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1. Introduction

With the rapidly developing quantum technology, we are able to manu-

facture nano-scale devices for faster processing. A particular highlight of

this is the access to two-level quantum systems such as single magnetic

atoms and Josephson junctions. This has allowed for the experimental

realization of the remarkable idea of quantum computation [1], in which

quantum two-level systems are utilized as qubits for fast computation.

Despite the rapid development of quantum computation, challenges

remain to be addressed to unleash its potential power. One remarkable

experimental challenge is that the inevitable coupling between the qubit

and the environment results in the loss of the information stored in the

qubit. This has limited the time scale of faithful quantum computation to

nanoseconds and prevents the scaling up of quantum computation with

more qubits while maintaining fidelity.

Interestingly, topological protection provides a solution to the above

problem. Topological protection refers to the protection of the (ground)

state against local perturbations (that can break any symmetries) due

to the intrinsic topological order encoded in such a state. A topologically

protected state exhibits strong stability against perturbations and thus

preserves the stored information in such a state for a much longer time.

Historically, the theory of intrinsic topological order [2] was inspired by the

fractional quantum Hall effect (FQHE) [3], which was later explained by

Laughlin with a many-body electronic wavefunction [4]. The key feature

of the Laughlin wavefunction is it supports fractional excitations that

cannot be excited alone locally, which is essentially related to the intrinsic

topological order of this wavefunction. Quantum spin liquid states were

then theoretically found to feature the same properties [5,6]. Two more

examples of intrinsic topological order were proposed later by Kitaev, the

toric code model [7] and the Kitaev spin liquid [8].
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Introduction

Despite the theoretical development in quantum spin liquids, experimen-

tal realization and identification of the quantum spin liquid phases have

been challenging. From the realization point of view, the emergence of

quantum spin liquids requires fine-tuned spin exchanges in a magnetically

frustrated regime. This makes quantum spin liquids hard to be found in

natural compounds. From the detection point of view, a direct local probe

of the fractional excitations in these phases is challenging on physical

grounds, and one relies on indirect signatures which might be hindered

by other signatures or be explained with alternative mechanisms. These

challenges motivate us to find tunable platforms to realize quantum spin

liquids, where we benefit from the tunability (i) to reach fine-tuned regimes

and (ii) to eliminate potential other mechanisms hindering the signature

of quantum spin liquids.

Van der Waals materials, which are layered materials with two-dimensional

nature due to the weak inter-layer van der Waals coupling, have been

demonstrated as a highly tunable platform. The manipulation of elec-

tronic properties in van der Waals materials is much easier than that

for bulk materials owing to their two-dimensional nature. Paradigmatic

examples include gating [9] and straining [10] of van der Waals materi-

als. Thanks to the technological advancements that allow atomic-scale

manipulation, single impurities [11] can be used to engineer properties

of van der Waals materials. A recent and remarkable experimental ad-

vance is the stacking and twisting of graphene multi-layers [12, 13]. By

controlling the relative twist angle between the graphene multi-layers,

a variety of strongly-correlated electronic phases can be realized in the

graphene multilayers. Together with other engineering methods such as

gating, the twisted multilayer offers a highly tunable platform to study

strongly-correlated phases of matter.

However, an essential ingredient for quantum spin liquids, quantum mag-

netism, has been missing in van der Waals materials for a long time until

the recent discovery of magnetic van der Waals materials [14–17]. Essen-

tially, magnetic van der Waals materials 1T-TaS2, 1T-TaSe2 and α-RuCl3
are potential quantum spin liquid candidates [18–21]. The experimental

discovery of magnetic van der Waals materials and their relationship with

quantum spin liquids motivate us to investigate how they can be engi-

neered for the realization and identification of quantum spin liquids, in

particular with scanning tunneling microscopes (STM). This will be the

main theme of chapter 2.
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Interestingly, the versatility of magnetic van der Waals materials allows

the utilization of them in engineering other exotic phases of matter. In

particular, helical states, an essential ingredient for topological super-

conductivity, can be engineered with magnetism and spin-orbit coupling.

Magnetism is also an essential component of heavy fermions, which is

an exotic phase related to unconventional superconductivity. Exploring

the versatility of magnetic van der Waals materials in designing these

exotic phases of matter is of great interest. This will be the main theme of

chapter 3.

Finally, magnetic systems, when exposed to the environment, provide a

paradigmatic example of open quantum systems in the presence of many-

body interactions. Understanding the dynamics of such open quantum

many-body systems is of great theoretical and technological interest. One

particular interest is to engineer the coupling to the environment in order

to turn the coupling useful, such as to engineer a symmetry-protected

many-body topological phase. This will be the main theme of chapter 4.

The rest of the thesis is organized as follows: in chapter 5, I will present

two computational libraries I developed during my Ph.D. studies. In

chapter 6, I summarize the methods used in this thesis. A summary of this

thesis is given in chapter 7.

13





2. Quantum spin liquids with magnetic
van der Waals materials

Quantum spin-liquids (QSL) are highly-entangled magnetic phases of mat-

ter usually featuring strong magnetic frustration and zero local magnetic

order [22–26]. Strong magnetic frustration refers to a situation when the

energies of all local spins can not be minimized simultaneously with any

configuration of the spins. Magnetic frustration usually takes place due

to lattice geometry, such as on a triangular or Kagome lattice. As a conse-

quence of magnetic frustration, a large number of magnetic configurations

have the same energy, and the ground state becomes a superposition of

all these states due to quantum fluctuations. This is usually referred

to as the "Resonating Valence Bond" (RVB) state, proposed by Anderson

in 1973 [27]. The RVB state provides a way of understanding the high

entanglement in quantum spin liquids: Due to the massive superposition

of magnetic configurations in the ground state, magnetic moments from far

apart are entangled with each other. As a consequence of this long-range

entanglement, QSL can have non-local fractional excitations: they can

only be excited in pairs by local physical operators. Associated with these

fractional excitations there is usually emergent gauge degrees of freedom,

which is another feature of QSL.

The fractional excitations are one reason we study QSL: not only for their

fundamental interest, but also for their potential applications in topological

quantum computing [28,29]. Another interest in QSL is due to that doping

a QSL is believed to give rise to unconventional superconductivity [27,30].

Despite its fundamental and technological interest, the experimental

identification of QSL has proven to be a remarkable challenge. In particu-

lar, directly identifying the features of QSL: (i) the non-local entanglement,

(ii) the fractional excitations or (iii) the emergent gauge fields represent a

big challenge. The characterization of QSL has thus mostly relied on indi-

rect signatures such as the absence of sharp dispersion for spin excitations

15
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through inelastic neutron scattering [31], or the violation of Curie-Weiss

law for magnetic susceptibility at low temperature [32].

Another difficulty for QSL is the lack of natural compounds having QSL

as the ground state. This is due to the crucial requirements for having a

QSL. First of all, the material candidate for QSL should have a frustrated

lattice structure, preferably a triangular, honeycomb or Kagome lattice.

In addition to this, the material should fall into the fine-tuned parameter

regime where QSL is the ground state, which is not highly probable.

The recently raised 2D magnetic materials such as TaS2 [18, 33, 34],

TaSe2 [20] and RuCl3 [35, 36] have been proposed as QSL candidates,

which paves the way to overcome the difficulties in the study of QSL

physics. Using STM on 2D magnetic materials, one can perform inelastic

tunneling measurements in a much more versatile way than inelastic

neutron scattering. In addition, the 2D nature of these materials enables

versatile engineering of them, allowing to drive them toward the QSL

phase.

In this chapter, we present our theoretical proposals for identifying QSL

phases in 2D magnets and driving a 2D magnet toward the QSL phase. We

give a brief introduction to the material of our interest, 1T-TaS2, and the

potential U(1) Dirac QSL phase in this material in Sec.2.1. We then show

that by manipulating single magnetic impurities on a 2D QSL material,

we can probe the QSL with scanning tunneling microscope, allowing a

more versatile probe of QSL than conventional scattering experiments

for 3D QSL candidates in Sec.2.2. We show that by stacking two 2D QSL

with a relative twist angle, we can tune properties of fractional excitations,

which also allows to probe QSL with STM in Sec.2.3. These pave the way

to overcoming the challenge of experimentally identifying QSL. Finally, we

show in Sec.2.4 that, by tuning the dielectric environment of a magnetic

van der Waals material, we can tune it towards QSL. This paves the way

towards solving the problem of the lack of QSL candidates.

2.1 1T-TaS2 and U(1) Dirac QSL

The material we would like to focus on in this chapter is 1T-TaS2 (Fig. 2.1(a)),

which is a transition metal dichalcogenide (TMD) where the Ta atoms form

a triangular lattice. 1T-TaS2 hosts a charge-density-wave (CDW) insta-

bility leading to the formation of the Star-of-David (SOD) unit cell with

13 Ta atoms at low temperature (Fig. 2.1(b)) [18, 37–41]. The CDW as
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Figure 2.1. (a) Sketch of 1T-TaS2, with a single layer of Ta atoms (blue) forming a tri-
angular lattice, and two layers of Sulfur atoms (yellow). (b) Sketch of the
star-of-David CDW in 1T-TaS2, with 13 Ta atoms per Star-of-David. (c) Sketch
of the potential spiral GS of 1T-TaS2. (d) ketch of the potential QSL GS of
1T-TaS2.

well as spin-orbit coupling (SOC) result in a half-filled narrow band at the

Fermi energy, with a bandwidth of a few 10meV [42]. Together with siz-

able Coulomb interactions [43] this renders 1T-TaS2 a correlated insulator

rather than a simple metal. The electrons form local magnetic moments

with S = 1/2 at each SOD, and interact via exchange and superexchange

coupling (Fig. 2.1(a)).

Effectively, 1T-TaS2 can be modeled with a Heisenberg model on the

triangular lattice:

H =
∑︂

ij

Jµν
ij S

µ
i S

ν
j (2.1)

where Jµν
ij is the spin exchange between spin components µ, ν on site i, j.

Since the spin-anisotropy in 1T-TaS2 is weak, we can assume the spin

exchanges to be isotropic, and Eq.(2.1) reduces to the Heisenberg model

H =
∑︂

ij

JijSi · Sj . (2.2)

On the triangular lattice, the above model is known to give rise to a variety

of phases in different parameter regimes, such as the spiral GS (Fig. 2.1(c))

and the U(1) Dirac QSL (Fig. 2.1(d)).

To illustrate the physics of U(1) Dirac QSL, we consider the following
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Figure 2.2. (a) Sketch of the π-flux model on the triangular lattice. (b) The hoppings in
the π-flux model under a specific gauge choice. Black lines represent t = 1 and
red lines represent t = −1. (c) The 2 × 2 unit-cell of the π-flux model (blue)
and the unit-vectors (pink). (d) The Brillouin zone (grey) of the π-flux model
corresponding to the choice of unit-cell in panel (c). High symmetry points are
indicated. (e) The band structure of the π-flux model along the yellow path in
panel (d).

parton transformation:

Si =
1

2

∑︂

α,β

f †i,ασ⃗αβfi,β (2.3)

where α, β are spin degrees of freedom and f, f † are fermionic operators

satisfying
∑︁

α f
†
i,αfi,α = 1. The fermionic partons are usually referred to as

spinons, as they are fractional particles of half spin and zero charge. With

the parton transformation, Eq.(2.2) becomes

H =
∑︂

i,j

Jij

(︃
1

2
f †i,αfi,βf

†
j,βfj,α − 1

4
f †i,αfi,αf

†
j,βfj,β

)︃
(2.4)

Under proper parameter regime, the ground state of the above Hamiltonian

is given by a parton mean-field model with staggered 0 and π fluxes [44,

45](Fig. 2.2(a)):

H = t
∑︂

⟨i,j⟩
χijf

†
i fj . (2.5)
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We note that χij is subject to a U(1) gauge degree of freedom: redefining

fi → eiθifi. we have χij → χij + θi − θj . The χij under a specific gauge

is illustrated in Fig. 2.2(b). The π-flux model Eq. (2.5) has translational

symmetry, allowing us to use Bloch’s theorem to compute its band structure.

The 2×2 unit-cell for the π-flux model and the corresponding Brillouin zone

are shown in Figs. 2.2(c) and (d). The band structure of the π-flux model

under the gauge choice in Fig. 2.2(b) is shown in Fig. 2.2(e), highlighting

the low-energy Dirac dispersion of the partons. The U(1) gauge degree of

freedom together with the low-energy Dirac spinon dispersion explain the

name “U(1) Dirac QSL".

We note that the full low-energy description of the U(1) Dirac QSL should

involve both (i) Eq. (2.5) which describes the dispersion of the spinons due

to coupling to the gauge field χij and (ii) The action of the U(1) gauge

field χij , which describes the fluctuations of the gauge field χij . However,

solving the full problem represents a big challenge. We will thus neglect

gauge fluctuations from now on and focus on how the low-energy Dirac

dispersion of spinons can result in characteristic features of the U(1) Dirac

QSL, in particular under specific engineering.

2.2 Impurity states in U(1) Dirac QSL

Impurity engineering has been recognized as a powerful technique to

identify exotic electronic orders [46]. This includes the identification of

unconventional superconductors with non-magnetic impurities, where the

emergence of impurity-induced in-gap states is a well-known signature

of unconventional superconductivity [47–50]. In contrast, conventional

s-wave superconductors will only show in-gap states in the presence of

magnetic impurities [51–54]. Another example is using impurities to image

the Fermi surface of metals, by measuring Friedel oscillations with scan-

ning probe techniques [55–57]. Another well-studied example is carbon

vacancies [58–64] and hydrogen ad-atoms [65,66] in graphene, that gives

rise to a divergent density of states [59,63] and magnetism [11,60,66].

Recently, the possibility of single atom manipulation has been explored

with scanning probe techniques [67–83]. This motivates whether single

atoms on top of 1T-TaS2 can allow to detect the unique features of the

potential U(1) Dirac QSL state.
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2.2.1 Impurity states in graphene

Before we illustrate the identification of U(1) Dirac QSL with impurity

engineering, let us first review the theory of graphene and how a divergent

DOS appears at the Fermi energy in the presence of carbon vacancies or

hydrogen adatoms.

Graphene is a 2D material with carbon atoms on a honeycomb lattice.

The electronic model of graphene is simply a nearest-neighbour tight-

binding model on the honeycomb lattice:

H = t
∑︂

⟨i,j⟩
(c†icj + h.c.) (2.6)

The 2nd nearest neighbour hopping in graphene is much smaller than the

first (t′ ≈ 0.1t), thus we neglect it. The honeycomb lattice has the periodic

structure of a triangular lattice with 2 sublattices. Using Bloch’s theorem,

we get the Bloch Hamiltonian of graphene:

H(k) =

⎛
⎜⎝

f∗(k)

f(k)

⎞
⎟⎠ (2.7)

where f(k) = 1+eika1+eika2 with a1,2 being the lattice constants (Fig.2.3(a)).

The band structure of graphene can thus be computed, showing the low-

energy Dirac dispersion of graphene at K and K ′ points (Fig.2.3(b)).

The presence of a carbon vacancy or a Hydrogen adatom removes the free

electron from one site, and effectively gives rise to a tight-binding model

with a vacancy:

H = t
∑︂

⟨i,j⟩,i,j /∈K
(c†icj + h.c.) (2.8)

where K is the site of the vacancy. To show the impurity effects, we consider

a periodic array of impurities, with one impurity in a unit cell of size 4× 4.

In this case, the Bloch theorem still holds, and we can compute the band

structure, where we observe the emergence of dispersionless modes at the

Fermi energy (Fig.2.3(c)).

The difference between the spectrum of pristine graphene and defective

graphene can be probed by STM, where the tunneling current is propor-

tional to the density of states (DOS)

ρ(E) = δ(E −H) =
∑︂

n

δ(E − En) (2.9)

where En are the eigenvalues of H. For pristine graphene, the DOS is zero

right at the Fermi level (E = 0), and grows linearly with E (Fig.2.3(d)).
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This is in agreement with the low energy Dirac dispersion around the

Fermi level. For defective graphene, the DOS exhibits a peak around

the Fermi level, and does not show a significant change otherwise. The

existence of the peak is consistent with the zero mode in Fig.2.3(c).

When we have a single vacant site in an infinitely large honeycomb

lattice, the DOS can be computed with the embedding method introduced in

Sec.6.1, where the peak at E = 0 still exists. We thus conclude that the zero

mode induced by the carbon vacancy/hydrogen adatom and correspondingly

the divergent DOS at Fermi level is a characteristic feature of the low

energy Dirac dispersion of graphene. This motivated us to investigate

whether impurities would allow to characterize the U(1) Dirac QSL state

where the low-energy spinon dispersion is also Dirac.

Figure 2.3. (a) Sketch of the tight-binding model Eq. (2.6) on the honeycomb lattice, with
the unit-cell (blue) and unit-vectors (pink) indicated. The inset shows the
first Brillouin zone and the high-symmetry points. (b) The band structure for
graphene, computed with the Bloch Hamiltonian Eq. (2.7) along the path of
high-symmetry points. (c) The band structure of graphene when there exists a
vacant site in every 4× 4 unit cell. (d) The density of states ρ(E) for pristine
and defective graphene, corresponding to panels (b) and (c), respectively.
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2.2.2 Impurity states in Dirac QSL

We now consider the case of a magnetic impurity in the U(1) Dirac QSL1.

We assume that the magnetic impurity couples locally to one spin:

H = J
∑︂

k∈K
sk · Sk +

∑︂

ij

JijSiSj (2.10)

where sk are the spin operators for the different S = 1/2 ad-atoms consid-

ered, K denotes the sites that have an impurity ad-atom on top, and J is

the antiferromagnetic exchange coupling between the magnetic ad-atom

and the site below. Taking the limit of strongly coupled magnetic impurity

J ≫ Jµν
ij , the different sites k will form a singlet state with the impurity

on top, effectively removing the S = 1/2 from the quantum spin-liquids

compound. As a result, the effective Hamiltonian in this limit is (Fig.2.4(a))

H =
∑︂

ij,i/∈K,j /∈K
JijSiSj , (2.11)

an effective triangular model where the sites hosting a magnetic impurity

above disappear from the low-energy Hamiltonian. Using an analogous

parton transformation as before, we obtain that the effective model for the

spinons becomes (Fig.2.4(b))

H = t
∑︂

⟨i,j⟩,i/∈K,j /∈K
χijf

†
i fj , (2.12)

an effective π−flux model with impurities determined by the magnetic

ad-atoms deposited.2 We note that this equivalence holds only for S = 1/2

impurities, as higher S impurities would generate a free degree of freedom

in each site even in the limit J ≫ Jµν
ij . We also note that given that the

magnetic ad-atoms on top can be moved with a scanning tunnel microscope,

[68–70, 72–83] this would allow to engineer models with an arbitrary

number of vacancies in the effective spinon model.

Under the above approximations, we see that magnetic impurities on the

Dirac QSL modify the spinon dispersion by effectively adding vacant sites

to the mean-field spinon π-flux model. We illustrate below the change to

the spinon dispersion for (i) a periodic array of impurities and (ii) a single

impurity in an infinitely large system.

1Part of this and the next subsection are adapted from G. Chen and J. L. Lado,
Phys. Rev. Research 2, 033466 (2020).
2We assume that the mean field spinon model does not have non-trivial recon-
structions.
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Figure 2.4. (a) Sketch of a magnetic impurity coupled to a U(1) Dirac quantum spin-liquid.
(b) The effective spinon mean-field model for (a).

When considering a periodic array of impurities in unit cells of size

n × m, the Bloch Hamiltonian can be used to compute the band struc-

ture and the density of states (DOS). Compared to the band structure

of the pristine π-flux state, a flat band at zero energy arises for n even

[Fig.2.5(b)], and a band with small dispersion near zero energy arises

for n odd [Fig.2.5(c)]. In both cases, the DOS at zero frequency shows a

dramatic increase [Fig.2.5(d)]. The dispersion in the odd n case stems from

interference effects between different impurity-induced modes, which are

absent in the even n case. The spatial distribution of the zero modes can

be analyzed by looking at the local density of states (LDOS), defined as

ρ(r, ω) = Im
(︁
⟨r|[ω −H − i0+]−1|r⟩

)︁
. (2.13)

In particular, the LDOS at zero frequency ρ(r, ω = 0) shows that the zero

modes are localized around the impurities [Fig.2.5(e)], showing a pattern

with local C6 rotational symmetry. Interestingly, the zero modes are mainly

localized through sites that are odd number of bonds straight away from

the impurity. The above calculation relies on assuming a periodic pattern

of impurities. Experimentally, the simplest scenario will be depositing a

single impurity in an infinite large QSL. In the following we will deal with

this idealized case, showing that the results are qualitatively similar to

the periodic impurity pattern considered above.

