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Abstract
Innovation in the field of artificial speech synthesis using deep learning has been
rapidly increasing over the past years. Current interest lies in the synthesis of speech
that is able to model the complex prosody and stylistic features of natural spoken
language using a minimal amount of data. Not only are such models remarkable
from a technological perspective, they also have immense potential as an application
of custom voice assistive technology (AT) for people living with speech impairments.
However, more research should be focused on the evaluation of the applicability of
deep learning text-to-speech (TTS) systems in a real-world context. This thesis aims
to further this research by employing two well-known TTS frameworks, Flowtron
and WaveGlow, to train a voice clone model on limited personal speech data of a
person living with locked in syndrome (LIS). The resulting artificial voice is assessed
based on human perception. In addition, the results of the model are showcased in
a user-friendly TTS application that also acts as a prototype for custom voice AT.
Through the work in this thesis we explore the fascinating world of deep learning
based artificial speech synthesis and inspire further research in its relevance toward
the development of inclusive technology.
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1 Introduction

Background. In recent years we have seen a strong increase in the use of deep learning
models in multiple technological applications. In the case of text-to-speech (TTS), the
synthesis of artificial speech from text, deep learning has had an especially profound
impact. In comparison to traditional concatenative speech synthesis methods, voice
clones trained using deep learning methods offer a much more natural-sounding,
human-like result and have since become predominant in the field. Deep neural
networks (DNNs) are trained using recorded speech segments and their associated
transcriptions and as such require minimal manual annotation and domain expertise.
A typical deep learning TTS model, such as Tacotron [1], requires tens of hours
of professionally recorded speech with minimal noise, correct pronunciation, a rich
vocabulary, and expressive intonation. Such a large amount of data is often not
feasible for most applications. Therefore current research has been focused on models
which can incorporate new speakers using only a small amount of data. A common
approach is to fine-tune the speaker embedding layer of a multispeaker TTS model
already pretrained on a larger dataset in order to adapt the model to the voice
characteristics of the target speaker [2]. Voice cloning can also operate on a zero-shot
setting, in which the model can directly incorporate voices unseen during training
with only a few seconds of reference speech [3], though this method tends to produce
unnatural prosody and introduce signal artefacts [4]. The concept of modeling
stylistic features of speech that capture emotion or prosody has also garnered much
interest in the TTS field. Most research is centered around learning an embedding of
speech style [5] or the representation of stylistic features in latent space [6]. However,
due to the complexity of human speech signals, it is unclear to what extent these
methods can accurately portray prosody and style in the way that humans perceive
speech.

Significance. There are a large range of applications for high-quality artificial speech,
especially as an aid for people with disabilities. People with speech impairments can
communicate with others in a more natural way with the help of deep learning TTS
systems. The main motivation behind this thesis is the development of customized
voice assistive technology (AT) with a focus on people with locked in syndrome (LIS).
People with LIS cannot move or speak due to paralysis of voluntary muscles, with the
exception of certain eye muscles. People with LIS are both aware and conscious, which
calls for alternative channels of communication. Existing technologies such as [7] and
[8] can translate eye movements into words or commands. Brain Computer Interface
(BCI) systems have also been shown to accurately decode a person’s intention using
brain signals [9]. Through the application of a high-quality custom voice clone,
combined with eye-tracking or BCI technology, people with LIS, or other speech
impairments, may regain the ability to communicate with others in a natural way
with their own unique voice.

Knowledge gap. Custom voice AT would ideally sound very similar to the target
speaker and as natural as possible with the possibility to express different emotions.



Flowtron [6] and WaveGlow [10] are well-known flow-based deep learning networks
which perform text to mel-spectrogram and mel-spectrogram to audio synthesis,
respectively. Flowtron offers control over expressiveness and style through manip-
ulation of the latent space representation of speech. WaveGlow is considered a
universal vocoder, meaning that it can produce speech from mel-spectrograms which
it has not been explicitly trained on [10]. The voice clone samples introduced in the
paper [6] are generated by Flowtron models trained on recordings by professional
voice actors in a studio environment and synthesized into audio by a pretrained
single speaker WaveGlow model. It is unclear whether the framework would provide
satisfactory results when trained on personal speech recordings, which are, in most
cases, lacking in both duration and quality in comparison. Since custom voice AT is
centered around communication between humans, it would be important to conduct a
comprehensive evaluation of how the characteristics of the cloned voice are perceived
by listeners. The Flowtron and WaveGlow framework has potential in the field of AT,
but more research should be conducted to ensure its compatibility to both limited
reference speech and human perception.

Problem Statement. As an up and coming field, deep learning TTS systems often
focus on the novelty of new methods while overlooking their real-world applicability.
In order to understand the prospects of TTS, it is necessary to bridge the gap between
knowledge and practice.

Aim. The primary goal of this thesis is to employ the Flowtron and WaveGlow
framework to create a voice clone trained on past speech recordings of a person
living with LIS. We then subsequently analyze and evaluate the potential of the
framework for use as an alternative communication channel for people living with
speech impairments.

Hypothesis. It is likely that the training data available for this project is not
sufficient for training a Flowtron model from scratch, but would produce satisfactory
results with the fine-tuning method. Further, the quality of the target speaker data
may influence the quality of the resulting voice clone.

Approach. We first optimize our training setup to our speech data by visually
monitoring training and validation loss progression over time. After training the
final voice clone model, we generate samples with varying levels of expressiveness
and speech styles and analyze the results qualitatively. We then conduct a Mean
Opinion Score (MOS) listening test in order to attain a subjective assessment of the
voice clone from various aspects in a real-world context. In addition, we create a
simple speech synthesis computer application which generates cloned audio from text
input. The application showcases the results of this thesis while also serving as an
early-stage prototype of an AT communication device.

Objectives. Through the work conducted in this thesis we hope to generate awareness
and inspire further research related to the important topic of inclusive technology in
the context of people living with speech impairments. We also aim to gain a deeper
understanding of current state-of-the-art voice cloning methods.
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2 Background

2.1 Phonetics and theory of human speech production

Phonetics is a field of linguistics which studies the sounds of spoken language. Pho-
netics is divided into three branches: articulatory, acoustic, and auditory phonetics.
They aim to describe the production, transmission, and perception of human speech
sounds, respectively. Before one may embark on the complex task of modeling human
speech, one must have a general understanding of the physical components of human
sound generation, and how resulting sounds are interpreted by other humans as
language.

2.1.1 Articulatory phonetics

Articulatory phonetics describes how the vocal tract and articulatory system com-
ponents generate sounds. From a physical point of view, speech occurs as a result
of muscles contracting, which push air from the lungs to the mouth and nose, and
modify the air flow in order to create different sounds. The main energy source
are the lungs and diaphragm. These muscles force air through a V-shaped opening
between the vocal cords and the larynx, called the glottis. After the larynx, the air
enters the vocal tract and exits through the mouth or nose into the atmosphere. [11]

While air travels upward, the shape of the vocal tract is altered by the configuration
of and the interaction between articulatory system components, called articulators, so
as to create different sounds. A diagram of the vocal tract and articulators is shown
in Figure 1. Speech sounds can roughly be classified into consonants and vowels, as
well as voiced and unvoiced sounds. A vowel is a sound formed without constriction to
the vocal tract, while consonants are formed through partial or complete constriction.
In order to create voiced sounds, the voice cords vibrate rapidly, which produces a
buzzing sound. The airflow is then modified via the articulators to produce different
vowel sounds. Unvoiced sounds are formed without vibration of the vocal cords. All
vowels are considered voiced, while consonants can be either. [11]

Since consonant sounds are characterized by some sort of constriction to the airflow,
they are also defined by place and manner of said constriction. Active articulators
are the components which move to form the articulation, while passive articulators
stay stationary. Examples of active articulators include the lips and tongue, and
passive articulators include the roof of the mouth and teeth. Labial consonants are
formed with the lips, either by pressing both lips together, or via contact between
the lips and the teeth. Coronal consonants are formed with the tip of the tongue,
and depending on the passive articulator location and posture of the tongue, can
create a wide variety of different sounds. Dorsal consonants use the whole surface of
the tongue, while radical consonants use the root of the tongue. Glottal consonants
are formed via the vocal folds in the larynx. The way in which airflow is constricted,
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Figure 1: Diagram of vocal tract components (articulators). Image from [12]

partially or fully, affects the sound created. Plosives are formed when the airstream
is fully constricted and suddenly released, resulting in a short burst of sound, while
fricatives only partially obstruct the stream, creating turbulence. Trills involve the
vibration of the tongue or lips. A vast assortment of vocal tract modifications via
the articulators enable the generation of a broad assortment of sounds. [13]

2.1.2 Acoustic phonetics

Acoustic phonetics studies the acoustic properties of human speech sounds. Modeling
continuous speech is not an easy task because of the interactions between complex
audio signals. The four most important properties to investigate are frequency,
time, amplitude, and formant. There are two types of frequencies in human sound:
fundamental frequency (F0) and formant frequencies. F0 is formed by the oscillations
of the vocal cords, the rate of which is dependent on their length, thickness, and
tension. Therefore, it differs for people of different ages and genders and is closely
related to pitch, which is defined as the human perception of F0. [14] Formant
frequency, on the other hand, relates to the configuration of the articulators in the
vocal tract. [15] Formants are acoustic energy peaks around a certain frequency in
the spectrum of a sound. Each formant is associated with a particular resonance
in the vocal tract. They are labeled numerically in succession from the lowest
frequency to the highest after the fundamental frequency (F0). Each distinct unit of
sound has corresponding formants, and can as such be considered as filters, which
attenuate certain frequency components and strengthen others. [16] Sounds can thus
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be identified more easily by their formants and their transitions instead of by their
waveforms. Formant patterns can be easily identified through spectrograms, which
represent how frequencies of a signal change over time. It is obtained by splitting
the audio into overlapping windows and performing the short time Fourier transform
(STFT) on each window. Figure 2 shows the spectrogram of a man speaking three
different syllables: “dee”, “daa”, and “doo”. As can be seen in the figure, each vowel
has its own distinct spectral pattern.

