GPIO_IN (volatile uint32_t*)0x30000000

// init data registers to zero
void gpo_init(volatile uint32_t* base_addr) {

*base_addr = 0;
}

// index 0 is the least significant bit
// index 31 is the most significant bit
void gpo_set_bit(volatile uint32_t* addr, int value, int index) {

if (value) {
*addr |= 1 << index;

} else {
*addr &= ~(1 << index);

}
}

void gpo_write(volatile uint32_t* base_addr, uint32_t value) {
*base_addr = value;

62

}

void delay(int cycles) {
for (int i = 0; i < cycles; i++) asm("nop");

}

void main() {

// disable the F-extension
// disable_f();

int thresh = 20; //delay

// turn all outputs off
gpo_init((volatile uint32_t*)GPIO_OUT);

// shift asserted output around in a loop for a while
uint32_t bits = 1;
for (int i = 0; i < 64+1; i++) {

gpo_write((volatile uint32_t*)GPIO_OUT, bits);
if (bits == 0)

bits = 1;
else

bits <<= 1;
}

delay(40);

// reset the outputs to be 0
gpo_write((volatile uint32_t*)GPIO_OUT, 0);

int i = 0; //bit setting gpo[0]
for (;;) {

for (int i = 0; i < 4; i++) {
gpo_set_bit(GPIO_OUT, 1, i);
delay(thresh);
gpo_set_bit(GPIO_OUT, 0, i);
delay(thresh);

}
}

}

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Symbols and Abbreviations
	1 Introduction
	2 Background
	2.1 Central Processing Unit
	2.2 Instruction Set Architecture
	2.3 RISC-V
	2.4 A-Core Processor Implementation

	3 Power Consumption and Management
	3.1 Power Consumption in CMOS Technology
	3.1.1 Static Power Consumption
	3.1.2 Dynamic Power Consumption

	3.2 Power Management
	3.2.1 Power Management System

	3.3 Parasitic Information
	3.3.1 Parasitic Formats
	3.3.2 Standard Parasitic Exchange Format

	3.4 Waveform Information
	3.4.1 Signal Change Formats
	3.4.2 Value Change Dump

	4 Tools and methodology
	4.1 Design Workflow
	4.2 Power Profiling Model Structure
	4.3 TheSyDeKick
	4.4 ModelSim
	4.4.1 VCD File Generation
	4.4.2 VCD File Size Reduction

	4.5 IC Design Flow
	4.5.1 SPEF File Generation

	5 Design verification
	5.1 Trap Test
	5.1.1 ModelSim Results
	5.1.2 Profile Results
	5.1.3 Summary of Results

	5.2 Blinky Test
	5.2.1 ModelSim Results
	5.2.2 Profile Results: Enable F-extension
	5.2.3 Profile Results: Disable F-extension
	5.2.4 Summary of Results

	6 Conclusions
	References
	A Trap Test
	B Blinky Test