We now move on to consider a single impurity coupled to the quantum

spin-liquid. In the case of a single impurity in an infinite system, trans-

lational symmetry is broken and Bloch theorem does not apply. To deal

with this inhomogeneous infinite problem, we compute exactly the spec-

tral function close to the impurity using the Green’s function embedding

method in Sec.6.1. The DOS is found to be divergent at zero frequency for

a defective unit cell [Fig.2.5(f)], indicating the existence of zero modes.
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Figure 2.5. Spinon dispersion in pristine and defective π-flux Dirac QSL. Panel (a) shows
the pristine spinon band structure of a π-flux QSL in an 8× 8 unit cell. Panels
(b) and (c) show the spinon band structure with a periodic array of impurities
in an 8×8 and a 7×8 unit cell, respectively. The insets show the configurations
of the impurity. Panel (d) shows the spinon DOS corresponding to the three
cases (a-c). The divergent spinon DOS at zero frequency corresponding to
case (b) indicates the existence of zero modes, in agreement with the band
structure shown in (b). Panel (e) shows the spinon LDOS at zero frequency
ρ(r, ω = 0) for case (b). The zero modes are localized around the impurities,
displaying a pattern with local C6 rotational symmetry. Panel (f) shows the
spinon DOS of the pristine QSL, and for a single impurity in an infinite QSL.

We note that when there are several impurities, different impurity-
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induced modes will interfere with each other, resulting in dispersive spinon

modes near the Fermi level. In this case, the DOS shows a less sharpened

peak at Fermi level [84].

We have thus verified the existence of spinon zero modes when there is (i)

a periodic array of impurities with one in an n×m unit cell with n even and

(ii) a single impurity in an infinite system. The results resemble that for

graphene [63] as we showed in the last section, highlighting that impurity

in a system with low-energy Dirac dispersion gives rise to zero modes.

However, the spinon zero modes in U(1) Dirac QSL have different nature

than the electronic zero modes in graphene. Due to the fractional nature

of spinons, we cannot directly probe spinon zero modes with STM. We

address in the next section how indirect signatures in STM measurements

indicate the existence of spinon zero modes.

2.2.3 Experimental detection of spinon zero modes

Figure 2.6. (a) Sketch of the experimental setup to measure the resonant Dirac spinons
close to the impurity by means of inelastic spectroscopy or electrically driven
paramagnetic resonance. Panels (b) and (c) show the local spin structure factor
S(ri, ω), computed on the site near the impurity, for (b) a single impurity in
an infinite system and for (c) a single impurity in a large finite system (with
100×100 sites). It is observed that a zero bias peak appears, which is associated
with the original divergent spinon density of states at zero frequency.

We now show how the spinon zero modes can be indirectly probed with
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STM in the setup shown in Fig.2.6(a), allowing for experimental identifica-

tion of U(1) Dirac QSL. STM can be utilized to measure the tunneling rate

of an electron into the material through inelastic processes, with direct

access to this quantity in d2I/dV2 [70,80,85,86]. The tunneling rate Γ of

an inelastic process exciting a quasiparticle is given by

Γ ∼ ⟨GS|Oδ(ω −H+ EGS)O
†|GS⟩ (2.14)

where O† is the operator creating the excitation above the groundstate,

|GS⟩ is the ground state of H and EGS is the ground state energy. In the

case of QSL, the excitations are magnons, which are composed of two

spinons. Thus, the tunneling rate is given by the convolution of the spinon

DOS to itself, giving rise to a peak at 0. We provide a quantitative analysis

below. Due to the fact that the spin Hamiltonian H in Eq. (2.11) is spin-

isotropic, the tunneling rate for exciting a local magnon is proportional

to

S(ri, ω) = ⟨GS|S+
i δ(ω −H+ EGS)S

−
i |GS⟩ (2.15)

where S±
i = Sx

i ± iSy
i . S(ri, ω) is usually referred to as the (local) spin

structure factor. As the magnon is composed of 2 spinons, the spin structure

factor would be proportional to the density-density response function for

spinons [84,87]:

S(ri, ω) ∼
∑︂

n,n′

fn − fn′

ω + εn − εn′ + iη
ψ∗
n(ri)ψn′(ri)ψn(ri)ψ

∗
n′(ri) (2.16)

where ψn(ri) = ⟨ri|ψn⟩ is the n-th spinon eigenstate with energy εn, and fn
is the Fermi-Dirac distribution for spinons. Using the LDOS for spinons

defined in Eq. (2.13), we can rewrite Eq. (2.16) as

S(ri, ω) ∼
∫︂

dω1dω2
ρ(ri, ω1)ρ(ri, ω2)

ω + ω1 − ω2 + iη
(f(ω1)− f(ω2)) . (2.17)

The local spin structure factor is computed for the site near the impurity

[Fig.2.6(b)], where the LDOS is computed using the embedding method

introduced in Sec.6.1. Alternatively, we also show the spin structure factor

computed for a finite island with 10000 sites [Fig.2.6(c)] using the kernel

polynomial method (KPM) introduced in Sec.6.2. In both instances, a

peak at zero frequency is observed, which is associated with the divergent

density of states of the spinon excitations. In an STM experiment, this

would infer a peak in differential conductance at zero bias.

We see that the zero bias peak in the STM measurement near the impu-

rity can be a hint for the existence of spinon zero modes and the U(1) Dirac
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QSL. Interestingly, zero bias peaks in inelastic spectroscopy in the presence

of magnetic impurity are usually associated with the Kondo physics. In

this line, our results put forward a different mechanism for the explanation

of the zero bias peaks.

2.2.4 Summary

We showed that individual magnetic S = 1/2 impurities coupled to a U(1)

Dirac QSL results in zero bias peaks in inelastic spectroscopy with STM.

This stems from the emergence of spinon zero modes due to the low-energy

Dirac dispersion of the spinons. This impurity-induced zero bias peak

provides a potential identification of U(1) Dirac QSL.

2.3 Twisted Dirac QSL

Stacking van der Waals heterostructures yields electronic structures sensi-

tive to the relative twisting between different layers. [88,89]. A remarkable

example is twisted bilayer graphene, where the emergence of flat bands

at magic twist angles has led to a variety of unconventional many-body

states [12,13,90–92]. Interestingly, twist engineering generically provides

a highly-tunable platform [93–95] for correlated phases and topologically

nontrivial electronic structures [96–101]. The versatility offered by stacked

van der Waals heterostructures motivates us to search for analogous phe-

nomena in van der Waals magnets [102–104]. In particular, we are inter-

ested in novel spinon phenomena in a twisted U(1) Dirac QSL system that

allows for the detection of spinons and the identification of the U(1) Dirac

QSL.

2.3.1 Twisted bilayer graphene

Twisted bilayer graphene (TBG) has been realized as a highly-tunable

system hosting a rich amount of strongly correlated electronic phases. The

tunability refers to the high sensitivity of the electronic band structure of

the bilayer graphene to the relative twist angle between the two graphene

layers as well as to external tuning such as an electronic bias. The fact

that it is a versatile platform for strongly correlated physics is due to the

emergence of flat electronic bands at certain twist angles, usually referred

to as the magic angles. We illustrate the above points by showing the band

structure of TBG at the non-interacting level.
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Figure 2.7. (a) The Brillouin zone of twisted bilayer graphene at twist angle θ = 21.79◦

(grey region) with high-symmetry points indicated. The Brillouin zone of the
two graphene layers are indicated with red and blue hexagons where the K
and K′ valleys are also indicated. The reciprocal vectors G1 and G2 for twisted
bilayer graphene are also shown. (b)-(d) Electronic band structure of twisted
bilayer graphene at twist angle (b) θ = 21.79◦, (c) θ = 9.43◦ and (d) θ = 1.89◦.

The bilayer graphene can be modeled as:

H =
∑︂

l,⟨i,j⟩
tc†i,lcj,l +

∑︂

i,j

t⊥,ij(c
†
i,1cj,2 + h.c.) (2.18)

where l = 1, 2 is the layer index. The first term of Eq. (2.18) describes the

intra-layer hopping of graphene and the 2nd term describes the inter-layer

coupling between the two graphene layers. As the inter-layer coupling is

given by the van der Waals force, it is much smaller than the intra-layer

coupling. The inter-layer coupling between site i on layer 1 and site j on

layer 2 depends on the overlap of the wannier orbitals, that depends on the

inter-layer distance d and the distance rij between sites i and j. Precise

modeling of this would require ab initio computations. Interestingly, the

low-energy spectrum of TBG exhibits universal features independent of

the details of the functional form of inter-layer coupling. In the following,
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we choose [88,105]

t⊥,ij = t⊥,0
d2

r2ij
e−λ(rij−d) (2.19)

where t⊥,0 is the inter-layer coupling between two sites with the same

horizontal position, and λ is a parameter that determines the decay of the

inter-layer hopping. For computational convenience we choose t⊥,0 = 0.3t

and λ = 10a−1 where a is the lattice constant of graphene. We note that

a re-scaling relation [106–108] would allow to relate our result to other

values of t⊥,0. Finally, as a reference, the hopping constants for graphene

are t ≈ 3 eV and t0⊥ ≈ 500 meV [109].

We start with a large twist angle θ = 21.79◦, at which the first Brillouin

zone of the TBG is shown in Fig.2.7(a). The band structure shown in

Fig.2.7(b) highlights that (i) the Dirac cones are not significantly splitted,

(ii) there are some band splittings at M and Γ point, which flattens the low-

energy bands and (iii) particle-hole symmetry is broken, but approximate

particle-hole symmetry holds at low-energy. These features persist at

smaller twist angles as shown in Figs.2.7(c,d). In particular, the low-

energy bands get significantly flattened at smaller twisted angles and

becomes almost flat at the twist angle θ = 1.89◦. The flattening of the

low-energy bands can be understood as a consequence of the inter-layer

coupling, that induces the splitting of the bands.

We have thus seen the sensitive dependence of the low-energy band

structure of twisted bilayer graphene to the twist angle, and that flat band

emerges at certain magic twist angles. One way of interpreting this is the

inter-layer coupling results in a splitting between the bands from the two

layers. We note that there exist other instructive interpretations for the

low-energy band structure of TBG. For instance, TBG can be understood

as a moire potential on single-layer graphene due to the relative twist. At

the low-energy level, this moire potential is a non-Abelian gauge potential

coupled to the Dirac electrons in single-layer graphene, which also exhibits

flat bands at certain twist angles [110].

Finally, we would like to note that the low-energy bands in TBG have

emergent valley conservation. The low-energy bands at K1 will only hy-

bridize with that at K2, and not with K′
1,2 due to the distance in the

Brillouin zone (Fig.2.7(a)). Similarly, the bands at K′
1 only hybridize with

K′
2. Thus, the hybridized low-energy bands in TBG belong to either the

valley K1+K2 or the valley K′
1+K′

2. The valley operator allows for the

characterization of the valley expectation of a certain state [94,111–114].
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The low-energy bands in TBG exhibit a valley degeneracy. Together with

the spin degeneracy, this provides the emergent SU(4) symmetry of the

low-energy bands of TBG.

2.3.2 Twisted U(1) Dirac QSL

We investigate the spinon band structure of twisted U(1) Dirac QSL in this

section3. Due to the similarity between the spinon dispersion in U(1) Dirac

QSL and the electronic dispersion in graphene, we would expect that (i)

the low-energy Dirac spinon dispersion is protected at small twist angles,

(ii) spinon flat bands arise at certain twist angles. We show below that (i)

no longer holds due to the different symmetry of the twisted π-flux model.

Figure 2.8. (a) Sketch of a twisted bilayer Dirac QSL on a triangular lattice. (b) The
Moire Brillouin zone for twisted QSL. The dashed red and blue hexagons
represent the Brillouin zone for the bottom and top layers. The red/blue
circles (crosses) denote the location of the Dirac points in the original (folded)
Brillouin zone (grey area). (c) Spinon band structure of the twisted Dirac QSL
in the decoupled limit for θ = 22◦, showing the two sets of decoupled bands in
the top (blue) and bottom (red) layers.

3Part of this and the next subsection are adapted from G. Chen and J. L. Lado,
Phys. Rev. Research 3, 033276 (2021).
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We start with the Heisenberg model for the U(1) Dirac QSL Eq. (2.2),

and consider a twisted bilayer of such QSL as sketched in Fig.2.8(a).The

Heisenberg Hamiltonian for the twisted bilayer takes the form

H =
∑︂

l,i,j

Jµν
∥,ijS

µ
i,lS

ν
j,l +

∑︂

i,j

Jµν
⊥,ijS

µ
i,1S

ν
j,2, (2.20)

where l labels the two layers, and Jµν
∥,ij and Jµν

⊥,ij denote intra- and inter-

layer spin exchange, respectively. In the regime Jµν
∥,ij ≫ Jµν

⊥,ij , the ground

state of the system will consist of two coupled U(1) QSL states. There-

fore, we take as the mean-field solution for each layer the spinon π-flux

model, with an effective inter-layer spinon coupling from inter-layer spin

exchange:

H = t
∑︂

l,⟨i,j⟩
χl,ijf

†
i,lfj,l +

∑︂

i,j

t⊥,ij(f
†
i,1fj,2 + h.c.), (2.21)

where t, χl,ij and t⊥,ij are mean-field parameters that can be derived anal-

ogously from a mean-field replacement in Eq. (2.20). The mean-field

parameter t⊥,ij will depend on the relative distance between sites i and j,

inherited from the parent Heisenberg coupling Jµν
⊥,ij in Eq. (2.20). Simi-

lar to the computation of electronic band structure in TBG, we take the

functional form for the inter-layer coupling as [105] t⊥,ij = t⊥,0
d2

r2ij
e−λ(rij−d),

where d is the inter-layer distance, rij is the distance between sites i and j,

λ is the parameter that controls the decay of the inter-layer coupling, and

t⊥,0 is the largest possible inter-layer coupling realized at rij = d. In the

following we take t⊥,0 = 0.36t, λ = 10/a, and d = a, where a is the lattice

constant of the triangular lattice. From the computational point of view, we

will use the twist scaling relation for computational convenience [106,115].

Similar to TBG, the low-energy bands in twisted π-flux model Eq. (2.21)

also exhibits emergent valley conservation, and we compute the valley

expectation ⟨Vz⟩ = ±1 with the valley operator for the twisted π-flux model.

The π-flux hoppings χl,ij are subject to a U(1) degree of freedom for

each layer, respectively. However, the gauge difference between the two

layers determines the relative position of Dirac cones of the two layers

in reciprocal space [116]. As a result, the momentum difference between

Dirac cones of the two layers, ∆k, can be either large or small. When

|∆k| ≫ |1/R|, where R is the periodicity of t⊥,ij in real space, the Dirac

cones are almost decoupled. In such case, the impact of t⊥,ij is small

on low energy physics, keeping the two layers effectively decoupled. In
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Figure 2.9. (a-c) Spinon band structure of twisted Dirac QSL for different twisting angles
θ = 0.81◦, 0.93◦, 1.20◦ (dashed lines in panel (d)), respectively. (d) Spinon DOS
ρ(ω) for twisted Dirac QSL near the first magic angle θ = 0.93◦. (e) Spinon
band structure of a twisted QSL nanoribbon at θ = 3.5◦.

contrast, when |∆k| ≪ |1/R|, t⊥,ij leads to significant coupling between

the Dirac cones of different layers. From the energetic point of view, this

gauge configuration couples the two layers and therefore will lower the

many-body energy through spinon hybridization. With this gauge choice,

the Moire Brillouin zone is shown in Fig.2.8(b), with two Dirac cones at

time-reversal invariant momenta M and M′. The spinon dispersion in the

decoupled limit for twisting angle θ ≈ 22◦ is shown in Fig.2.8(c), where the

two spinon Dirac cones of the two decoupled layers are observed.

Let us now move on to the case in which the two QSL are coupled

through the inter-layer exchange coupling. In this situation, we find that

the inter-layer coupling leads to a gap opening in the Dirac cones of the

bilayer QSL upon twisting. This gap opening stemming from the twist is

similar to the case of twisted double bilayer graphene [96] (Fig.2.9(a-c)),

and stems from the broken C2zT symmetry [117,118] of the effective model.
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Besides the gap opening, we also observe the emergence of spinon flat

bands at a specific fine-tuned twisting angle θ/(t⊥/t) ≈ 2.6◦, which for

t⊥ = 0.36t appears at θ = 0.93◦ (Fig.2.9(d)), similar to other twisted Dirac

materials [88,89].

Interestingly, the emergence of a gap opening driven by the twist has been

shown to give rise to topological states in van der Waals heterostructures

based on graphene [119–121]. In particular, we find that the gap opening

in the bilayer QSL has an associated valley Chern number of 2, giving

rise to two counterpropagating channels at each edge with opposite valley

polarization [122–126]. The previous phenomenology can be explicitly

demonstrated by computing the spinon band structure of a twisted QSL

nanoribbon at twisting angle θ = 3.5◦ (Fig.2.9(e)). In particular, it is clearly

seen the emergence of in-gap valley-polarized topological edge modes,

associated with the topological valley Hall quantum spin-liquid state. We

note that the topological edge modes are protected by the approximate

valley charge conservation, and therefore perturbations giving rise to

strong inter-valley scattering can lead to inter-valley mixing between

topological spinon edge states [113,114,125,127,128].

We see that similar to TBG, the twisted bilayer π-flux model exhibits

band structure sensitive to the twist angle and flat bands at certain twist

angles. It also exhibits different behaviour than TBG. In particular, the

Dirac cones split at small twisting angles, opening a topologically non-

trivial gap. This is due to the broken C2zT symmetry of the model under

the specific gauge choice. We shall see in the next section how the spinon

dispersion in this moire structure allows a characterization of U(1) Dirac

QSL by means of magnetic encapsulation.

2.3.3 Tunability of spinon dispersion with magnetic
encapsulation

One of the remarkable features of TBG is its sensitivity to external electric

bias that allows for electric tunability of electronic structure in TBG [95].

We show here that in a similar manner, a magnetic tunability exists for

the spinon dispersion in twisted U(1) Dirac QSL4.

From the material science point of view, in the following we will consider

that the QSL bilayer is sandwiched between two ferromagnetic insulators,

for which both CrBr3 [130,131] and CrCl3 would be suitable candidates.

The top and bottom ferromagnets are expected to be antiferromagnet-

4This section is adapted from Ref. [129] with some modifications
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Figure 2.10. (a) Sketch of the twisted bilayer Dirac QSL encapsulated by ferromagnets. (b)
Spinon band structure for the twisted Dirac QSL at θ = 0.93◦ and inter-layer
spinon bias J = 0.1t. (c,d) Spinon DOS for the twisted bilayer Dirac QSL at
(c) θ = 0.93◦ and (d) θ = 1.05◦ with different inter-layer spinon bias J .

ically aligned through a superexchange mechanism [132], as shown in

Fig. 2.10(a). To study the impact on the QSL state, we now integrate out

the degrees of freedom of the ferromagnet, and consider their impact on

the QSL Hamiltonian. The magnetic encapsulation yields an exchange

proximity term in the Hamiltonian of the QSL bilayer, analogous to the

exchange terms proposed for other van der Waals materials proximized to

ferromagnets [94,133–136]

H′ = H+
∑︂

i,µ

J⊥S
µ
i,1M

µ
1 +

∑︂

i,µ

J⊥S
µ
i,2M

µ
2 , (2.22)

where J⊥ denotes the exchange interaction between spin in the QSL Sµ
i,l

and the magnetic moment of the ferromagnets Mµ
l , with l = 1, 2 labeling

the two different magnets and QSL layers. We consider sufficiently small
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J⊥ that does not lead to many-body reconstruction. In such case, the mean-

field solution of Eq. (2.21) remains, and the effect of the ferromagnets can

be projected onto the spinon mean-field Hamiltonian as

H ′ = H +
1

2

∑︂

i,µ,l,s,s′
J⊥σ

µ
s,s′M

µ
l f

†
i,s,lfi,s′,l. (2.23)

In the case of the antiferromagnetic alignment as depicted in Fig. 2.10(a),

the magnetic encapsulation creates an effective spin-dependent inter-layer

spinon bias J = J⊥(Mz
1−Mz

2) on the twisted Dirac QSL [94,112,133]. The

effective inter-layer spinon bias J induced by proximity exchange fields

has a dramatic impact on the low energy spinon band structure of the

twisted Dirac QSL. Due to the broken mirror symmetry of the twisted

QSL5, the exchange bias causes spin-splitting in the spinon band structure

in reciprocal space (Fig.2.10(b)). At the flat band twisting angle, the gap at

Fermi level drastically increases with J (Fig.2.10(c)). When the twisting

angle is not the flat one, the spinon DOS gets substantially modified at

larger exchange couplings (Fig.2.10(d)).

The modification of the spinon DOS allows for the identification of the

U(1) Dirac QSL with STM, in the same spirit as Sec.2.2.3. We now consider

a similar setup, in which the magnetically encapsulated QSL bilayer is

explored by means of vertical transport with STM as shown in Fig. 2.11(a).