2.1.3 Auditory phonetics

Auditory phonetics is concerned with how speech sounds are perceived, including
how the auditory system responds to speech stimuli. The manner in which we
communicate using speech sounds is very unique to humans. While many other
animal species also communicate with different sounds, humans are able to convey
a much wider spectrum of complex topics and emotions using speech. [18] Sounds
travel into the ear as air pressure waves until they reach the eardrum. Movement of
the eardrum from the waves causes vibration of three small bones in the middle ear.
This vibration is amplified and transmitted to the cochlea. Inside the cochlea is the
organ of corti resting atop the basilar membrane. Vibrations at different frequencies
displace the membrane at different frequency-sensitive locations [19]. This in turn
causes specific hair cells in the organ of corti to convert the vibration into an electrical
signal. The signals are transferred to the central auditory nuclei through the auditory
nerve. [20] Sound information is decoded at each stage of the auditory pathway and
projected in the auditory cortex. The representation of sounds in the auditory system
is tonotopic, meaning that the signal is decomposed into frequency components and
analyzed separately. Different frequencies are represented in different populations
of neurons. While this tonotopic organization exists throughout the entire auditory
system, the mapping becomes more complicated and includes more stimuli categories
in the auditory cortex. Another feature of sound perception in the auditory system
is nonlinear suppression. When there is a strong activation in one group of neurons
representing a certain frequency or acoustic feature, it suppresses activity in another
group of neurons. This feature is important when perceiving the spectral content
of sounds with a range of sound levels. [19] From an acoustic perspective, speech
is simply a stream of sound with different patterns of frequency and amplitude.
Auditorily, though, speech (in a familiar language) sounds segmented. One can
discern words, which give meaning to the speech. One can also perceive the sound
units which make up words. [21] Phones are defined as any distinct type of speech
sound that exists in a language, without regard to its significance to the meaning
of words. Phonemes, on the other hand, are sound units which have semantic
significance and directly affect the meanings of words. Allophones are variations
of phonemes which do not affect the meaning when swapped amongst eachother
within a word. The table in Figure 3 presents all of the phonemes found in the
English language, divided into vowels and consonants, as well as unvoiced and voiced
phonemes. The relationship between phoneme perception when hearing speech and
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Figure 2: Spectrograms of the syllables “dee”, “daa”, “doo.” spoken by a man.
Formants are highlighted in red. Vowels are distinguished from one another by their
different formant patterns. Image from [17]

its corresponding acoustic signal is not entirely clear and does not adhere to any
consistent rules [21]. This is due to the fact that a single phoneme can possess
very different acoustic characteristics depending on the speaker, phonetic context,
and prosodic pattern. For example, the duration for which a certain phoneme is
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pronounced is largely affected by the preceding and successive phonemes, referred
to as its pentaphone context [22]. Mood, tone, and emphasis of certain phonemes
convey emotions and extra information that cannot easily be modeled acoustically,
but can easily be understood by listeners. Simply modeling and analyzing acoustic
features of speech signals does not suffice to understand the complex nature of human
speech perception. It is clear that humans have a distinct sensitivity for speech
sounds that other animals do not possess to the same extent. [18]

Figure 3: Chart of phonemes in the English language, including example words
within which each phoneme is pronounced. Voiced consonants are in black, while
unvoiced consonants are in white.

2.2 Locked in syndrome

Locked in syndrome (LIS) is a rare neurological condition characterized by quadriple-
gia and inability to speak. A person with LIS is aware and conscious, but cannot move
or speak due to complete paralysis of most voluntary muscles, with the exception of
eye movements and blinking. LIS results from damage to parts of the lower brain
and brainstem, with injuries to the pons being the most common area of damage.
Examples of causes include brainstem stroke or lesion, circulatory system diseases,
and diseases which destruct the myelin sheath of nerve cells. While vocal cords may
not necessarily be paralyzed, LIS interferes with the coordination between breath-
ing and voiced sounds, which prevents people with the syndrome from generating
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intelligible speech sounds.

Though speech is compromised due to paralysis; linguistic, emotional, and intellectual
functions are still intact. This calls for alternative channels of communication. One
of the simplest communication methods is via blinking to signify simple responses
such as “yes” or “no”. Eye-tracking technology is also often used in communication
AT applications. An eye-tracking camera is mounted below a screen that contains
cells with different prompts, such as commands or letters. The camera recognizes
where the user is looking for a prolonged time and inputs the contents of that cell to
the system. [7] Scanning systems allow users to select items from a sequence using a
signal such as a sound or blink [9]. The efficiency of speech generation is quite limited
using these methods. A recent alternative is to detect imagined speech or intention
using electroencephalography (EEG), event-related potentials (ERPs), and even
neuroimaging such as functional magnetic resonance imaging (fMRI) and functional
near-infrared spectroscopy (fNIRS). Neuroprostheses can decode imagined speech
directly from neural signals in the brain. [9] While great strides have been made
in the development of AT for communication, the user experience would improve
greatly with the addition of a custom voice element.

2.3 Evolution of state of the art in artificial speech synthesis

In the last decade, innovations in artificial speech synthesis based on machine learning
paradigms have brought forth tremendous progress in the field of speech technology.
In order to appreciate and understand these recent developments, we present a brief
review of the developments in the state of the art in TTS systems.

2.3.1 Mechanical speech synthesis

The idea of generating artificial speech has captivated the minds of scientists for
centuries. Late medieval scholars in the early 1200s, such as Roger Bacon, are said
to have been involved in the creation of “Brazen Heads;” machines with the magical
ability to emulate human speech. The first successful mechanical speaking device
was developed in the late 1700s by German-Danish scientist Christian Gottlieb-
Kratzenstein. He designed acoustic five resonators similar to the human vocal
tract which could be activated with vibrating reeds to produce the five long vowels
/a/, /e/, /i/, /o/, and /u/. A few years later, Hungarian scientist Wolfgang von
Kempelen demonstrated the functionality of his “Acoustical Mechanical Speech
Machine,” which could generate single sounds as well as certain combinations of
sounds, which resembled words. He created mechanical versions of the components
of the human vocal tract; the machine consisted of a pressure chamber to act as
the lungs, a vibrating reed as the vocal cords, a rubber tube as the vocal tract, and
cavities as the mouth. The machine was operated via a set of controls that adjusted
the opening of closing of the cavities. [23]
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2.3.2 Concatenative speech synthesis

In concatenative speech synthesis, pre-recorded segments of speech are chained
together to form words and sentences. The method can be divided into three main
subtypes: unit selection, diphone selection, and domain-specific.

Unit selection utilizes a large database of utterances segmented into individual phones,
diphones, syllables, words, phrases, or sentences, or, alternatively, a combination of
these. The database may include multiple occurrences of the same unit, possibly
with varying pronunciation depending on its pentaphonic context and position within
a sentence. Each unit of the segmented database is then given an index based on
parameters such as fundamental frequency, duration, position in word or syllable,
and its neighboring units. During synthesis, the string of units most compatible with
the target sentence is selected from the database with a weighted decision tree. Unit
selection synthesized audio often provides the most natural sounding speech, at best
indistinguishable from human speech. In order to reach these levels of naturalness,
though, a huge database of recorded audio is required, with up to dozens of hours of
speech and terabytes of memory. [24] For many text to speech systems, the large
amount of data, as well as the computational resources required are not feasible for
its application.

Diphone concatenative synthesis generates a waveform by selecting compatible units
from a database of sound transitions called diphones. Phones represent the basic,
indivisible sounds that occur in a certain language. Diphones thus represent the
sound that is made when transitioning from one phone to another. Each language
has a limited number of diphones due to phonotactic constraints between phones. To
synthesize a target utterance, the input text is first converted into phones and matched
with the diphones from the database. Then, digital signal processing methods are
performed on the resulting waveform to smooth the transition between diphones
and to modify pitch and duration to meet prosodic requirements. An advantage of
diphone synthesis is its minimal database, but this also causes synthesized audio to
sound robotic and unnatural due to the lack of variation in the database. [25]

Domain specific synthesis builds utterances by selecting units from a small database
of whole words and sentences. Because the system is confined to the words and
phrases included in the database, its applications are usually limited to a certain
domain, such as transit schedules and talking clocks. The system is easy to implement
and the generated audio sounds natural, but does not allow for much customization.

2.3.3 Formant speech synthesis

Contrary to concatenative synthesis, formant synthesis does not utilize any pre-
recorded speech signals. Instead, artificial speech signals are generated through a
spectral shaping system based on acoustic parameters [26]. The method is based on
additive synthesis and the source-filter model of speech production. The source-filter
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model describes speech production as the combination of a source of sound, the
vocal cords, and a linear acoustic filter [27]. The goal of formant synthesis is to
acoustically simulate the source and filter as accurately as possible. The system is
driven by an excitation source, which represents the glottal pulses of voiced sounds,
as well as a random noise generator, for unvoiced sounds. Extensive speech analysis
is performed to determine a set of rules for control parameters such as fundamental
frequency, formants, and voicing source amplitude. Normally analysis is performed
at the phoneme level. The source is then passed through a sequence of second-order
filters, also called resonators, which reflect the appropriate parameters. [28] The
filters can be connected in various ways. In a cascade formant synthesizer, filters are
connected in series; the output of each resonator is the input of the next. In this
structure formant frequency is the only control parameter required. The cascade
structure works well for vowels, but struggles with fricative and plosive consonants.
A parallel formant structure involves filters connected in parallel. The excitation
pulse is passed through all filters at the same time and their outputs summed. The
bandwidth and gain are additional control parameters for each formant. The parallel
structure has been found to work better with nasals and fricatives, but not all vowels
can be generated accurately. [29] With the advantages and shortcomings of both
models in mind, in 1980, Dennis Klatt proposed a solution which incorporated both
cascade and parallel structures, with additional parameters for more complex sounds.
The model is controlled with 39 parameters updated every 5 milliseconds. [30] The
quality of speech generated by the Klatt Formant Synthesizer proved very impressive
and paved the way for several other well-known formant synthesizer technologies,
such as MITalk, DECtalk, and Klattalk [29].

2.3.4 Articulatory speech synthesis

Articulatory speech synthesis is based on computational models of the physical
human vocal tract and the processes which take place there. The system consists of
three modules: (1) control model for vocal tract movements, (2) vocal tract model
to convert movements into sequence of vocal tract configurations, and (3) acoustic
model to convert articulatory information into sound signals. The control model
essentially defines the set of articulator movements required to produce speech for
each time instance. The vocal tract model generates geometrical information, such
as shape and position of articulators, and their movement over time. The vocal tract
model can be modeled statistically, biomechanically, or geometrically. The acoustic
model calculates the the resulting acoustic speech signal based on digitally simulated
air flow and air pressure distribution through the vocal tract model. [31] Articulatory
speech synthesis is very closely related to the natural process of human speech, which
is an advantage over other synthesis methods [32]. At the same time, though, the
highly complex nature of natural speech would require a highly complex model in
order to sound as human-like as the speech generated by concatenative synthesis, for
example. Articulatory synthesizers have not yet reached this level of naturalness,
though much progress has been made. [31]
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2.3.5 Statistical parametric speech synthesis

Statistical parametric speech synthesis (SPSS) refers to a series of speech synthesis
methods in which the connection between linguistic features and acoustic features
are learned via machine learning techniques with a statistical parametric acoustic
model [4]. The task of the model is to convert linguistic features of text into acoustic
features at a fixed frame rate by using probability mapping. The mapping is learned
by training the model on a speech corpus, which contains spoken utterances, along
with their corresponding textual and phonetic transcriptions. [14] Before training, a
text analysis module is used to extract linguistic features from text. The complex
set of features includes a summary of all of the contexts which may affect how each
phoneme sounds, including its pentaphonic context, word- and sentence-wise position,
and prosodic pattern. [33] Each phoneme in the corpus is labeled with these features,
forming context-dependent phonemes [34]. Similarly, acoustic features are extracted
from the utterances with a fixed frame rate. Acoustic features describe the shape of
the spectral envelope as well as the rate of change of these parameters. [33] During the
training phase a statistical parametric model is trained to minimize the error between
the extracted acoustic parameters and the corresponding context-dependent phoneme
[14]. The model is constructed on the basis of the context-dependent phonemes
[33]. A commonly used model is the Hidden Markov model (HMM) because it
is particularly useful for modeling sequential data with hidden causal factors [35].
During synthesis, the desired text is converted into context-dependent phonemes in
the same way as during the training phase [33]. The possible acoustic features found
in a given phoneme are modeled with a Gaussian mixture model (GMM) [14]. The
model finds the most likely sequence of acoustic parameters given the sequence of
context-dependent phonemes [33]. The produced sequence of acoustic parameters
are then fed as input to a waveform generation module to produce the desired
speech waveform [14]. SPSS uses statistical methods to generalize a limited set of
linguistic features in order to produce speech sounds which it has not encountered
before, making it much more flexible than concatenative synthesis. Due to this
flexibility SPSS is also language independent and can be conditioned to different
voice characteristics.

2.3.6 Deep learning speech synthesis

Recent advances in speech synthesis technology have led to significant improvements
in the intelligibility and clarity of artificial speech. The research goal has thus shifted
to generating natural and expressive speech, which strongly resembles that of a
human. One of the main challenges faced by previous speech synthesis systems
is capturing the complex contextual structure of natural language. As previously
mentioned, HMM SPSS systems utilize decision trees to cluster complicated context
dependent linguistic features and map them onto probability densities of acoustic
features. Deep learning (DL) based methods have the ability to directly map linguistic
features to acoustic features through deep neural networks (DNN). [4]. DNNs are
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inspired by the human brain, which learns a new task through labeled examples.
Networks contain densely interconnected nodes arranged into hidden layers which
apply transformations to the input data. Each node is connected to one or more
nodes in the layers below or above. A simplified diagram of a neural network is
shown in Fig 4. Typically networks will contain thousands of nodes and various
different kinds of connections. [36]

Figure 4: Simple example of connections between nodes in a neural network. Nodes
are organized into layers and connected to one another through various transforma-
tions. Image from [37]

The output of a single node is a weighted sum of all its inputs with an added bias
term. Weight and bias are both learnable parameters within the network, which
are adjusted as the network is trained to produce correct output. Prior to training,
their values are randomized. The weighted sum is then passed through an activation
function to generate the output value of the node. Neural network layers can be
organized in a multitude of different ways, depending on the application.

DNNs progressively learn to extract higher-level features from raw input. Unlike in
SPSS, these features are not usually known, as their values are located within the
hidden layers of the network. A distinguishing feature of DNNs is that the network
learns which features belong in which level of representation on its own, eliminating
the need for human annotation. This is especially useful in applications involving
complex, hierarchical and context-dependent data, such as audio. DNNs have the
ability to decipher the hidden internal structures of speech data and employ powerful
modeling structures to characterize the feature representations of text and speech.
[36]

Similar to SPSS, DL based speech synthesis includes a training phase during which
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an extensive corpus of text and speech pairs are employed to learn the relationship
between linguistic and acoustic features. The TTS pipeline typically includes three
components: a text analysis frontend, an acoustic model network, and an audio
synthesis network, also called a vocoder. [38]. The pipeline of a typical TTS system
is illustrated in figure 5. In the text normalization stage text is converted into a
form interpretable by the rest of the network. Abbreviations, numerical values, and
other linguistic features are first translated into words. The text is then encoded
into a numerical vector form based on a set of rules. The acoustic model component
is typically a DNN which transforms normalized text into mel-spectrograms (mel-
spectrogram synthesizer). The network is thus trained with pairs comprising of a
normalized text segment and its corresponding mel-spectrogram. The vocoder, in
turn, generates a waveform conditioned on a mel-spectrogram input. [4] Traditionally
each component is trained separately. Recently efforts have been employed into the
development of end-to-end TTS systems in which the network is trained directly on
text and speech pairs. The method potentially prevents the cumulation of errors and
allows for even less manual annotation. [1].

Figure 5: Pipeline of a typical deep learning TTS system. Blue represents input and
output, while yellow represents the components within the TTS network. The text
analysis frontend normalizes text into vectors. The mel-spectrogram synthesizer is a
deep neural network which produces mel-spectrograms conditioned on text input.
The vocoder generates audio conditioned on mel-soectrogram frames. Each network
is trained with pairs of text and speech.

WaveNet [39] was the first artificial speech model that could successfully model
raw audio waveforms instead of acoustic features. The deep convolutional network
autoregressively models the probability distribution of a single sample of an audio
waveform based on previous samples. WaveNet uses dilated convolutions to increase
the receptive field of the network and introduce nonlinearity, which is important
when modeling raw audio waveforms. In order to perform TTS, WaveNet must be
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conditioned on acoustic features. Therefore WaveNet acts as a vocoder in the typical
TTS pipeline described previously.

Tacotron [1] is a sequence-to-sequence model which generates a mel-spectrogram
from text input alone, without the need for manual alignment. The vocoder is the
Griffin-Lim phase reconstruction algorithm. Tacotron follows an encoder-decoder
structure with attention. The encoder receives text as input and the decoder produces
spectrogram frames to act as acoustic features based on a weighted sum of encoder
outputs. The attention mechanism learns the alignment between text input and
output mel-spectrogram frames, so there is no need for manual alignment [40].

Tacotron 2 [41] improves the original architecture by replacing the Griffin-Lim
algorithm with a modified WaveNet and several other small changes to the original
network, such as replacing spectrograms with mel-spectrograms. Tacotron 2 has
received a near-human speech rating and is often considered state of the art in TTS
systems [4].

Flow based TTS models use the statistical method of normalizing flows to construct
a complex unknown distribution from a simple distribution. The model learns an
invertible mapping between a latent space and the space which is representative of the
training data. By passing samples through the sequence of invertible transformations,
we eventually obtain the unknown probability distribution. Training a flow-based
model is simple and stable and allows for control over speech styles through manipu-
lation of latent space [6]. Two popular examples of flow-based models are Flowtron
[6] and WaveGlow [10], which are described in more detail in the following sections.
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3 Models and Algorithms

The approach to voice cloning employed in this thesis is based on the Flowtron mel-
spectrogram synthesizer [6] in combination with the WaveGlow vocoder [10]. Flowtron
generates a mel-spectrogram conditioned on input text and speaker embedding.
Speaker embedding is a representation of the voice characteristics of a speaker in
vector form, in which similar speakers are nearer to one another in latent space.
WaveGlow infers an audio waveform conditioned on the mel-spectrogram generated by
Flowtron. The synthesizer and vocoder are trained separately on pairs consisting of an
audio segment and its corresponding text transcription. During inference, Flowtron
receives a text input and a speaker ID as input. The speaker ID corresponds to the
embedding of the desired speaker. Text input is processed as a vector representation
of its phoneme sequence. WaveGlow receives the mel-spectrogram output of Flowtron
as input and generates the speech waveform.

3.1 Mel-spectrogram

Most voice cloning methods use mel-spectrograms as an intermediate representation
of speech. The reason that Flowtron and most other TTS systems do not directly
model waveforms is because audio is a dense domain as well as highly nonlinear.
Spectrograms summarize acoustic features in a smoother and simpler way than
their waveform counterparts. The two-dimensionality of spectrograms also helps
models to learn spatial connectivities between features. Unfortunately, though, a
spectrogram representation of audio discards the phase information and there is no
unique inverse transformation from spectrogram to audio waveform. Therefore the
vocoder component is essential to produce meaningful speech. [4]

A spectrogram shows how magnitudes of frequency components of a signal change
over time and it is obtained by taking the STFT of a speech signal. The spectrogram
captures audio characteristics such as fundamental frequency (F0), formants, and
aperiodicities found in speech. F0, being the lowest frequency of a periodic waveform,
is seen as a brighter spectral line at the lowest end of the frequency axis, and the
subsequent brighter set of spectral lines represent the formants. Different speech
sounds have distinct recognizeable patterns in a spectrogram.