To reveal the impact of the magnetic encapsulation, we now consider the

change of the signal with respect to an in-plane magnetic field B, that is

used to control the direction of magnetism in the magnets. The magnetic

field will tune the angle between the magnetization of the two magnets

from π to π − α(B), and modifies spinon DOS in the QSL bilayer due to

proximity effect. For twisting angle θ = 0.93◦, and effective exchange bias

J = 0.1t, the spinon DOS under different α(B) is shown in Fig. 2.11(b).

The modified spinon DOS exhibits peaks at different frequencies than the

original one. Taking the specific case of antiferromagnetic alignment α = 0,

it is seen that the spin structure factor has peak structures, inherited from

the peaks in the spinon DOS (Fig.2.11(c)). Due to the modification of the

spinon DOS with the field, an analogous effect is expected in the differential

conductivity, which is proportional to the spin structure factor Eq. (2.17).

For this sake, we now compute the change in the spin structure factor as a

function of the magnetic field, defined as ∆S(ω, α) = S(ω, α)− S(ω, 0), and

5The mirror symmetryMx(My) is present if the system is invariant when mirrored
by x (y) plane and then exchanging the top and bottom layers.
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Figure 2.11. (a) Sketch of the experimental setup for probing QSL via inelastic spec-
troscopy. (b) Spinon DOS of twisted QSL at θ = 0.93◦ and J = 0.1t under
different α(B). (c) Spin structure factor S(ω) with α = 0. (d) Change in spin
structure factor ∆S(ω, α) for different α.

shown in Fig. 2.11(d). In particular, we see in Fig. 2.11(d) the existence

of deeps and peaks in d2I/dV2, manifesting from the dramatic change of

spinon DOS with the magnetic field of Fig. 2.11(b).

Finally, we comment on specific quantitative aspects of our proposal

relevant to experiments. First, we have considered exchange couplings

between the two monolayer QSL on the order of J⊥ ≈ 0.3J||. The specific

prediction of such exchange coupling should be performed via first prin-

ciple methods for the specific materials considered [137, 138], and could

ultimately be controlled with pressure [139,140]. For our phenomenology,

a change in the exchange coupling just drifts the physics towards bigger

or smaller angles, yet without qualitatively changing the overall behav-
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ior [141]. Second, when exchange proximity is considered, the exchange

proximity must be smaller than the intra-layer exchange to not perturb

the QSL ground state. Third, in order to tilt the direction of the magnets

by an external magnetic field, yet without breaking the QSL ground state,

a soft magnetic axis is preferred. As a reference, taking CrBr3 as the

ferromagnet, the anisotropy energy can be overcome with a magnetic field

of around 1 T [142], whose Zeeman energy scale of 0.04 meV is not ex-

pected to perturb QSL with exchange constants on the order of 5 meV. The

application of a magnetic field is also expected to affect the magnons of the

ferromagnetic encapsulation, yet those states will contribute with a uni-

form background to the d2I/dV2 signal that can be substracted [130,143].

Finally, although our analysis has focused on a Dirac QSL, analogous

calculations can be performed with other QSL ground states, such as the

gaped QSL of RuCl3 [28].

2.3.4 Summary

We explored the effect of twist engineering on the U(1) Dirac QSL at the

mean-field level, where we see the emergence of spinon flat bands in a

similar manner to TBG, and a topological gap opening in the spinon band

structure. The spinon band structure exhibits high magnetic tunability,

allowing for the detection of them in a magnetic heterostructure with STM.

This further allows for the identification of the U(1) Dirac QSL state.

2.4 Coulomb engineered QSL

Coulomb engineering [144–146] refers to a strategy to tailor many-body

interactions by means of dielectric environments, which is particularly

efficient for low-dimensional materials. This is due to the pronounced

role of non-local Coulomb interactions, which decisively define many-body

properties in low-dimensional systems and which can be simultaneously

efficiently externally modified. In this way band gaps [146–152] as well

as excitonic [146, 151, 153] or plasmonic [154, 155] excitations and even

topological properties [156] can be precisely tailored in 2D and 1D systems

with the help of (structured) dielectric substrates. Furthermore, Coulomb

interactions also play a crucial role in magnetic van der Waals materials,

affecting the magnetic exchange between localized magnetic moments.

This motivates us to investigate the effect of Coulomb engineering on
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1T-TaS2, aiming to drive it towards the U(1) Dirac QSL state.6

2.4.1 Effective model for 1T-TaS2

To illustrate the effect of Coulomb interactions on the magnetic properties

of 1T-TaS2, we start from a single Wannier orbital model including long-

range electronic interactions:

H =
∑︂

i,j,σ

tijc
†
i,σcj,σ + U

∑︂

i

ni,↑ni,↓

+
∑︂

i,j,σ,σ′

Vij
2
ni,σnj,σ′ ,

(2.24)

where σ and σ′ are spin indices, and ni,σ = c†i,σci,σ. The first term describes

the narrow band at the Fermi energy in 1T-TaS2 in the absence of Coulomb

interactions, and the second and third terms are Coulomb interaction

terms. The hoppings tij are fitted to DFT data [43] where we find hoppings

up to the 14th neighbor. The hoppings exhibit an oscillating behavior in

addition to a decay with distance. This oscillating behavior stems from

the nature of the Wannier wavefunctions of this material, and is inherited

from the electronic structure from first principles calculations.

Since there is no ab initio information about the Coulomb interactions,

we study generic situations where the onsite-Coulomb U is a few 100meV.

For simplicity we adopt the functional form of a modified Yukawa potential

to capture the long-range Coulomb interactions

Vij =
U√︃

1 +
(︂
4πε0Urij

e2

)︂2 e
−rij/rTF , (2.25)

where U is the on-site Coulomb interaction and rij the distance between

sites i and j. The included Ohno potential [152, 157] results in a r−1

long-wavelength behavior, which is further suppressed by the exponential

term controlled by an effective screening length rTF. This way, the non-

local Coulomb interaction is fully parameterized by the local interaction

U and the screening length rTF. It is worth noting that environmental

screening to layered materials, such as resulting from dielectric substrates,

is strongly non-local [144, 145, 158] such that long-ranged interactions

Vij are stronger reduced than the local one U . To fully characterize this

model we, however, treat U and rTF as independent parameters in the

6Part of this chapter is adapted from G. Chen, M. Rösner and J. L. Lado, J. Phys.:
Condens. Matter 34 (2022) 485805.
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following, understanding that any environmental screening will reduce

both simultaneously.

2.4.2 Coulomb-dependent Heisenberg model

The interacting model of Eq. (2.24) is analyzed in two steps. In the limit

U ≫ Vij , we can first integrate out the long-range interactions Vij , leading

to a renormalized dispersion for the low-energy band [159, 160]. The

resulting Hamiltonian H̃ takes the form

H̃ =
∑︂

i,j,σ

t̃ijc
†
i,σcj,σ + U

∑︂

i

ni,↑ni,↓, (2.26)

where t̃ij are the renormalized hoppings derived from Eq. (2.24) using a

Hatree-Fock variational wavefunction enforcing time-reversal symmetry.

For U between 100 and 500meV as estimated for 1T metallic TMDs [43,

161,162] and several choices of rTF, the corresponding long-range Coulomb

interactions Vn and renormalized hoppings t̃n are shown in Figs. 2.12(a,b),

where Vn denotes nth neighbor Coulomb interaction and similarly for t̃n.

We see that Vn is increased by increasing U and rTF, which mostly affects t̃1
for rTF < a (a is the CDW lattice constant), while the long-range interaction

with rTF = a also modulates hoppings up to t̃5. The renormalized hoppings

result in a renormalized band structure as shown in Figs. 2.12(c-f). As

maintaining the Mott regime requires that the bandwidth renormalization

should not be too large, we focus on rTF ≤ 0.4a in the following.

We then analyze the Hamiltonian Eq. (2.26) in the strong coupling limit,

i.e. U ≫ t̃ij , using the Schrieffer-Wolf transformation, leading to an

effective model for spin-degrees of freedom:

H =
∑︂

i,j

JijSi · Sj , (2.27)

with Jij = 2
t̃
2
ij

U . Due to the renormalization of tij by Vij , the magnetic

superexchange interactions Jij are controlled by changes to U and rTF as

well. In particular, we show in Fig. 2.13(a) the renormalized nth neighbor

exchange Jn. We see that J1 exhibits a strong dependence on U and rTF,

stemming from the significant renormalization of t̃1. In Fig. 2.13(b) we

depict the full U and rTF dependencies of J1 in units of J0
1 = 0.1meV, where

J0
1 is the typical magnitude of J1 in our regime. The model of Eq. (2.27)

thus realizes a long-range Heisenberg model with tunable spin exchange

controlled by the local and non-local Coulomb interactions.
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Figure 2.12. (a) Long-range Coulomb interactions Vn and (b) the corresponding renormal-
ized hoppings t̃n for different values of parameters U and rTF. (c-f) band
structure renormalization for different values of U and rTF in (a). The color
matches the color used in (a). The insets show the corresponding Fermi
surfaces for the renormalized bands.

2.4.3 Coulomb-dependent magnetic frustration

A full calculation of the phase diagram of Eq. (2.27) would require exactly

solving the two-dimensional quantum many-body model, which is compu-

tationally challenging. We will thus focus on finding the regime where

magnetic frustration is strong, as a QSL phase is more probable in such a
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regime. A frustrated magnetic system has competing magnetic exchange

interactions whose energies cannot be simultaneously minimized by any

magnetic configuration [163]. As a consequence, classical magnetic ground

states of a frustrated magnetic system exhibit a high degree of degeneracy,

preventing the system from magnetic ordering and promoting a QSL state.

We may thus characterize the frustration of a magnetic system by the

degeneracy of classical magnetic ground states. We consider different non-

collinear magnetic configurations characterized by a vector q [164,165] and

compute their energy ω(q) from the extended Hubbard model Eq. (2.24).

The resulting ω(q) is then shifted and scaled: ω̃(q) = (ω(q)− ω0)/(ω1 − ω0)

with ω0 = min(ω(q)) and ω1 = max(ω(q)). The shifted ground state energy

is 0, and the scaling allows comparison between systems with different

magnitudes of magnetic exchange interactions. Finally, the degeneracy of

the states at a given shifted and scaled energy ω can be given by

ρ̃(ω) =

∫︂

q∈BZ

d2q

(2π)2
δ(ω̃(q)− ω). (2.28)

In particular, ρ̃(0) characterizes the ground state degeneracy of a magnetic

system, and a more frustrated system is characterized by larger ρ̃(0).

The computation of ρ̃(ω) is done self-consistently [166] for our model with

different U and rTF. We find a curve in the parameter space where ρ̃(0)

takes larger values than at other places (Fig.2.13(c)). Below this curve,

ω̃(q) exhibits a minima between Γ and K (Fig.2.13(e)). As we approach this

curve, J1 increases, lowering ω̃(q) around q = K, eventually this results

in an almost flat dispersion of ω̃(q) in the region between Γ and K. Above

this curve, J1 further increases and starts to dominate other exchanges.

This results in the stabilization of the helical spiral state with q = K,

where ω̃(q) takes its minimum. We have thus found that by tuning the

substrate-screening of 1T-TaS2, we can enhance the magnetic frustration

and make the QSL ground state more favorable.

We note that the extended Hubbard model Eq. (2.24) and the Heisenberg

model Eq. (2.27) consider only superexchange couplings stemming from

the local repulsion. Apart from that, it is important to note that direct

exchange stemming from the overlap of Wannier centers would also appear

in the effective Heisenberg model [43, 167]. To account for this, we now

include the direct exchange term JDX
∑︁

⟨i,j⟩ Si · Sj , which results from

Hund’s exchange interaction and can thus be assumed to be independent

of the environmental screening [168]. As can be seen from Figs.2.13(d) and

(f), the inclusion of this direct exchange term does not influence our main
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Figure 2.13. (a) Long-range spin superexchange couplings Jn for different values of U
and rTF. Only J1 is significantly influenced by U and rTF. (b) J1 for different
values of U and rTF, in units of J0

1 = 0.1meV. The dashed line indicates
a discontinuity stemming from the Lifshitz transition. (c,d) Ground state
degeneracy ρ̃(0) for our model Eq.(2.24), as a function of U and rTF. In (d) we
include a direct exchange of JDX = 0.5J0

1 . (e,f) The corresponding ω̃(q) for
the points indicated in (c,d), respectively.
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result.

2.4.4 Summary

To summarize, we have shown that Coulomb engineering by modifying the

substrate dielectric constant allows to tune the Coulomb interactions in a

2D strongly correlated material. In particular, for magnetic van der Waals

materials such as 1T-TaS2, this would allow to tune the spin exchange

between local magnetic moments, and drive the material towards the

frustrated regime where the emergence of a QSL is more probable.

2.5 Summary

1T-TaS2 is a magnetic van der Waals material potentially hosting the U(1)

Dirac QSL state. Owing to its 2D nature, it can be engineered in versatile

ways. In particular, we have shown that impurity engineering allows for

the identification of the QSL state in 1T-TaS2, highlighting the emergence

of spinon flat bands. Nevertheless, twist engineering also allows for the

potential identification of QSL, featuring the magnetically tunable moire

spinon dispersion. Finally, Coulomb engineering would allow tuning the

spin exchange in 1T-TaS2, and driving it toward the QSL regime. This

chapter highlights how the versatility of magnetic van der Waals materials

allows to overcome the experimental challenges in the realization and

identification of an exotic phase of matter–the QSL, via engineering the

properties of the magnetic van der Waals material. In the next chapter,

we will explore how magnetic van der Waals materials can be used to

engineer the properties of other materials, with a particular motivation for

designing exotic phases of matter.
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3. Designing exotic phases of matter
with magnetic van der Waals
materials

In the previous chapter, we have shown how the versatility of the magnetic

van der Waals material 1T-TaS2 allows for engineering and identifying

the potential U(1) Dirac QSL state. In this chapter, we show another

aspect: the versatility of magnetic 2D materials also allows for engineering

the properties of other 2D materials with them. This can be particularly

useful for designing exotic phases of matter [169] hard to find in natural

compounds or to be realized in other materials. In particular, we focus on

heterostructures between 2D magnets and other 2D materials, where we

aim to design helical states and heavy fermions. The helical states are

an essential ingredient for designing topological superconductivity. The

heavy-fermion systems have their particular theoretical interest and are

related to unconventional superconductivity.

Topological superconductivity represents one of the most fascinating

topics in condensed matter. One particular reason is they are known to

host Majorana fermions [28] that can be used for topological quantum

computation [170,171]. Despite the large interest in topological supercon-

ductivity, natural compounds hosting topological superconductivity have

been relatively sparse [172–179]. This has motivated for the search for

topological superconductivity in artificially designed systems [180–183]. In

particular, a recipe for topological superconductivity is a combination of (i)

s-wave pairing and (ii) helical edge states. Thus, designing helical states

would be of critical interest to designing topological superconductivity. It

is known that helical states can arise in a spinful electronic system in the

presence of Rashba spin-orbit coupling (SOC) and magnetism [184,185].

Yet, large spin-orbit coupling is rarely present in natural compounds. Inter-

estingly, recently raised 2D magnet NiI2 [186] hosts an exotic helimagnetic

order that can induce an effective Rashba SOC and magnetic field. This

motivates us to investigate how these helimagnets can be utilized to de-
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sign helical states. In particular when they are in proximity to a strongly

correlated material with superconducting instability such as TBG.

Heavy-fermion systems are exotic phases of matter where the effective

mass of dispersive fermions (usually electrons) gets massively enhanced

due to Kondo coupling to a lattice of magnetic moments [176, 187–190].

Interest in heavy-fermion systems stems from (i) the quantum critical

point between the heavy-fermion and the magnetically ordered phase and

(ii) the realization of unconventional topological superconductivity in these

systems [173,174,176,190–195]. The coexistence of (i) local magnetic mo-

ments which require strong localization and (ii) dispersive electrons makes

natural heavy-fermion compounds to be relatively rare. This motivates

the search for heavy-fermions in artificially designed systems [196]. In

this line, magnetic 2D materials offer a versatile platform to realize the

lattice of localized moments, and the dispersive electrons can be found in

2D conductors. The Kondo coupling can be realized by stacking the two

different 2D materials together. We will show how this design is realized

in a 1T/1H-TaS2 heterostructure [40].

The rest of this chapter is organized as follows: in Sec.3.1 we illustrate

the physics of a 2D magnet/metal heterostructure, highlighting the two

interesting physical regimes in this heterostructure. In Sec.3.2 we show

how a 2D helimagnet can be utilized in designing helical states in graphene

and in particular in TBG. In Sec.3.3 we show how the 1T/1H-TaS2 het-

erostructure can realize the heavy-fermion physics.

3.1 2D magnet/metal heterostructure

Let us first illustrate the physics in a heterostructure where a 2D magnet

is stacked on top of a metal, which can be modeled as:

H = Hkinetic +
∑︂

i,j

JijSi · Sj +
∑︂

i,n

Ji,nSi · sn. (3.1)

The first term of Eq. (3.1) describes the kinetic energy of electrons in the

metal. The second term describes the spin exchange couplings between

local magnetic moments in the 2D magnet, where Si is the magnetic

moment at site i. The third term describes the coupling between the local

magnetic moments and the electrons, with sn = c†n,ασαβcn,β where c†n,α is

the electron creation operator at site n with spin α. In general this model

is not solvable, yet in extreme limits approximations can be made as we

illustrate below.
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In the limit Jij ≫ Ji,n, the ground state of the magnetic moments is

dominated by the second term in Eq. (3.1) and we can ignore the influence

of the coupling term. This allows us to replace Si with its ground state

expectation value given by the second term in Eq. (3.1):

H = Hkinetic +
∑︂

n

Bn · sn. (3.2)

where Bn =
∑︁

i Ji,n⟨Si⟩ is the effective local magnetic field the electron at

site n feel due to coupling to the magnet. We see that in this limit, the

magnet induces a local magnetic field on the metal, that is dependent on

the local magnetization ⟨Si⟩ in the ground state.

In the opposite limit Jij ≪ Ji,n, the dynamics of the magnetic moments

are dominated by the third term in Eq. (3.1) and we thus neglect the

perturbations from the second term, giving rise to:

H = Hkinetic +
∑︂

i,n

Ji,nSi · sn. (3.3)

Assuming that the magnetic moments are aligned with the electronic sites,

and that the coupling is local Ji,n = JKδin, Eq. (3.3) becomes the standard

form of the Kondo lattice model [197]:

H = Hkinetic + JK
∑︂

i

Si · c†i,ασαβci,β . (3.4)

We see that magnetic 2D materials can be utilized to generate a local

magnetic field or induce the Kondo lattice model on a metal in different

regimes. We will see in the next sections how these allow to promote

unconventional superconductivity and heavy fermions, respectively.

3.2 Helical states with proximity helimagnetic field

In this section we show how recently raised helimagnets such as NiI2 [186]

can be utilized to engineer unconventional superconductivity when prox-

itimized to other van der Waals materials. Helimagnets are magnetic ma-

terials with a spatially-dependent magnetization in the ground state. An

example of helimagnetic magnetization is the spin-spiral state in Fig.2.1(c).

The key observation is that the spatially-dependent magnetization of the

helimagnet will induce a spatially-dependent magnetic field, which acts

effectively as a Rashba SOC and a magnetic field. We illustrate the physics

of this in Sec.3.2.1 with a helimagnet in proximity to graphene. We then

show how magnetic encapsulation, a method we have used to manipulate
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spinon states in Sec.2.3, would affect superconducting instabilities in TBG

with helimagnets.

3.2.1 Helimagnetic field on graphene

Before we investigate the band structure of helimagnetically encapsulated

TBG, it is first illustrative to look at the band structure of a single-layer

graphene in proximity to a helimagnet. The Hamiltonian of this het-

erostructure reads:

H = t
∑︂

⟨i,j⟩
(c†icj + h.c.) + J

∑︂

i

∑︂

α,β

M(i) · σαβc
†
i,αci,β (3.5)

where the first term is the Hamiltonian of graphene (Eq. (2.6)), J is the

coupling between the helimagnet and graphene, and M(i) is the magneti-

zation of the helimagnet around site i. We note that the above Hamiltonian

requires the intra-layer spin exchange in the helimagnet to be much larger

than the inter-layer coupling J , such that the helimagnetic order remains

in the presence of the coupling. When the opposite happens, the system

will become a Kondo lattice system as we see in Sec.3.1. In addition, we

have assumed the lattice constant of the helimagnet is not much larger

than the atomic spacing (between two nearest carbon atoms) in graphene.