The most important information pertaining to speech tends to be found in the lower
frequencies. For this reason, many TTS systems convert frequencies into mel-scale
before taking the STFT transform. The mel scale is a perceptual scale of pitches
that is judged by humans to be equal in distance from one another. The reference
point is 1000 Hz, 40 dB above the listener’s threshold, which equates to 1000 mels.
The nonlinear transformation from Hertz to mel pitch is calculated with the formula:

m = 2595 ∗ log10(1 + f

700), (1)
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where m = pitch in the mel scale and f is the frequency in Hertz. A plot of mel-scale
against the Hertz scale is shown in Figure 6. As can be seen in the plot, at frequencies
above 500 Hz, increasingly large distances between frequencies are perceived to have
equal pitch intervals. The mel-spectrogram thus emphasizes audio features in the
lower frequencies, which are more significant for the analysis of speech.

Figure 6: Plot of mel-scale in comparison with the Hertz scale. The mel-scale of
pitches are perceived by humans as equal in distance from one another.

Figure 7 shows the mel-spectrogram of an audio recording. The speech formant
patterns in the lower frequencies are more clearly distinguishable from the rest of
the spectrogram.

Figure 7: Mel-spectrogram of a man saying “Kids are talking by the door.” The
mel-scale is a more accurate representation of how sounds are judged by humans.
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3.2 Normalizing Flows

Flowtron and WaveGlow are both based on the statistical method of normalizing
flows for probability density estimation. The idea behind the method is to reconstruct
a known, simple distribution p(z) into a more complex one p(x) by passing it through
a chain of invertible transformations, called steps of flow. We sample a latent variable
z and pass it through K steps of flow in order to produce a sample x from the
target distribution p(x). Each transformation f must be bijective, which means the
following must be true:

x = f(z), z = f−1(x) (2)

x is produced through the steps of flow:

x = f1 ◦ f2 ◦ ... ◦ fk(z) (3)

Since the steps of flow are invertible, the following must be true:

z = f−1
k ◦ f−1

k−1 ◦ ... ◦ f−1
1 (x) (4)

We can estimate the unknown probability distribution for one step of flow using the
Change of Variables rule as follows:

p(x) = p(z) | det(J(f−1(x))) | (5)

where J is the Jacobian of the inverse transform f−1
i (x). Therefore we can evaluate

the negative log likelihood of the target distribution p(x) for one step of flow as a
cost function:

logp(x) = logp(z) + log | det(J(f−1(x)) |) (6)

The same idea can be expanded to multiple steps of flow as follows:

logp(x) = logp(z) +
k∑︂

i=1
log | det(J(f−1

i (x)) |) (7)

3.2.1 Flowtron

Flowtron is an autoregressive flow which produces a sequence of mel-spectrogram
frames conditioned on text and speaker embeddings. We define the known distribution
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as a zero-mean spherical Gaussian z ∼ N(z; 0, σ2) and apply a series of transfor-
mations f to produce a sample from the target distribution p(x), which represents
mel-spectrogram space. The latent variable z has the same number of dimensions and
frames as the resulting mel-spectrogram sample. The mapping between the latent
space and mel-spectrogram space is determined through Masked Autoregressive Flow
(MAF), which is an implementation of normalizing flows where the transformation
layer is constructed using affine coupling layers. The key behind affine coupling is to
choose the invertible transformations in such a way that the functions and their log
determinants are computationally efficient. [42] Each successive mel-spectrogram
frame depends on previous frames. The previous frames zt−1 produce scale and bias
terms, st and bt respectively, which affine-transform the succeeding frame zt:

(logst, bt) = NN(z1:t−1, text, speaker) (8)

NN() represents an autoregressive causal transformation, which in this case, is a
neural network. text and speaker represent the text and speaker embeddings which
are concatenated to the sample during training and inference. While the coupling
layers must be invertible, NN() does not need to be. The scale and bias operations
can be arbitrarily complex operations because the coupling layer itself preserves the
invertibility for the overall network. This is true because st and bt only depend on
previous frames z1:t−1 and fixed speaker and text vectors. [6] We can then calculate
the forward and inverse steps of flow as follows.

f(zt) = (zt − bt) ◦ st (9)

f−1(zt) = st ◦ zt + bt (10)

The resulting frame zt can then simply be concatenated to form the new input vector
for the next iteration:

z1:t = concat(z1:t−1, zt) (11)

The Jacobian of the coupling layer can be easily computed as follows:

∂f(zt)
∂zT

=
[︄

It−1 0
∂f(zt)
∂z1:t−1

diag(s ⊙ z1:1−t)

]︄
(12)

where It−1 is an identity matrix and diag(s ⊙ z1:1−t) is a diagonal matrix with the
scaling values. The matrix is lower triangular, which means that its determinant is
simply the product of its diagonal values:
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det( ∂f

∂xT
) =

∑︂
i

si (13)

Therefore we can compute the cost function with the determinant from the coupling
layer:

p(x) = logp(z) +
k∑︂

i=1
log | si | (14)

As can be seen, only the s terms affect the probability density mapping. The
coupling layers thus remain tractable and the cost function efficient to compute when
the transformation functions are chosen in such a way that they form a triangular
Jacobian [43].

The flowchart in Figure 8 illustrates the Flowtron concept visually. Yellow blocks
represent the training phase and blue blocks the inference phase. During training,
the Flowtron model technically learns the inverse transformation f−1(x) = x′. After
K steps of flow, the network learns to transform x into a sample from p(z). After
training, we sample z from p(z) and perform the forward transformation f(z) = z′.
After K steps of flow we produce a sample from the target distribution p(x).

3.2.2 WaveGlow

A pretrained WaveGlow model1 provides the vocoder component. WaveGlow adopts
insights from Glow [44] and WaveNet [39]. WaveGlow, though, is not autoregressive,
leading to fast audio synthesis in comparison to other models.

WaveGlow works on a similar principle as Flowtron; the network learns an invertible
mapping of data to a latent spherical Gaussian space with bijective affine coupling
layers. The model is also trained by directly minimizing the NLL of the audio training
data, which can be calculated using the Change of Variables theorem, as in equations
5 to 7. In this case, we model the distribution of audio samples conditioned on mel-
spectrograms. [10] WaveGlow, though, uses a second kind of bijective transformation
in addition to affine coupling layers. Batches of 8 audio samples are converted into
vector form and processed through the network in the forward pass. One step of flow
in WaveGlow consists of an invertible 1x1 convolution, followed by the familiar affine
coupling layer. Half of the input audio vectors x are left unchanged and produce the
s and b terms used to scale and translate the rest of the input, similar to equation 8:

xa, xb = split(x) (15)
1https://github.com/NVIDIA/waveglow
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Figure 8: Flowchart of the Flowtron mel-spectrogram synthesis pipeline, which
autoregressively produces mel-spectrogram frames conditioned on text and speaker
embedding. Blue blocks represent the inference phase, while yellow the training
phase. The green block represents a single invertible transformation known as a step
of flow. The scale and bias terms of the transformations are determined through
affine coupling layers. During training, a sample x from the mel-spectrogram space
p(x) is transformed into a latent variable z from a zero-mean spherical Gaussian p(z)
through K transformations of f−1(x). During inference, we invert each f−1 to form
the forward transformation f . Then we transform z into x by running it through
f(z) for K steps of flow.

(logs, b) = WN(xa, melspectrogram) (16)

x′
b = s ◦ xb + b (17)

f−1
coupling(x) = concat(xa, x′

b) (18)

WN() is a transformation consisting of dilated convolutions similar to WaveNet [39],
with the exception that WaveGlow has noncausal convolutions. The corresponding
upsampled mel-spectrogram is added in the affine coupling layer in order to condition
the generated result, as written in equation 16.

Information from the same half of input do not directly modify one another in the
affine coupling layer. Following the method used in Glow [44] a 1x1 affine coupling
layer is added before each affine coupling layer in order to maximize the information
gained during training. The weights W of the 1x1 convolutions are initialized to be
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orthonormal in order to preserve invertibility. The log-determinant of the Jacobian
of the transformation can simply be added to the loss function, due to the Change
of Variables theorem.

f−1
conv = Wx (19)

log|det(J(f−1
conv(x)))| = log|detW | (20)

After adding together the terms from the couplings layers the full loss function is
calculated as follows:

logpθ(x) = −z(x)T z(x)
2σ2 (21)

+
n−coupling∑︂

j=0
logsj(x, mel − spectrogram) (22)

+
n−conv∑︂

k=0
logdet|Wk| (23)

The first term (Eq. 21) is the log-likelihood of the spherical Gaussian, where σ2 is
the variance of the distribution. Terms 22 and 23 arise from the change of variables
of the coupling and convolution layers.

3.3 Model architecture

Flowtron consists of a text analysis frontend and mel-spectrogram generator DNN.
Similar to Tacotron [1][41] the DNN consists of an encoder-decoder structure with
attention. The flowchart in Figure 9 illustrates the Flowtron network in more
detail. Each character in the input text is mapped to a text embedding which
serves as a vector representation of that character. Each character in the input text,
including punctuation, is given a specific numerical value, called a text token. During
training text embeddings modify themselves so as to better represent their phonetic
characteristics.

The text embeddings are first passed through three one-dimensional convolutional
banks with a kernel size of 5 and 512 filters. The output is rescaled and recentered
with batch normalization in order to keep training stable.