As a reference, NiI2 has a lattice constant of 3.95Å, and the atomic spacing

in graphene is 1.42Å. Let’s assume that the local magnetization in the

helimagnet has the following spatial dependence:

M(i) =M0(cos(q ·Ri), sin(q ·Ri), 0), (3.6)

that is, the magnetization is in-plane and rotates in real space with a char-

acteristic wavevector q. The magnetization in NiI2 satisfy this dependence,

where the wavevector q has a norm of 1/(7 × 3.95)Å−1 ≈ 0.036Å−1 [198].

With this spatial dependence, Eq. (3.5) reduces to graphene coupled to an

external helimagnetic field:

H = t
∑︂

⟨i,j⟩
(c†icj + h.c.) +

∑︂

i

∑︂

α,β

B(i) · σαβc
†
i,αci,β (3.7)

where

B(i) = B0(cos(q ·Ri), sin(q ·Ri), 0), (3.8)

where B0 = JM0 is the magnitude of the effective magnetic field on site i.

We now solve Eq. (3.7), considering the generic case that the effective

magnetic field is incommensurate with the lattice of graphene. In this

48



Designing exotic phases of matter with magnetic van der Waals materials

case, translational symmetry is broken and we cannot utilize Bloch’s

theorem. To restore the translational symmetry, we would like to go

to the rotating frame, by performing the following unitary transformation

to Eq. (3.7) [164,199,200]:

U =
⨁︂

j

Uj (3.9)

where

Uj = e−
i
2
q·Rjσz =

⎛
⎜⎝

e−
i
2
q·Rj 0

0 e
i
2
q·Rj

⎞
⎟⎠ . (3.10)

The Hamiltonian in the rotating frame is

H ′ = U †HU =
∑︂

⟨i,j⟩

∑︂

α,β

teiθ(i,j)(σz)αβc†i,αcj,β +B0

∑︂

i

∑︂

α,β

c†i,α(σx)αβci,β (3.11)

where θ(i, j) = 1
2q · (Ri −Rj). The Hamiltonian H ′ has the translational

symmetry of the single-layer graphene. We see that in the rotating frame,

the effect of the helimagnetic field is transformed into a uniform magnetic

field and a spin-dependent phase shift. Since unitary transformations

maintain the eigenvalues, the band structure of H ′ reflects the band struc-

ture of H in Eq. (3.7). In addition, since σz is invariant under the unitary

transformation Eq. (3.9), the expectation value of σz computed in the

rotating frame is the same as that in the original frame.

We start with the case when q is small: q ≪ (b1 − b2) where b1,2 are re-

ciprocal vectors of graphene. NiI2 on graphene would fall into this regime.

When the effective magnetic field B0 = 0, the rotating frame Hamiltonian

just shifts the band structure of spin-up/down electrons by a momentum

of ±q/2 (Fig.3.1(a)). As we switch on the magnetic field, different spin

channels start to hybridize. In particular, a gap opening due to hybridiza-

tion happens at Γ and M points (Fig.3.1(b)). Due to this gap opening, the

bandwidth of the middle two bands reduces, whereas the bandwidth of

the other two bands increases. The hybridization gets stronger for larger

B0 (Fig.3.1(c)), but gets weaker for larger q (Fig.3.1(d)). However, the

bandwidth depends mainly on B0 and is not sensitive to q in this regime.

We observe two main effects of the helimagnetic field on the band structure

of graphene: (i) it results in a hybridization between originally degener-

ate spin channels, giving rise to bands with spin texture and (ii) due to

the hybridization, the degeneracies at Time-Reversal-Invarant-Momenta

(TRIM) Γ and M are lifted. An important consequence of (ii) is that when
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Figure 3.1. band structure of graphene in proximity to a helimagnet in the rotating frame
Eq. (3.11) with q = 0.05(b1 −b2) in panels (a-c) and q = 0.1(b1 −b2) in panel
(d), where b1,2 are reciprocal vectors of graphene. B0 = 0 in (a), B0 = 0.2t in
(b) and B0 = 0.4t in (c) and (d)

the Fermi surface lies inside the induced gap at Γ, we would have helical

states, the essential ingredient for topological superconductivity.

Let us now focus on a particular point in the above band structures, the

band crossings at K and K′ points. It can be seen that at large field the

spin states hybridize at these points in Fig.3.1(c). However, unlike the

hybridization in Γ and M points, this hybridization does not open a gap.

This is due to the π Berry phase difference between the two states [109] as

we illustrate below. The low-energy Bloch Hamiltonian near a Dirac cone

at K(K′) point can be obtained using the k · p model:

Hk·p
(︁
K(K′) + p

)︁
=

⎛
⎜⎝

0 |p|e−iϕ(p)

|p|eiϕ(p) 0

⎞
⎟⎠ . (3.12)

where ϕ(p) = arg(py/px) for K and ϕ(p) = π + arg(−py/px) for K′ is the
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Berry phase. The eigenstates for the k · p Hamiltonian Eq.(3.12) are

|u±⟩ =
1

2

⎛
⎜⎝

±e−iϕ(p)

1

⎞
⎟⎠ (3.13)

with E± = ±|p|. Within the same Dirac cone, the Berry phase difference

between p and −p is π. In such a case, the eigenstates are orthogonal:

⟨u±(p)|u±(−p)⟩ = 0. (3.14)

Now, let us turn to the Bloch Hamiltonian of H ′ at K point, and utilize the

k · p Hamiltonian for the spin-up/down channels:

H ′(K) = H0 +Hint

=

⎛
⎜⎝

Hk·p
(︁
K + q

2

)︁

Hk·p
(︁
K − q

2

)︁

⎞
⎟⎠+

⎛
⎜⎝

B0 · I

B0 · I

⎞
⎟⎠

(3.15)

where I is the identity matrix, stemming from the sublattice symmetry

in the second term of Eq. (3.11). We can diagonalize Eq. (3.15) to see that

the second term does not result in splitting. Alternatively, by noting that

⟨u±(p)|B0 · I|u±(−p)⟩ = 0, we can understand the zero splitting from the

perturbation theory point of view.

We now switch to discuss another case where q is close to (b1 − b2)/3,

which brings the two Dirac points originally from K and K′ close to each

other (Fig.3.2(a)). We see that now a finite B0 results in splitting at M

point, since the Berry phase difference between these Dirac cones is no

longer π (Fig.3.2(b)). Furthermore, the Dirac cones get split at large B0

(Fig.3.2(c,d)). Similar to the small q case, we see spin-texture and band

splitting at Γ and M. The difference is now the hybridization mainly takes

place near Γ and M, as at other momenta the two spin channels are far in

energy.

The helical states resulting from spin hybridization and band-splitting

effects by a helimagnet in proximity to graphene motivate us to look at how

this would affect the properties of TBG. In particular, We would like to see

if helical states can be engineered in TBG with helimagnetic encapsulation.

As these together with the superconducting instability of TBG can give

rise to topological superconductivity.
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Figure 3.2. band structure of graphene in proximity to a helimagnet in the rotating frame
Eq. (3.11) with q = 0.4(b1 − b2) and B0 = 0 in (a), B0 = 0.2t in (b), B0 = 0.4t

in (c) and B0 = 0.6t in (d).

3.2.2 Helimagnetic encapsulation on TBG

We now switch to consider the effect of helimagnetic encapsulation on

TBG.1 We consider twisted bilayer graphene at a twist angle 1.44◦, slightly

above the flat band regime [88, 89, 141]. In this regime, the electronic

structure of TBG shows strongly renormalized Dirac cones [141] and iso-

lated moire energy bands [88,89]. We consider TBG encapsulated between

helimagnets with in-plane magnetization as shown in Fig. 3.3(a). Such

heterostructure is expected to be stable as graphene shows stability for a

large variety of substrates, including hBN [201,202] WSe2 [203,204], and

the magnetic insulator CrI3 [205]. The impact of the helimagnet encap-

sulation is accounted for by integrating out the degrees of freedom of the

1Part of this section is adapted from G. Chen, M. Khosravian, J. L. Lado and A.
Ramires, 2D Mater. 9 (2022) 024002.
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Figure 3.3. (a) Sketch of TBG encapsulated with helimagnets, viewed from top and side.
(b) Local effective exchange field induced by proximity to helimagnets on top
(red) and bottom (blue) layers of TBG. The direction of characteristic vector
of the helimagnets q is denoted with the black arrow. (c) Band structure of
the heterostructure described by Eq. (3.20) with J0 = 0 and q = 0.05(b1 −b2).
(d) Band structure of the heterostructure with J0 = 0.033t0⊥, θ0 = π and
q = 0.05(b1 − b2). We took twist angle 1.44◦ for (c), (d).

helimagnets, leading to an effective exchange field in the twisted graphene

bilayer, in a similar manner to what we did for single-layer graphene in

the last section. The effective Hamiltonian of the proximitized multilayer

takes the form

H =
∑︂

l

∑︂

⟨i,j⟩

∑︂

α

tc†i,α,lcj,α,l

+
∑︂

l ̸=l′

∑︂

i,j

∑︂

α

t⊥(i, j)c
†
i,α,lcj,α,l′

+ J
∑︂

l

∑︂

i

∑︂

α,β

Ml(i) · σαβc
†
i,α,lci,β,l

(3.16)

53



Designing exotic phases of matter with magnetic van der Waals materials

where l = 1, 2 is the layer index, i, j are site indexes, and α, β are spin in-

dexes. t and t⊥ are intra- and inter-layer hopping in TBG, ⟨i, j⟩ restricts the

sum to nearest neighbours in the first term. The interlayer hopping takes

the form t⊥(i, j) = t0⊥
(zi−zj)

2

|ri−rj |2 e
−ξ(|ri−rj |−d) [88,105], where d is the distance

between layers and ξ parameterizes the decay of the interlayer hopping2.

J is the exchange coupling between the TBG and the helimagnets, Ml(i) is

the magnetization around site i in the lth layer, and σ is a vector composed

of Pauli matrices.

We consider a general helimagnetic order that can be incommensurate

with the graphene sublattice structure. In addition to the spatially ro-

tating behavior in Eq. (3.6), we consider that the magnetization has a

sublattice imbalance that sublattice B has a relative rotation θ0 w.r.t. that

on sublattice A

M(i ∈ A) =M0(cos(q ·Ri), sin(q ·Ri), 0)

M(i ∈ B) =M0(cos(q ·Ri + θ0), sin(q ·Ri + θ0), 0)

(3.17)

with M0 being the magnitude of the local magnetization, q being the

characteristic wave vector of the helimagnet, and Ri being the coordinate of

site i. Due to the superexchange mechanism [132], the local magnetization

at top and bottom magnets are expected to align antiferromagnetically, so

we consider

M1(i) = −M2(i) = M(i). (3.18)

For the sake of simplicity, we consider q parallel to b1 − b2, which is

a high-symmetry direction of the moire Brillouin zone, with b1,2 being

the reciprocal vectors of the moire superlattice. When θ0 = 0, there is

no sublattice imbalance and the magnets are fully characterized by the

helimagnetic order (Fig. 3.3(b)). When θ0 = π, the helimagnetic order is

overlayed with a staggered magnetization for the sublattices.

At low energy, the influence of the helimagnetization on the band struc-

ture of TBG depends only on the effective exchange field J0 = JM0 and the

ratio between the characteristic vector q and the moire periodicity. The

moire periodicity can be tuned by the twist angle θ, which can be controlled

by tear and stack fabrication [206,207], this allows us to explore regimes

with different ratios between the characteristic vector q and the moire

periodicity. For simplicity we consider small q that does not result in valley

hybridization. When q ∼ b1 − b2, the helimagnet does not introduce a

2For computational efficiency we use a re-scaling relation [106–108] with t0⊥ = 0.3t
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significant change to the low-energy dispersion of TBG [165]. We thus focus

on the regime when q ≪ b1 − b2, as we learn from the case of graphene

that smaller q results in stronger hybridization in Fig.3.1.

We now solve the system by going to the rotating frame, in the same

spirit as what we did in Eq. (3.9) and (3.10). We perform a local unitary

transformation to the Hamiltonian such that the local magnetization is

aligned along the x direction for all sites:

U =
∏︂

i

e−
i
2
q·riσz,i (3.19)

with σz,i the spin Pauli matrix in site i. The transformed Hamiltonian

becomes:

H ′ = U †HU

=
∑︂

l

∑︂

⟨i,j⟩

∑︂

α,β

teiθ(i,j)(σz)αβc†i,α,lcj,β,l

+
∑︂

l ̸=l′

∑︂

i,j

∑︂

α,β

t⊥(i, j)e
iθ(i,j)(σz)αβc†i,α,lcj,β,l′

+ J0
∑︂

l

∑︂

i∈{A}

∑︂

α,β

flc
†
i,α,l(σx)αβci,β,l

+ J0
∑︂

l

∑︂

i∈{B}

∑︂

α,β

χflc
†
i,α,l(σx)αβci,β,l

(3.20)

where J0 = JM0 is the effective local exchange field, f1 = −f2 = 1, θ(i, j) =
1
2q · (Ri −Rj) and χ = cos θ0 = ±1 for θ0 = 0, π. Since the magnetization is

uniform up to a sublattice imbalance in H ′, H ′ has the same periodicity

as an isolated TBG. With no proximity effect, i.e. when J0 = 0, the only

difference between H and H ′ is the additional phases in the hopping

terms, resulting in a momentum shift of ±q/2 for spin-up/down channels,

respectively (Fig. 3.3(c)). We note that the additional phase in the first

two terms corresponds to an artificial in-plane spin-orbit coupling, while

the last two terms correspond to exchange terms. For finite J0, both

time-reversal symmetry and inversion symmetry are broken in H, and

spin-mixing occurs in the quasi-flat bands, creating a spin texture (Fig.

3.3(d)). In the following we address these spin-textured quasi-flat bands

for both θ0 = 0 and θ0 = π.

For θ0 = 0, we have a helimagnet that induces a nearly ferromagnetic

exchange in neighboring sites. In this case, the band structure with

q = 0.05(b1 − b2) and different values of J0 is shown in Fig. 3.4(a,b).

We observe that spin-splittings and anticrossings appear in the nearly
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Figure 3.4. (a-d) Band structure and (e-f) DOS ρ(ω) of TBG with incommensurate helimag-
netic encapsulation Eq. (3.20). The helimagnetic order, given by Eq. (3.17),
has a characteristic vector q much smaller than the moire reciprocal vectors
of TBG and θ0 = 0. We took in (a) q = 0.05(b1 − b2) and J0 = 0.067t0⊥. Inset:
spin-splitting ∆ at K point. We took in (b) q = 0.05(b1 − b2) and J0 = 0.13t0⊥,
in (c) q = 0 and J0 = 0.13t0⊥, in (d) q = 0.1(b1 − b2) and J0 = 0.13t0⊥, in (e)
q = 0.05(b1 − b2) and in (f) J0 = 0.13t0⊥.

flat bands. The anticrossing gap ∆ at the K point as denoted in Fig.

3.4(a) exhibits a quadratic dependence on J0, which indicates that the

anticrossing is caused by a second-order contribution. The reason that

the first-order contribution does not cause spin-splitting is due to the
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orthogonality between the low energy eigenstates [109], similar to the

explanation for Fig.3.1 in Eq. (3.14). Comparing the band structure with

different q at J0 = 0.13t0⊥ (Fig. 3.4(b-d)), we find that the spin texture

exhibits a strong dependence on q, whereas the dispersion does not change

substantially with q. The DOS versus J0 and q (Fig. 3.4(e,f)), show that

helimagnetic encapsulation does not spoil the small bandwidth of the low

energy bands.

We now move on to the case when θ0 = π, i.e. the magnetization on

the sublattices is opposite and we have a helimagnet inducing a nearly

antiferromagnetic field in neighboring sites. The band structures with

q = 0.05(b1−b2) and different J0 are shown in Fig. 3.5(a,b). In this regime,

large anticrossings at K and K ′ appear, together with a simultaneous

splitting of the Dirac cones. The splitting ∆′ as denoted in Fig. 3.5(a)

exhibits a linear dependence on J0, indicating that the splitting stems

from a first-order contribution. As a consequence of the splitting of the

Dirac cones, the bands become flatter and shift away from each other as J0
increases, which is in contrast to the case when θ0 = 0. The q-dependence

of the bands with fixed J0 = 0.13t0⊥ is shown in Fig. 3.5(b-d). Interestingly,

both the spin texture and the dispersion depend strongly on q. The low

energy DOS versus J0 and q is shown in Fig. 3.5(e,f), highlighting that the

nearly flat bands maintain their flatness as the system develops a strong

spin texture.

We have thus seen that helimagnetical encapsulation results in spin-

textured nearly flat bands in TBG. However, unlike the case for graphene,

the splitting at Γ and M does not occur for helimagnetically encapsulated

TBG. This is due to the existence of a combination of time-reversal with

a horizontal mirror symmetry [208] in this heterostructure, and that

Γ and M are invariant momenta under this symmetry. The preserved

crossings at Γ and M result in multiple Fermi surfaces at finite doping,

which prevents us from getting topological superconductivity from the

helical states due to Kramer’s degeneracy. Alternatively, if we consider

M1(i) = M2(i) = M(i) instead of Eq. (3.18), the above symmetry will be

broken. In such case, helical states with a single Fermi surface can arise

at finite doping, and topological superconductivity gets promoted in this

regime (Fig.3.6). Interestingly, the exchange field required to induce a

sizable gap is much smaller than the inter-layer coupling of TBG, which is

favorable for experimental realizations.
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Figure 3.5. (a-d) Band structure and (e-f) DOS ρ(ω) of TBG with incommensurate he-
limagnetic encapsulation Eq. (3.20). The helimagnetic order, given by Eq.
(3.17), has a characteristic vector q much smaller than the moire reciprocal
vectors of TBG and θ0 = π. We took in (a) q = 0.05(b1 − b2) and J0 = 0.067t0⊥,
in (b) q = 0.05(b1 − b2) and J0 = 0.13t0⊥, in (c) q = 0 and J0 = 0.13t0⊥, in
(d) q = 0.1(b1 − b2) and J0 = 0.13t0⊥, in (e) q = 0.05(b1 − b2) and in (f)
J0 = 0.13t0⊥.

3.2.3 Summary

In this section, we have seen how helimagnets can be utilized in engi-

neering helical states. We first showed that a single-layer helimagnet in
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Figure 3.6. Band structure of TBG with incommensurate helimagnetic encapsulation Eq.
(3.20) where f1 = f2 = 1, with q = 0.05(b1 − b2) and (a) J0 = 0.03t0⊥ and (b)
J0 = 0.06t0⊥.

proximity to graphene can induce helical states in graphene. We then show

that helimagnetal encapsulation creates helical states in TBG, similar to

graphene. The difference to graphene is, the band crossings at Γ and M

points are protected by symmetry in some cases in TBG, which results in

multiple Fermi surfaces that prevents topological superconductivity. The

emergence of helical states in helimagnetically engineered graphene and

in particular in TBG would allow to promote topological superconductivity

in these systems.

3.3 Heavy fermions in a bilayer van der Waals heterostructure

In this section, we show the realization of heavy-fermion physics in a

1T/1H-TaS2 heterostructure [40], with an emphasis on the theoretical

design. We first present how the Kondo lattice model Eq. (3.4) results in

heavy-fermion physics. We then discuss how heavy fermions are realized

and identified in 1T/1H-TaS2 heterostructure.

3.3.1 Heavy fermions in the Kondo lattice model

The Kondo lattice model Eq. (3.4) represents one of the biggest challenges

to solve even up to date [209]. Traditionally, this model was tackled using

the large-N expansion [210–213]: assuming the spin-degree of freedom is

N instead of 2, and that the N spin degrees of freedom are degenerate. In

the limit N → ∞, this allows us to drop terms of O(1/N2), and simplify
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Eq. (3.4) as [211]:

H = Hkinetic +
JK
N

∑︂

i

c†i,βci,αSi,αβ. (3.21)

where Si,αβ can be represented with pseudo-fermions:

Si,αβ = f †i,αfi,β − 1

N
δαβ (3.22)

with constraint
∑︁

α f
†
i,αfi,α = 1. Physically, the large-N expansion drops

terms of O(1/N2), which include RKKY interactions that tend to order the

magnet. The remaining Hamiltonian Eq. (3.21) describes the electrons

coupled to the partons fi,α which are deconfined. Further performing a

saddle point approximation [197] to Eq. (3.21), we obtain a mean-field

Hamiltonian:

H = Hkinetic + γK
∑︂

i,α

(c†i,αfi,α + h.c.) (3.23)

where γK ∝ e−1/(ρ(EF )JK) characterizes the hybridization of electrons and

pseudofermions into heavy fermions, with ρ(EF ) being the density of states

at Fermi level for the electrons.

Although Eqs. (3.21) and Eq. (3.23) are derived from a large-N expansion,

they form a useful effective theory to illustrate the heavy fermion physics

for small N systems. We thus utilize Eq. (3.23) to illustrate the heavy

fermion physics in 1T/1H-TaS2 in the next section.