The output is passed through a bidirectional long short-term memory (LSTM)
network with a hidden state of size 256. A LSTM network is a type of recurrent
neural network (RNN). RNNs are useful for modeling sequential data like audio and



22

Figure 9: A detailed flowchart of the Flowtron network, which includes all of the
network layers. Blue components constitute the encoder module and green compo-
nents the decoder module. Yellow represents the attention layer and orange the final
affine transformation. Square components represent vectors, while oval components
represent calculations within network layers.
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text data because they maintain previous information in a hidden state, which is
analogous to short-term memory. In practice it is difficult to train a standard RNN
to solve a task that requires long-term temporal dependencies because the gradient
of the loss function tends to decay with time (vanishing gradient problem). LSTM
aims to solve this problem by introducing additional memory cells with a set of gates
that control when information enters the memory cell, when it is output, and when
it is forgotten. The hidden state size refers to number of features expected in the
hidden state of the LSTM layer.

An optional fixed speaker embedding of size 128 is concatenated to the end of the
text embedding at each token. In a multispeaker model the speaker embeddings
condition the network to adopt the unique speech characteristics of the speaker.

The mel-spectrogram of the corresponding utterance is obtained using librosa. A
zero-vector is concatenated to the beginning of the spectrogram to serve as the first
time step. It is then passed through an LSTM layer with a hidden state size of 1024.

Between the encoder and decoder an attention mechanism is implemented over
the encoder hidden states. The attention mechanism in deep learning networks is
analogous to cognitive attention. More attention is assigned to parts of the input
which are relevant to the output, while less important information is assigned less.
The aim of the attention mechanism is to align text tokens (represented by encoder
hidden states) to their corresponding mel-spectrogram frames (represented by decoder
hidden states) such that resulting speech sounds as natural as possible. The task is
not trivial, as alignments are not one-to-one. Text tokens are pronounced for a longer
or shorter time, depending on its context, and thus require more or less frames. For
each decoder step, all previous encoder hidden states are summarized and scored by
their individual relative importance to that decoder step. These scores are known as
attention weights. Flowtron uses a content-based tanh attention from [45]. Given
a sequence of encoder hidden states (h1, ..., hTA

), and a sequence of decoder inputs
(d1, ..., dTB

), the attention weights vector is computed as follows:

at,i = softmax(vT tanh(W ′
1hi + W ′

2dt) (24)

where the vector v and the matrices W ′
1 and W ′

2 are learnable parameters of the model.
softmax is an activation function which converts a vector of values into a vector
of probabilities. Attention weights can be visualized as a matrix between encoder
hidden states and decoder hidden states, as seen in figure 10. Ideally, attention
weights are assigned such that a diagonal matrix is formed; Encoder timesteps from
the beginning, middle, and end of the text input should align with the first, middle,
and last decoder timesteps.

From the attention weight vector the context vector for time step t is calculated as
follows:
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Figure 10: Example of an attention weights matrix with good alignment between
text tokens and mel-spectrogram frames. Encoder timesteps represent the text
token hidden state representations, while decoder timesteps the mel-spectrogram
frame hidden states. The matrix values represent the attention assigned to the
corresponding encoder and decoder timesteps. Good alignment is attained when the
diagonal values of the matrix are highest.
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ct =
TA∑︂
i=1

at,ihi (25)

The attention context vector is time-wise concatenated to the mel-spectrogram hidden
state vector and used as input for the decoder module. This vector is passed through
an LSTM with a hidden state size of 1024. The output is passed through a dense
linear transformation layer and one-dimensional convolutional layer with 160 filters
and a kernel size of 1. The log of the scale term log(s) constitutes the first half of
the output of the convolutional layer and the bias term b the second. All that is left
is to affine transform the original input mel-spectrogram with the resulting scale and
bias terms and evaluate its log-likelihood.

Once the model has been trained, mel-spectrogram synthesis is simply a matter of
sampling from the prior latent distribution z ∼ N(0, σ2) and passing it through the
trained network in a forward pass. The simple and stable nature of Flowtron allows
for control over speech variation and style transfer. Prosody and speech expressivity
can be modified by manipulating the latent space before sampling.

The WaveGlow network includes 12 coupling layers and 12 invertible 1x1 convolutions.
Each of the coupling layer networks (WN()) has 8 layers of dilated convolutions with
512 channels used as residual connections and 256 channels in the skip connections.
Two of the channels are output after every four coupling layers. Doing so helps
the network to include information from several time scales and for gradients to
propagate to previous layers. [10] The authors of [6] hypothesize that WaveGlow can
be considered a universal vocoder, meaning that it does not have to be trained with
the same data as the Flowtron part of the model. We verify this claim by using a
pretrained WaveGlow model during the experimental section and thus focus most of
our efforts on training the Flowtron part of model.

3.3.1 Fine-tuning for few-shot speech generation

Voice clone success is highly data-dependent. In cases where available data is not
of sufficient size or quality, a pretrained model trained on different data can be
fine-tuned to incorporate the voice characteristics of a previously unseen speaker,
even with limited data. Flowtron models are fine-tuned in a few-shot setting, in
which the model learns to generalize over a small amount of previously unseen data
by building upon its existing knowledge. Instead of initializing weights randomly,
weights from the pretrained model are transferred to the fine-tuned model. The
network layers are frozen, excluding the speaker embedding layer. Then, the model
is trained with the unseen speaker data. During training the speaker embedding
layer modifies itself to learn voice characteristics of the new target speaker with
minimal influence to the rest of the network. General acoustic features, such as
pronunciation and prosody, are retained from the pretrained model. Fine-tuning
requires less computational power and tends to converge faster than models trained
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from scratch with randomly initialized weights.

3.3.2 Style transfer for emotional speech synthesis

The style transfer approach is explored with the theme of emotional speech. People
express different emotions with the way that they speak. Therefore the possibility to
convey how one is feeling through voice characteristics is an important addition to an
artificial speech synthesis system. The generation of emotional speech is not simply
a matter of altering pitch or speed of speech, which makes it difficult to manually
add emotional characteristics to a Flowtron model.

In the style transfer approach, we sample from a posterior distribution conditioned
on prior evidence which contain speech characteristics of interest. Prior evidence ze is
collected by performing a forward pass through the trained network with the target
voice speaker ID, and text-audio pairs of a set of samples that embody the desired
emotion. With this approach, previously unseen accents, prosodies, and other speech
styles can be transferred to the target voice without needing to be retrained.
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4 Methodology

The goal of the experimental part of the thesis is to train a Flowtron model with
the voice of a person living with LIS by using the fine-tuning for few shot speech
synthesis paradigm, outlined in section 3.3.1. Control of speech expressiveness and
style transfer is also explored. We then showcase speech generated by the model with
a simple graphical user interface (GUI). The Flowtron2 and WaveGlow3 frameworks
are publicly available on GitHub and used with minimal modifications to the code.
The training data used in the experiments includes about 15 minutes of relatively
noiseless audio from a single speaker. The data is used to fine-tune the speaker
embedding layer of various Flowtron models pretrained on professionally recorded
speech datasets. For the sake of comparison, we also train a Flowtron model from
scratch on our training data, though it is hypothesized that the dataset is not sufficient
both quantitatively and qualitatively to successfully clone the target speaker.

4.1 Data preprocessing and required tools

The original target speaker data available consists of a YouTube video with a professor
speaking about art in English for a duration of about 15 minutes. The video is
first converted to waveform audio file format (wav). Then, using the audio editing
software Audacity, the channel format of the file is changed from stereophonic to
monophonic and the the sampling rate converted to 22050. The audio file is then
divided into short utterances ranging from 1 second to 10 seconds. The division is
based on natural stopping points in the speech, so that each utterance constitutes
a full sentence. Filler words, such as “umm” and non-speech sounds, such as deep
breathing and music, are clipped from the audio. The utterances are transcribed
manually, with punctuation included at the end. The final target speaker dataset
consists of 127 utterances with a total length of 13 minutes and 26 seconds. The
transcriptions are written line by line into a text file, along with the location of the
corresponding audio file in the file structure. The resulting text-speech pairs are
randomly divided into training and validation sets, with 111 and 16 pairs in each,
respectively.

For the emotional style transfer experiments we used the open-source Emotional
Voices Database from [46]. It includes utterances from audiobooks spoken by voice
actors in four different emotional styles: angry, amused, disgusted, and sleepy. We
chose ten utterances from each emotion class spoken by a female speaker labeled
“Spk-Bea” to use as prior evidence ze. We ensured that each utterance was between
1-10 seconds and performed the same audio preprocessing steps as for the target
speaker dataset.

2https://github.com/NVIDIA/flowtron
3https://github.com/NVIDIA/waveglow
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The base model for the fine-tune paradigm is a Flowtron multispeaker model4 trained
on the LibriSpeech corpus [47], which includes about 1000 hours of speech from 2300
different speakers reading passages from various audiobooks. All of the speech is
recorded in a professional environment but the overall quality of audio differs between
speakers. The model is chosen due to its versatility. The speech corpus it is trained
on has a rich vocabulary, which provides the resulting model with an extensive pool
of examples to learn correct pronunciation from. The variation in audio quality also
leads to a model that is more robust to noise. We used a WaveGlow model5 pretrained
on the same LibriSpeech dataset as the vocoder component. WaveGlow is considered
a universal vocoder [6], so therefore the model is used without modifications or
fine-tuning.

Deep learning models require significant computational power. Therefore access
to NVIDIA’s Volta or Pascal series GPU is required to train the models. Aalto
University’s Triton kernel makes it possible to employ the needed power. In addi-
tion, the NVIDIA CUDA Deep Neural Network (cuDNN) library of primitives is
needed. The Flowtron and WaveGlow architectures run on the PyTorch machine
learning framework. The full list of technical prerequisites and detailed steps for
Flowtron+WaveGlow setup are outlined on the Flowtron GitHub page.

4.2 Fine-tuning a Flowtron model

Speaker similarity. Each speaker in the Flowtron base model has a unique speaker
ID. When setting up the dataset for fine-tuning, the new speaker can either be labeled
with a new speaker ID or the ID from a speaker in the base model dataset. The
former method introduces a new speaker into the dataset, while the latter fine-tunes
the existing speaker directly. While both methods work, we found that fine-tuning
an existing speaker which has similar voice characteristics to the target speaker leads
to better results.