3.3.2 Heavy fermions in 1T/1H-TaS2 heterostructure

Figure 3.7. (a) Electronic band structure of 1H-TaS2. (b) Pseudofermion band structure of
1T-TaS2. (c) Hybrid band structure of 1T/1H-TaS2 heterostructure. All panels
are adapted from Ref. [40].
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We now illustrate the heavy-fermion physics in the 1T/1H-TaS2 het-

erostructure. As we have seen in Sec.2.1, 1T-TaS2 hosts magnetic moments

due to the formation of charge density waves (CDW). The CDW together

with the spin-orbit coupling (SOC) results in a half-filled narrow band at

the Fermi energy, with a bandwidth of a few 10meV [42]. On the other

hand, 1H-TaS2 is metallic [214] with a conduction band of bandwidth

on the order of eV (Fig.3.7(a)). The chemical similarity between 1T-TaS2

and 1H-TaS2 allows a versatile synthesis of a heterostructure between

them. When proper couplings between 1T-TaS2 and 1H-TaS2 is present,

the heavy-fermion regime arises, and can be captured with the effective

model Eq. (3.23) where the small pseudofermion dispersion is neglected

and treated as a flat band (Fig.3.7(b)). Diagonalizing Eq. (3.23) for this

heterostructure, we get a hybrid band structure (Fig.3.7(c)), highlighting a

gap opening at the Fermi level due to the formation of heavy fermions.

Figure 3.8. (a) Sketch of the STM setup to probe Kondo effect in 1T/1H-TaS2 heterostruc-
ture. (b) STM image of a 1T/1H-TaS2 vertical heterostructure on HOPG
substrate. (c) Tunneling spectra of monolayer 1T-TaS2 on HOPG (green),
1H-TaS2 on HOPG (yellow) and monolayer 1T-TaS2 on 1H-TaS2 (red), corre-
sponding to the dots of the same colour in (b). Panels (b) and (c) are adapted
from Ref. [40].

Interestingly, due to the versatility of the 2D heterostructure, we are

able to perform STM measurements from both the 1T and 1H sides by

performing measurements on different islands. Let us first look at the

measurement on the 1T side (Fig.3.8(a)), where the Kondo coupling results

in additional tunneling mechanisms that interfere with direct tunneling

processes. This interference is known to give rise to the Fano resonance

[215], resulting in a Fano lineshape in the tunneling spectroscopy as shown

in Fig.3.8(c). The field dependence of this Fano lineshape is in agreement

with the Kondo mechanism, and the temperature dependence reveals a

Kondo temperature of 18K [40].
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Figure 3.9. (a) Sketch of the STM setup to probe the heavy-fermion gap in 1H/1T-TaS2

heterostructure. (b) STM image of a 1H/1T-TaS2 vertical heterostructure on
HOPG substrate. (c) Tunneling spectra of monolayer 1H-TaS2 on 1T-TaS2,
corresponding to the dot of the same colour in (b). Panels (b) and (c) are
adapted from Ref. [40].

On the other hand, if we perform a measurement on the 1H side (Fig.3.9(a)),

due to the hybridization, we are expected to observe a heavy-fermion gap.

This will result in a dip in the tunneling spectrum at zero bias, as is shown

in Fig.3.9(c). The temperature and field dependence of this dip feature

agrees with the behaviour of Kondo in the other heterostructure, and

further demonstrates the heavy-fermion physics in this heterostructure.

3.3.3 Summary

In this section, we have seen how 2D magnets can be utilized in engineering

heavy fermions. We first presented how heavy fermions arise from the

Kondo lattice model which describes the magnet/conductor heterostructure

in some regimes. We then show that the 1T/1H-TaS2 heterostructure

provides an experimental realization of heavy fermions.

3.4 Summary

Magnetic 2D materials are versatile for engineering the properties of other

2D materials. In this chapter, we demonstrated its power in designing

helical states and heavy fermions. In particular, we showed the regime

of proximity magnetic field and the regime of Kondo lattice for different

coupling strengths in a magnet/conductor heterostructure. We showed

that the proximity to helimagnets would give rise to an effective spatially-

dependent magnetic field, which can be utilized to induce helical states in

graphene and TBG. We also showed that the Kondo lattice can host heavy
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fermions, which can be realized in the 1T/1H-TaS2 heterostructure.
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4. Utilizing the coupling to the world

We have seen in previous chapters how we can engineer exotic phases

of matter with magnetic 2D materials. In these studies, we have been

neglecting the effects of our system coupling to the rest of the world,

which we refer to as the environment. In most cases this is fine as the

system decays into the new ground state so fast due to coupling to the

environment that we care only about the new ground state. In this case the

environment can be modeled as an effective term. One illustrative example

is the proximity effect: when we stack the 2D material (system) we are

interested in on top of another one (environment), the coupling between

these 2D materials will modify the ground state of the system. The fast

dynamics from the old ground state to the new one is hardly accessible

in experimental measurements. Thus we care only about the new ground

state, which is dominated by the unperturbed system Hamiltonian plus

a proximity term such as an effective magnetic field in Eq. (3.2) or a

lattice potential. Another example is twisted multilayer 2D materials:

when we stack multiple 2D materials in an incommensurate way, the

lattice potential will result in the relaxation of the lattice structure and

lead to commensurate stacking regions separated by domain walls. The

relaxation takes place so fast that the properties of the system in an STM

measurement are solely determined by the new commensurate twisted

structure. Finally, the STM experiment itself is an example where we

neglect the coupling to the environment, the STM tip. Due to this coupling,

electrons can tunnel from the STM tip to the 2D material we are interested

in. We can neglect the influence of this process on the property of the

material since the electron quickly goes into the substrate and the system

quickly relax to the unperturbed state. Quantitatively, the typical time

scale for a tunneling process is ∼ 1ps, which is way below the typical time

scale of signals in an STM measurement.
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However, the influence of coupling to the environment becomes not negli-

gible when we care about high-frequency signals. In an STM measurement,

it is due to the couplings to a variety of environments that creates high-

frequency noise which hinders potential high-frequency signals. Another

example where the coupling to the environment has more severe damage is

in quantum computing, where the information stored in a qubit gets scram-

bled in nanoseconds due to coupling to the environment. This remarkable

challenge greatly limits the power of quantum computing.

In addition to overcoming technical challenges, it is also of fundamental

interest to understand the behavior of a (quantum) system coupled to the

environment, usually called an open (quantum) system. A systematic

understanding of open systems whose evolution is Markovian has been

established, and this kind of system has been realized in highly-tunable

platforms such as quantum optical systems and cold atom systems. Further

than that, non-Markovian processes have been under intense investigation,

providing us with more prediction power for open quantum systems. Yet,

these studies have been limited to systems where interactions do not play

an important role or small-size systems with interactions.

Condensed matter systems, despite not being the first platform to study

the physics of open quantum systems, have recently emerged as a platform

to investigate open quantum systems with interaction [216]. The advan-

tage of condensed matter systems in the study of open quantum many-body

physics is the easy access to a large system where both many-body inter-

actions and openness are present. However, the biggest challenge is to

overcome "random" couplings that result in noises. The recently raised

pump-probe technique combined with STM [217–220] paves a way to solv-

ing this problem. In particular, for a spin system, Ref. [220] demonstrates

the excitation of a quantum spin with a pulse of nano-seconds long and

unveils the decay of the spin in the following ∼ 100ns. The technical de-

velopment towards turning "open noise" into "open signal" in condensed

matter motivates us to think whether we can engineer the coupling to

the environment, such that it becomes useful [221, 222]. In particular,

we are interested in (i) overcoming experimental challenges, such as the

information loss in quantum computing and (ii) enriching our fundamental

understanding of open quantum many-body systems. We will show in this

chapter how engineered coupling to the environment would allow to design

topological phases of matter, which provides an answer to the questions

above.
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The rest of this chapter is organized as follows: in Sec.4.1 we review the

theoretical framework to study Markovian open quantum systems, high-

lighting the quantum master equation and its relation to non-Hermitian

(NH) matrices. In Sec.4.2 we review the study of topological phenomena in

NH systems. In Sec.4.3 we present our result on designing NH topological

many-body phases of matter.

4.1 Introduction to the dynamics of open quantum systems

4.1.1 Pedagogical example: quantum measurement

To illustrate how coupling to an environment modifies the dynamics of a

quantum system, we present a pedagogical example: the quantum mea-

surement [1,223].

A quantum measurement refers to the process of probing a quantum

observable. This is usually done through a machine/apparatus that gen-

erates different values for a macroscopic variable according to different

values of the quantum observable. A typical example is the Stern-Gerlach

experiment (conducted 101 years ago!), which probes the spin of electrons

by injecting them into a region with an inhomogeneous magnetic field, and

examines the positions of the electrons on the screen after the magnetic

region. In the original Stern-Gerlach experiment, the observable we want

to measure is the spin of the electron in z-direction, the apparatus is the

applied magnetic field in z-direction and the screen, and the macroscopic

variable is the location of the electrons on the screen. It is found in this ex-

periment that unlike a classical magnet, the spin of electrons is quantized:

the spins of an electron can either be 1/2 or −1/2, since the position shift

of the electrons are either +L or −L in z-direction where L depends on the

gradient of the magnetic field and length of the magnetic field region.

To illustrate the theoretical framework describing this experiment, let’s

denote the spin-up/down states in z direction for the electron as |0⟩ and

|1⟩, and denote |±⟩ = 1
2(|0⟩ ± |1⟩). Let’s denote that macroscopic variable

of the position of the electrons as |z±⟩ and |Ω⟩, where |Ω⟩ denotes no

electrons are seen on the screen. In this way, when an electron goes

through the inhomogeneous magnetic field in z direction, the following

unitary transformation is applied to the electron and the screen:

U = |0⟩⟨0| ⊗ |z+⟩⟨Ω|+ |1⟩⟨1| ⊗ |z−⟩⟨Ω|. (4.1)
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For example, if the initial state of the electron is |0⟩, then the initial

state of the whole system is |ψ0⟩ = |0⟩ ⊗ |Ω⟩, then U |ψ0⟩ = |0⟩ ⊗ |z+⟩ is

the final state. More interestingly, if the initial electron is polarized in

x direction ρ0,e = |+⟩⟨+|, the state of the whole system after the unitary

transformation is:

ρ = U(ρ0,e ⊗ |Ω⟩⟨Ω|)U † =
1

2
(|0⟩⟨0| ⊗ |z+⟩⟨z+|+ |1⟩⟨1| ⊗ |z−⟩⟨z−|). (4.2)

Eq. (4.2) informs us that the probability of finding the electron in position

|z+⟩ is tr(ρI ⊗ |z+⟩⟨z+|) = 1/2, where I is the identity matrix, and corre-

spondingly we know the electron is in state |0⟩. Similarly, we know that the

electron has 1/2 probability to be in state |1⟩. Effectively, we can describe

the state of the electron with a density matrix ρfinal,e = 1/2(|0⟩⟨0|+ |1⟩⟨1|).
We see that, due to the coupling to the machine, the electron has gone

through a non-unitary evolution that projects it on the states polarized in

z axis:

ρfinal,e =
∑︂

i=0,1

Piρ0,ePi (4.3)

where Pi = |i⟩⟨i| is the projection on the basis |i⟩.
In general, during a quantum measurement, we first project the system

on a complete orthogonal basis Pi:

PiPj = δijPi, Pi = P †
i ,
∑︂

i

Pi = I (4.4)

and modify the macroscopic state of the machine simultaneously by a

unitary transformation:

U =
∑︂

i,n

Pi ⊗ |n+ i⟩⟨n| (4.5)

where |n⟩ is a complete orthogonal basis for the machine and |n+ i⟩ is the

resulting state of the machine when the system is in the state |i⟩ and the

machine has initial state |n⟩. Suppose the initial state of the whole system

is ρ0 ⊗ |0⟩⟨0|, then the final state is

ρf,tot = U(ρ0 ⊗ |0⟩⟨0|) =
∑︂

i

Piρ0Pi ⊗ |i⟩⟨i|. (4.6)

The probability to observe the machine in state |i⟩ is tr(ρf,totI ⊗ |i⟩⟨i|) =
tr(Piρ0Pi). Correspondingly, the system is in the normalized state Piρ0Pi/tr(Piρ0Pi).

Thus, the system is effectively described by the following density matrix

before we measure the outcome of the machine state:
∑︂

i

tr(Piρ0Pi)
Piρ0Pi

tr(Piρ0Pi)
=
∑︂

i

Piρ0Pi, (4.7)
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which provides the non-unitary evolution of the system under the quantum

measurement. In addition, if the outcome of the machine state is measured

and found in state |i⟩, the system would be projected with Pi, yielding the

state

ρf =
Piρ0Pi

tr(Piρ0Pi)
. (4.8)

Eq. (4.8) describes the non-unitary evolution of the system when a specific

result is obtained for the machine state.

In addition to a quantum measurement, there are also other cases when

the quantum system we are interested in is coupled to an environment

and becomes open. We are interested in a more general description of the

dynamics of such systems, which we illustrate in the next section.

4.1.2 The quantum master equation

In this section we derive the general formula for the evolution of an open

quantum system, without digging into the microscopic details. A micro-

scopic derivation can be found in Ref. [224]. A generic evolution should

map a quantum state to another one. From quantum theories we know

that any state can be described by a density matrix ρ that satisfy:

• normalized probability: trρ = 1

• (semi-)positive definite: ⟨ψ|ρ|ψ⟩ ≥ 0, ∀|ψ⟩ in the same Hilbert space.

• hermiticity: ρ = ρ†

Thus, a quantum evolution is a mapping between density matrices F :

ρ→ ρ′, that should satisfy:

• trace-preserving: trρ = trF (ρ)

• positivity-preserving: if ρ is (semi-)positive definite, F (ρ) is also

(semi-)positive definite.

In addition, the evolution should satisfy convex-linearity:

F

(︄∑︂

i

piρi

)︄
=
∑︂

i

piF (ρi) (4.9)

where
∑︁

i pi = 1. This follows from the fact that ρ =
∑︁

i piρi can be

considered as an ensemble with probability pi of being on the state ρi.

Thus, F (ρ) can be considered as an ensemble with pi probability in the
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state F (ρi), hence Eq. (4.9). We have used the trace-preserving property of

F in the above derivation1.

Finally, suppose we have a larger system containing the system in state

ρ: ρtot = ρ⊗ ρ′. We would expect the evolution F ⊗ I to map ρtot to another

density matrix. That is, if ρtot is positive-definite, (F ⊗I)ρtot is also positive-

definite.

Summarizing the above, we have that the mapping F describing the

evolution of a quantum state ρ should satisfy:

• convex-linear: F (
∑︁

i piρi) =
∑︁

i piF (ρi)

• trace-preserving: trρ = trF (ρ)

• completely positive: ρ⊗ ρ′ ≥ 0 implies (F ⊗ I)(ρ⊗ ρ′) > 0, ∀ρ, ρ′

It can be proved that a mapping F satisfies the above 3 properties if and

only if F can be represented as:

F (ρ) =
∑︂

i

KiρK
†
i (4.10)

for some set of operators Ki [1] satisfying
∑︁

iK
†
iKi = I. A convex-linear

trace-preserving completely positive (TPCP) map is also called a quantum

channel, and Eq. (4.10) is an operator-sum representation of a quantum

channel. The operators Ki are called Kraus operators. We see that quan-

tum measurement is a specific kind of quantum channel where the Kraus

operators are Hermitian.

We now consider the time-evolution of an open quantum system:

ρ(t) = Ft[ρ(0)] =
∑︂

α

Kα,tρ(0)K
†
α,t, (4.11)

and we introduce the assumption of Born-Markov approximation to sim-

plify the evolution. Born-Markov approximation requires that the evo-

lution of the system is local in time, i.e. the state ρ(t + dt) is completely

determined by ρ(t). This approximation allows us to write the equation of

motion for ρ(t) as

d

dt
ρ(t) = L[ρ(t)] (4.12)

where L is a superoperator acting on ρ(t). Inserting Eq. (4.12) into Eq. (4.11),

we have

d

dt
Ft = LFt (4.13)

1The property should also hold for non-trace-preserving mappings, which can be
interpreted as part of a quantum trajectory.
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That is, the mapping/superoperator Ft can be generated by L: Ft ∝ eLt,

this allows us to determine Ft with the infinitesimal time-evolution Fdt ≈
1 + Ldt. We have

ρ(t+ dt) = Fdt[ρ(0)] =
∑︂

α

Kα,tρ(0)K
†
α,t = ρ(t) +O(dt). (4.14)

Without loss of generality, we may assume that K0,dt = I + O(dt), and

Kα,dt = O(
√
dt).2 Consider K0,dt = I − iHdt and Kα,dt = 0 otherwise, we

have Fdt[ρ] = ρ − i[H, ρ]dt, which is the von Neumann equation for the

time-evolution of a closed quantum system. Generically, we have

K0,dt = I− iAdt

Kα,dt = Lα

√
dt

(4.15)

The condition
∑︁

αK
†
αKα = 1 requires

∑︁
α L

†
αLα = i(A† − A), we can thus

write A as A = H − i
∑︁

α L
†
αLα/2 where H is a Hermitian operator. The

time evolution generated with this set of Kraus operators is

d

dt
ρ(t) = L[ρ(t)] = −i[H, ρ(t)] +

∑︂

α

(︃
Lαρ(t)L

†
α − 1

2
{L†

αLα, ρ(t)}
)︃

(4.16)

Eq. (4.16) is called the quantum master equation, L is called the Liouvillian

superoperator, and the operators Lα are called jump operators or Lindblad

operators, attributed to the original discovery of this equation by Lindblad,

et. al [225, 226]. The first term of Eq. (4.16) describes the dynamics of

a closed quantum system with the Hamiltonian H, and the second term

describes the non-unitary evolution of the system due to coupling to the

environment.

4.1.3 Relation to non-Hermitian (NH) matrices

We now discuss how the dynamics of an open quantum system described by

the quantum master equation Eq. (4.16) can be captured by diagonalizing

non-Hermitian matrices. The first observation is that if we vectorize the

density matrix ρ:

ρ =
∑︂

i,j

ρij |i⟩⟨j| → |ρ̃⟩ =
∑︂

i,j

ρij |i⟩|j⟩, (4.17)

the quantum master equation becomes

d

dt
|ρ̃⟩ = L̃|ρ̃⟩ (4.18)

2The operator-sum representation for a quantum channel is not unique, one can
perform a unitary transformation to get a different operator-sum representation.
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with

L̃ = −iH ⊗ I+ iI⊗HT +
∑︂

α

(︃
Lα ⊗ L∗

α − 1

2
(L†

αLα ⊗ I+ I⊗ LT
αL

∗
α)

)︃
(4.19)

being a non-Hermitian operator. Diagonalizing L̃, we get its eigenvalues

and right eigenvectors {λn, |ρ̃n⟩}. Thus, the evolution for |ρ̃(0)⟩ =∑︁n cn|ρ̃n⟩
becomes

|ρ̃(t)⟩ =
∑︂

n

cne
λnt|ρ̃n⟩, (4.20)

or, in the form of density matrices:

ρ(t) =
∑︂

n

cne
λntρn. (4.21)

Since the evolution is trace-preserving, we have

d

dt
(trρ(t)) =

∑︂

n

cnλne
λnttrρn = 0, (4.22)

indicating that either λn = 0 or trρn = 0 for all n. In addition, we have

trρ(t) = 1, thus there exists at least one zero eigenvalue λm such that the

corresponding density matrix is not traceless: trρm ̸= 0. In addition, due

to the TPCP property of Fdt = eLt, it can be proved that the real part of all

the eigenvalues of L are 0 or negative.

Thus, by solving the non-Hermitian matrix L̃, we can answer what the

steady state is–i.e. the state after long-time evolution, which is simply

the eigenstate corresponding to the 0 eigenvalue of L̃. In addition, we can

answer how fast the system decays into the steady state. This time scale

is determined by the second-largest real eigenvalue of L̃, and is usually

referred to as the Liouvillian gap.

Interestingly, another regime in the dynamics of open quantum systems

can also be described by a non-Hermitian matrix. Recall from Eq. (4.8)

that when a result |i⟩ is observed in a quantum measurement, the system

undergoes an evolution given by the Kraus operator Ki. In the quantum

master equation described by the Kraus operators Eq. (4.15), if we perform

a measurement with an outcome related to the Kraus operator K0,dt, we

would have

ρ(t+ dt) = K0,dtρ(t)K
†
0,dt = ρ(t)− i(Aρ(t)− ρ(t)A†) +O(dt2) (4.23)

yielding

ρ(t) = e−iAtρ(0)eiA
†t (4.24)
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with the non-Hermitian matrix A = H − i
∑︁

α L
†
αLα/2. Eq. (4.24) describes

the dynamics of the system between two quantum jumps. Experimentally,

we can select the path with such evolution by successively performing a

quantum measurement on the system and picking the path that no quan-

tum jump has occurred [227–229], which is referred to as post-selection.

4.2 NH topology

We have seen in the previous section how solving the dynamics of an open

quantum system can be simplified to solving non-Hermitian matrices. In

fact, in addition to describing the dynamics of open quantum systems,

the study of the properties of non-Hermitian Hamiltonians is of great

theoretical interest. The interplay between non-Hermicity with symmetry

[230–232] and topology [233–239] has led to unique phenomena without a

counterpart in Hermitian systems. We are particularly interested in NH

topology in our case as it may find application in utilizing the openness of

quantum systems for topological prediction.

4.2.1 Hermitian topology

Let us first briefly go through the study of topological phenomena in Her-

mitian systems. The investigation of topological effects was first inspired

by the quantum Hall effect (QHE) [240]: the Hall resistivity of a 2D elec-

tron gas under strong magnetic field exhibits a series of plateaus with

quantized values h/(ne2) with n being an integer. The quantized Hall resis-

tance/conductance was then explained by D. J. Thouless et. al. [241]: using

linear-response theory, they find that the quantized Hall conductance is

related to a topological invariant–the TKNN number. The reason for the

plateaus is due to the fact that the bulk is insulating: due to the existence

of impurities in the sample, most bulk electrons get localized and the main

contribution to the conductance comes from the edge electron channels,

which is proportional to the TKNN number. We see that the essential

ingredients for QHE are an insulating bulk with non-trivial topology and

edge states related to the topological invariant of the bulk. The relation

between the edge states and the non-trivial bulk topology is referred to as

the bulk-boundary correspondence [242]. Plenty of models hosting these

essential ingredients were proposed since then. Representative examples

include the Haldane model [243] whose topological invariant is the Chern
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number, and the quantum spin Hall insulator [244, 245] with a Z2 topo-

logical invariant [246]. The topological invariant allowed in a model is

related to the symmetry of the Hamiltonian, which has been classified into

different symmetry classes [242].

Due to the translational symmetry of the above models, we can use Bloch

band theory to study the topology of these models. We illustrate this

with the Haldane model, whose Bloch Hamiltonian reads [243] (up to a

k-dependent constant)

H(k) =t1
∑︂

i

(cos(k · ai)σx + sin(k · ai)σy)

+

(︄
M − 2t2 sinϕ

(︄∑︂

i

sin(k · bi)

)︄)︄
σz

(4.25)

The band structure of the above Hamiltonian is gapless for M = 0 and

ϕ = 0, π. Otherwise, the topological invariant of the gap is given by the

Chern number:

C = i

∫︂

BZ

d2k

2π
(⟨∂xu(k)|∂yu(k)⟩ − ⟨∂yu(k)|∂xu(k)⟩) (4.26)

where |u(k)⟩ is the eigenstate corresponding to the smaller eigenvalue

of H(k). The Chern number is an integer number: C = ±1 for |M/t2| <
3
√
3| sinϕ| and C = 0 otherwise. The number of chiral edge states under

open boundary conditions is given by the Chern number, showing the

bulk-boundary correspondence in this specific case.

In recent years, the study of Hermitian topology has been generalized

to the interacting case. In the interacting case, calculation of the bulk

topological invariant is no longer an easy task [95, 247, 248] as Bloch

band theory no longer applies. Yet, bulk-boundary correspondence still

holds and is used as an efficient way to examine the many-body topology:

the characterization of topological boundary states [249] is much easier

than computing bulk topological invariant, thus we use them to show the

non-trivial topology in the bulk. We show this with the following model:

H =J1

N/2∑︂

l=1

(︁
Sx
2l−1S

x
2l + Sy

2l−1S
y
2l

)︁
+ J2

N/2−1∑︂

l=1

(︁
Sx
2lS

x
2l+1 + Sy

2lS
y
2l+1

)︁

+ Jz

N−1∑︂

l=1

Sz
l S

z
l+1

(4.27)

where J2 ̸= J1. The model Eq. (4.27) can be mapped to the SSH model with
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interactions with the Jordan-Wigner transformation:

H̃ =J1

N/2∑︂

l=1

(︂
c†2l−1c2l + c†2lc2l−1

)︂
+ J2

N/2−1∑︂

l=1

(︂
c†2lc2l+1 + c†2l+1c2l

)︂

+ Jz

N−1∑︂

l=1

(︃
c†l cl −

1

2

)︃(︃
c†l+1cl+1 −

1

2

)︃
.

(4.28)

Eq. (4.28) reduces to the SSH model when Jz = 0, where we know that

topological boundary modes appear for J1 < J2. To reveal the topology of

this model in the many-body case Jz ̸= 0, we compute the local spectral

function:

χ(ω, l) = ⟨GS|Sz
l δ(ω −H + E0)S

z
l |GS⟩ (4.29)

where |GS⟩ is the ground state and E0 is the ground state energy. The

spectral functions computed with (i) J1 = Jz = J/2 and J2 = J and (ii)

J2 = Jz = J/2 and J1 = J are shown in Fig.4.1. The spectral function

reveals the existence of topological zero modes in case (i), indicating the

non-trivial many-body topology in this case.

Figure 4.1. Local spectral function χ(ω, l) of H defined in Eq. (4.27) with N = 40 and (a)
J1 = Jz = J/2 and J2 = J (b) J2 = Jz = J/2 and J1 = J .

In essence, the study of Hermitian topology focuses on the characteriza-

tion of the topology of a gap (near Fermi level) by a topological invariant

in the bulk and/or the behaviour of the topological edge states determined

by bulk-boundary correspondence. We shall see in the next subsection

that (i) the gap, (ii) the topological invariant and (iii) the bulk-boundary

correspondence has non-trivial generalizations in the NH case.
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4.2.2 NH topology

Let us first look at the spectral properties of a NH matrix. In general, an

eigen-decomposition of a NH matrix is:

H =
∑︂

n

ωn|ψR,n⟩⟨ψL,n| (4.30)

where ωn ∈ C are the eigenvalues, and |ψL(R),n⟩ are the corresponding

left(right) eigenvectors satisfying

H|ψR,n⟩ = ωn|ψR,n⟩

⟨ψL,n|H = ωn⟨ψL,n|

⟨ψL,m|ψR,n⟩ = δmn.

(4.31)

We see that due to the non-Hermicity, the eigenvalues ωn are not necessar-

ily real. In addition, the left and right eigenvectors do not have to be the

same, and they satisfy the bi-orthogonal relation Eq. (4.31).

The fact that the eigenvalues of a non-Hermitian matrix spread over

the complex plane allows for two different definitions of a non-Hermitian

gap [233, 234, 250]: the line gap and the point gap. When the spectrum

of a Hamiltonian does not appear on a line in the complex plane, we say

that this is a line gap of the Hamiltonian. The line gap is a generalization

of the gap in the Hermitian case: when all eigenvalues lie on the real

axis, the line perpendicular to the real axis that goes across the real gap is

the line gap. The point gap is defined as a point that the spectrum of the

Hamiltonian does not go across.

Due to the two different definitions of a NH gap, there exists correspond-

ingly different gap topology. The line gap topology is a generalization of

the Hermitian gap topology. Whereas the point gap topology focuses on

the winding of the spectrum with respect to a specific point on the complex

plane and is non-trivial when the winding is non-zero. Thus the point gap

topology is a unique feature of NH systems: although we can define point

gap in a Hermitian system, its topology must be trivial as the winding of

the spectrum with respect to this point is 0. The topological classification

of NH Hamiltonians [235] is different from Hermitian Hamiltonians, and

can have different topological invariants.

We have seen the differences in the definition of a gap and the correspond-

ing topology between Hermitian and NH systems. To this end, we discuss

the generalization of bulk-boundary correspondence (BBC) in Hermitian

systems to non-Hermitian ones. Essentially, a direct correspondence be-
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tween the topological invariant of a gap and the number of boundary states

no longer holds in the non-Hermitian case. This have been demonstrated in

a 1D lattice with asymmetric hoppings [236] in which topological boundary

modes appear even when the line gap closes. The reason for this is the

strong dependence of the behaviour of bulk states on the boundary condi-

tion: under PBC, the bulk states are well-defined Bloch waves, whereas

under OBC, the bulk states are localized at the boundary instead of being

extended as in the Hermitian case. This localization of bulk states under

OBC is named non-Hermitian skin effect (NHSE) [236,239,251], which is

the reason for the breakdown of conventional BBC. To recover the BBC,

one has to take into account that NHSE makes the bulk states to have

complex wave-vectors, and these complex wave-vectors lie on a generalized

Brillouin zone (GBZ). In 1D, a non-Bloch band theory [252] has been devel-

oped to systematically compute the GBZ. Whereas in higher dimensions

the calculation of GBZ remains a challenge.

Interestingly, BBC also exists for a non-trivial point gap. The boundary

modes corresponding to a topologically nontrivial point gap are essentially

the localized modes due to NHSE [253,254].

In short, NH topology shows a drastic difference from conventional Her-

mitian topology. A systematic theoretical regime has been established to

study NH topology for 1D. Yet, even for 2D non-interacting NH systems

the discussion about topology is a remarkable challenge. The investigation

of NH topology for interacting systems is even harder.

4.3 NH many-body topology in NH spin chain

With the understanding that NH Hamiltonians describe the dynamics

of open quantum systems and that the topology of NH Hamiltonian is

understood at 1D non-interacting level. We are finally in a situation to

ask (i) how to engineer open quantum many-body systems in order to have

topologically protected states and (ii) how to understand the NH topology

in interacting (1D) systems. Interestingly, as a building block towards both

these goals, the characterization of NH topology in interacting 1D systems

with (i) easy-to-compute and (ii) experimentally accessible quantities is

essential. Utilizing the BBC, we come up with a characterization of NH

many-body topology by probing local spectral functions that reveal topo-
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Figure 4.2. (a) Sketch of the model Hamiltonian H in Eq. (4.32). (b-d) Total dynamical
spin correlator S̃tot(ω) of H with L = 8, γ = 0 and (b) hz = 0, (c) hz = J , (d)
hz = 2J . (e-g) Projected local dynamical structure factor ρ̃(E, l) corresponding
to cases (b-d), respectively. Topological spin excitations with almost zero real
energy are revealed in (g).

logical many-body excitations3. We illustrate our idea with a NH S = 1/2

chain with antiferromagnetic exchange J = 1 (Fig.4.2(a)):

H =
L−1∑︂

l=1

(︃
J + γ

2
S+
l S

−
l+1 +

J − γ

2
S−
l S

+
l+1 + JzS

z
l S

z
l+1

)︃

+
L∑︂

l=1

ihzl S
z
l

(4.32)

where hzl = −hz if l mod 4 = 2, 3 and hzl = 0 otherwise. It is first illustra-

tive to perform a Jordan-Wigner transformation to Eq. (4.32), leading to a

3The rest of this section is adapted from G. Chen, F. Song and J. L. Lado, Phys.
Rev. Lett. 130, 100401 with revisions.
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NH interacting spinless fermion model:

H̃ =
L−1∑︂

l=1

(︃
J + γ

2
c†l cl+1 +

J − γ

2
c†l+1cl

+Jz(c
†
l cl −

1

2
)(c†l+1cl+1 −

1

2
)

)︃
+

L∑︂

l=1

ihzl (c
†
l cl −

1

2
).

(4.33)

When Jz = 0, Eq. (4.33) becomes a non-interacting spinless fermion model,

which for γ = 0 and nonzero hz is known to give rise to topological end

states whose real part of the energy is 0 [255,256]. The bulk topology of

this model is characterized by a hidden Chern number which faithfully

predicts the number of stable end states with purely imaginary energy

[256,257]. It has been shown that in the presence of a finite interaction

Jz, a sufficiently large hz would still give rise to the topological end states

[216]. We reveal the non-Hermitian many-body topology of the model via

computing dynamical excitations S(ω, l):

S(ω, l) =⟨GSL|S−
l δ

2(ω + EGS −H)S+
l |GSR⟩

+ ⟨GSL|S+
l δ

2(ω + EGS −H)S−
l |GSR⟩,

(4.34)

using the Non-Hermitian Kernel Polynomial Method (NHKPM) introduced

in Chapter 6, both in the absence and presence of NHSE. The NHKPM

algorithm has a power-law scaling with respect to the system size compared

to the exponential scaling for exact diagonalization (ED), thus making the

quantity easy to compute for large systems. For concreteness we take

Jz = 1/2J , and note that analogous results can be obtained for general

values of Jz.

We first focus on a chain of length L = 8 and compute the total dynamical

spin correlator, defined as:

S̃tot(ω) =

⃓⃓
⃓⃓
⃓

L∑︂

l=1

S(ω, l)
⃓⃓
⃓⃓
⃓ (4.35)

where S(ω, l) is defined in Eq. (4.34) 4. The total dynamical spin correlator

reveals the energy of the states that have finite overlap with the ground

state with one Sz = ±1 excitation. We see that as hz increases, the real

part of the energy of the lowest excited states is shifted towards 0, whereas

the higher states are shifted away from 0 (Figs.4.2(b-d)). To see if the

lowest excited states are topological end states, we compute the projected

4We take the absolute value in Eq. (4.35) since S(ω, l) is no longer real-valued in
this case.
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local dynamical structure factor, defined as

ρ̃(E ∈ R, l) =
⃓⃓
⃓⃓
∫︂

S(E + iy, l)dy

⃓⃓
⃓⃓ . (4.36)

This quantity identifies the local spectral density of Sz = ±1 excitations

at a given real energy E. In particular, when H is Hermitian, ρ̃(E, l) is

reduced to the local spin structure factor defined in Eq. (4.29). Figs.4.2(e-g)

show ρ̃(E, l) for different values of hz, we see that for hz = 0 the lowest

states show non-vanishing spectral density in the bulk. As hz increases

to hz = J the spectral density in the bulk reduces, and eventually for

sufficiently large hz = 2J the states become localized at the ends, reflecting

the non-trivial line topology in the bulk. Due to the short chain length,

finite-size effects prevent clearly observing topological end states for hz = J

due to hybridization.

Figure 4.3. (a,b) Total dynamical spin correlator S̃tot(ω) of H defined in Eq. (4.32) with
L = 24, γ = 0 and (a) hz = 0 and (b) hz = J . S̃tot(ω) reveals a many-
body line gap in (b). (c,d) Projected local dynamical structure factor ρ̃(E, l)

corresponding to cases (a,b), respectively. ρ̃(E, l) reveals topological many-
body excitations in (d), indicating that the line gap in (b) is topological.

To approach the thermodynamic limit, we now move on to consider a

chain of length L = 24. As these systems are too large to be treated by exact

diagonalization, we now use a full tensor network implementation with
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MPS in the NHKPM algorithm. The total dynamical spin correlator S̃tot(ω)

and the projected local dynamical structure factor ρ̃(E, l) are computed for

hz = 0 and hz = J in this case (Fig.4.3). We see from Figs.4.3(a,b) that for

hz = J there are clearly 2 states close to 0 real energy, and are isolated

from the higher states with a line gap, whereas for hz = 0 there is no

such behavior. From Figs.4.3(c,d) we can observe the topological end states

for hz = J , whereas for hz = 0 the lowest states are mainly distributed

in the bulk. These show that the model Eq. (4.32) is not topological for

hz = 0, and is topological for hz = J even in the presence of many-body

interactions.

Interestingly, the way we come up with as a characterization of NH many-

body topology does not suffer from NHSE. This can be demonstrated by

considering a finite γ < J in the Hamiltonian Eq. (4.34), which gives rise to

NHSE. This case can be reduced to γ = 0 under a similarity transformation

to H:

T = e
∑︁

l lαS
z
l , α = ln r, r =

√︄
J + γ

J − γ

TH(J, γ, Jz, hz)T
−1 = H ′(J ′, 0, Jz, hz).

(4.37)

The new uniform exchange is J ′ =
√︁
(J + γ)(J − γ) which is approximately

J for γ = 0.1J . This similarity transformation changes the spectral func-

tion Eq. (4.34) for H to the same spectral function for H ′, leading to dynam-

ical correlators analogous to the γ = 0 case for γ ≪ J , thus demonstrating

the faithful prediction of boundary modes in the presence of NHSE.

To this end, let us discuss the potential probe of the topological boundary

modes in an experimental setup, assuming the Hamiltonian Eq. (4.32) can

be engineered with an array of magnetic atoms coupling to an engineered

substrate. Basically, the spectral function Eq. (4.34) reveals local spin

excitations at complex energy ω, that tells how a spin excitation evolves

in time in this system. The real part of ω reveals the oscillation of this

excitation in time and the imaginary part informs its decay. Thus, by first

preparing the initial state to be the ground state, and applying a pulse

that excites the local spin, the following short-time dynamics of the spin

informs us about the spectral functions we computed in frequency space.

Interestingly, this short-time dynamics can be probed with the pump-probe

method that has recently been combined with STM [217–220], with a

particular focus on spin dynamics in Ref. [220]. As an outlook, the scheme

we proposed would eventually allow to engineer 2D magnetic materials

utilizing the coupling to the world.
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4.4 Summary

Quantum devices are inevitably open due to coupling to the environment.

Instead of treating the effects of openness as noise, we can systematically

understand the dynamics of an open quantum system under the Marko-

vian approximation with the quantum master equation. The dynamics

given by the quantum master equation can be captured by an effective

non-Hermitian matrix. Non-Hermitian matrices host unique topological

properties drastically different from Hermitian systems. Understanding

NH many-body topology is of both applicational and fundamental inter-

est. We present a non-Hermitian many-body system with non-trivial

non-Hermitian many-body topology, where we put forward the local spec-

tral function Eq. (4.34) as an easy-to-compute and experimentally accessi-

ble quantity to identify topological boundary modes in a non-Hermitian

many-body system. Notably, the quantity faithfully reveals topological

boundary modes in the presence of the NHSE, which breaks the conven-

tional bulk-boundary correspondence. The topological boundary modes can

be potentially probed with pump-probe STM, which allows to characterize

the non-trivial bulk many-body topology.
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In this section, I present the two libraries I developed during my Ph.D.

studies, Twistronics.jl and NHKPM.jl. The prerequisite to use these li-

braries is having Julia1 installed.

The Twistronics.jl is a library focusing on solving band structures of

twisted bilayer systems. It is built upon the up-to-date understanding of

TBG, in particular, the independence of low-energy spectrum on the func-

tional form of inter-layer coupling and the scaling relation. The objective

of this library is to provide a versatile way to compute the band structure

of twisted bilayer systems. In particular, it does not require the user to

have knowledge of twisted multilayer systems.

The NHKPM.jl is a library focusing on computing spectral functions

in NH many-body systems. It is built upon our recently developed non-

Hermitian kernel polynomial method [258] and is still experiencing rapid

development. The aim of this library is to overcome numerical challenges

to solve NH many-body systems.

5.1 Twistronics.jl

The Twistronics.jl is a library focusing on solving band structures of twisted

bilayer systems. This library can be downloaded from my github repository

https://github.com/GUANGZECHEN/Twistronics.jl.

5.1.1 Supercell and band structure of TBG

Source code: Twistronics.jl/examples/Twisted_bilayer_graphene/TBG.jl

In Fig.5.1 we present the supercell and band structure of TBG computed

with Twistronic.jl. Bands at different twist angles and be computed by

1https://julialang.org/. Current versions of the libraries are compatible with Julia
version 1.7
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tuning the parameters m, r ∈ R in the code, and the twist angle θ is given

by θ = arccos
[︁
(3m2 + 3mr + r2/2)/(3m2 + 3mr + r2)

]︁
. We recommend com-

putations with r = 1 for computational simplicity.

Figure 5.1. (a) Supercell of TBG at twist angle 1.89◦. (b)-(d) band structure of TBG at
twist angle (b) θ = 21.79◦, (c) θ = 9.43◦ and (d) θ = 1.89◦.

5.1.2 Layer hybridization in TBG

Source code: Twistronics.jl/examples/tbg_layer_index/TBG_layer.jl

One feature of TBG is the hybridization of electronic bands between the

two different layers. As the twist angle gets smaller, such hybridization

gets stronger. This can be illustrated by applying an inter-layer bias

V (P1 − P2) to TBG, where V is the strength of the bias and P1,2 is the

projection operator on layers 1 and 2. The layer operator L = P1 − P2

allows us to analyze the layer polarization of the bands. As is shown in

Fig.5.2, the low-energy bands remain layer-polarized at a large twist angle,

but becomes completely layer-mixed at a small twist angle.
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Figure 5.2. band structure of TBG with inter-layer bias V = 0.1t at twist angle (a) θ =

9.43◦ and (b) θ = 1.89◦.