We could only find information for a subset of 123 speaker IDs out of the 2300 speakers
in the base model. This subset constitutes recordings of higher quality and longer
duration. In order to determine the speaker most similar to our target speaker we used
the Resemblyzer6 python package. Resemblyzer derives a high-level representation
of a voice based on a deep learning model trained on speaker verification. Speaker
verification refers to the process of verifying whether an utterance belongs to a certain
speaker. The model takes an audio file as input and creates an embedding which
summarizes its voice characteristics in vector form. Voices which are similar are
close together in latent space, while voices that are very different from each other
are further apart. [4]

Ten utterances from each speaker in the base model dataset as well as ten utterances
4https://github.com/NVIDIA/flowtron
5https://github.com/NVIDIA/waveglow
6https://github.com/resemble-ai/Resemblyzer
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from our target speaker dataset were fed as input to the model. As output the model
produces normalized speaker embeddings for each speaker. Then we calculated the
dot product of the target speaker embedding and each of the base model speaker
embeddings because the dot product of two normalized embeddings defines their
cosine distance. The minimum distance was found for Speaker 669, which we
subsequently identified as most similar to the target speaker. The scatter plot shown
in Figure 11 illustrates the two-dimensional projections of the speaker embeddings.
The dimensionality reduction method used to calculate the projections was Uniform
Manifold Approximation and Projection (UMAP). As can be seen, male and female
speakers each form a distinct cluster. The target speaker and Speaker 669 are labeled
in the plot.

Figure 11: Visualization of the two dimensional projections of 124 speaker embeddings,
which are calculated with the Resemblyzer [4] deep learning network trained on speaker
verification. The network is able to differentiate between male and female speakers.
The target speaker and the speaker with the most similar characteristics both belong
in the female speaker cluster.

Training parameters. The success factor of of deep learning applications is largely
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dependent on the combination of training parameters in the setup. A significant
portion of the experimental phase of this thesis involved experimenting with different
training setup configurations and evaluating their effect on speech samples.

Three of the most important training parameters in machine learning include batch
size, learning rate, and optimization algorithm. Batch size dictates the number
of samples processed through the network before the model weights are updated.
With a batch size larger than one, an average loss across the samples in the batch is
computed, instead of for a single input. Average loss tends to be less noisy because
training is less affected by single inputs, some of which may be outliers and as such
not representative of the entire dataset. A small batch size converges slower, because
of the noisiness. On the other hand, batch sizes that are too large are computationally
expensive. In addition the average loss may not change much across batches, which
may lead to suboptimal solutions. Learning rate determines the size of the step
at which weights are updated at each iteration across a batch. There is a tradeoff
between rate of convergence and overshooting. A learning rate that is too high may
jump over optimal solutions, while one that is too low may get stuck in a local minima
or take too long to converge. The optimization algorithm, in turn, is responsible for
finding the value of weights that minimize the error when mapping inputs to outputs.

The parameter σ2 defines the variance of the latent variable z sampled from the p(z)
during training. The lower the value of σ2, the closer together z values are in latent
space. As a result the model is more biased toward the dataset and generated speech
is less varied. According to [6], Flowtron produces the best results when training is
conducted with σ2 = 1 and inference is performed with σ2 < 1.

We reduced the learning rate from the default 0.001 to 0.0001 and set the batch
size to 16 to optimize training efficiency and stability. Otherwise default training
parameters were used. Important training parameters and their values are listed in
Table 1.

Table 1: Training parameters used to train a fine-tuned model.

Parameter Value
Learning rate 0.0001

Batch size 16
Optimization algorithm RAdam

σ2 1.0
Speaker ID 669

Mel-spectrogram parameters are also important when it comes to accurate training.
Since the STFT provides time-localized information of how the frequency components
change over time, varying the window and hop length affects the time and frequency
resolution of the resulting signal. We used the default mel-spectrogram parameters
described in [6]. The STFT is applied with a fast Fourier transform (FFT) size of
1024, a window size of 1024 samples and a hop size of 256 samples, which corresponds
to about 12 ms. The maximum frequency is set to 8000 Hz. The frequency spectrum
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in mel scale is divided into 80 evenly spaced channels with librosa mel filter banks,
which project FFT channels onto mel-frequency channels with a linear transformation
matrix. The space between each channel signifies differences in pitch as perceived by
humans, instead of the actual distance in the frequency dimension. Mel-spectrogram
parameters used in training are summarized in Table 2.

Parameter Value
Sampling rate 22050

Filter size (FFT) 1024
Window size (samples) 1024

Hop size (samples) 256
Maximum frequency (Hz) 8000

Mel channels 80

Table 2: Mel-spectrogram parameters

Figure 12 shows the NLL training and validation loss progression during training,
smoothed with a moving median filter of size 5. A step refers to one iteration across
a batch. In the beginning, both training and validation loss decrease at a stable rate,
which indicates that the model is learning. Both losses begin to plateau at around
Step 10000. Training loss converges at around -1.04, while validation converges at
-1.06. The model was trained for a total of 13000 steps, which corresponds to 1625
epochs.

Figure 12: Negative log likelihood (NLL) training and validation loss during training
of a fine-tuned Flowtron [6] model. Both validation and training loss decrease at a
stable rate and begin to plateau around its 10000th iteration across the network.
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4.3 Training a Flowtron model from scratch

In order to verify the necessity of using the fine-tuning method for our dataset, we
also trained a Flowtron model from scratch. Instead of transferring weights from
a base model and freezing layers, weights were initialized randomly and the model
trained across the entire network. We used a batch size of 1 and learning rate of 0.001
to match the parameters used in the Flowtron paper [6]. Training parameters are
summarized in Table 3. We used the same mel-spectrogram parameters presented in
section 4.2.

Table 3: Training parameters used while training a Flowtron model from scratch
according to [6]

Parameter Value
Learning rate 0.001

Batch size 1
Optimization algorithm RAdam

σ 1.0

Figure 13 shows the progression of NLL training and validation loss when training
from scratch. Validation loss is very high in the beginning, likely due to randomly
intialized weights, but it also decreases quickly and plateaus sharply already at
step 5000. The training loss curve remains flat over the course of training, which
indicates underfitting; the model did not have the capacity to generalize patterns in
the training data due to an insufficient amount of examples in the dataset. The losses
also remain high in comparison to the fine-tuned model. The model was trained
until 100000 Steps, which is equal to 100000 epochs, but no substantial changes in
losses occurred after 5000 steps.
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Figure 13: Negative log likelihood (NLL) training and validation loss progression
during training of a Flowtron model using limited data. Validation loss falls sharply
and plateaus, while training loss remains stagnant. The loss curves indicate underfit-
ting due to insufficient data.
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5 Results

In this section we present mel-spectrograms and speech samples synthesized by the
fine-tuned model and the model trained from scratch. We conducted a small-scale
Mean Opinion Score (MOS) listening test to evaluate the speech from a potential
user’s perspective. We then present a user-friendly speech synthesis application
which people with speech impairments can use as a tool for synthesizing speech.

5.1 Mel-Spectrogram synthesis with Flowtron models

After training mel-spectrogram inference of input text is carried out by randomly
sampling z values from a spherical Gaussian and running them through the trained
network in the forward direction. During inference we use a variance of σ2 = 0.5
unless otherwise specified. In section 5.3 we analyze the effect of different σ2 values
on generated speech.

Four different text prompts are used as input to perform inference from the two
trained Flowtron models. Two of the prompts are included in the training data,
so the model has encountered them before, while the other two consist of unseen
text. The text prompts also vary in length in order to evaluate the model’s ability
to generate audio of different durations. The prompts are listed in Table 4.

Table 4: Text prompts fed as input to the Flowtron voice clone model. The prompts
include text that the model has encountered during training (seen) and new text
(unseen). The prompts also vary in length (long and short).

Seen short Streamlining allowed people to see something very far down
in the future and hope and aim for that.

Unseen
short

The human voice is the most beautiful instrument of all, but
the most difficult to play.

Seen long I like to make things, so actually I am probably a designer
myself, in the deepest of my hearts. But I also like to dream
up things, to write about things, and to make stories about
things and so this is probably why I became a design historian.
Good design is always of its time because it represents what
people like at this very moment, what people care about, what
people would like to have, and what makes people dream.

Unseen
long

Graz is the second largest city in Austria after Vienna. It is
located in the southeast of Austria on both sides of the river
Mur. The population of Graz is about 300 thousand and it
is home to many students. Its historic center is one of the
best preserved city centers in Central Europe. Some famous
landmarks in Graz include the Castle Hill, clock tower, and
town hall.
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5.1.1 Fine-tuned model

From each text prompt we generated a mel-spectrogram as well as attention weight
matrices for each step of flow. Attention weight plots provide a visual indication of
how well the text input has aligned with the mel-spectrogram frames, as explained
in section 3.3.

Figure 14 illustrates generated mel-spectrogram plots (panel A) and attention weight
matrices (panels B and C) for the seen short (Subfigure 1) and unseen short (Subfigure
2) text inputs. Formant frequency patterns (as explained in section 2.1.2) are clearly
visible, especially in the lower frequency areas. The short segments of silence between
formant patterns likely represent pauses between words or phonetic units. Attention
weight matrices for both text prompts feature a clear diagonal line across the encoder
and decoder timesteps, except for some minimal fragmentation in the early timesteps.
These results indicate that the model has learned to attend between text and mel-
spectrogram relatively well, though some distortion could be present in the early
timesteps. There are no major discrepancies between the the mel-spectrograms and
attention plots of the two short prompts, which suggests that the model is able to
produce output at an equal level for both seen and unseen input.