5.1.3 Emergent valley degrees of freedom in TBG

Source code: Twistronics.jl/examples/tbg_valley_degen/TBG_valley_degen.jl

and Twistronics.jl/examples/tbg_inter-layer_bias_valley/TBG_inter-layer_bias_valley.jl

One important feature of TBG is the emergent valley degrees of freedom

for low-energy bands at small twist angles. The two valleys are degener-

ate along Γ-K-M-K′-Γ. To reveal this degeneracy, we add a small valley

potential to the Hamiltonian. This shifts the bands from different valleys

(Fig.5.3(a)). Interestingly, inter-layer bias is known to lift up the valley

degeneracy along Γ-K-M-K′-Γ in TBG [95], this is illustrated in Fig.5.3(b).

Figure 5.3. (a) band structure of TBG with a small valley potential 0.05Vz. (b) band
structure of TBG with an inter-layer bias V = 0.1t. The color indicates the
valley polarization.
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5.1.4 Twisted π-flux model

Source code: Twistronics.jl/examples/Twisted_Dirac_QSL/TBQSL.jl

Twistronics.jl also allows to study band structures of twisted systems

beyond TBG, such as the twisted π-flux model [44,45] as shown in Fig.5.4.

Figure 5.4. (a) Part of the supercell of the twisted π-flux model at twist angle 3.48◦ under
a fixed gauge. (b)-(d) band structure of the twisted π-flux model at twist angle
(b) θ = 21.79◦, (c) θ = 9.43◦ and (d) θ = 3.48◦.

5.2 NHKPM.jl

The NHKPM.jl is a library built upon the non-Hermitian kernel polyno-

mial method (NHKPM) [258] that we will explain in detail in Sec.6.3. This

library features computing (local) spectral functions in NH systems, with a

highlight of power-law scaling for spectral functions in NH many-body sys-

tems, that would allow to tackle large-size NH many-body systems beyond

the capability of exact diagonalization (ED). The library can be downloaded
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from my repository https://github.com/GUANGZECHEN/NHKPM.jl.

5.2.1 Non-interacting models

Non-interacting NH systems are computationally simple and can be tack-

led with conventional methods such as exact diagonalization (ED). We show

the computation of spectral functions with NHKPM for these systems as a

benchmark. In particular, we show that the spectral function:

ρtot(ω) =
∑︂

i

⟨i|δ2(ω −H)|i⟩ (5.1)

where |i⟩ forms a complete basis provides the total spectrum of the Hamil-

tonian. In addition, we show that the spectral function computed on a local

basis can reveal topological boundary modes:

ρL(E, l) =

⃓⃓
⃓⃓
∫︂
dy⟨l|δ2(E + iy −H)|l⟩

⃓⃓
⃓⃓ . (5.2)

We illustrate these with some paradigmatic non-Hermitian models.

Hatano-Nelson model

Source code: NHKPM.jl/examples/NH_single_particle/Hatano/

We compute the spectrum of the Hatano-Nelson model [259]:

HHN =
L−1∑︂

l=1

(t+ γ)c†l cl+1 + (t− γ)c†l+1cl, (5.3)

with L = 20. The PBC and OBC spectra are computed both with NHKPM

and ED (Fig.5.5).

Figure 5.5. (a) Spectrum of the Hatano-Nelson model under OBC and PBC, computed
with ED (b,c) tDOS for PBC and OBC. Parameter: γ = 0.2.

Asymmetric SSH model

Source code: NHKPM.jl/examples/NH_single_particle/asymmetric_SSH/
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We consider the asymmetric SSH model [236]:

H =

N/2−1∑︂

l=1

(︂
(t1 + γ/2)c†2l−1c2l + (t1 − γ/2)c†2lc2l−1 + t2(c

†
2lc2l+1 + c†2l+1c2l)

)︂

+ (t1 + γ/2)c†N−1cN + (t1 − γ/2)c†NcN−1,

(5.4)

which is a model used in the study of the influence of NHSE on bulk-

boundary correspondence. It was found that in some parameter regime

the PBC spectrum does not have a line gap, whereas the OBC spectrum

still shows topological zero modes. Below we show the spectral functions of

this model computed with NHKPM under both OBC and PBC in several

parameter regimes. The results are in agreement with the spectrum

obtained with exact diagonalization.

We first illustrate the gapped, topologically trivial region in Fig.5.6,

where the PBC spectrum shows two rings separated by a line gap, and the

OBC spectrum does not show in-gap states.

Figure 5.6. (a) Spectrum of the asymmetric SSH model computed with ED. (b,c) Total
spectral function ρtot(ω) computed for the model under PBC and OBC. Param-
eters: t1 = 2.5, t2 = 1, γ = 0.2 and N = 20.

We then show the gapless, topologically non-trivial region in Fig.5.7,

where the PBC spectrum is a single ring without a gap. The local spectral

function ρL(E, l) computed under OBC indicates the existence of 2 bound-

ary modes near zero energy, which are the topological boundary modes in

this case.

We finally show the gapped, topologically non-trivial region in Fig.5.8,

where the PBC spectrum hosts a line gap. In addition, the OBC spectrum

shows a PT-symmetry breaking and the eigenvalues are no longer real.

The local spectral function shows the topological zero modes in this case.
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Figure 5.7. (a) Spectrum of the asymmetric SSH model computed with ED. (b) Total
spectral function ρtot(ω) computed for the model under PBC. (c) Local spectral
function ρL(E, l) computed under OBC. Parameters: t1 = 1, t2 = 1, γ = 0.2

and N = 20.

Figure 5.8. (a) Spectrum of the asymmetric SSH model computed with ED. (b,c) Total
spectral function ρtot(ω) computed for the model under PBC and OBC. (d)
Local spectral function ρL(E, l) computed under OBC. Parameters: t1 = 1/6,
t2 = 1, γ = 0.2 and N = 20.
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A model with a topologically nontrivial line gap induced by an NH term

NHKPM.jl/examples/NH_single_particle/Hidden_Chern/

We consider the following model [255,256]:

H =
L−1∑︂

l=1

t(c†l cl+1 + c†l+1cl) +
L∑︂

l=1

iulc
†
l cl (5.5)

where ul = −u if l mod 4 = 2, 3. This model hosts a topologically non-

trivial line gap for u ̸= 0, we show the spectral functions in this regime in

Fig.5.9. In particular, the local spectral function indicates the existence of

topologically zero modes.

Figure 5.9. (a,b) Total spectral function ρtot(ω) computed for the model Eq. (5.5) under
PBC and OBC. (c) Spectrum of the model under PBC and OBC. (d) Local
spectral function ρL(E, l) computed under OBC. Parameters: t = 1, u = 1 and
N = 20.

2D model with NHSE

Source code: NHKPM.jl/examples/NH_single_particle/2D_skin/
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We study the 2D version of the Hatano-Nelson model:

H =
L−1∑︂

l=1

L−1∑︂

m=1

(︂
(t+ γ)(c†l,mcl+1,m + c†l,mcl,m+1) + (t− γ)(c†l+1,mcl,m + c†l,m+1cl,m)

)︂

+
L−1∑︂

l=1

(︂
(t+ γ)c†l,Lcl+1,L + (t− γ)c†l+1,Lcl,L

)︂

+

L−1∑︂

m=1

(︂
(t+ γ)c†L,mcL,m+1 + (t− γ)c†L,m+1cL,m

)︂
.

(5.6)

This model also has NHSE that the bulk states get localized under OBC.

However, unlike the 1D case, the NHSE here is not related to a point gap:

there does not exist a point gap in the spectrum under PBC in the thermal

dynamic limit. In Fig.5.10 we show the spectrum computed for this model.

Figure 5.10. (a) Spectrum of the 2D Hatano-Nelson model computed with ED. (b,c) Total
spectral function ρtot(ω) computed for the model under PBC and OBC. Pa-
rameters: t = 1, γ = 0.1 and L = 8.

5.2.2 Interacting models

In this subsection we show how the spectral functions computed with

NHKPM allows to address interacting non-Hermitian models, where we

utilize the MPS representation of the states. We note that the computations

for interacting NH models can be time-consuming, and it is recommended

to utilize parallel computation for spectral functions at different energies

ω.

NH Many-body topology

Source code: NHKPM.jl/examples/NH_manybody/topology/

The two source codes "get_eigs_Krylov.jl" and "DOS.jl" would allow to

compute the spectral functions shown in Sec.4.3. First, the ground state

is computed with the Krylov-Schur method [260] in "get_eigs_Krylov.jl",
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where the parameters of the Hamiltonian in Eq.(4.32) can be modified

inside the script. The script will generate a ".jls" file containing information

about the Hamiltonian and its left/right ground states and corresponding

energies. Then, using this ".jls" file as input, we can compute spectral

functions of the Hamiltonian using the script "DOS.jl".

Correlators in a Liouvillian

Source code: NHKPM.jl/examples/NH_manybody/Liouvillian/Liouvillian.jl

To this end, let us present the implementation of NHKPM to figure out

the correlators in a Liouvillian instead of characterizing NH topology. We

shall see that correlators in the frequency domain computed with NHKPM

allow to predict the decay rate of perturbations above the steady state. We

consider the Liouvillian:

d

dt
ρ(t) = L[ρ(t)] = −i[H, ρ(t)] +

N∑︂

l=1

(︃
Llρ(t)L

†
l −

1

2
{L†

lLl, ρ(t)}
)︃

(5.7)

with

H = −
N/2∑︂

l=1

Jxσ
x
2i−1σ

x
2i −

N/2−1∑︂

l=1

Jyσ
y
2iσ

y
2i+1 (5.8)

and Ll =
√
γσzl [261]. Vectorizing the density matrix ρ as we did for

Eq. (4.19), the Liouvillian can be expressed as

L̃ = −iH ⊗ I+ iI⊗H +
N∑︂

l=1

γσzl ⊗ τ zl − γN (5.9)

with H given by Eq. (5.8) and we used the fact that H = HT . This Liouvil-

lian has 2 steady states ρ± = (I±Q)/2N where Q =
∏︁

l σ
z
l is a conserved

charge. For simplicity we assume ρs = I/2N to be the steady state, which

is true when a small magnetic field is applied in x direction.

The time-evolution of a perturbation O above the steady state is given

by:

C(t) = tr(O(t)Oρs) = tr(etL
∗
[O]Oρs) = tr(OetL[Oρs]) (5.10)

where L∗ is the adjoint operator of L. In the vectorized form, Eq. (5.10)

reads:

C(t) = ⟨I|O ⊗ IetL̃O ⊗ I|ρ̃s⟩ (5.11)

where |I⟩ =
∑︁

n |n⟩|n⟩ is the vectorized form of the identity matrix. We

have used tr(A) = ⟨I|Ã⟩ and AρB = A⊗BT |ρ̃⟩ [261] in deriving Eq. (5.11).

Performing a Fourier transform on Eq. (5.11), we have:

C(t) =

∫︂
d2ωeωtC(ω) (5.12)
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up to a renormalization factor, where the correlator C(ω) is given by

C(ω) = ⟨I|O ⊗ Iδ2(ω − L̃)O ⊗ I|ρ̃s⟩ (5.13)

and can be computed with NHKPM. We show the computation for this

correlator with O = σz1 and N = 10. As the Hilbert space is of dimension

220 in this case, we use MPS representation for |ρ̃s⟩ = |I⟩. The results are

shown in Fig.5.11, where the largest real value in the computed spectrum

indicates the inverse life time of the perturbation. We see that for Jx = 0.5

and Jy = 1, when the model is topological, the perturbation has a long

lifetime even in the presence of large dissipation γ = 0.5 (Fig.5.11(a)).

Whereas in the topologically trivial regime Jx = 1 and Jy = 0.5, the

perturbation is not protected and decays faster as γ increases. The results

agree with Ref. [261].

Figure 5.11. Correlator C(ω) in Eq. (5.13) computed for the Liouvillian Eq. (5.9) with
O = σz

1 and N = 10 and (a) Jx = 0.5, Jy = 1 and γ = 0.5, (b) Jx = 1, Jy = 0.5

and γ = 0.2, (c) Jx = 1, Jy = 0.5 and γ = 0.5 and (d) Jx = 1, Jy = 0.5 and
γ = 1.
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6. Methods

We summarize the methods used in this thesis in this chapter.

6.1 Green’s function embedding method

The Green’s function embedding method [66, 262, 263] is a method to

compute local spectral function in an inhomogeneous infinite system. We

utilize it to compute the local density of states (LDOS) near an impurity

site in an infinitely large lattice. The essence of this method is as follows.

For a unit cell containing the impurity, the Green’s function in this unit

cell can be written using Dyson’s equation as:

G(ω) = (ω −H ′ − Σ(ω))−1, (6.1)

where H ′ is the Hamiltonian of the unit cell and Σ(ω) is the self-energy

due to the coupling of the unit cell to the rest of the infinite pristine system.

The impurity does not influence Σ(ω) since it does not change the hoppings

that couple the unit cell to the rest of the system. Therefore, in the absence

of the impurity, the Green’s function of the pristine unit cell coupled to the

infinite system is:

G0(ω) = (ω −H0 − Σ(ω))−1, (6.2)

where H0 is the Hamiltonian of the pristine unit cell. Since the whole

system is now pristine, this Green’s function can also be computed by:

G0(ω) =
1

(2π)2

∫︂
d2k(ω −Hk − i0+)−1, (6.3)

where Hk is the Bloch Hamiltonian associated to H0 on this unit cell. Using

Eq.(6.2), the self-energy can be computed as Σ(ω) = ω −H0 −G−1
0 (ω), and

the Green’s function of the defective unit cell can be solved with Eq.(6.1).

The DOS in the unitcell is thus ρ(ω) = − 1
π ImG(ω).
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6.2 The Krylov-Schur algorithm

The Krylov-Schur algorithm [260] is a method to solve extreme eigenvalues

of a non-Hermitian matrix. The core of the Krylov-Schur algorithm is the

Krylov decomposition of a matrix A:

AUk = UkBk + uk+1b
†
k+1 (6.4)

where Uk = (u1, u2, . . . , uk) with {ui} being a set of linearly-independent

vectors. Bk = V †
kAUk is called the Rayleigh quotient where V †

k is the left

inverse of Uk. In particular, if we require {ui} to be an orthogonal set of

vectors, the Krylov decomposition reduces to the Lanczos decomposition for

a Hermitian matrix A and the Arnoldi decomposition for a non-Hermitian

matrix A, which are building blocks of the Lanczos and Arnoldi algorithms,

respectively. The lifted restriction on the orthogonality of {ui} allows the

Krylov-Schur algorithm to be more efficient than the Arnoldi algorithm

[260].

The Krylov-Schur algorithm relies on (i) initializing a Krylov decomposi-

tion of A with a random vector x, then performing (ii) a truncation to obtain

a Krylov subspace of our interest, and (iii) a re-expansion successively until

convergence.

The initialization of a Krylov decomposition on the Krylov subspace

{x,Ax, . . . , Aj−1x} can be done with the Gram-Schmidt method. The Krylov

decomposition of A on this subspace is given by the m-step Arnoldi algo-

rithm:

u1 =
x

||x||

for j = 1 : m

r = Auj

for i = 1 : j

Bij = u†ir

r = r −Bijui

end

Bj+1,j = ||r||

uj+1 =
r

Bj+1,j

end

(6.5)
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which gives AUm = UmBm + um+1b
†
m+1.

We then truncate the above Krylov decomposition to the subspace of our

interest by first performing a unitary transformation Z1 to Bm to make it

upper triangle Tm = Z†
1BmZ1. This is also known as Schur decomposition,

and the orthogonal elements of Tm are called Schur values. We then move

the Schur values of our interest (for example, the smallest real Schur

values) to the top-left corner of Tm with another unitary transformation

Z2: T̃m = Z†
2TmZ2. Let Z = Z1Z2, we have

A(UmZ) = (UmZ)T̃m + um+1b
†
m+1Z. (6.6)

Keeping the first k columns of 6.6 would give us the Krylov decomposition

in the truncated Krylov subspace of our interest:

A(UmZ)k = (UmZ)k(T̃m)k + um+1(b
†
m+1Z)k (6.7)

where (UmZ)k refers to the truncated matrix keeping the first k columns

of UmZ.

Finally, the expansion of the Krylov decomposition Eq. (6.7) can be done

by applying Eq. (6.5) taking x = uk, where uk is the kth column of (UmZ)k.

We note that the operations on A and {ui} in the Krylov-Schur algorithm

involve only (i) Aui in Eq. (6.5)and (ii) linear combinations of ui in Eq. (6.6).

This fact essentially allows the Krylov-Schur algorithm to be performed

with MPO representation of A and MPS representation of ui.

6.3 The Kernel Polynomial Method

The kernel polynomial method (KPM) [264] is a method to efficiently

compute spectral functions for Hermitian Hamiltonians:

ρ(E) = ⟨ψL|δ(E −H0)|ψR⟩ (6.8)

where |ψL,R⟩ are arbitrary states. Since the eigenvalues of H0 are bounded,

we can perform a shifting and a rescaling on H0 such that the eigenvalues

lie in [0, 1). In such case, ρ(E ∈ [0, 1), l) is a bounded single-variable

function for fixed l, which is a crucial property that allows it to be expanded

in Chebyshev polynomials Tn(E) = cos(n arccosE):

ρ(E, l) =
1

π
√
1− E2

(︄
µ0 + 2

∞∑︂

n=1

µnTn(E)

)︄
(6.9)

where the coefficients satisfy µn =
∫︁ 1
−1 dEρ(E)Tn(E) = ⟨ψL|Tn(H0)|ψR⟩. Us-

ing the recursion relation of Chebyshev polynomials: Tn+1(x) = 2xTn(x)−
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Tn−1(x), µn can be computed as µn = ⟨ψL|vn⟩ with

|vn+1⟩ = 2H0|vn⟩ − |vn−1⟩

|v0⟩ = |ψR⟩, |v1⟩ = H0|ψR⟩.
(6.10)

The recursive structure of Eq. (6.10) allows the efficient computation of

µn and ρ(E). Finally, Eq. (6.9) is approximated with a truncation of the

summation to N th order, where a Jackson kernel

gNn =
(N − n+ 1) cos nπ

N+1 + sin nπ
N+1 cot

π
N+1

N + 1
(6.11)

is multiplied to the coefficients µn to damp Gibbs oscillations [264].

We would like to note that Eq. (6.10) essentially involves only operations

of H0|vn⟩ and linear combinations of vectors. This allows the KPM to be

implemented with MPS representation of |ψL,R⟩.

6.4 The Non-Hermitian Kernel Polynomial Method

The Non-Hermitian Kernel Polynomial Method (NHKPM) [258] is a method

to efficiently compute generic spectral functions of a non-Hermitian Hamil-

tonian H:

f(ω) = ⟨ψL|δ2(ω −H)|ψR⟩ (6.12)

where |ψL⟩, |ψR⟩ are arbitrary states. We summarize the essence of this

method below.1

The key observation is, although Eq. (6.12) cannot be computed with

KPM directly [265], it can be related to the spectral functions of the

Hermitized form of ω −H:

H =

⎛
⎜⎝

ω −H

ω∗ −H†

⎞
⎟⎠ . (6.13)

In particular, using ∂ω∗(1/ω) = πδ(Re(ω))δ(Im(ω)) [266], we can rewrite

Eq. (6.12) as

f(ω) =
1

π
∂ω∗G(E = 0) (6.14)

where G(E) = ⟨L|(E − H)−1|R⟩ is the Green’s function of H with |L⟩ =⎛
⎜⎝

0

|ψL⟩

⎞
⎟⎠ and |R⟩ =

⎛
⎜⎝

|ψR⟩

0

⎞
⎟⎠. Since H is Hermitian, its Green’s function

1The rest of this section is adapted from G. Chen, F. Song and J. L. Lado, Phys.
Rev. Lett. 130, 100401 with revisions.
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G(E) has the Chebyshev expansion Eq. (6.9), resulting in an expansion of

f(ω) in Chebyshev polynomials of H:

f(ω) =
2

π2

∞∑︂

n=1

(−1)n+1⟨L|∂ω∗T2n−1(H)|R⟩ (6.15)

with the recursion relation

∂ω∗Tn+1(H) = 2

⎛
⎜⎝

0 0

1 0

⎞
⎟⎠Tn(H) + 2H∂ω∗Tn(H)− ∂ω∗Tn−1(H). (6.16)

Finally, the above recursion relation on Tn(H) is transformed into an

update of vectors, similar to Eq. (6.10), allowing f(ω) to be computed with

KPM. We note that similar to KPM, the NHKPM can also be implemented

with MPS representation of states. The details of this method are explained

in the following subsections.

6.4.1 Technical details of NHKPM

We derived in the last section that the spectral function

f(ω) = ⟨ψL|δ2(ω −H)|ψR⟩ (6.17)

can be computed with

f(ω) =
1

π
∂ω∗G(E = 0) (6.18)

where

G(E) = ⟨L|(E −H)−1|R⟩ (6.19)

is an entry of the Green’s function of the Hermitized Hamiltonian H in

Eq. (6.13) with

|L⟩ =

⎛
⎜⎝

0

|ψL⟩

⎞
⎟⎠ , |R⟩ =

⎛
⎜⎝

|ψR⟩

0

⎞
⎟⎠ . (6.20)

Since G(E) is a function of a single variable, we can apply KPM to compute

G(E), let

G(E) = B(E)− iA(E), (6.21)

where A(E) = ⟨L|δ(E −H)|R⟩ and B(E) is its Hilbert transform:

B(E) =
1

π
P
∫︂ ∞

−∞
dE′ A(E

′)
E − E′ , (6.22)
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where P denotes the Cauchy principal value. Performing a scaling on

H: H → H/∆ such that its spectrum lies in (−1, 1), we can perform a

Chebyshev expansion on A(E)2:

A(E) =
1

π
√
1− E2

(︄
µ0 + 2

∞∑︂

n=1

µnTn(E)

)︄
, (6.23)

where

µn =

∫︂ 1

−1
dEA(E)Tn(E) = ⟨L|Tn(H)|R⟩, (6.24)

and Tn(x) = cos(n arccosx) satisfying the following recursion relation:

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(6.25)

Using

P
∫︂ 1

−1

Tn(y)dy
(y − x)

√︁
1− y2

= πUn−1(x), (6.26)

together with Eqs. (6.22) and (6.23), we have

B(E) =
2

π

∞∑︂

n=1

µnUn−1(E) (6.27)

where Un(x) = sin[(n+1) arccosx]/ sin[arccosx]. Combining Eqs. (6.21),(6.23)

and (6.27), we have

G(E = 0) =
2

π

∞∑︂

n=1

(−1)n+1µ2n−1, (6.28)

which can be computed by noting that µn = 0 for even n and Tn(0) =

Un(0) = 0 for odd n. Combining Eq. (6.18), Eq. (6.24) and Eq. (6.28), we

have

f(ω) =
2

π2

∞∑︂

n=1

(−1)n+1⟨L|∂ω∗T2n−1(H)|R⟩, (6.29)

with the recursion relation

∂ω∗Tn+1(H) = 2

⎛
⎜⎝

0

1

⎞
⎟⎠Tn(H) + 2H∂ω∗Tn(H)− ∂ω∗Tn−1(H). (6.30)

We now elaborate on the numerical details in the computation of f(ω). Let

|An⟩ = Tn(H)|R⟩ (6.31)

2Although A(E) is a complex-valued function, we can do Chebyshev expansion for
its real and imaginary parts, respectively, then adding up the coefficients to get
Eq. (6.23)
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and

|Ψn⟩ = ∂ω∗Tn(H)|R⟩. (6.32)

We can verify that

|A0⟩ =

⎛
⎜⎝

|ψR⟩

0

⎞
⎟⎠, |A1⟩ =

⎛
⎜⎝

0

(ω∗ −H†)|ψR⟩

⎞
⎟⎠

|Ψ0⟩ =

⎛
⎜⎝

0

0

⎞
⎟⎠, |Ψ1⟩ =

⎛
⎜⎝

0

|ψR⟩

⎞
⎟⎠

(6.33)

with recursion relation

|An+1⟩ = 2H|An⟩ − |An−1⟩

|Ψn+1⟩ = 2

⎛
⎜⎝

0

1

⎞
⎟⎠ |An⟩+ 2H|Ψn⟩ − |Ψn−1⟩.

(6.34)

Let

|A2n⟩ =

⎛
⎜⎝

|α2n⟩

0

⎞
⎟⎠, |A2n+1⟩ =

⎛
⎜⎝

0

|α2n+1⟩

⎞
⎟⎠

|Ψ2n⟩ =

⎛
⎜⎝

|ψ2n⟩

0

⎞
⎟⎠, |Ψ2n+1⟩ =

⎛
⎜⎝

0

|ψ2n+1⟩

⎞
⎟⎠

(6.35)

where n ∈ Z and n ≥ 0. We thus arrive at the following recursion relation

|α2n⟩ = 2(ω −H)|α2n−1⟩ − |α2n−2⟩

|α2n+1⟩ = 2(ω∗ −H†)|α2n⟩ − |α2n−1⟩

|ψ2n⟩ = 2(ω −H)|ψ2n−1⟩ − |ψ2n−2⟩

|ψ2n+1⟩ = 2|α2n⟩+ 2(ω∗ −H†)|ψ2n⟩ − |ψ2n−1⟩

(6.36)

with

|α0⟩ = |ψR⟩, |α1⟩ = (ω∗ −H†)|ψR⟩

|ψ0⟩ = 0, |ψ1⟩ = |ψR⟩,
(6.37)

and Eq.(6.29) becomes

f(ω) =
2

π2

∞∑︂

n=1

(−1)n+1⟨ψL|ψ2n−1⟩. (6.38)

In practice, we do a truncation of Eq. (6.38) to order N :

fKPM(ω) =
2

π2

N∑︂

n=1

(−1)n+1g2N2n−1⟨ψL|ψ2n−1⟩. (6.39)
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where

g2Nn =
(2N − n+ 1) cos nπ

2N+1 + sin nπ
2N+1 cot

π
2N+1

2N + 1
(6.40)

is the Jackson kernel to suppress Gibbs oscillations and improve the

accuracy [264]. We note that Eq. (6.39) can also be written as:

fKPM(ω) =
1

π
∂ω∗GKPM(E = 0) (6.41)

where

GKPM(E = 0) =
2

π

N∑︂

n=1

(−1)n+1g2n−1µ2n−1 (6.42)

is a finite-series approximation to Eq. (6.28) with the Jackson kernel gn.

The truncation to the N th order polynomial with a Jackson kernel is known

to provide a Gaussian approximation to the Dirac delta function [264]:

(δ(x))Jackson ≈ 1√
2πσ2

e−
x2

2σ2 , (6.43)

where σ = π/N . Performing a Hilbert transform on both sides of Eq. (6.43),

we have:
(︃
1

x

)︃

Jackson
≈ 2√

2σ2
F

(︃
x√
2σ2

)︃
(6.44)

where F (x) = exp
(︁
−x2

)︁ ∫︁ x
0 exp

(︁
t2
)︁
dt is the Dawson function [267]. Eq.

(6.44) provides a good approximation for 1/x for x ≳ 2σ. Now, for G(E = 0),

the KPM procedure provides an approximation:

G(E = 0) = −⟨L|H−1|R⟩

= −
∑︂

n

⟨L|φn⟩E−1
n ⟨φn|R⟩

≈ −
∑︂

n

⟨L|φn⟩
(︁
E−1
n

)︁
Jackson ⟨φn|R⟩,

(6.45)

where En and |φn⟩ are the eigen-decomposition of H. Eq. (6.45) is a good

approximation as long as

σ ≲ min(En)
2∆

, (6.46)

where ∆ is the factor we divide H with to keep its spectrum in (−1, 1). A

sufficiently small σ can be achieved by increasing N in our computation.

Due to the derivative in Eq. (6.18), a quantitative analysis of the approx-

imation we did for f(ω) is difficult. Qualitatively, delta functions in f(ω)

are smeared in fKPM(ω) with a width d ≈ π∆
N , where ∆ is the scaling factor
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to H to make its spectrum in (−1, 1). For L = 8, ∆ = 6 is sufficient in our

computation, and for L = 24, we take ∆ = 16.

For L = 8, the low-energy spectra computed with NHKPM in Fig.4.2

agree with results obtained with exact diagonalization (ED) qualitatively

(Fig.6.1). An exact correspondence does not exist here since in ED the delta

function is approximated with a Gaussian, whereas with NHKPM it is

approximated with another peaked function as discussed above.

Figure 6.1. Spectral functions in Fig.4.2 computed with exact diagonalization.

6.4.2 Numerical complexity of NHKPM

We analyze the numerical complexity of the NHKPM algorithm in this

section. In essence, an optimized version of the algorithm scales approx-

imately as L3, with L the number of sites. This power law dependence

makes our algorithm scalable to bigger systems. We elaborate on the

details below.

We analyze the time consumption to compute the spectral function

Eq. (4.34):

S(ω, l) =⟨GSL|S−
l δ

2(ω + EGS −H)S+
l |GSR⟩

+ ⟨GSL|S+
l δ

2(ω + EGS −H)S−
l |GSR⟩

(6.47)

with NHKPM for different system size L, where H and |GSL,R⟩ are given.
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In our particular case, the Hamiltonian H is given by Eq. (4.32), and

|GSL,R⟩ are computed with the Krylov-Schur algorithm. We focus on the

topologically non-trivial regime: hz = J, γ = 0, and fix ω = 0.23i and l = 1

as the spectral function shows a peak at this point due to the topological

edge excitations. We note that the energy mesh and a sweep over all sites

required to compute the full spectral function can be easily parallelized. As

a result, the scaling of the algorithm is determined by the size dependence

for a fixed ω and l.

We fix the broadening of the peak for the scaling analysis. As the system

size increases, a larger scaling factor ∆ is required to scale the spectrum

of H into (−1, 1). Thus, to ensure the same broadening, the number of

polynomials N should correspondingly increase. For our specific model, ∆

is proportional to L, and thus we choose N ∝ L for the scaling analysis.

We first analyze the scaling of our algorithm for a generic case where

the bond dimension of the MPS m is fixed. In this case, the time consump-

tion shows an approximately 3rd power dependence on the system size

(Fig.6.2(a)). This scaling is the same as the kernel polynomial algorithm

for Hermitian interacting systems [249].

We also analyze the scaling for our specific computation, where the

entanglement entropy of states increases during the recursive calculations

in the kernel polynomial method. In this case, to ensure computational

accuracy, a sufficiently large m is required, which increases with L. In

Fig.6.3, we show the computed spectral functions as a function of m for

different sizes L. We show this for both ω = 0.23i where the spectral

function is dominated at the boundary, and for ω = 0.8 where the spectral

function is dominated in the bulk. We observe that as m increases, the

computed spectral function approaches the accurate value as expected.

We also observe that although the accuracy is low for small m, it is still

clear that for ω = 0.23i there exist edge excitations, and for ω = 0.8 the

excitations are more distributed in the bulk. Thus, a relative error of 10% is

sufficient for the characterization of topological edge states. The smallest

m required for this accuracy is m = 40, 50, 60, 80 for L = 12, 16, 20, 24,

respectively. For simplicity, we choose m = 10L/3 to study the scaling,

resulting in computational time t ∝ L5 (Fig.6.2(b)). Compared to the

fixed m case, the additional power of 2 originates from the fact that the

complexity of applying a matrix product operator (MPO) on an MPS is

proportional to m2, and we have used m ∝ L in this case.
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Figure 6.2. (a) Complexity of NHKPM algorithm with fixed bond dimension m = 80 in
MPS computations and N = 25L/2, with L0 = 16 and t0 = 442.9s. The
log-log data is fitted with a linear function, indicating that the complexity
of the algorithm is power-law with (t/t0) ∝ (L/L0)

2.8. (b) Complexity of
NHKPM algorithm with bond dimension m = 10L/3 in MPS computations
and N = 25L/2, with L0 = 12 and t0 = 30.4s. The log-log fit indicates a
power-law complexity with (t/t0) ∝ (L/L0)

5.

6.4.3 Stability of NHKPM in the presence of NHSE

In the presence of NHSE, the Hamiltonian becomes a non-normal matrix,

that is HH† ̸= H†H. Non-normal matrices have large condition numbers

[268] that results in numerical instabilities. This can be illustrated with a

simple 2× 2 matrix:

M =

⎛
⎜⎝

1
x

x

⎞
⎟⎠ (6.48)

with x ̸= 0, 1. The eigenvalues of M are clearly ±1, with right eigenvectors
1√

1+x2
(1,±x)T , where T denotes the transpose. One might assume the

numerical diagonalization of this matrix should be as simple and accurate.

However, with smaller x, better numerical precision is required even to

diagonalize this simple matrix. In fact, for x ∼ 1e300, even though we

can numerically capture the matrix M , the numeircal diagonalization of it

proves wrong due to the lack of numerical accuracy.

Non-interacting limit

In the non-interacting limit, the spectrum of H in the presence of NHSE

is known to be drastically different under different boundary conditions:

in the thermodynamic limit, the spectrum of H is purely real under open

boundary condition (OBC), and features a point gap under periodic bound-

ary condition (PBC). On the contrary, the spectrum of the Hermitized

105



Methods

Figure 6.3. The spectral function S(ω, l) computed for different L and ω as a function of
maximum bond dimension m. The parameters for H (Eq. (4.32)) are hz = J

and γ = 0.

Hamiltonian H is not sensitive to boundary conditions: in the thermody-

namic limit, the spectrum is the same under both boundary conditions

except that when ω lies in the point gap of H, the spectrum under OBC
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shows more topological zero modes than that under PBC [253, 269]. It

is due to the contribution of these additional zero modes to the Green’s

function of H in Eq. (6.14) that allows faithfully computing the spectral

function of H using NHKPM, despite the different sensitivities of the spec-

tral functions of H and H to the boundary condition. We illustrate this

with the Hatano-Nelson model [259]:

HHN =
L−1∑︂

l=1

(t+ γ)c†l cl+1 + (t− γ)c†l+1cl, (6.49)

which exhibits NHSE when γ ̸= 0. We compute the total density of states

of the model:

ρtot(ω) =
∑︂

n

δ(Re(ω − En))δ(Im(ω − En)). (6.50)

For simplicity, we take L = 8, and we note that analogous results can

be obtained for larger L. The spectrum of HHN computed with ED with

t = 1 and γ = 0.4 under periodic boundary condition (PBC) and open

boundary condition (OBC) are shown in Figs.6.4(a) and (d). We see that

the PBC spectrum features a point gap, whereas the OBC spectrum is

purely real. The spectrum computed with NHKPM in both cases are

shown in Figs.6.4(b) and (e), demonstrating the capability of NHKPM to

provide faithful results in both cases. The reason that NHKPM provides

a faithful OBC spectrum in this case is due to the contribution of the

zero modes of H to G(E = 0) when ω lies in the point gap of H. Due to

finite-size effects, these zero modes have an exponentially small finite

energy: E0 ∝ exp(−L/L0) where L0 is a constant. According to Eq. (6.46),

to accurately capture the contribution of this zero mode to G(E = 0), we

require:

σ =
π

N
≲ E0

2∆
, (6.51)

which for the exponentially small E0 requires an exponentially large N ,

hence the large N in Figs.6.4(e). When smaller N is used, the computed

spectrum becomes a pseudo-spectrum [270] under OBC (Fig.6.4(f)) due to

inaccurately accounting for the contribution of the zero mode to G(E = 0),

while the spectrum under PBC only gets broadened (Fig.6.4(c)). For com-

parison we also show the OBC spectrum computed with γ = 0 (Fig.6.4(g-i)),

where only a broadening is observed for smaller N due to the absence of

NHSE.
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Figure 6.4. Total density of states ρtot(ω) defined in Eq. (6.50) for HHN with L = 8 and
t = 1, with (a) γ = 0.4, under PBC, computed with ED, (b) γ = 0.4, under PBC,
computed with NHKPM with N = 100, (c) γ = 0.4, under PBC, computed with
NHKPM with N = 50, (d) γ = 0.4, under OBC, computed with ED, (e) γ = 0.4,
under OBC, computed with NHKPM with N = 1000, (f) γ = 0.4, under OBC,
computed with NHKPM with N = 50, (g) γ = 0, under OBC, computed with
ED, (h) γ = 0, under OBC, computed with NHKPM with N = 100, and (i)
γ = 0, under OBC, computed with NHKPM with N = 50.

Interacting limit

In the interacting case, the spectrum of H has no point gaps in the thermo-

dynamic limit, and the above analysis no longer holds. Thus, it is unclear

whether the algorithm allows for comparable accuracy, which we examine

for the model studied in Sec.4.3.

As a benchmark, we compute both S̃tot(ω) and ρ̃(E, l) for H with L = 8,

hz = 2J and γ = 0.1J under OBC (Figs.6.5(a) and (c)), where the results

are analogous to Figs.4.2(d) and (g), demonstrating that the NHKPM

faithfully computes both spectral functions. We also show S̃tot(ω) for

H under the same set of parameters under PBC, where faithful results

are obtained: the two end states with almost 0 real energy under OBC

vanish under PBC. We also compute ρ̃(E, l) for a longer chain with L = 24,

hz = J and γ = 0.1J (Fig.6.5(d)), where analogous results to Fig.4.3(d) are

obtained. This demonstrates the capability of NHKPM to compute spectral

functions and identify topological edge modes in the presence of NHSE.

We note that in the presence of NHSE, bulk states become also localized

at the edge. In this case, it is the definition of the local dynamical spin

correlator in Eq. (4.34) that allows to distinguish edge states from bulk
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states, and image edge modes in real space. Another remark is that in the

presence of NHSE, the condition number [268] ofH increases exponentially.

Therefore, numerically determining the exact spectrum of a Hamiltonian

with NHSE is often very hard and time-consuming. In our algorithm,

by using Eq.(6.14), this hard task is converted to the computation of the

Green’s function of a Hermitian Hamiltonian, which is relatively more

controllable.

Figure 6.5. (a,b) Total dynamical spin correlator S̃tot(ω) of H defined in Eq. (4.32) with
L = 8, hz = 2J and γ = 0.1J under (a) open boundary condition and (b)
periodic boundary condition. (c) Projected local dynamical structure factor
ρ̃(E, l) corresponding to (a), showing the persistence of topological end modes
in the presence of NHSE. (d) ρ̃(E, l) of H with L = 24, hz = J and γ = 0.1J ,
showing the topological end modes in the presence of NHSE for a longer chain.
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7. Summary and outlook

Quantum magnetism plays an essential role in a variety of exotic phases

including quantum spin liquids, topological superconductivity, and heavy

fermions. Despite the great interest in these phases, remarkable chal-

lenges remain in their realization and identification in quantum materials.

The recently raised magnetic van der Waals materials pave the way to

solve this problem. Owing to their two-dimensional nature, they provide

a versatile platform to engineer quantum magnetism for the realization

and identification of these exotic phases. Throughout the thesis, we have

explored the versatility of magnetic van der Waals materials and quan-

tum magnets in three aspects, (i) the engineering of magnetic van der

Waals materials for exotic magnetic phases of matter, (ii) the utilization of

magnetic van der Waals for designing exotic phases of matter and (iii) the

engineering of quantum magnets to get exotic out-of-equilibrium phases.

In particular, exotic magnetic phases of matter such as quantum spin

liquids can be realized and probed via external engineering on candidate

magnetic van der Waals materials such as 1T-TaS2. We have shown that,

by putting single magnetic atoms on top of 1T-TaS2, a scanning tunneling

microscope measurement would allow to probe the potential U(1) Dirac

quantum spin liquid state in this material due to the impurity-induced

spinon zero modes. In a similar spirit, a twisted-bilayer 1T-TaS2 would

also allow the probe of the quantum spin liquid state in 1T-TaS2 due to

the magnetically tunable spinon dispersion. In addition, we have shown

that depositing 1T-TaS2 on a substrate and tuning the substrate dielectric

constant would allow to drive 1T-TaS2 toward the quantum spin liquid

state.

The versatility of magnetic van der Waals materials is not limited to

engineering only magnetic phases of matter. They can also be utilized to

design other exotic phases of matter. In particular, we have shown that
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helimagnets can be utilized to design helical states in both single-layer

graphene and twisted graphene bilayers. In addition, we have presented

how heavy fermions can arise in a 1T/1H-TaS2 heterostructure, which has

been realized in experiments.

The versatility of quantum magnets can be even utilized to design ex-

otic phases at non-equilibrium. In particular, we have shown that, by

tuning the coupling between a Heisenberg spin chain and the environ-

ment, a many-body topological phase emerges solely due to the coupling

to the environment. Although we considered a one-dimensional magnet

due to computational limitations, our results can be generalized to two-

dimensional magnets.

Throughout the above studies, we have implemented a variety of powerful

numerical tools. In particular, we have presented two computational

libraries developed during the studies. The Twistronics.jl is a user-friendly

library allowing non-experts to reproduce the results we presented for

twisted multi-layer systems. The NHKPM.jl is a library aiming to overcome

numerical challenges in the study of open quantum many-body systems

and is based on a newly-developed method we have presented in Sec.6.4.

Our research highlights the versatility of magnetic van der Waals mate-

rials for engineering exotic phases of matter. The numerical libraries we

have presented help to reduce the difficulty in theoretical studies on these

systems. As an outlook, our proposals provide potential guidelines for the

experimental research on exotic phases of matter with magnetic van der

Waals materials. Our studies can also stimulate further theoretical studies

on designing other exotic phases of matter with magnetic van der Waals

materials, such as multiferroics.
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