Figure 15 illustrates generated mel-spectrogram plots (panel A) and attention weight
matrices (panels B and C) for the seen long (Subfigure 1) and unseen long (Subfigure
2) text inputs. Attention weight matrices for both steps of flow are almost indistin-
guishable, which indicates that the model has not learned to align between text and
mel-spectrogram frame. We hypothesize that the attention mechanism of the model
is not sufficient for decoding very long texts without pauses and produces distorted
speech as a result. From the mel-spectrograms alone it is difficult to evaluate whether
or not distortion is present because the formant patterns are squeezed into a smaller
space due to the longer duration of the texts.

We generated a mel-spectrogram from the actual recording of the target speaker
uttering the seen short text prompt to serve as a ground truth comparison. Figure 16
shows the comparison between the ground truth mel-spectrogram (panel A) and its
voice clone counterpart (panel B). The ground truth audio is longer in duration and
has greater sound intensity even in the higher frequencies. The cloned audio has one
second of silence, which perhaps indicates noise or a decoding error. Sections of silence
between voiced segments seem to generally be longer in the cloned mel-spectrogram.
The formant patterns of ground truth and cloned mel spectrograms seem to follow a
similar general pattern, though the details are quite different.

5.1.2 Model trained from scratch

As comparison, we also synthesized mel-spectrograms and attention weights using the
model trained from scratch, shown in Figure 17. (1.A) and (2.A) show the generated
mel-spectrograms for the seen sbort and unseen short text prompts, respectively,
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(1) “Streamlining allowed people to see something very far down in the future and hope
and aim for that.”

(2) “The human voice is the most beautiful instrument of all, but the most difficult to play.”

Figure 14: Synthesized mel-spectrogram (A) and attention weight plots (B), (C)
generated from two different sentences: (1) and (2). Sentence (1) was part of the
Flowtron fine-tune training process, while (2) was previously unseen by the network.
(B) and (C) signify the alignment between text and mel-spectrogram frames for the
first and second steps of flow, respectively. Speech formant patterns in both (1.A)
and (2.A) are clear and easy to recognize. (B) and (C) in both (1) and (2) indicate
good alignment between text input and frame output, although some distortion can
be seen in the early timesteps. The network seems to perform at the same level
regardless of whether it has encountered the text input before or not.
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(1) Generated from paragraph encountered by model during training

(2) Generated from paragraph previously unseen by model

Figure 15: Synthesized mel-spectrogram (A) and attention weight plots (B)(C)
generated from two different paragraphs (1) and (2). Paragraph (1) was part of the
Flowtron fine-tune training process, while (2) was previously unseen by the network.
(B) and (C) in both (1) and (2) appear fragmented and barely visible, which indicates
that the model has not learned to align between text and mel-spectrogram frames.
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Figure 16: Ground truth (A) and cloned (B) mel-spectrograms for the sentence
“Streamlining allowed people to see something very far down in the future and
hope and aim for that.“ (A) and (B) differ in duration and relative sound intensity,
especially in the higher frequencies. The formants follow the same general pattern.

while (1.B) and (2.B) show the attention weight matrices for the two prompts (the
model was only trained for one step of flow; therefore there is only one attention
weight matrix per prompt). We were only able to produce results from the short text
prompts because the longer text prompts resulted in pure noise as output. In general,
the mel-spectrograms seem to be more noisy, as the sound intensity is relatively
high throughout the spectrogram in comparison to the spectrogram generated by the
fine-tuned model. Interestingly, the model did manage to generate relatively accurate
looking formant patterns, but they appear much rougher than those generated by
the fine-tuned model. From the attention weight matrices, it is clear that the model
has not learned to align between text and spectrogram frame, which was the result
we expected from our limited dataset.
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(1) Streamlining allowed people to see something very far down in the future and hope and
aim for that.

(2) The human voice is the most beautiful instrument of all, but the most difficult to play.

Figure 17: Synthesized mel-spectrogram (A) and attention weight matrices (B), (C)
generated from two different sentences: (1) and (2). Sentence (1) was part of the
Flowtron training process, while (2) was previously unseen by the network. (1.A)
and (2.A) both appear to have a lot of noise, although the formant patterns are
still distinguishable. (B) and (C) for both (1) and (2) indicate that the model has
not learned to align between text and mel-spectrogram frames due to the limited
training dataset.
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5.2 Speech synthesis with WaveGlow

We used the pretrained WaveGlow model presented in section 4.1 to decode mel-
spectrograms into waveform. The fine-tuned model generates audio output with
accurate pronunciation, which verifies the claim in [6] that WaveGlow can be used as
a universal vocoder. Speech generated with σ2 = 0.5 sounds slightly monotone. In
the next sections we explore the effect of varying the expressiveness level. A metallic
sound can occasionally be heard in the beginning of each audio, which suggests
a decoding error. As hypothesized, the audio samples generated from the longer
text prompts sound quite distorted in parts of the utterance. The generated audio
repeats words or entire phrases and occasionally sounds like unintelligible mumbles,
especially in the beginning and middle part of the utterance. This is likely due to
insufficient memory in the attention component of the model. We thus conclude that
the most efficient way to use the fine-tuned model is to split a longer text input into
sentences before performing inference.

The model trained from scratch with randomly initialized weights seems to adopt the
voice characteristics of the target speaker fairly quickly and accurately. As expected,
though, the model does not manage to align between text and speech at all. The
generated audio sounds distantly like English, but does not contain almost any
recognizable words. The algorithm likely does not have access to enough examples
of different words and their pronunciations due to the small training dataset and
therefore cannot create a general model of the English language. Different speech
sounds are simply stringed together randomly instead.

5.3 Speech Variation

Speech expressiveness is controlled by adjusting the variance (σ2) when sampling z
values. When σ2 = 0, the model produces outputs fully biased to the model. When
σ2 is increased, the amount of variability in pitch and other voice characteristics
also increases, which simulates expressive speech. We calculated the fundamental
frequency (F0) contours across the synthesized audio and plotted them in order to
visualize the amount of expressiveness. F0 contours are estimated with the YIN
algorithm [48] with a minimum F0 of 80 Hz, maximum F0 of 400 Hz, and harmonicity
threshold of 0.3. Figure 18 shows a comparison of the F0 contours of the original
and synthesized versions of the short seen text. The contours follow a somewhat
similar pattern, although the synthesized version is shorter and the cloned audio has
less variance in F0. The synthesized speech seems to have a lower F0 throughout the
utterance, which can also be heard in the audio as a deeper and more monotone way
of speaking.

Figure 19 illustrates the effects of different σ2 values on the F0 contours of speech
synthesize by the same fine-tuned model. As expected, F0 varies more when σ2 = 1.0
in comparison with 0.5 or 1.0. The difference between σ2 = 0.5 and σ2 = 0.0 is not
very strong; both contour plots suggest fairly monotone speech.
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Figure 18: Fundamental frequency (F0) contour patterns of audio generated by a
voice clone and its ground truth counterpart (original). The cloned audio has less
variance and generally lower pitch than the original.

Figure 19: Fundamental frequency (F0) contour plots of cloned audio with varying
levels of expressiveness, 0.0 being the least expressive and 1.0 being the most expres-
sive.

Increasing σ2 also increases variability of speech between different samples of the
same text input. One sample may emphasize different parts of the sentence than
another sample, and raise or lower the pitch during different parts of the utterance.
We generated 10 samples of the same text prompt (seen short) for three levels of
expressiveness; σ2 = 0.0, σ2 = 0.5, and σ2 = 1.0 and plotted their F0 contours to
observe the variability between samples. The resulting contours are shown in Figure
20. Panel A refers to audio generated with σ2 = 0.0. As can be seen in the contours,
each of the ten samples follow the same pattern, and are almost indistinguishable
from one another. Samples generated with σ2 = 0.5 (Panel B of Figure 20) already
show more variability between one another, but still follow the same general pattern.
The highest variability between samples is seen in clones synthesized with σ2 = 1.0
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(Panel C of Figure 20). While the contours produced by the two lower levels of
expressiveness follow a certain trajectory, the contours produced by the highest
expressiveness level look like they could have been generated from different text
prompts.

Figure 20: Fundamental frequency (F0) contour plots that show the effect of three
different values of variance on F0 variability between speech samples. (A), synthesized
with a variance of 0.0, has very minimal variability between samples. (B), synthesized
with a variance of 0.5, has slightly more variability, while (C), synthesized with a
variance of 1.0 clearly has the most variability between samples.

5.4 Emotion Transfer

In order to produce emotional speech, a posterior distribution conditioned on prior
evidence pertaining to each of the four emotion classes is sampled with σ2 = 0.5, as
explained in section 3.3.2. The sample is then forward passed through the fine-tuned
model. We then plotted the F0 contours once again to observe the effect of emotion
transfer on F0 contours, shown in Figure 21. F0 varies significantly both throughout
the utterance generated in each emotion and between the different emotions. The
“angry” emotion has a slightly more monotone contour with a deeper register, which
aligns with the expected nature of angry speech. The rest of the emotions, on the
other hand, have a relatively high amount of F0 variability within their generated
utterances. The fluctuation in pitch could be a characteristic of “amused” speech,
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for example, but it is difficult to visually evaluate the appropriate amount of F0
variation that embodies a certain emotion.

Figure 21: Fundamental frequency contours resulting from voice clone samples
conditioned on emotional speech. Emotional transfer introduces a lot of variance in
fundamental frequency.

5.5 Mean Opinion Score Tests

A small-scale Mean Opinion Score (MOS) Listening Test was conducted in order to
subjectively evaluate the quality of fine-tuned clones. The test had three different
parts: (1) listening experience, (2) similarity to ground truth audio, and (3) emotional
speech perception. The sample size of the test was 10 people. The requirements
included fluency in English and a normal hearing level. Each listener completed the
test in a quiet space free of distractions using headphones.

In the first part, listeners evaluate the listening experience of the audio synthesized
with the fine-tuned model, generated with five different levels of voice expressiveness:
σ2 = 0.0, 0.2, 0.5, 0.8, 1.0. Each audio clip was generated with the same text input:
“Life isn’t about waiting for the storm to pass, it’s about learning to dance in the rain.”
Therefore the only difference between the audio clips is the variance used. Listeners
scored their own subjective listening experience using three different indicators: (1)
intelligibility, (2) naturalness, and (3) accuracy. Intelligibility refers to how well the
listener can understand what is being communicated in the audio. Naturalness is
defined as the extent to which the audio resembles human speech. Accuracy asseses
whether or not words are pronounced correctly. Each of the indicators were scored
on a scale of 1 to 5, where 1 is the lowest perceived experience and 5 the highest
perceived experience. Figure 22 summarizes the results of the listening experience
section of the listening test. Listeners seemed to give higher scores to speech with
higher levels of expressiveness. On the other hand, scores drop slightly with σ2 = 1.0,
especially in the case of naturalness. While completely monotone speech is definitely
unnatural, too much expressiveness and intonation can also be deemed unnatural to
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the average listener. With the style transfer approach, it is not possible to specify
which words or phrases should be expressed in a more lively way. Therefore, when
cloned speech is synthesized with too much variability, the parts that are emphasized
can seem random, and subsequently, unnatural.

Figure 22: Average listening experience scores of voice clone speech samples synthe-
sized with varying levels of expressiviness. Samples synthesized with variance (σ)
values of 0.5 and 0.8 received the highest scores on intelligibility, naturalness, and
accuracy.

In the second part of the test, listeners were asked to evaluate the similarity of cloned
audio to ground truth audio. The utterance “I grew up in Austria, I’m all Austrian
by birth, and by upbringing, and by culture.” was synthesized from the fine-tuned
model with the same 5 varying levels of speech expressiveness as in the previous
section of the test. The listeners evaluated the similarity of the cloned audio to the
actual recording of the target speaker speaking the same utterance on a scale of
1 to 10, where 10 indicates that the ground truth audio and the cloned audio are
indistinguishable and 1 indicates that the two audios sound like they are spoken by
two different speakers. Figure 23 summarizes the results of the second part of the
test. Each audio clip received an average score of less than 4, which insinuates that
the cloned audio does not bear much resemblance to ground truth audio, regardless
of speech expressiveness level.

In the last section of the test, listeners evaluated the perception of emotional speech
generated with the style transfer method outlined in section 3.3.2. Listeners were
given a total of 8 audio clips, each of which should encompass one of four different
emotions: angry, amused, disgusted, or sleepy. The text inputs of the generated
audio are “Life isn’t about waiting for the storm to pass, it’s about learning to dance



45

Figure 23: Listeners scored the similarity of cloned audio of different levels of
expressiveness to ground truth audio on a scale of 1 to 10. Each sample received an
average score of about 3.

in the rain.” and “I’m Austrian by birth, and by upbringing, and by culture.” The
text inputs were chosen to be fairly neutral and thus should not give any indication
of the intended emotion through the meaning of the sentence. Listeners were asked
to infer the perceived emotion expressed in each audio clip. If none of the listed
emotions were recognized in the audio, the listener could also choose “None.”

The pie charts in Figure 24 summarize the results of the final listening test section.
The expressed emotion was chosen correctly only 5 percent of the time, which
indicates that the style transfer method was not successful in conveying emotions
through artificial speech. Interestingly, both the “amused” and the “disgusted” voice
clone were perceived as “angry” by 40 percent of the listeners. Further, 35 percent
of the listeners thought that the “sleepy” clone souded “amused”. The low level of
agreement with the intended emotion raises the question of how well this method
can work and calls for further investigation of both the underlying principle and the
used “emotional” voice samples. However, the results also show that performing
style transfer results in voice clones that are perceived to express some of the given
emotions, even if there is little consensus amongst the listeners on the specific emotion
it conveys.

5.6 TTS application

Finally, we developed a simple, user-friendly graphical user interface (GUI) application
in order to showcase the results of the trained Flowtron models and to make the
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Figure 24: Pie charts which summarize the emotion that listeners guessed was
being conveyed in voice clone samples conditioned on emotional speech. The correct
emotion was chosen only 5 percent of the time.

technology accessible to a wider audience. The GUI was built with PySimpleGUI7.
A screenshot of the GUI is shown in Figure 25.

Figure 25: GUI application for demonstration purposes: on the left side the user can
input text and choose preferred parameters for style of speech. On the right, the
generated mel-spectrogram from the input text is displayed automatically.

The user can either directly input text or submit a file containing the desired text to
7https://github.com/PySimpleGUI/PySimpleGUI
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be synthesized. The user may control the variation of speech by toggling σ2 to a value
between 0.0 and 1.0. The user may also choose a desired emotion they wish to convey
in the speech. The default emotion is neutral. The “Start cloning” button locks
in all of the chosen input values and parameters and begins the synthesis process.
Input text is first split into sentences and inference is performed on each sentence
separately to prevent distirted speech. On a CPU, inference takes about 0.77 seconds
per character. With a GPU, inference time is roughly half of that. When inference
has finished, the program saves both the resulting mel-spectrogram and waveform
file into a specified output folder. The audio is automatically played aloud and the
reulting mel-spectrogram displayed on the left side of the GUI.

The GUI does not require its users to directly interact with complex code, so it is
accessible to a much wider audience. In addition we also aim to give its users a variety
of different choices when it comes to the nature of generated speech. Because inference
takes a relatively long time, use of the application as a real-time communication
device is not practical. Nevertheless, the application serves as an example of what a
potential AT tool could look like.
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6 Discussion

This thesis demonstrates an application of deep learning based low-resource artificial
speech synthesis in the context of people living with vocal impairments. The frame-
work is based on the Flowtron mel-spectrogram synthesizer in combination with the
WaveGlow vocoder.

Summary of results. It was found that the fine-tuning method for low-resource
voice cloning produce satisfactory speech samples for our data, while models trained
on the limited target voice data alone produced unintelligible speech. We concluded
that the optimal training setup involves fine-tuning speaker 669 from Flowtron’s
multispeaker base model trained on 2300 different speakers from the LibriSpeech
corpus. We trained the model for 13000 iterations, which is equivalent to about 1500
epochs, after which the validation loss began to plateau.

We conducted a three part MOS listening test to evaluate the voice clone from a
subjective point of view. First, we generated five cloned speech samples of five differing
levels of speech expressiveness and asked listeners to evaluate the intelligibility,
accuracy, and naturalness of each sample. Listeners preferred the fourth highest level
of expressiveness, as it scored the highest on all three indicators. For the second part,
listeners were asked to score the similarity between ground truth audio and cloned
audio samples of the same five levels of speech expressiveness. While scores between
samples were varied, each sample received an average score of around 3 points out of
10. For the final part, we conditioned the voice clone model to express four different
emotions using the style transfer method outlined in section 3.3.2. We then asked
listeners to determine which emotion they believe is conveyed in each sample from
a list of options, which included the four emotions as well as an option for none of
the listed emotions. For each of the samples, the correct emotion was chosen only
five percent of the time, but the answers also varied widely between emotions. We
concluded that the style transfer approach does modify the voice clone in a way that
would signify emotion, but the type of emotion is not conveyed clearly enough.

Finally, we created a simple computer application which takes text as input and
generates audio in the cloned voice as output. The application provides a more
intuitive demonstration of the research conducted in this thesis and at the same time
serves as a simple example of AT for a vocally impaired person.

Analysis of results. As expected, fine-tuning a base model allowed us to make
use of our limited dataset and clone the voice of our target speaker. The ability to
control voice expressiveness when synthesizing speech vastly improved the listening
experience. We did not reach expected levels of similarity between ground truth
audio and cloned audio, likely due to dissimilarities between characteristics of the
target voice and the those of the speakers in the base model dataset. While the
process of style transfer in the context of emotional speech altered the voice in a
noticeable way, listeners were unable to perceive the intended emotion from the
speech alone. While the Flowtron and WaveGlow frameworks offer simple and stable
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training with interesting features, there are some shortcomings when it comes to its
use as AT.

Impact statement. The work in this thesis provides a new perspective in the field
of artificial speech which highlights the importance of bridging the gap between
theory and practice. Not only do we introduce step by step instructions for creating
a voice clone from limited personal audio data, but we also present a comprehensive
set of guidelines for the evaluation of voice clones for a certain use-case.

Limitations. While artificial speech synthesis with deep learning proved to be
a fascinating topic with lots of potential for application in the real world, certain
obstacles were met during the pursuit of this thesis. With the vast amount of different
artificial speech synthesis architectures available, choosing one that is suitable to this
project was not a simple task. The documentation of Flowtron [6] was also confusing
at times; it was not always clear whether technical errors and quality limitations
originated from the code, the dataset, or from insufficient training time.

Deep learning is very computation-heavy, especially in the case of natural speech
networks, which generally require large sets of data and powerful GPUs to perform
at the optimum level. Therefore training performance was dictated by data and
computation constraints. The training process of Flowtron is simple and stable due
to its flow-based approach and likelihood maximizing optimization algorithm. On
the other hand, the autoregressive nature of Flowtron leads to slow mel-spectrogram
generation, which, in turn, slows down total speech synthesis time by a significant
amount. Since long inference time is not convenient for a communication device
intended for use in real-time, further research should be conducted to speed up the
process. In general, it is important to shorten inference time as much as possible
without sacrificing synthesized voice quality.

Since the listening test was limited to a relatively small sample group, the survey
results may not be a proper representation of the data. Participants also possibly
have different criteria when it comes to scoring audio, but this is inevitable in a
questionnaire based on subjective opinions.
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7 Conclusion and Outlook

Artificial speech synthesis with the use of deep learning is a very up-and-coming
field with new innovations emerging at a rapid pace. Speech synthesis research is
not only a fascinating topic, but it also has relevance as a tool for people living with
speech impairments. Through the research conducted in this thesis, we hope to raise
awareness and focus toward technology that promotes inclusivity. The ability to
speak in a way that resembles one’s own personal voice can open many doors for
people unable to communicate in a conventional manner. The results of this thesis
provide a glimpse into the inner workings of deep learning based speech synthesis
from the perspective of the average user of the technology.
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